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Intermittent Behavior in O scillat

By W. A. EDSON

Oscillators of all sorts may, for certain values of the param eters^ 
frequency disturbances. Usually the disturbance takes the form of a low-fre
quency interruption of the desired oscillation. By the method here presented 
it is possible to determine whether or not such interm ittent behavior will occur 
in a given oscillator and what circuit modifications are required to promote 
stability. The intentional generation of a modulated wave by control of the low 
frequency behavior of an oscillator is also considered. Oscillators of the nega
tive resistance type are not considered.

I .  I n t r o d u c t io n

T T  HAS been known for a long tim e th a t all kinds of oscillators are subject 
to  the trouble variously referred to  as in te rm itten t oscillation, m otor 

boating, or squegging. In  conventional circuits such as the H artley  the 
phenom enon is m ost likely to be observed if the grid leak and grid condenser 
are abnorm ally large. I t  is found th a t the tim e constant of this com bina
tion m ust be reduced as the frequency is raised and as the Q of the resonant 
circuit is decreased. A t frequencies above a  few hundred megacycles the 
problem  of producing a  p ractical circuit w ith suitable m argin of stab ility  
is qu ite  difficult.

W ith  the adven t of the oscillator having autom atic  ou tp u t control the 
problem  assum ed a new aspect.1’ 3 By application of an  amplified control 
circuit a high degree of constancy of ou tp u t together w ith low harm onic 
ou tp u t is obtained. Satisfactory operation is secured, however, only when 
suitable a tten tio n  is given to  the  characteristics of the control circuit.

The in ten tional generation of pulses by  m eans of in te rm itten t oscillations 
of relatively  high frequency has been studied to  some extent, and circuits 
of th is kind are employed in some television systems. U sually the high- 
frequency oscillation is lim ited to  a small portion  of the low-frequency cycle,' 
the charge stored during th is period being allowed to dissipate itself relatively 
slowly during the  rem ainder of the  cycle.

In  all of these circuits satisfactory perform ance depends upon a proper 
proportioning of elem ents n o t directly  associated w ith the operating fre-

iL .  B. Argimbau, “An Oscillator Having a Linear Operating Characteristic,” Proc.
I.R .E ., Vol. 21, p. 14, Jan. 1933.

2 J  Groszkowski, “Oscillators with Automatic Control of the Threshold of Regenera
tion ,” Proc. I .R .E ., Vol. 22, p. 145, Feb. 1934.
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quency. W hen continuous oscillation is necessary it  is desirable to  provide 
adequate m argin against in te rm itte n t operation. W hen in te rm itten t opera
tion  is desired the opposite is true. In  either case an  understanding  of the  
sam e general problem  is necessary.

T he presen t analysis applies only to  oscillators of the  feedback type. N o 
m ethod of extending it  to cover negative resistance oscillators such as the  
D ynatron  and the  T ransitron  has been found. R elaxation  oscillators as 
such are no t considered here inasm uch as th ey  are seldom  affected by  in te r
m itten t operation. N o specific frequency lim its app ly  b u t i t  is som etim es 
difficult a t  very  high frequencies to achieve desirable values of th e  constan ts. 
A t very  low frequencies oscillators em ploying au tom atic  o u tp u t contro l are 
relatively  unsuitable because the ir perform ance tends to  be undu ly  sluggish.

T he te rm  linear oscillator is used to  indicate an  oscillator in which the 
range of operation is controlled w ith in  such lim its th a t  th e  harm onic conten t 
of the o u tp u t is inappreciable.

The general equation  describing a sim ple am plitude-m odulated  w ave is

V  =  Vo(l +  m  sin 2irft) sin 2 -kFt

This m ay be taken  as defining the  m odulation  fac to r m,  a com plex num ber 
which is lim ited to m agnitudes betw een zero and  one.

I I .  G e n e r a l  T h e o r y  o f  O s c il l a t io n

I t  is found th a t  th ree separate  functions are necessary and  sufficient for 
the operation of an  oscillator of the  feedback ty p e .3 These are indicated  
in the block diagram  of Fig. 1.

T he am plifier m ust be provided to overcome th e  losses of th e  rest of the 
system . The power o u tp u t, if any, depends upon the  fac t th a t  the  ou tp u t 
of an  am plifier is greater th an  the  inpu t.

Selectivity m ust be provided to insure th a t  the  o u tp u t has a  definite 
frequency. O rdinarily  a  tuned  circuit of rela tively  high Q is used although 
some excellent oscillators em ploy resistance-capacitance netw orks. The 
term  filter is em ployed as being sufficiently general to  include these extremes.

A lim iter of some form  is necessary to establish the  level a t  which sustained 
»oscillations occur. In  m any circuits the  functions of am plifier and  lim iter 
are perform ed sim ultaneously in the vacuum  tube. In  an  im p o rtan t class 
of oscillators the lim iter is a therm al device such as a tungsten  lam p. In  the 
M eacham  circuit the functions of lim iter and filter are com bined in a bridge 
em ploying a tuned  circuit and  a tungsten  lam p.

To simplify the analysis it is convenient to  assum e th a t  the  am plifier of 
Fig. 1 is com pletely linear and  operates w ith  equal gain a t  all frequencies

3 This topic is discussed more fully in “Hyper and Ultra-H igh Frequency Engineering ” 
R. I. Sarbacher, and W. A. Edson, John Wiley & Sons, Inc., 1943.
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from zero to infinity. Similarly the filter is assumed to consist of linear 
circuit elem ents and to have a definite curve of loss versus frequency. Asso
ciated w ith th is loss characteristic is some specific phase characteristic .4 

The lim iter is assum ed to have a loss which is independent of frequency bu t 
which is explicitly related to the input (or ou tpu t) voltage.

A lthough amplifiers having the ideal perform ance indicated are no t physi
cally realizable there are no new or unfam iliar concepts involved. Similarly 
the perform ance of passive networks, such as constitu te  the filter, has been 
extensively studied and is well understood. I t  is therefore appropriate to 
devote the  following section to  the th ird  function.

F IL T E R

L IM IT ER

Fig. 1—Functional block diagram of an oscillator.

I I I .  T y p e s  o p  L im i t e r s

T he lim iters which are now in common use m ay be separated into four 
relatively d istinct groups.

1. V acuum  tubes in which the gain is decreased by simple overload as the 
level of oscillation rises. T his is the m ost common form  of lim iter.

2. V aristors in which the im pedance depends upon the instantaneous value 
of current. Copper oxide, thy rite , and electronic diodes are examples.

3. T herm istors in which the  resistance depends upon the rm s value of 
curren t b u t does no t v a ry  appreciably during any  one cycle. Carbon and 
tungsten  filam ent lamps are the m ost common examples.

4. V acuum  tubes in which the gain is reduced by  application of a bias 
which depends upon the level of oscillation. U sually the bias is developed 
by  rectifying a portion  of the ou tput.

The lim iters of the first two groups depend for their operation upon the 
generation of harm onic voltages and currents. The lim iters of the second

4 H . W. Bode, “Relations Between Attenuation and Phase in Feedback Amplifier De
sign,” Bell Sys. Tech. Jour., Vol. 19, pp. 421-457, July 1940.
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two groups operate w ith very  little  harm onic d isto rtion . The o u tp u t of 
oscillators em ploying such lim iters m ay, therefore, be m ade qu ite  free from  
harm onic voltages. Oscillators of th is sort are referred to  as linear because 
the  tube or tubes serve as simple Class A linear amplifiers.

IV. C r it e r io n  o f  Se l f  M o d u l a t io n

The block diagram  of Fig. 1 is characterized by  the  fac t th a t  the  separate  
elem ents are connected to each o ther in the  form  of an  endless ring. The 
o u tp u t m ay be assum ed to  come from  any  of the three junctions. I t  is th is 
fact of closure which com plicates the  problem  of oscillator s tudy . F or 
purposes of analysis i t  is convenient to  open the  loop as shown in Fig. 2. 
For th is example it  m akes no difference w here we choose to  m ake the  cut, 
b u t in ac tua l circuits some caution  m ust be exercised. T h is m a tte r  is dis-

Fig. 2—Test for self-modulation in an oscillator.

cussed more fully later. I t  is also necessary to  choose the  im pedances of the 
te st generator and te s t detector so th a t  the  operation  of th e  com ponents of 
the.original system  is no t disturbed.

If a continuous wave of suitable voltage and frequency is supplied by  the 
te st generator it  will be found th a t the term inal voltage of the  te s t detec to r 
is identical in m agnitude and phase w ith th a t  of the  generator. In  th is 
condition the requirem ents which are fundam ental to  oscillators are sa tis
fied. T h a t is, the frequency and  level a t  which oscillation should occur if 
the  circuit were closed as in Fig. 1 have been established. T he n e t phase 
sh ift of the system  is zero and the  n e t gain is zero.

W hether the oscillations so produced would be stable or in te rru p ted  is now 
determ ined by  adding am plitude m odulation  of relatively  low frequency and  
very  sm all m agnitude to the te st generator. I t  is clear th a t  th is m odulation  
will be transm itted  through the  am plifier, filter, and  lim iter to the  te s t 
detector and th a t  the phase and percentage of the  m odulation m ay bo th  be
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modified. By examining the transm ission of a lightly m odulated wave for 
various frequencies of m odulation it is possible to determ ine w hether or not 
the  norm al oscillation will be self m odulated when the loop is closed as in 
Fig. 1.

The carrier is held constan t a t the  frequency F  and am plitude V  for which 
the  inpu t and ou tp u t are identical, and the  frequency /  of the m odulation is 
varied  from  zero to infinity. In  the following trea tm en t it is assumed th a t 
the significant portion  of the characteristic is observed for m odulation fre
quencies sm all com pared to  F. The theory is simplified in this way w ithout 
being seriously restric ted  in usefulness. The percentage of m odulation m ust 
be held very  low so as no t to  exceed the norm al operating range of the lim iter. 
The criterion is m ost conveniently s ta ted  in term s of the transm ission of the 
m odulation envelope which m ay be considered as a vector quantity .

Fig. 3—Nyquist diagram showing magnitude and phase of loop transmission.
Legend: U is unstable

C is conditionally stable 
S is absolutely stable

A p lo t of the  vector ratio  of ou tp u t to inpu t m odulation for various fre
quencies is p repared as in Fig. 3. The system  characterized by  curve U is 
unstable and will generate a self m odulated ra the r th an  a continuous wave. 
The system  characterized by  curve S  is unconditionally stable and will be 
free from  self m odulation. The system  characterized by  curve C is condi
tionally  stable and m ay generate either a continuous or an in terrup ted  wave 
depending upon the m anner in which the oscillation is s ta rted  and other 
factors.

V . A n a l o g y  o p  t h e  O s c il l a t o r  t o  t h e  F e e d b a c k  A m p l i f i e r

T he behavior of oscillators of the  type here considered is entirely  de
pendent upon feedback. I t  is therefore appropriate to  review the funda
m ental principles which apply  to feedback in general.

In  the  feedback amplifier, negative feedback is applied to  improve the 
linearity , stability , impedance, or frequency characteristics. Considerable 
im provem ents in some or all of the properties m ay be secured if a consider
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able am ount of negative feedback is applied and properly  controlled. Posi
tive feedback is sometim es used to  increase gain or selectivity, b u t s tab ility  
under such circum stances is poor. A ny considerable am ount of positive 
feedback results in oscillation.

The criterion by  which stable feedback system s are distinguished from  
unstable ones has been presen ted  by  N yqu ist and  verified by  o th e rs .6’ 6 

A closed feedback system  having inpu t and  o u tp u t term inals is illu stra ted  
in Fig. 4. In  Fig. 5 the  loop is opened a t  some a rb itra ry  p o in t and  a  te s t

oscillator and  detector are connected. H ere as in Fig. 2 certa in  precautions 
as to  im pedance are observed. The tes t generator m ust produce a  pure 
sinusoidal wave of such sm all m agnitude th a t  no p a r t  of the  te sted  system  
overloads and the  vector ratio  of the detector voltage to the  generator voltage 
is observed for a large num ber of frequencies. T he polar p lo t of Fig. 3 
applies d irectly  to the feedback am plifier except th a t  th e  radius vec to r 
represents the transm ission of a simple wave ra th e r  th a n  of an  envelope.

5 H. Nyquist, “Regeneration Theory,” Bell Sys. Tech. Jour., Vol. 11, pp. 126-147 
Jan ., 1932.

6 E. Peterson, J. G. Kreer, & L. A. W are, “Regeneration Theory and Experim ent,” 
Proc. I.R .E ., Vol. 22, pp. 1191-1210, Oct., 1934.
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The conditions of absolute and conditional s tab ility  and instab ility  are 
exactly  the same as those already given.

I t  m ust be appreciated th a t  N y q u is t’s criterion supplies no inform ation as 
to the type or frequency of oscillations which will be generated by  an  unstable 
system . This is true  because the analysis is lim ited to linear systems. The 
only inform ation im parted  is th a t a very  small oscillation of some frequency 
will increase exponentially w ith tim e un til the am plitude is lim ited by the 
action of some non-linear device. A small or relatively large shift of fre
quency m ay occur and the oscillation m ay be regular or in te rm itten t. The 
present work extends the usefulness of N y q u ist’s criterion by  using it in 
modified form to determ ine w hether or no t a particu lar unstable system  
(oscillator) has or lacks s tab ility  as to self-modulation. There is no apparen t 
reason w hy a system  lacking in both  fundam ental and envelope s ta 
b ility  m ight no t be analyzed a th ird  tim e for the stab ility  of the 
self-modulation.

VI. A n a l y s i s  o f  a n  O s c i l l a t o r  h a v i n g  A u t o m a t i c  O u t p u t  C o n t r o l

Figure 6 presents a simple form of feedback oscillator having a separate 
rectifier as lim iter. F or small am plitudes of oscillation the tube operates 
in a linear fashion w ith cathode self-bias. No bias is produced by the diode 
rectifier un til the  peak  voltage in the coil L 3 exceeds th a t of the bias b a tte ry
B.  All voltage in excess of th is value is rectified, sm oothed by  the condenser
C, and applied to  the resistor r as bias. I t  is seen th a t a small percentage 
change in the ou tp u t level m ay result in a large change in the bias. Accord
ingly an  o u tp u t which is quite stable w ith respect to the tube condition and 
applied voltages, except th a t  of B,  is to be expected.

The s tab ility  of th is circuit w ith respect to  self m odulation is m osi con
venien tly  tested  by  opening the oscillatory loop a t  the p la te  of the tube. 
In  so far as the p la te  resistance of the tube is high w ith respect to th a t of the 
associated circuit i t  is n o t necessary to  control the impedances of the test 
generator and detector extrem ely accurately. A block diagram  equivalent 
to  Fig. 6 is presented in Fig. 7. The conditions which m ust exist for the 
te st of s tab ility  are shown in Fig. 8 . In  bo th  those figures it should be noted 
th a t the gain control is ac tua ted  by  the  inpu t, no t the ou tpu t, of the am pli
fier. I t  is therefore possible for a m arked decrease of ou tp u t voltage to 
result from  a sm all increase of inpu t voltage. This behavior is very different 
from  th a t of the  conventional, back-acting, autom atic-volum e-control 
am plifier in which the  o u tp u t change is in the  same direction as the input 
change b u t of reduced m agnitude. I t  is th is difference which is the basis 
of m ost difficulty w ith am plitude controlled oscillators.
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Fig. 8 —Test for modulation stability of autom atic ou tpu t control oscillator.
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Filter

The filter of Fig. 8 consists of only a single tuned circuit. I ts  transm ission 
is readily represented in term s of the circuit Q by  the fam iliar universal 
resonance curve. The transm ission of a m odulated wave through such a 
passive netw ork is conveniently determ ined by separating the  wave into 
its carrier and  two sidebands. The carrier will be the frequency F  corre
sponding to  zero phase shift which, in this case, is also the frequency of 
m axim um  transm ission. The sidebands will be shifted in phase by equal

Fig. 9—Envelope transmission of a modulated wave through a single tuned circuit of
selectivity Q.

Fig. 10—D ata  of Fig. 9 plotted in polar form.

and opposite am ounts and a ttenua ted  according to the frequency /  by which 
they  differ from  the  carrier. This behavior is in terpreted  in Fig. 9 as trans
mission and  phase shift of the envelope. I t  is seen th a t the transm ission 
approaches zero and  the phase shift approaches 90° as the m odulation 
frequency is indefinitely increased. The same d a ta  is presented in polar 
form  in Fig. 10. Specifically Fig. 10 shows the vector ratio  of the m odula
tion factor m  of the  o u tp u t wave to th a t of the inpu t wave for all frequencies. 
In  Fig. 9 the m agnitude and phase angle of the ratio  are shown separately.

Limiter

T he lim iting action of the  tube and diode com bination is determ ined by 
d irect circuit analysis. For very  low m odulating frequencies the condenser
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C of Fig. 6 serves only as a h igh-frequency by-pass; the d irect voltage across r 
being the  instantaneous difference between the peak  voltage induced in Z 3 
and th a t of the stabilizing b a tte ry  B.  F or v ery  high m odulating  frequencies 
the m odulation as well as the carrier is by-passed by  C  and  no m odulation  
voltage appears across r. T hus the bias is constan t and  the  o u tp u t w ave is 
identical w ith the  inpu t w ave. This corresponds to  an  envelope transm ission 
of (1, 0). F or in term ediate values of the  m odulating  frequency the  voltage 
developed across r  varies in m agnitude and phase approxim ately  as if a 
constan t curren t of the m odulating frequency /  were applied to  r and  C in 
parallel.

The o u tp u t of the  am plifier depends no t only upon th e  bias developed 
across r b u t also upon the input. F or system s having a  large am oun t of 
control the  action of the  bias is p redom inant. T hus for a low m odulating  
frequency the varia tion  of the  bias overpowers the  in itia l m odulation , the 
phase of the  m odulation is reversed, and the  percentage m agnified by  the

Fig. 11—Envelope transmission of a modulated wave through controlled amplifier.

action of the lim iter. In  Fig. 11 the envelope transm ission is p lo tted  in po lar 
form  for conditions of relatively large and  relatively sm all am ounts of control.

Loop Transmission

The separate diagram s of Figs. 10 and  11 are com bined in  Fig. 12 to  de
term ine the stab ility  of the system. F or any chosen frequency /  the  vec to r 
of Fig. 10 is m ultiplied by  the  vector of Fig. 11 corresponding to  th e  same 
frequency to  locate one po in t of Fig. 12. The resu ltan t vec to r has an  angle 
which is the sum of the two com ponent angles and a m agnitude which is the 
p roduct of the two com ponent m agnitudes.

I t  is seen th a t the loop m ay be m ade to  cross the axis considerably to the 
left of the po in t (1 ,0 ) if the points A  and  A '  of the  previous figures cor
respond to  the same frequency. Sim ilarly the  loop m ay be m ade to  come 
very  close to  the po in t (1 ,0 ) by  increasing the  size of C or lowering the  Q 
of the tuned  circuit so th a t  the po ints B  and B '  correspond to  the same 
frequency. W ith the circuit elem ents draw n in Fig. 6 the s tab ility  m argin
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m ay be reduced to  zero, b u t ac tua l looping of the point (1 , 0) is no t indi
cated. P arasitic  elem ents, no t here considered, can readily affect the 
perform ance enough to  produce instability .

V II. A n a l y s i s  o f  t h e  H a r t l e y  O s c il l a t o r

T he fam iliar H artley  Oscillator circuit is shown in Fig. 13. In  this 
arrangem ent the tube serves as amplifier and lim iter by the action of over
loading. H arm onic voltages and currents are produced b u t if the selectivity 
of the tuned  circuit is high the  voltage returned to the grid of the tube is 
nearly  sinusoidal.

T he stab ility  of th is circuit is tested  in exactly the same way as was th a t 
of the previous circuit. The loop is opened a t  the p la te  of the tube to 
determ ine the  transm ission of a m odulated signal. If, as is usually the case, 
the coupling of the  coil is close, the filter reduces to  a single tuned circuit. 
The lim iting action  results from bias produced by  rectification a t the grid. 
Accordingly the  block diagram  of Fig. 7 is directly  applicable, and the 
behavior of the  filter is correctly given by  Fig. 9.

G e n e r a l ly  t h e  c i r c u i t  o p e r a t e s  in  c la s s  “ C” w i th  h ig h  b ia s  a n d  l a r g e  g r id
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voltage swings. If the tim e constan t of the  grid-leak-condenser com bination 
is long in com parison to the  period of a m odulation  cycle the  bias will no t 
be able to follow the  applied voltage and the m odulation of th e  o u tp u t 
will be larger than  th a t  of the input. M oreover i t  is in phase w ith  th a t  of 
the input. W hen the m odulating frequency is low the  bias is able to  follow 
the level of m odulation and the  o u tp u t m odulation  is very  small. T hus the  
transm ission of a m odulated signal is greatest a t  high m odulating frequen
cies, and the m odulation o u tp u t is in phase w ith the  inpu t. Because of the

Fig. 14— Envelope transmission of a modulated wave through a grid-leak-biased Class C
amplifier.

Fig. 15—N yquist diagram applying to Fig. 13.

action of the grid-leak-condenser netw ork a phase sh ift a t  in term ediate  
m odulating frequencies occurs. T his behavior is represented in  po lar form  
in Fig. 14.

The stab ility  of the system  is determ ined by  com bining in Fig. 15 the  
separate diagram s of Figs. 14 and 10. As in  the  previous system  a 
thoroughly stable system  results if the elem ent values are such th a t  the  po in ts  
A  and  A ’ of Figs. 10 and 14 correspond to  the  same frequency. If  on the  
o ther hand  the elem ents are such th a t  B  and  B '  correspond to  the  same fre
quency the curve loops (1, 0) indicating instab ility . In  general s tab ility  is
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prom oted by increase of the Q of the tuned circuit and by  decrease of the 
tim e constan t of the grid-leak-condenser com bination.

V III . T h e  L a m p  S t a b i l i z e d  O s c il l a t o r

T he circuit of Fig. 16 is of particu lar in terest because the functions of 
amplifier, lim iter, and filter are perform ed separately by  un its which are 
readily  identified w ith their functions. The present m ethod of analysis 
was developed in connection w ith th is particu lar circuit. The ou tpu t 
frequency and am plitude are bo th  quite stable and the harm onic content 
of the o u tp u t is low.

U nder operating conditions the gain of the tuned amplifier, which is 
ordinarily  in the  order of 40 db, is equalled by  the loss of the lamp bridge. 
The lam ps operate a t  such a tem perature th a t their resistance is slightly 
less th an  th a t of the associated linear resistors. If the gain of the amplifiers 
is for any  reason som ewhat reduced, the current through the lamps decreases, 
the  tem peratu re  and resistance of the lam ps is reduced, and the loss through 
the bridge is reduced to the new value of amplifier gain.

The d-c characteristic of a lam p bridge is shown in Fig. 17. A curve 
identical w ith Fig. 17 is observed if the m easurem ent is m ade w ith an a lter
nating  cu rren t whose period is very short in com parison to the therm al 
tim e-constant of the filaments. Up to L  the operation is nearly linear. In  
the region of M  the o u tp u t is essentially independent of the input. A t N  
the bridge is nearly  balanced and a small percentage change in the input 
voltage results in a large and opposite percentage change in the ou tpu t. 
I t  is thus seen th a t  an  alternating  current having a  small superimposed 
m odulation of low frequency will result in an  ou tp u t having a  considerably
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larger percentage m odulation in the  opposite phase. W hen the  m odulation 
frequency exceeds a  few hundred cycles the  lam ps are unable to  follow the 
individual cycles and the  o u tp u t wave is identical in form  to the  inpu t. A t 
in term ediate m odulating frequencies the transm ission of a m odulated  wave

Fig. 18—Envelope transmission of a modulated wave through a lamp bridge.

Fig. 19—Envelope transmission of a modulated wave through two similar tuned circuits
of selectivity Q.

involves a phase shift. The behavior of a typ ical lam p bridge is p resen ted  
in Fig. 18.

If the Q of the grid and p la te  circuits are bo th  rela tively  high the  filter 
circuit m ay be taken  as equivalent to  two separate tuned  circuits. The 
transm ission of each is given by  Fig. 9. The com bined transm ission of the 
pair is given in polar form in Fig. 19. Because two tuned  circuits are



em ployed, the diagram  of Fig. 19 differs m arkedly from  th a t of Fig. 10. 
Specifically the phase shift corresponding to  a given value of a ttenuation  is 
greatly  increased. As in previous cases the  curve of over-all loop transm is
sion m ay or m ay no t loop the  po in t (1 , 0) depending upon the relative 
frequency scales. T hus if the  points A  and A ' of Figs. 18 and 19 correspond 
to  the  same frequency the  N yqu ist diagram  passes near the po in t (2, 0) 
indicating  instab ility . I f  the  points B  and B '  correspond to  the same 
frequency the  loop passes very  near to the po in t ( 1 , 0) and instability  is 
likely.

By m aking the tuned  circuits very  selective or by  reducing the therm al 
tim e constan t of the  lam p circuit the points C and C' m ay be m ade to cor
respond to  the same frequency. In  this case the loop passes to the left of 
the  po in t (1, 0) and the system  is absolutely stable. The same result m ay 
be secured m ore easily by  m aking one of the tuned circuits m uch more 
selective than  the other. This is ordinarily accomplished by  increasing the 
Q and  im pedance level of the grid circuit while keeping the Q and impedance 
level of the  p la te  circuit much lower so as to  provide a suitable power ou tpu t 
to  operate the  lam p bridge.

IX . T h e  V a r is t o r  S t a b il iz e d  O s c il l a t o r

A circuit which differs from  th a t of Fig. 16 only in th a t the lamps are 
replaced by  varisto rs is shown in Fig. 20. A t low levels of oscillation the 
im pedance of the varistors is relatively high, the loss of the lim iter is low 
and the  am plitude of oscillation rises. A t some higher level the varistor 
im pedance is reduced, the bridge approaches balance to  the fundam ental 
frequency, and a stable condition is reached. Because the initial un 
balance of the  bridge is opposite to  th a t of Fig. 16 a reversal of phase is 
necessary to  establish oscillation.

The stable condition reached differs from th a t of the lam p stabilized 
oscillator in th a t the varisto r goes through its entire range during each high- 
frequency cycle. T he lam p resistance changes by only a small am ount 
during any  one cycle, its resistance depending on an integration of m any 
previous cycles. Two im portan t facts arise from this difference. H ar
monics are produced in the bridge and, in so far as the varistors face react
ances of these harm onic frequencies, in term odulation m ay produce currents 
of fundam ental frequency b u t shifted in phase with respect to the original. 
Thus the  bridge m ay produce a phase shift which is a function of level of the 
oscillation frequency. A degradation of frequency stab ility  results from 
such a condition. M ore im portan t to the present problem  is the fact th a t 
all m odulation frequencies are transm itted  alike. A small m odulation is 
reversed in phase and magnified by  an  am ount depending upon the bridge 
balance b u t no t upon the m odulation frequency.
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Because the  lim iter introduces no phase shift it follows th a t  the  envelope 
loop transm ission is m erely an  enlarged and reversed copy of th a t  for the 
filter. This can loop the  (1,0) po in t only if there are a t  least th ree  shunt 
elem ents in the filter section. T h a t is, instab ility  can resu lt only if the  phase 
shift of the filter system  exceeds 180° for frequencies rela tively  near the  
operating frequency. This circuit is therefore m uch less likely to  produce 
in te rm itten t operation than  any  o ther circuit here considered.

X . N e g a t iv e  F e e d b a c k  i n  O s c il l a t o r s

Because positive feedback is the  necessary condition for the  operation  
of an oscillator i t  is no t obvious th a t  the application of negative feedback is 
ever desirable. A ctually  it is frequently  possible to  introduce negative 
feedback in to  an oscillator w ith no loss of perform ance and under certain  
circum stances advantages are gained.

The circuit of Fig. 16 serves as a convenient example. R em oval of the 
cathode by-pass condenser is likely to  reduce the am plifier gain by  abou t 
6 db and to  increase the stab ility  of the gain w ith respect to applied voltages 
by  a  corresponding am ount. Coincident w ith rem oval of the  by-pass 
condenser the operating level drops a sm all am ount, the  bridge loss decreases 
6 db to  reestablish equilibrium , and the stabilizing effect of the  bridge is cu t 
in half. Accordingly the over-all stab ility  of the o u tp u t w ith respect to  
applied voltages is unchanged. The advantages gained are th a t  the  loss 
which m ust be held in the bridge is reduced so th a t  s tray  reactances are less 
likely to  d isturb  the operation, and th a t the  harm onic conten t of the  o u tp u t 
is reduced.

S tated  in a different way, the o u tp u t stab ility  of an oscillator using a non
feedback amplifier is lim ited in practice by  the  bridge balance which m ay 
be m aintained. A fter th is value of gain has been reached additional s tab ility
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m ay be secured by  supplying increased inherent gain which is offset by  
d irect negative feedback.

To clarify the m ateria l already presented and to convey some additional 
concepts an  oscillator having a  large am ount of control will be designed. 
T he block diagram  is to be th a t of Fig. 7 and the circuit is to be similar to 
th a t of Fig. 6 .

I t  m ay readily be seen th a t the gain control m ust satisfy two fundam ental 
requirem ents. I t  m ust deliver a d-c bias which increases rapidly with 
increase of the  level of oscillation and it m ust no t re tu rn  any  appreciable 
voltage of oscillation frequency. Otherwise the frequency will be affected 
by  the elem ents in the control circuit as well as those in the filter, and the 
perform ance will be generally poor. Because of its balance a push-pull 
rectifier is helpful in m eeting the la tte r  requirem ent. The principal require
m ent is achieved by  am plification and by the use of a constant counter emf 
or back bias. No bias is produced un til the level of oscillation exceeds some 
threshold value. Above th is threshold the bias increases approxim ately 
volt for vo lt w ith the peak value of the signal. The same amplifier which is 
used to increase the control m ay be used advantageously as a buffer so 
th a t appreciable power ou tpu ts m ay be produced w ithout degrading the 
frequency or am plitude stability .

I t  will be assum ed th a t a Q of 100 is available in the coil and th a t a fre
quency of one megacycle is to be generated. The transm ission of a  m odu
la ted  wave in term s of the sideband displacem ent through such a one-circuit 
filter is shown in Fig. 21. Because the  cutoff occurs very  slowly it will be 
convenient to  incorporate a rap id  cutoff in the auxiliary filter of the gain 
control, thus avoiding an  excessive phase shift a t  any  one frequency.

The circuit features already discussed are shown in Fig. 22. A basic 
oscillator w ith  a single tuned  coil, a buffer amplifier having little  selectivity 
and therefore contributing  very  little  to the equivalent filter section, a source 
of biasing voltage, a  balanced rectifier, and an  auxiliary low-pass filter are 
shown. The condenser C  is only large enough to allow the rectifier to be 
driven w ithout serious loss a t  one megacycle. I t  has relatively little  effect 
upon the  m odulation  perform ance.

I t  is assum ed th a t  the buffer-amplifier, rectifier, etc. are so chosen th a t a 
m odulation of very  low frequency of one p a r t per million applied a t the 
p la te  term inal of the  oscillator will result in a m odulation of one p a r t in a 
thousand retu rned  to  th a t point. This is equivalent to  saying th a t the 
envelope gain is 60 db a t  low frequencies, and corresponds to 60 db of 
n e g a t i v e  feedback in a conventional amplifier.

T h e  auxiliary filter will be designed to  approxim ate the attenua tion  and

X I. D e s i g n  o f  a  C o n t r o l l e d  O s c il l a t o r
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Fig. 21—Envelope transmission through tuned circuit.

f - ' v / s E C .

Fig. 23— Characteristics of auxiliary filter.
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phase characteristics shown in Fig. 23. The choice of this particu lar shape 
is best explained by  reference to  Fig. 2-4 which presents the over-all envelope 
loop transm ission of the  system. I t  is seen th a t the phase shift is relatively 
constan t a t 90° over a wide band  of frequencies and th a t the gain falls off 
approxim ately linearly over the same band. In  particu lar the gain becomes 
zero around 5000 cycles whereas the phase does not reach zero below 500,000

Fig. 25—Configuration of auxiliary filter.

cycles. In  term s of N y q u is t’s criterion this represents a very stable system  
which is little  d isturbed by  transien t effects. A system  having even greater 
s tab ility  could be achieved by  beginning the cut-off a t  lower frequencies. 
I t  would then  be found th a t  the ou tp u t was somewhat sluggish in reaching 
a new equilibrium  afte r being disturbed. Such a behavior is no t uncommon 
b u t is generally undesirable.

E lem ents which give approxim ately the  characteristics called for in Fig. 
23 are shown in Fig. 25. The peak of loss a t  one megacycle is contributed 
by  the series resonant trap . The rest of the behavior is due to  the 0.5 yuf 
condenser in com bination w ith the associated resistors.
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X II . A u x i l i a r y  C o n t r o l  o r  T h e r m a l l y  L i m i t e d  O s c il l a t o r s

In  the M eacham  and certain  o ther oscillator circuits a  therm isto r is 
associated w ith reactive elem ents in a bridge circuit which functions as bo th  
lim iter and filter. In  these circuits a large increase in the  frequency s tab ility  
is observed. This m ay sometimes be conveniently expressed as a m agnifica
tion of the effective Q of the filter.

The advantages of g reat frequency s tab ility  and  good am plitude stab ility  
of these system s are accom panied by  an  undesirable tendency  tow ard 
in te rm itten t operation. The therm al constan ts of the  therm isto r are no t 
readily adjustable. M oreover ad ju stm en t of th e  reactances to  secure

suitable envelope s tab ility  is likely to  im pair the frequency or am plitude 
s tab ility  for which the circuit is chosen.

This dilem m a m ay be resolved by  the  addition  of an  auxiliary  netw ork 
which does no t affect the envelope transm ission to  very  low frequencies b u t 
does modify the behavior a t higher frequencies in such a  w ay as to  p rom ote 
the  stab ility  of the  system.

A simple circuit illustrating  the  principle appears in Fig. 26. I t  will be 
noticed th a t the circuit is so arranged th a t the average bias applied to  the  
tube is only th a t  due to  the  cathode resistor. T he steady  voltage developed 
across C i by  the rectifier is unable to  affect the  bias because of the  blocking 
condenser C2. Accordingly the  rectifier circuit does n o t affect the  norm al 
operating  condition, which is characterized by  a bridge loss equal to  the  
am plifier gain. The added elem ents come in to  p lay  only if there is a ten d 
ency tow ard self-m odulation. T hen  displacem ent curren ts of m odulation 
frequency flow through C2 in such a  m agnitude and  phase as to  m odify the 
tube gain and com pensate the  m odulation re tu rned  from  th e  bridge.



The exact n a tu re  of the control which m ust be added is best ascertained 
by  opening the  circuit a t  the p la te  of the tube. The loop transm ission of a 
m odulation envelope m ay then  be determ ined, either experim entally or 
analytically . If instab ility  is found an auxiliary circuit m ust be designed 
to  produce an  over-all system  which is stable. In  general the elements of 
the auxiliary circuit are to  be chosen so th a t the  loop transm ission is con
siderably less th an  u n ity  in the region of zero phase. This is ordinarily 
accomplished by  increasing the  final cutoff frequency a t which the over-all 
loop envelope transm ission is negligible.
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X II I .  A S e l f  M o d u l a t e d  O s c il l a t o r

The previous sections have been devoted prim arily to  the problem  of 
preventing self-m odulation in oscillators. L e t us now consider an oscillator 
having envelope instability . T he N yquist diagram  indicates th a t self
m odulation will occur and tells the  approxim ate frequency of the envelope 
wave. M ore detailed analysis of the circuit is necessary to determ ine the 
wave form  of the envelope and  the  m anner in which its  am plitude is lim ited.

If a circuit is to  function well as an  oscillator the N yquist diagram  for the 
operating frequency m ust loop the (1 , 0) po in t w ith considerable m argin. 
T his is necessary so th a t  a sm all loss of gain will no t stop oscillation. A t the 
operating  level the  lim iter reduces the  loop transm ission to  un ity . In  the 
region of (1 , 0) am plitude s tab ility  is favored if the ra te  of change of gain
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w ith respect to  level is high. S im ilarly the  frequency stab ility  is favored if 
the ra te  of change of phase w ith respect to  frequency is high.

If a  circuit is to  function well as a self-m odulated oscillator, th e  above 
conditions m ust be m et and in addition  the N yqu ist d iagram  for th e  envelope 
m ust m eet sim ilar requirem ents. T h a t is, there m ust be a  lim iter and  filter 
in addition  to  the  effective am plifier in the  envelope system .

A circuit which m eets these requirem ents is shown in Fig. 27. I t  is seen 
to be sim ilar to th a t  of Fig. 6 b u t to  have a more com plicated low -frequency 
pa th . The operation is best explained in term s of th e  rela tive size of the  
various elements. The by-pass condensers C i and  Cz are com paratively  
small. The blocking condensers C3 and  C4 are qu ite  large. T he choke L \  
is large. T hus these elem ents serve as open or short circuits b u t do no t 
enter into the setting  of either of the  frequencies.

The stab ility  tests are carried ou t by  opening the  mesh a t  the p la te  of the 
tube. A t the operating frequency, as defined by  the  p la te  coil and  condenser 
the loop gain is high a t  low levels. T hus the  fundam ental conditions for 
oscillation exist.

The next step in the  analysis is to  supply a  signal of su itable m agnitude 
and frequency to reduce the loop transm ission to  (1, 0). A sm all m odula
tion of very low frequency is re tu rned  m agnified and  reversed in phase, as 
w ith previous system s. T he phase of th e  envelope transm ission changes 
with increase of m odulating frequency u n til i t  is zero a t  the  resonan t fre
quency of i s  and  C5. A t th is frequency a considerable gain exists so th a t 
the N yqu ist d iagram  for the envelope also loops the  p o in t (1 ,0 ).

T he tungsten  lam p in conjunction w ith the  o ther im pedances of the  bridge 
serves to  lim it the degree of self-m odulation. T he operating  frequency m ay 
be set by  m eans of C6 in conjunction w ith  a  su itab le value of T 6. The 
operating am plitude m ay be controlled by  ad ju stm en t of the  bias b a tte ry  B.  
The frequency of the self-m odulation is set by  m eans of C5 in conjunction 
w ith ¿ 5.

X IV . C o n c l u s io n s

A m ethod of applying known feedback theory  to the  problem  of self
m odulation in oscillators has been presented. A lthough th e  discussion has 
been lim ited to  electrical circuits i t  is clear th a t  the  analysis is applicable 
to  o ther systems, such as electrom echanical or m echanical oscillators.

The analysis has been applied to  several fam iliar oscillators to  illu stra te  
the m ethod and to  clarify some details of their operation. A sam ple design 
of a bias controlled oscillator is presented to  show application  to  new designs.

The application of bias control to  therm isto r stabilized oscillators is 
described. The design of a self-m odulated oscillator is undertaken  to  show 
how in ten tional m odulation m ay be introduced and controlled.



Evaluating the Relative Bending Strength of Crossarms

By RICHARD C. EGGLESTON

/^A 'V E R  a million crossarm s are produced annually  in the U nited States.
In  the  open wire lines of the Bell System  alone there are now about 

20 million arm s in use. I t  is na tu ra l, therefore, th a t public u tility  engineers 
should have an  in terest in the strength  of such an im portan t item  of outside 
p lan t m ateria l; and, consequently, an in terest in any tool or m eans of evalu
ating  the streng th  of such m aterial. I t  is believed th a t the m om ent diagram  
is a convenient and  reasonably reliable tool for estim ating the loads an 
arm  will support, for m easuring the effect of knots of various sizes and of 
pinhole locations on arm  strength , and for answering similar questions 
relating to the  bending strength  of crossarms under vertical loads.

Two m om ent diagram s are shown in Fig. 1 for Bell System  Type A cross- 
arm s; and  in the pages th a t follow are presented the m ethod used in con
structing  the diagram s and a discussion of their use. While the calculation 
results app ly  particu larly  to  the type and quality  of arm  referred to, they 
would also be of value as a  tim e saving reference in fu ture studies th a t m ay 
be proposed relating to  the strength  of the same or other types of arm s 
involving different k n o t allowances.

The resisting m om ent of a beam  is the product of its section m odulus by  
the  u n it stress on the  rem otest fiber of the  beam . The section modulus of a 
beam  of uniform  cross-section is constan t and readily determ inable. The 
section m odulus, however, of a  beam  of nonuniform  cross-section, such as a  
crossarm , varies because of the different cross-sectional shapes and dim en
sions involved.

In  th is s tudy  the  following five different shapes were recognized:
(1) Roofed section between pinholes
(2) Roofed pinhole section
(3) Roofed brace bo lt hole section
(4) R ectangular pole bo lt hole section
(5) R ectangular section w ithout bo lt holes

The dimensions of the sections investigated were as follows:

Section of Arm
Dimensions

Minimum Nominal

(Inches)

3 * x 4 *  
x  4  

3~i6 x  4 ^ -

(Inches)

3 f x 4 *  
3 J x 4 *  
3 |  x  4 J

23
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Since there is little , if any, engineering in te rest in the  streng th  of s tru c tu ra l 
m em bers of m axim um  size, no investigations were m ade of sections of 
m axim um  dimensions.

Fig. 1—Moment diagram for Type A southern pine and Douglas fir crossarms per 
Specification AT-7075:

Graph 1—Resisting moments of arms of nominal dimensions, straight grained and free 
from knots. (Fiber stress 5000 psi)

Graph 2—Resisting moments of arms of minimum dimensions, having maximum slant 
grain (1 " in 8 "), and containing knots of the maximum sizes perm itted (viz., 
sizes shown a t bottom  of arm sketch). (Fiber stress 3250 psi)

Graph 3—Bending moments from a load of 50 pounds a t each pin position. j

Section m odulus calculations were m ade of each shape of m inim um  and  
nom inal size, bo th  w ith and  w ithout knots. T ests have shown th a t,  be
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cause of the d istortion  of the grain th a t occurs around them , knots are fully 
as injurious to  the  streng th  of struc tu ra l tim bers as kno t holes.1 Therefore, 
m  dealing w ith sections containing knots, i t  was assumed for the  purposes 
of th is s tudy  th a t  the  kno t extended across the section in the same m anner 
as a hole having a  diam eter equal to the diam eter of the knot. I t  was 
also assum ed th a t the kno t was located in, or reasonably close to, the m ost 
dam aging position in the  arm  section.

In  the  calculations of the section modulus of all roofed arm  sections, it 
was necessary first to  com pute the  m om ents of inertia of the whole or parts  
of the  top  segm ents of such sections (viz. nom inal and minimum sections

between pinholes, and  nom inal and m inim um  pinhole sections). Accord
ingly, four such com putations were m ade and the results used in calculating 
the  section m oduli of all the roofed sections investigated. The details of 
the  four com putations are shown in the Appendix. To insure uniform ity 
in the  results, the degree of precision used in these com putations was con
siderably greater th an  is ordinarily employed in dealing with tim ber prod
ucts. All of the  work, however, was done on a com puting machine, and it 
was ju s t abou t as easy to carry  the operations to eight decimal places (which 
was the  capacity  of the  machine used) as to a lesser num ber. As a m atte r 
of in terest in th is connection, i t  was found by actual tria l in Com putation I  
th a t  absurd  results would occur if fewer than  five decimal places were used.

F or convenience, all of the section m odulus calculations were m ade in 
tab u lar form. In  such form the procedure employed would no t be readily

1 Pg 6  D ept Circular 295, U. S. Dept, of Agriculture, “Basic Grading Rules and Work
ing Stresses for Structural Timbers,” by J. A. Newlin and R. P. A. Johnson.
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apparen t. Therefore, a sam ple calculation follows showing the  m ethod of 
finding the  section m odulus of the brace bo lt hole section contain ing a  f  
inch knot.

Sam pie Calculation

Referring to Fig. 2, it will be noted th a t the knot and bolt hole divide the section into 
three parts: the top segment (T) and two rectangular portions (R l and R2). The moment 
of inertia (/) of such a compound section about its neutral axis (at a distance c from M -M ) 
is equal to the sum of the moments of inertia (IT , IRX  and IR 2) of the component parts 
T, R l  and R2 about axes through their own centers of gravity, plus the areas of the com
ponent parts multiplied by the squares of the distances of their own centers of gravity from 
the neutral axis of the compound section. The section modulus (S) of this section is found, 
of course, by dividing its moment of inertia by the distance (y) from the neutral axis of the 
section to the most remote fiber.

Dimensions:

Areas:

Moments about M  — M :

Moments of Inertia:

b 3.1875"
k - 0.7500"
d = 3.7625"

hi = 0.7000"
h2 = 1.9375"
g = 0.1330"
t = 3.8955"

rl = 2.6625"
r 2 = 0.96875"
D = 4.09375"

T = 0.7099 s
R l = 2.2313
R2 = 6.1758

(W idth of Section)
(Diameter of Knot)
(See Com putation I in Appendix) 
(d -  2.125" -  0.1875" -  k) 
(2.125" -  0.1875")
(See Com putation I)
(<f +  I)
( i  h i +  2.3125")
(I  h2)

09375" (Depth of Section)

s. (See Com putation I)
(bhl)
(bh2)

9.1170 sq. ins.

Tt =  2.7654 
R lr l  =  5.9408 
R2r2 = 5.9828

14.6890 =  9.1170 c; and hence 
c =  1.6112

I T  =  0.0053 (See Com putation I) 12)
12)

IR 1 = 0.0911 (bhl 
IR 2  = 1.9319 (bh23 

T(t -  c) 2 =  3.7043 
R l (rl -  c)2 =  2.4661 
R2(c -  r2)2 =  2.5490

Section Modulus:

I  = 10.7477 
y = 2.48255 (D *  c)

S  = -  =  4.3293 
y

T he same general procedure shown in th is sam ple calculation was fol
lowed in dealing w ith the o ther cross-sectional shapes. F or th is reason, 
only the final results of the several calculations are p resen ted ; although, for
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T a b l e  1 .— Section Modulus of Roofed Sections between Pinholes

27

Knot Diameter—Inches

No
Knot 1 a4 l li 2 21 3

Calcidation 1:
(K nots located at 
top of section) 

Section Size*:
M inim um ........
End. M in.........
N om inal...........

Calcidation 2:
(Knots located at 
bottom  of section) 

Section Size*:

6 . 8 6

7.37

5.08
4.78
5.50

3.57

3.91

2.33
2.13
2.59

1.35

1.54

0.64
0.53
0.76

M inim um ........

Calcidation 3:
(Knots located im
m ediately below 
top segment) 

Section Size*:

6 . 1 1 5.24 4.42 3.71 3.05 1.92 1.05 0.47

M inim um ........
End. M in.........
N om inal...........

8.03
7.65
8.60

5.45 4.56 3.86
3.65
4.16

3.34 2.95 2.50 2.34 2.37

T a b l e  2 .— Section Modulus of Roofed Pinhole Sections

Knot Diameter—Inches

N o Knot i 1 14 l 11 2

Calcidation 4:
(Knots vertical) 

Section Size*: 
M inim um . . . .  
End. Min. . . .  
N om inal........

4 .50
4.29
5.11

3.84 3.21 2.63
2.50
2 . 8 8

2.25

Calcidation 5:
(Knots horizontal) 

Section Size*: 
M inim um . . . .  
End. Min. . . .  
N om inal........

3.63 2.96 2.40
2.26
2.76

1.97 1.41
1.33
1.64

1 . 1 1

* Section Sizes:
Minimum =  3 ^ "  x 4 ^ "
End. Min. =  3 t s "  x  4" (viz. minimum a t end of arm)
Nominal =  3J" x 4y s"

convenience, reference is ma.de to the calculations by  num ber in the pages 
th a t  follow. These results are shown in Tables 1, 2, 3 and 4, and a brief 
discussion of the scope and use m ade of them  follows.
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T a b l e  3 .— Section M odulus of Bolt Hole Sections

Knot Diameter—Inches

No
Knot i I i 3

4 l 11 11

Calculation 6: 
Brace bolt hole 
section

Section Size*: 
Minimum . 
Nominal . .

7.97
8.55

6.47 5.28 4.33
4.71

3.58 2.62
2.78

Calculation 7:
Pole bolt hole 
section

Section Size*: 
Minimum . 
Nominal . .

9.25
9.74

7.42 5.63
6.05

3.24
3.61

2 \"  Knot

1.51
1 . 6 6

3" Knot

.75

.85

* Section Sizes:
M inimum == 3 t s "  x  4-^"
End. Min. =  3 ^ "  x 4" (viz. minimum a t end of arm) 
Nominal =  3 |"  x 4 ^ "

T a b l e  4 .— Section Modulus of Rectangular Section without Bolt Holes 
(Calculation 8)

Section Size Knot Diameter Section Modulus

Minimum ( 3 ^ "  x 4 ^ " ) (No Knot) 9.32
i4 8 .24
1
2 7.22
34- 6.28

1 5.40
1 1 3.84
2 2.54
91 1.51
3 .75

Nominal (3 j"  x 4§") (No Knot) 9.78
i4 8.67
1
2 7.6234 6.64

1 5.72
I f 4.10
2 2.74
91 1 . 6 6
3 .85

R o o f e d  Se c t io n s  B e t w e e n  P in h o l e s

As indicated in T able 1, three tab u lar calculations were m ade for roofed 
sections between pinholes. In  C alculations 1, 2 and 3 it was assum ed th a t  
the  knots p resen t were located (1 ) a t  the  top , (2) a t  th e  bo ttom , and  (3 ) 
im m ediately below th e  top  segm ent of the  section, respectively. T he re
sults relating to  the  3ys" x  4 ^ "  section are p lo tted  as Curves 1, 2 and  3 , 
respectively, in Fig. 3.
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W ith  respect to  the  kno t positions considered, i t  is apparen t from an exam
ination  of the  th ree curves (Fig. 3) th a t knots up to approxim ately l \ "  in 
d iam eter are m ost dam aging when located im m ediately below the  roofed 
portion  of the  arm ; and th a t the  w orst position for knots over in diam 
eter is a t  th e  bo ttom  of the arm . However, since under usual loading

Fig. 3—Sections between pinholes. Section modulus of crossarm sections containing knots 
of the sizes shown on the base line and located in the positions indicated. The data 

apply to sections of minimum size (3 ^ "  x 4 ^ " ) .

conditions knots a t  the  bo ttom  of an  arm  section are in compression, and 
thus would have less influence on strength  th an  they would have on the 
tension side ,2 i t  was felt th a t  the strength  value shown by Curve 2 m ay be 
ignored; and th a t the values shown by  a smooth curve, combining the values

2 On Page 69 of U. S. Dept, of Agriculture Tech. Bui. 479, “Strength and Related 
Properties of Woods Grown in the United States” by L. J. M arkwardt and T. R. C. W ilson, 
is the following statem ent: “Knots have approximately one-half as much effect on com 
pressive as on tensile strength.”
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of Curve 3 up  to  the kno t po in t w ith those of Curve 1 for 2" and  larger 
knots, would be the  practica l m inim um  section m oduli for roofed sections 
between pinholes. Accordingly, such a  sm ooth curve was constructed  and  
is shown as Curve 2 in Fig. 4. The results of C alculations 1 and  3 for nom -

0 1 2 3
K N O T D IA M E T E R -IN C H E S

Fig. 4— Sections between pinholes. Section modulus of crossarm sections containing knots 
of the sizes shown on the base line and located in damaging positions.

inal and  arm -end m inim um  sections were also p lo tted , and  Curves 1 and  3 
draw n for those sections.

R o o f e d  P i n h o l e  S e c t io n s

Two calculations were m ade for the  pinhole sections: C alculation 4 , in 
which the  knots were assum ed to  be located ad jacen t to  the  pinhole in  a
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vertical position; and Calculation 5, in which the knots were assum ed to be 
im m ediately below the top segm ent in a horizontal position. The results 
of these two calculations are shown in Table 2. I t  has heretofore been gen
erally  assum ed th a t  in pinhole sections knots less th an  in diam eter were 
m ore dam aging in a vertical position than  in a horizontal position. The 
results of C alculations 4 and 5, however, show th a t  the horizontal knots 
im m ediately below the  top  segm ent are the more dam aging. In  order to 
com pare the  effect of knots so located w ith the effect of knots a t  the extreme

to
UJ
Iuz
1
to
3DÛO2
ZO
Huu
to

Fig. 5 —Pinhole sections. Section modulus of crossarm sections containing knots of the 
sizes shown on the base line and located in damaging positions.

top  of the  section, the following two com putations assumed 1" and 2" hori
zontal knots a t  the la tte r  location:

T '{Knot at Section Top:

A  .0 2 8 7 5  (3 .0 9 3 7 5 ) ’  !  , 1  

6

5  =  2 .9 6 3 1

2" Knot at Section Top:

J  , 9 2 8 7 5  (2 .0 9 3 75 ^  =

IP 6

5  =  1.3571
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As the section m odulus (S)  values for sections containing 1" and  2" hori
zontal knots located im m ediately below the  top segm ent are 1.97 and  1.11, 
respectively, (Calculation 5, Table 2) i t  is ap p aren t th a t  in pinhole sections 
horizontal knots im m ediately below the top  segm ent are the m ore dam 
aging. The results of Calculation 5 were accordingly p lo tted  in Fig. 5 and 
sm ooth curves draw n to show the section m odulus for each of the  th ree 
sections containing knots of any  size.

R o o f e d  B r a c e  B o l t  H o l e  S e c t io n

T he worst position for knots in the brace bo lt hole section was assum ed 
to  be substan tia lly  the same as in the  roofed sections between pinholes; 
and in Calculation 6 , the results of which are shown in T able 3, knots up to 
l \ "  in diam eter were assumed to  be so located, viz. im m ediately below the 
top  segment.

To check this assum ption w ith respect to worst position, the following 
analysis was made of the m inim um  sections:

Distance from  top of section:
To top of bolt h o le .. . .
To bottom of bolt hole

Distance from  bottom of top segment:
To top of bolt hole...................................................................................................  1.45"
To bottom  of bolt hole............................................................................................ 1.83"

I t  is apparen t th a t any kno t ranging in d iam eter from 1.78" to  2.16", 
when located a t the top of the  section, would enter the bo lt hole. The 
section m odulus of any  section containing a kno t w ithin th a t size range 
would be the section modulus of the rem aining portion  of the  section, or 
bdJ— , where b is the w idth of the section and  d the dep th  below the bo lt hole. 
6

Thus

s ' (m inim um  arm ) =  3 ' 1875 =  ,
6

I t  is also evident th a t any  kno t from 1.45" to 1.83" in diam eter, when 
located im m ediately below the top  segment, would likewise en ter the  bo lt 
hole; and  th a t  the section m odulus, on th is basis of kno t location, would be 
the same for any  section containing a kno t w ithin the  size range m entioned. 
Continuing the analysis the following tests were m ade:

2" Knot:

The distance between the top segm ent and the bo ttom  of the  bo lt hole 
of a m inim um  section is 1.83". Therefore, a  2" kno t located im m ediately

1.78"
2.16"
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below the top segment would extend beyond the ho le; and its effect would 
be the same as in Calculation 3 (Table 1), where the section modulus of a 
section containing a 2" knot sim ilarly located was found to be 2.50. On 
the other hand, since a  2" knot is w ithin the lim its 1.78" and 2.16", the 
section m odulus of a section containing such a knot located a t . its top 
would be 1.99.

1.78" Knot:

A knot of this size im m ediately below the top segment would enter the 
bo lt hole since it is w ithin the 1.45" and 1.83" limits, and the section 
modulus value associated w ith it would be the same as shown in the 
Calculation 6 results (Table 3) for a section containing a knot, or S  =  
2.62. B ut, as evident from previous discussion, the section modulus 
associated w ith th is knot, if located a t the top of the section, would be 
1.99.

1.5" Knot:

I t  can be shown th a t the section modulus of a section containing a knot 
of th is size located a t  the top of the section would be 2.55; and th a t the 
section m odulus associated with a similarly located 1" knot would be 4.55. 
The foregoing analysis for minimum sections m ay be summarized as 

follows:

Knot Size
Section Modulus

Knot at Top Knot below Top Segment

(Inches) (Inches3) (Inches3)

2 . 0 1.99 2.50
1.78 1.99 2.62
1.5 2.55 2.62
1 . 0 4.55 3.58

A study  of this sum m ary shows th a t knots and over are more dam 
aging when located a t  the section top; and th a t knots under are more 
dam aging when located imm ediately below the top segment. The section 
m odulus values associated w ith 2 \"  and 3" knots would be the same as 
shown in the Calculation 1 results (Table 1).

B y a sim ilar analysis for arms of nominal size it can be show n:
(1) T h a t the more dam aging position for knots l j "  and under is imme

d iately  below the top segment;
(2) T h a t the more dam aging position for any knot w ithin the diam eter 

range from 1.875" to  2.25" and all the larger knots is a t  the top  of the 
section;
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(3) T h a t the section m odulus associated w ith 1.875" to  2.25" kno ts would

be 3 -2 5 (L 937^ l2 =  2.0334; and 
6

(4) T h a t the section m odulus values associated w ith 2§" and  3" knots 
would be the same as shown in the Calculation 1 results (Table 1).

Fig. 6—Brace bolt hole sections. Section modulus of crossarm sections containing knots 
of the sizes shown on the base line and located in damaging positions.

The results of Calculation 6 (Table 3), and  of the foregoing analyses, 
together w ith the Calculation 1 results for 2 \"  and  3" knots, were p lo tted  in 
Fig. 6 for bo th  m inim um  and  nom inal sections.
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R e c t a n g u l a r  P o l e  B o l t  H o l e  S e c t io n

T he m ost dam aging position for knots in the pole bolt hole section was 
assum ed to be a t  the top of the section. They were so figured in Calcula-

0 1 2  3
KN O T D IA M E T E R -IN C H E S

Fig. 7—Pole bolt hole section. Section modulus of crossarm section containing knots 
of the sizes shown on the base line and located in damaging positions.

tion  7, the results of which are shown in Table 3 and plo tted  in Fig. 7 for 
bo th  m inim um  and nom inal arms.
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R e c t a n g u l a r  Se c t i o n s  w it h o u t  B o l t  H o l e s

H ere too the  m ost dam aging position for knots was assum ed to  be a t  the  
top  of the section. In  Calculation 8 th e  section m oduli of sections con ta in 
ing knots from  to 3" in diam eter were determ ined for bo th  m inim um  and  
nom inal sections. The results are shown in T able 4. As section m odulus 
values for sections containing knots of o ther sizes th an  those shown m ay be

found so sim ply by  the  form ula for rectangular sections, o  — — , no curves

of the  results of th is calculation were draw n.

M o m e n t  D ia g r a m s

From  the results of th is study  as shown in Table 4 and  in Figs. 4, 5, 6 and  
7 , section m odulus values for clear arm s and  for arm s containing kno ts of 
various sizes m ay be read and  m ultiplied by  appropria te  fiber stresses to  
determ ine the resisting m om ents th roughout the  length  of such arm s. F or 
example, the  section m oduli of clear arm s of nom inal dimensions, and  of 
arm s of m inim um  dimensions w ith the  m axim um  knots p erm itted  under the  
current Bell System  crossarm specification (AT-7075) are as follows:

Section of Arm

Arms of nom inal size 
and free from knots

Arms of m inim um  size w ith  
m axim um  knots

Section M odulus Section M odu
lus

D iam eter of 
M ax. K nots

Pole bolt hole .............................................. 9 .7 4 5 .6 3 311
Brace bolt holes.......................................... 8 .5 5 4 .3 3 3."
Pole pinholes............................................... 5 .1 1 3 .2 8 3II 

8
Other pinholes in middle section3 .......... 5 .1 1 2 .3 8 311
End pinholes............................................... 5 .1 1 1 .3 3 1 i "
Other pinholes in end sections3 .............. 5 .1 1 1 .4 1 11 "
Unroofed p a rt of middle section............ 9 .7 8 3 .8 4 1 1 "
Roofed p a rt of middle section................ 8 .6 0 2 .9 5 1 1 "
Solid p a rt of brace bolt hole zones4. . . . 8 .6 0 4 . 5 6 1"
Between pinholes in end sections.......... 8 .6 0 2 .1 7 2 "
Extreme ends.............................................. 8 .6 0 2 .0 3 2 "

These section m odulus values were used in preparing  the  m om ent d ia 
gram s shown in Fig. 1. The clear arm  of nom inal dim ensions was also 
assum ed to  be stra igh t grained. The fiber stress factor used for i t  was 5000 
psi, which is the u ltim ate  fiber stress value th a t  has been em ployed in the  
Bell System  for m any years for sawn southern  pine and  D ouglas fir. T he

3 For the purposes of specifying knot limitations, crossarms under Specification AT-7075 
are divided into a middle section (between brace bolt holes) and end sections (bevond brace 
bolt holes).

4 Where a brace bolt hole zone is less than  four (4) inches from a pinhole zone these 
zones and the portion of the arm between them are considered as a single zone.
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fiber stress factor used in com puting the resisting m om ents for the arm  of 
m inim um  size w ith m axim um  slant grain and m axim um  knots was 3250 
psi, which is sim ply 5000 psi discounted 35%  to allow for slant grain of 1" 
in 8", which is the  m axim um  perm itted  by  Specification AT-7075. A dis
count is, of course, unnecessary for the presence of knots, since allowance 
for the ir effect on strength  was m ade in the section m odulus values used.

Since the  5000 psi value is an u ltim ate fiber stress and not a working 
stress, and  since the arm s were assum ed to be m ade of clear, stra igh t grained 
m aterial, G raph 1 (Fig. 1) represents an  idealized condition. The resisting 
m om ents shown are probably  the m aximum th a t m ay be expected from 
any  commercial lots of southern pine or Douglas fir crossarm s,5 notw ith
standing the fact th a t the dimensions of some of the arm s m ay exceed the 
nom inal specified. W ith respect to G raph 2 (Fig. 1), the  objection m ay be 
raised th a t 35%  is no t a sufficient discount for a 1" to 8" slant of grain and 
th a t the 3250 psi value m akes no allowance for the effect of long continued 
loading. On the  other hand, the graph assumes the sim ultaneous occur
rence of the m axim um  kno t in a m ost dam aging position in every section 
of an  arm  of m inim um  dimensions and having the maxim um  slant of grain 
allowed. Since the probability  of such sim ultaneous occurrence of these 
defects and  conditions is extrem ely small, it is felt th a t the resisting moments 
of G raph 2 represent the minim um  strength  of any arm  of the two species 
concerned th a t m ay be furnished under Specification AT-7075.

U nder the assum ptions made, G raphs 1 and 2 (Fig. 1) m ay be regarded 
as the upper and lower lim its of the bending strength of specification cross- 
arm s. On the  same diagram  m ay be p lo tted  the graph or graphs of the 
m om ents resulting from  any given load a t  each pin position, or any  single 
load concentrated a t  any  po in t on the arm . As an  illustration, G raph 3, 
showing the bending m om ents from a load of 50 pounds per pin, is shown 
in the diagram  (Fig. 1). A load of 50 pounds per pin  is calculated to be the 
load of size 165 wire coated w ith ice having a  radial thickness of \  inch in 
span lengths of 235 feet, or of wire of the same size in 100 foot spans where 
the  radial thickness of the ice coating is ^ inch. Since G raph 3 is wholly 
below G raph 2, even an  arm  of lowest specification quality  would support 
the assumed loads w ith some m argin of strength to spare. This m argin or 
factor of safety, would, of course, be increased greatly if the quality  of the 
arm  under consideration approached the quality  assumed in G raph 1. As 
previously indicated, the probability  is extremely rem ote th a t any single 
arm  will ever be furnished of a quality  as low as assumed in G raph 2. I t

5 Graphs 1 and 2 (Fig. 1) are for southern pine and Douglas fir crossarms. I t  is estimated 
th a t the resisting moments of comparable graphs for the other woods included in Specifi
cation AT-7075 should be about 20% lower.
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follows, therefore, th a t the average strength  of any  lots of sou thern  pine or 
Douglas fir arm s produced under Specification AT-7075 m ay be expected 
to  lie well above the  G raph 2 lim it.

G raph 2 and a bending m om ent graph for vertical loads a t  each pin 
position are of considerable value to the  m aterial design engineer, since th e  
degree of parallelism  between the two will show w hether a consistent 
strength  relationship exists th roughout the length of the crossarm . As a  
m atte r of in terest in th is connection, m om ent diagram s were used as a guide 
in setting  the knot lim itations shown in Specification AT-7075.

Resisting and bending m om ent graphs m ay also be used to  determ ine th e  
location of the critical section of a crossarm  by  noting the p o in t of coinci
dence between a maximum  bending m om ent graph and the resisting m om ent 
graph for a  clear arm . I t  can be shown by  such graphs th a t  th is p o in t in all 
types of Bell System crossarms, designed for vertical loads, is located a t  th e  
pole pinholes. If the com parison were m ade between a  m axim um  bending 
m om ent graph and the resisting m om ent graph of an  arm  containing all of 
the maxim um  defects perm itted , the  location of the po in t of coincidence 
between the graphs m ight or m ight n o t fall a t  the pole pinholes, depending 
on the  m agnitude and location of the defects allowed. I t  should be no ted , 
however, th a t for such arm s the critical section locations so determ ined ap p ly  
only when the arm s are ac tually  of the  assum ed m inim um  quality ; and , 
since the probability  of such being the case is so extrem ely rem ote, i t  is 
concluded th a t the m axim um  stress or critical section locations in arm s of 
th a t quality  are of academ ic in terest only, and  th a t for all p rac tica l purposes 
the critical section of any  3J" x x 10' crossarm  is located a t  th e  pole 
pinhole.

T his conclusion does no t m ean th a t  every arm  broken in service or under 
te s t will break a t  the pole pinhole; for, obviously, if some o ther section is rela
tively weaker because of some hidden defect which reduces its section 
m odulus or its fiber strength , it will break  a t  such section regardless of a n y  
m athem atical determ ination  of the break  location. B u t the  conclusion 
does m ean th a t, generally speaking, when a crossarm  breaks the break  w ill 
occur a t, or be closely related  to, the pole pinholes. To check the  accuracy  
of th is conclusion, an  exam ination was m ade of all available crossarm  
strength  te s t d a ta  in which the  break  locations were recorded. The exam 
ination revealed th a t, ou t of 258 arm s tested , the  breaks in 219, or 85 p e r  
cent, were either a t, or directly  related  to , the pole pinholes. Six per cen t 
of the breaks were located between the  two pole pinholes, and  9 p er cent a t  
po ints outside the pole pinholes.

As an  illustration  of another use to which such a m om ent d iagram  m ay  be 
p u t, the  following specific example is cited. Before the p resen t stan d ard  
Bell System  specification for crossarm s was drafted , i t  was decided to
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Fig. 8—Resisting moments and maximum bending moments for clear JW  and W 6
crossarms.

DISTA N CE FROM CEN TER  OF ARM -  IN CH E S

include a new type (“ W 6 ” ) w ith 16 pin positions. I t  was felt th a t, if the 
additional pin holes in the type W 6 did not unduly weaken the arm , it could 
no t only replace the old type “ JW ” arm  with 8 pin positions b u t also be used 
in installations where greater flexibility in wire spacings m ight be required.

<2 50

W6 ARM R E S IS T IN G  MOMENTS

I n  order to obtain  an  estim ate of the strength  relationship between the two 
types, strength  tests were m ade of 10 m atched arm s of each type. The test 
arm s were m ade of air-seasoned, clear Douglas fir. The dimensions of the 
crossarm  blanks were 3{" x 4 f"  x 20'. In  selecting the 10 blanks from 
which the test arm s were m ade, only straigh t grained pieces free from
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evidence of m anufacturing and other defects were chosen. E ach b lank 
chosen was cut in to  two 10' lengths, one of which was m ade in to  a  JW  arm  
and the o ther into a W 6 arm , m aking 10 m atched arm s of each type. T he 
tests were m ade on an  Amsler testing  m achine. T he average breaking load 
a t  the end pinholes was 1159 pounds for the JW  arm s and  1002 pounds for 
W 6 arms.

A t the same tim e an  estim ate was m ade of the  theoretical strength rela
tionship between the two types by  m eans of the  m om ent d iagram s shown in 
Fig. 8 . In  this figure are shown the graphs of the  resisting m om ents (fiber 
stress factor— 5000 psi) of clear JW  and clear W 6 arm s, together w ith  the 
graphs of the bending m om ents due to  the m axim um  loads these arm s would 
w ithstand  when the loads are concentrated  a t  the  end pinholes. These 
m axim um  loads were determ ined by  dividing the  m om ents a t  th e  p'oints of 
coincidence between the graphs (critical pole pinhole sections) b y  the  dis
tances to the end pinholes. The m axim um  loads, so determ ined, are  608 
pounds for the JW  arm  and  532 pounds for the  W 6 arm . T he fac t th a t 
these loads are low as com pared w ith the  ac tua l breaking loads shows, of 
course, th a t  the average u ltim ate fiber stress developed by  these selected 
arm s was considerably greater th an  5000 psi, which is n o t surprising in  view 
of their exceptionally high quality . However, so far as the  inform ation 
sought is concerned— nam ely, to  determ ine n o t the ac tu a l s treng th  b u t the  
strength  relationship between the  two types— the resu lt w ould be th e  same 
regardless of the fiber stress factor used in the  m om ent diagram .

T he ratio  of the strength  of the W 6 arm  to  th a t  of the  JW  arm  as shown 
both  by  the ac tua l strength  tests and  by  the  m om ent diagram s was as fol
lows:

Strength R atio W6 to JW

_  1 0 0 2  x  1 00  _  
1 159  X

(Per cent)

Actual strength tests 8 6 .5

Moment diagrams —
SS2

6 0 8  X  1 0 0  = 8 7 .5

These ratios show a rem arkably  close agreem ent betw een theo ry  and  ac
tu a lity  and justify  the belief th a t the  crossarm  m om ent d iagram  m ay  be 
em ployed to obtain  reasonably accurate estim ates of rela tive bending 
strength .

S u m m a r y

The results of th is s tudy  m ay be sum m arized as follows:
1. The m om ent diagram  is a useful guide in se tting  specification 

lim itations on defects.
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2. I t  is shown th a t  the critical section of a crossarm is located a t the pole 
pinholes. T he practical value of this observation is th a t it emphasizes the 
need for keeping the pole pinhole sections and the portion of the arm  be
tween them  reasonably free from strength  reducing defects.

3. Only by  breaking tests can the actual bending strength  of crossarms 
be determ ined. The relative bending strengths, however, of two or more 
arm s of different types or quality  m ay be estim ated with sufficient accuracy 
by  m eans of the  m om ent diagram , regardless of the fiber stress used in its 
construction.

4. If  the  fiber stress factor employed is dependable, the m om ent diagram  
m ay be used to estim ate the m inim um  factor of safety th a t would obtain 
for an  arm  of any type or any assumed quality. In  this connection, it is 
believed th a t the strength  of Bell System crossarms is well above the m ini
m um  required to support the loads ordinarily  carried.

5. The section m odulus curves of Figs. 4, 5, 6 and 7 will simplify the con
struction  of m om ent diagram s for arm s of the same sizes shown in the figures 
b u t differing w ith respect to type and quality.

The uses listed lead to the general conclusion th a t the crossarm m om ent 
diagram  is a convenient and reasonably reliable engineering tool.

A P P E N D IX

Computation I .  Moment of Inertia of Top Segment of M in im um  (3y&" x

4£2") Section between Pinholes:
The m om ent of inertia ( IT )  of a segm ent (T)  w ith respect to an axis 

th rough its center of grav ity  and parallel to its base m ay be found by  the 
form ula

I T  =  I b b  -  A x 2

where I bb  is the  m om ent of inertia of the segm ent about the axis B B ,A  
the area of the  segm ent and £ the distance between the two axes. The 
values I B b ,  A  and  a; are given b y :
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The significance of r and a in these form ulae, and of the  o ther sym bols used 
in the com putations th a t follow will be clear from  a glance a t  Fig. 9.

D  =  4.09375" Sin a -  1/2  b -  0.39843750 
r

b =  3.1875" a =  23° 28 ' 49.93"
§ b =  1.59375" a =  0.40981266 rad ians
r  =  4" 2 a =  46° 57 ' 39.86"
r2 =  16.000000 Sin3 a =  0.063252925
(1/2 b)2 =  2.540039 Sin 2 a =  0.73089017
p 2 =  13.459961 Cos a =  0.91719548
p =  3.668782" Sin a Cos a =  0.36544507

d  =  p  +  (D -  r)  =  3.7625"
A =  0.7099 sq. ins. [Area of T  by  F orm ula (2)] 
X =  3.8018" [By Form ula (3)] 
g B  x f p  =  0.1330"

I  bb  =  10.2654 [By F orm ula (1)]
A.x2 =  10.2601

I T  =  0.0053
(N ote: W hile the results of this and  the following com putations are shown 
to four decimal places, the  ac tua l work was done by  m achine and  carried 
to eight decimal places as m entioned in the text.)

Since the w idth of the  section in th is com putation  and  the  radius of its 
roof is the same as for the m inim um  3 j^ "  x 4" section a t  the  end of the arm , 
the  top segments of the two are identical, and the only value th a t  will differ
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will be the  depth  (d) of the rectangular portion of the section, which for the 
smaller will be p  +  (D  — /•), or

3.6688 +  (4 -  4) =  3.6688"

Computation I I .  Moment of Inertia of Top Segment of Nominal (3 j"  x  
4y s ") Section between Pinholes:

As th is com putation was m ade in exactly the same m anner as Com puta
tion I, only the  results are here shown:

d  =  3.8593" 
g =  0.1317"

A  =  0.7168 sq. ins 
I T  =  0.0053

Computation I I I .  Moment of Inertia of Top Segment of M in im um  (3ys" x  

4 ^ " )  Pinhole Section:

I t  will be noted in Fig. 10 th a t the top segment is divided into four parts: 
the small segment (2\ )  a t  the top  of the pinhole, the rectangular portion

d, « ft " — ^  1

N ©
1
9

D y
D c,

d \ I z

R -

r

\ R

—  b, -

Fig. 10—Crossarm pinhole section.

R h w ith a w idth of bx and a dep th  of dh and two portions designated Tc. 
The purpose of th is com putation is to determ ine the m om ent of inertia of 
one of the Tc portions w ith respect to its g ravity  axis parallel to its base. 
The m om ent of inertia of the two Tc portions about the axis B B  m ay be
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found by  deducting the m om ents of inertia  of T i and  R x ab o u t th is axis from 
the  m om ent of inertia of the entire top  segm ent ab o u t th e  sam e axis.

D  =  4.09375" Sin a =  ^  =  0.16625

bi =  1.33" a =  9° 3 4 ' 11.49"
i  bj =  0.665" a =  0.16702554 rad ians
J =  4.00" 2 a  =  19° 8 '  22.98"
r2 =  16.000000 Sin3 a  =  0.0045949941
(1/2 5i)2 =  0.442225 Sin 2 a  =  0.32787285
pi2 =  15.557775 Cos a  =  0.98608364
pi =  3.9443345" Sin a  Cos a =  0.16393640

d  (C om putation I )  =  3.7625" 
d1 =  p x +  ( D - r )  -  d =  0.2756"
;•] =  pi -  1 /2  ¿x =  3.8065"
Area i?i =  6idi =  0.3665 sq. ins.
A i  =  0.0494 sq. ins. [Area of 7 /  by  Form ula (2)]
Xi =  3.9666" [By Form ula (3)]

By C om putation  I ,  I T B b — 10.2654 
I T i b b  [Form ula (1)] =  0.7777

I R ib b  =  ^ y 3 +  =  5.3126

6.0903

2 I T cbb  =  4.1751
The m om ent of inertia of the 2 Tc areas w ith respect to  the  axis through 

the ir own centers of grav ity  is given by

2I T c  =  2 I T c bb  - 2  T c z 2

where
2 Tc is the area of the two Tc portions of the top segm ent and  is given by

27c = A  — (A i +  Ri)

in which A  is the area of the entire top  segm ent as shown in C om putation  
I ;  and

where, by  the principle of mom ents,

T x  — TiXi — R\Vi 
2 “  ......... 27c

in which Tx, T xXi and R i n  are the m om ents of the  areas of T, T x and  R h 
respectively, abou t the axis B B . (T x  = A x  of C om putation  I.)

T hus
27c =  0.2940 sq. ins.

2 =  3.7680"
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As previously shown, 2I T cBb =  4.1751 
2 Tc Z“ =  4.1738

2ITc  =  0.0013 
I T c  =  0.0007 

D -  r =  0.09375" 
z =  3.7680"

3.8618" 
d =  3.7625"

g for Tc  =  0.0993"

T he results of th is com putation apply  also to the m i n i m u m  3 x 4 "  pin
hole section a t  the ends of the arm . The depth  (d) of the rectangular por
tion  of the end pinhole sections will be the same as a t the extreme ends of the 
arm , viz. 3.6688".

Computation I V .  Moment of Inertia of T  op Segment of Nominal  ( J |"  x 4y s ") 
Pinhole Section:

Since th is com putation was m ade in the same m aim er as Com putation 
I I I ,  only the results are here shown:

d =  3.8593" 
g p  0.1019"

Tc — 0.1630 sq. ins.
I T c  =  0.0008
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P A R T  I I I

STA T IST IC A L  P R O P E R T IE S  O F R A N D O M  N O IS E  C U R R E N T S

3 .0  I n t r o d u c t io n

In  this section we use the representations of the  noise cu rren ts given in  
section 2.8 to derive some sta tistica l properties of l{ t) .  The first six sec
tions are concerned w ith the p robability  d istribu tion  of I ( t )  and  of its  zeros 
and  m axima. Sections 3.7 and  3.8 are concerned w ith the s ta tis tica l p ro p 
erties of the envelope of I(t) .  F luctuations of integrals involving f i t ) 
are discussed in  section 3.9. The p robability  d istribu tion  of a sine wave 
plus a noise curren t is given in  3.10 and  in 3.11 an  a lte rn a tiv e  m ethod  of 
deriving the results of P a r t I I I  is m entioned. Prof. U hlenbeck has p o in ted  
ou t th a t  much of the m ateria l in this P a r t is closely connected w ith  the 
theory  of M arkoff processes. Also S. C handrasekhar has w ritten  a review  
of a class of physical problem s which is rela ted , in a  general w ay, to  the  
presen t sub ject.2"

3 .1  T h e  D i s t r i b u t i o n  o e  t h e  N o i s e  C u r r e n t 23

In  section 1.4 it  has been shown th a t  the d is tribu tion  of a sho t effect 
cu rren t approaches a norm al law as the expected num ber of events per 
second, v, increases w ithou t lim it.

In  line w ith the sp irit of this P art, P a r t  I I I ,  we shall use the rep resen ta tion

A'

I ( t )  =  x  (an cos wnt +  bn sin Cx)n t) (2 .8- 1 )
71=  1

to  show th a t  I{t)  is d istribu ted  according to a norm al law. T his is ob ta ined  
a t  once when the procedure outlined in section 2.8 is followed. Since a„ 
and bn are d istribu ted  norm ally, so are an cos bcnt and bn sin cont when I is 
regarded as fixed. l i t )  is thus the sum  of 2N  independen t norm al varia tes  
and  consequently is itself d istribu ted  norm ally.

22 Stochastic Problems in Physics and Astronomy, Rev. of Mod. Phys., Vol. 15, pp 
1-89 (1943).

23 An interesting discussion of this subject by V. D. Landon and K. A. N orton is given 
in the I.R .E . Proc., 30 (Sept. 1942) pp. 425-429.

46
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The average value of I ( t )  as given by  (2.8-1) is zero since d n  =  b n  —  0:

T(¡0 =  0 (3.1-1)

The m ean square value of I(l)  is
N  _̂______________ ___

P ( t )  =  E  («» cos2 u n t  +  b \  sin2 con i)
7 1 = 1

N

E  m f r d A f  (3.1-2)

fJo M f )  i f  = m  s

In  w riting clown (3.1-2) we have made use of the fact th a t all the a’s and  b’s 
are independent and consequently the average cf any  cross p roduct is zero. 
We have also made use of

a n = b l  = w ( fn)Af, f n =  nAf, un =  2irf n

which were given in 2 .8. f ( r )  is the correlation function of 1 (f) and is 
rela ted  to  w(f) by

ypr =  f ( r )  =  [  w { f )  cos 2-irfr d f  (2.1—6)
Jo

as is explained in  section 2.1. In  this p a r t we shall write the argum ent of 
ip(r) as a subscript in order to save space.

Since we know th a t I (t ) is norm al and since we also know th a t its average 
is zero and its mean square value is f o , we m ay write down its probability  
density  function a t  once. Thus, the probability  of I ( f ) being in the 
range I ,  I  +  d l  is

3: :̂ : :  ' (3-‘- 3>

This is the probability  ol finding the current between I  and  I  +  d l  a t  a 
tim e selected a t random . A nother way of saying the same thing is to s ta te  
th a t (3.1-3) is the traction  of tim e the curren t spends in the range 2 ,7  +  dl.  

In  m any cases it  is more convenient to use the representation (2 .8- 6)

7V
l i t )  =  E  °n cos (unt — <pn), c n =  2 w ( fn)A f  (2.8-6)

in  which ipi , • • • ipn are independent random  phase angles. In  order to 
deduce the norm al distribution  from  this representation we first observe
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th a t  (2 .8- 6) expresses I{t)  as the sum  of a large num ber of independent ra n 
dom  variables

X n =  Cn COS (0)nt  —  <pn)

and  hence th a t  as N  —> <» I ( t ) becomes d istribu ted  according to  a norm al 
law. In  order to  m ake the lim iting process definite we first choose N  and  
A / suctr th a t  N A f  =  F  where

where e is some arb itra rily  chosen sm all positive q u an tity . W e now le t 
N  —» oo and  A / —■> 0 in  such a way th a t  N A f  rem ains equal to  F. T hen

B  =  I X i  I3  +  • • • +  |i X N I3  =  2  ( 2 w ( f n ) L f ) 3' 2 I CO S (cOnt  —  <pn) | 3
1

where the bars denote averages w ith respect to  the <p’s, t being held  constan t.

and  consequently the cen tral lim it theorem * m ay be used if w(f)  =  0 for 
f  >  F .  Since we m ay m ake F  as large as we please by  choosing e sm all 
enough, we m ay cover as large a frequency range as we wish. F or th is 
reason we w rite oo in  place of F .

Now th a t  the cen tral lim it theorem  has to ld  us th a t  the d istribu tion  of 
I(t) ,  as given by  (2 .8- 6), approaches a norm al law, there rem ains only the 
problem  of finding the average and  the s tan d ard  deviation:

I ( t )  =  X i  +  X2 +  • • • +  Xn

A  =  x\  +  x\  +  • • • +  xN =  2 w (fn) A f  cos2 («„ t — tpn)
( 3 .1 - 4 )

N

<  4(A/ ) 1/2 i  [w (f)]m d f  
Jo

If we assume th a t  the integrals are  proper, the ra tio  B A  3/2 —> 0 as N  —> oo}

I  if) —  y  j Cn COS (core t — ip f)  —  0

N

P{t)  =  Ç  Cn COS2 (unt —  <Pr) ( 3 .1 - 5 )

* Section 2.10.
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This gives the probability  density  (3.1-3). Hence the two representations 
lead to the same resu lt in this case. Evidently , they  will continue to lead 
to identical results as long as the cen tral lim it theorem  m ay be used. In  the 
fu ture use of the represen tation  (2.8- 6) we shall m erely assume th a t the 
central lim it theorem  m ay be applied to show th a t a norm al distribution  
is approached. We shall om it the work corresponding to equations (3.1-4).

The characteristic function for the distribution  of I{t)  is

We require the two dim ensional distribution  in which the first variable 
is the noise curren t I( t)  and the second variable is its value I ( t  -f- r) a t  some

expect from  the analogy with section 3.1. The second mom ents of this 
d istribution  are

The expression for M2 is in line with our definition (2.1-4) for the correla
tion function:

In  order to get the d istribution  from  the representation (2.8-6) we write

(3.1-6)

3.2  T h e  D is t r ib u t io n  of I  (t) a n d  I  (t +  r)

la ter tim e r. I t  turns ou t th a t this d istribution  is norm al24, as we m ight

M2 — '/'0

M2 =  +  r)
(3.2-1)

=

xPT =  iP(t ) --  L im it ~ f  +  r) dt (2 .1 -4 )
Jo

N

T i  I (/) ^  ̂ Cn COS (cCn t (fn')
1

J 2 =  I ( t  +  r )  =  cn cos (cov t — <pn conr)
1

24 I t  seems th a t the first person to obtain this distribution in connection with noise was 
H. Thiede, Elec. Nachr. Tek. 13 (1936), 84-95.



F rom  the cen tral lim it theorem  for two dimensions it  follows th a t  h  and  12 

are d istribu ted  norm ally. As in  (3.1)

Mil =  l \  =  X ) —> [  w(J) d f  =  f 0
1 Jo

N

M12 =  h J 2 =  55 Cn ave. {cos (co„/ — <fn) cos (a>nt — ¡pn +  w«t)}
1

Now the q u an tity  w ithin the parenthesis is

cos2 (cont — (pn) cos — cos (<cnt — <pn) sin (u„t — <pn) sin co„r

and  when we take the average w ith respect to <pn the second te rm  drops 
ou t, giving
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M12 =  5 5  c2n • |  COS co„ T —> [  w ( f )  COS 27r/r  d f  =  f T (3 .2-3) 
1 Jo

where we have used con =  2tr/„ and  the rela tion  (2.1-6) betw een w (/) a n d ^ ( r ) .
The probability  density  function  for 7i and  h  m ay be s ta ted . F rom  the  

discussion of the norm al law in  2.9 i t  is
2 , 21- 1/2 r  I r2 I t 2

exp
2tt

— f o i l  ~  f o i l  +  I f r I I  T 2~j

2 ( f l  -  f  t)

For a band  pass filter whose range extends f r o m /a to  fb  we have 
rfb

(3 .2-4)

P i b
f r =  Wo cos 2 x /t  d f

sin cos r  — sm co0t ~ r ,.
=  Wo- - .  (3 .2-5)

2 x r

=  —  sin ttt(/& -  fa)  cos x r ( / 6 +  /»)
7TT

l/'O =  Wo (/ft — /a )  

where wo is the constan t value of w (/) in  the pass b an d  and

co 6 =  2trfb (3.2-6)

co0 =  2x/a

According to  our form ula (3.2-4), I \  and  I 2 are independen t when f T 
is zero. For the r ’s which m ake f  T zero, a knowledge of I i  does n o t add  to
our knowledge of Z2 . For example, suppose we have a narrow  filter. T hen

f T =  0  when t  =  [2(/& +  / 0)]-1

i/'t is nearly  — when r  =  [/& +  / a]_1
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For the first value of r, all we know is th a t h  is d istribu ted  abou t zero with 
I \  — t o . For the second value of r  / 2 is likely to be near — 7 i . This is 
in line with the idea th a t the noise curren t through a narrow  filter behaves 
like a sine wave of frequency | ( / 6 +  f a) (and, incidentally, whose am plitude 
fluctuates with an  irregular frequency of the order of \ { f b — /<,)). The first 
value of r  corresponds to a quarter-period of such a wave and the second 
value to  a half-period. By drawing a sine wave and looking a t  points sepa
ra ted  by  quarte r and half periods, the reader will see how the ideas agree.

T he characteristic function for the d istribu tion  of I x and h  is

where n  and r 2 are given and  t is chosen a t  random  is, as we m ight expect, 
norm al in three dimensions. The mom ents, from  which the d istribution 
m ay be obtained by the m ethod of Section 2.9, are

[ - y  (u +  v )  -  (3.2-7)

T he three dimensional d istribu tion  in  which

h  =  m

II  =  /  (t +  Tl)

Iz = I  (t +  ti +  r 2)

M il  —  M22 ~  M33 =  i/'t)

M12 =  Wtx

m  =

M13 =  ^ ( T l  +  t 2)  =  i / 'n + T

The characteristic function for I x , Z2 , I 3 is 

ave gizill+i22i2+ii3i3

We shall use the following result. L et y  be given by 

y  =  F(ai , a 2 , ■ • • aN ;x), (3.3-1)

and  let the a’s be random  variables. For a given set of a’s, this equation 
gives a curve of y  versus x. Since the a ’s are random  variables we shall call 
this curve a random  curve. L et us select a short in terval x x , x x +  dx,
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and then  draw  a  batch  of a’s. The p robability  th a t  the  curve ob ta ined  by  
p u ttin g  these a ’s in (3.3-1) will have a zero in  x \ , Xi +  dx  is

/» + 00

dx I 1 |  p(0, rf, Xi) dr\ (3.3-2)
J— 00

and  the expected num ber of zeros in  the in te rval ( x i , 0C2) is
f x 2 /•+»
/ dx  17 7 1 p ( 0 , 1 7 ; x) drj ( 3 .3 - 3 )

V Xi v— 00

In  these expressions p(£, rf, x) is th e  p robability  density  function  for the 
variables

£ =  F { a i , ■ ■ ■ aN; x)

dF  
V =  to

(3.3-4)

Since the a’s are random  variables so are £ and  57, and  the ir d istribu tion  
will contain .v as a param eter. This is ind icated  by  the  no ta tion  />(£, 77; x).

These results m ay be proved in m uch the sam e m anner as are sim ilar 
results for the d istribu tion  of the m axim a of a random  curve. T his m ethod 
of proof suffers from  the restric tion  th a t the a’s are required  to  be bounded .20 
Results equivalent to  (3.3-2) and  (3.3-3) have been ob ta ined  independently  
by M . K ac.26 His m ethod of proof has the advan tage of no t requiring the 
a ’s to  be bounded.

H ere we shall sketch the derivation of a closely re la ted  resu lt: The p rob 
ability  th a t  y  will pass through zero in X i , Xi +  dx w ith positive slope is

d x  / 17̂ (0 , 77; £1) dr] (3.3-5)
Jo

We choose dx so small th a t the portions of all b u t a negligible fraction  
of the possible random  curves lying in  the  strip  ( x i , Xi +  dx) m ay  be re
garded as s tra igh t lines. If y  =  £ a t  x± and passes through zero for x% <  x  <

£
xi  +  dx, its in tercep t on y  =  0 is xi  — -  where 77 is the  slope. T hus £ and 77

V
m ust be of opposite sign and

t
Xi <  x \  <  xi  +  dx

25 S. O. Rice, Amer. Jour. Math. Vol. 61, pp. 409-416 (1939). However, L. A. MacColl 
has pointed out to me th a t a set of sufficient conditions for (3.3-5) to hold is: (a) p(£,  tj; x) 
is continuous with respect to (£, 77) throughout the £?;-plane; and (b) th a t the integral

Jl p(ari, rf, xi) dt]
0

converges uniformly with respect to a in some interval — at <  a <  a? , where ai and a2 
are positive. These conditions are satisfied in all the applications we shall make use of 
(3.3-5).

26 M. Kac, Bull. Amer. Math. Soc. Vol. 49, pp. 314-320 (1943).
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According to  the s ta tem ent of our problem , we are in terested  only in positive 
values of r\, and  we therefore w rite our inequality  as

- r j d x  < £ <  0

F or a  given random  curve i.e. for a  given set of a ’s £ and  rj have the values 
given by

£ =  F ( < h , • • • a N ; * 1 )

| " [ I L ,
If these values of £ and 7? satisfy  our inequality , the curve goes through zero 
in  X i , xi  -+- dx.  The probability  of this happening is27

r *Jo

where we have m ade use of the fac t th a t  dx  is so very  sm all th a t £ is effec
tively zero. The la s t expression is the same as (3.3-5).

In  the same w ay i t  m ay be shown th a t the probability  of y  passing through 
zero in xi , x i  +  dx  w ith a  negative slope is

—dx f  rip(0, 1y, *1) dr] (3.3-6)
J —  00

Expression (3.3-2) is obtained by  adding (3.3-5) and  (3.3-6).
We are now ready  to apply  our form ulas. We le t t, l ( t ) and  <pn p lay  the  

roles of x, y,  and  an , respectively, and use

N

l i t )  =  2  Cn cos (a)n t  -  <pn), c l  =  2 w ( f)A f  (2.8-6)
71=1

27 MacColl has remarked th a t the step from the double integral on the left hand side 
of this equation to the final result (3.3-5) may be made as follows:
I t  is easily seen th a t the probability density we are seeking is

—— r f  dr) [  p(£, 77; x) dt  1
_d(Ax) J 0 J_ vAx J A l = 0

Proceeding formally, without regard to conditions validating the analytical operations 
(for such conditions see the footnote on page 52), we have

d r°° r °  r ”
— —  / drj p(£, 7 7 ; x) =  / rip{—T)Sx, ri; x )  dn]
dAx J 0 J_ vAx J 0

and hence the required probability density is

/ 0 ,  7/; x) dt]
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f , v; %i) =  [  [0 — ( — 7? d x ) ] p { 0 , 7?; Xi) d-q
J—T) dx JQi
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The first step  is to  find the  p robab ility  density  function  of the  two random  
variables

N

£ =  ^  '  Cn COS (cOn t \  “  ip-n)

”=1 (3.3-7)
N

7] — / / (h ) =  ^   ̂ CnCCn sin (cOrj tl (pTi)

where the prim e denotes differentiation  w ith respect t. F rom  section 2.10 

m  =  | 2 =  i/'o

H22 =  r f  =  ch ccn  s in  (w K i i  — y „ )
n = l

=  2  (2îr/n)2 w (/„)A /
71=1

- »  4tt2 f  f w { f )  d f  =  - t "
Jo

n  12 — ¿7/ — ^  / Cn u n COS (cOn t l  f n )  Sm  (cOn ‘r ’rt)
n = l

=  0
The expression for M22 arises from  (2.1-6) by  d ifferentiation. In  th is expres
sion 1po denotes the  second deriva tive of ^ ( r )  w ith respect to  i  a t  t  =  0:

=  —47r2 f  f  w(J)  cos 2irfr d f  (3.3-8)
Jo

Hence the p robab ility  density  is

v, t) -  -  gf— e x p ( - T +  ’ ?! (3.3-9)£ _
2fo  ' 2\p'o.

where fo  is negative. I t  will be observed th a t  the  expression on the rig h t 
is independent of t. H ence the p ro b ab ility  of hav ing  a zero in  h  , h  - f  dt,

Í +00

I V
00

- f o f o ]
- 1 / 2

27T
( 3 -3 -

10)

which follows from  (3.3-3), is independent off.
The expected num ber of zeros per second, which m ay be ob ta ined  from  

(3.3-3) by  in tegrating  (3.3-10) over a n  in te rv a l of one second, is
" 11/2

 r
*  L '/'(O) J

( o ) T 2 _=  2
f  f  w(J) d f

Jo_ _ _ _ _ _ _ _ _

[  w ( f )  d f  L  J o  - J

(3 .3-11)
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For an ideal band  pass filter whose pass band extends f r o m /a to/& the 
expected num ber of zeros per second is

[ 1 /6  ~  /a 1
L3 /6  -  fa ]

•3—ll/2
(3.3-12)

W hen f a is zero this becomes 1.155/6 and when /„  is very nearly equal to 
f b i t  approaches f b +  f a .

In  a recent paper M . Kac~s has given a result which, after a slight gene
ralization, leads to

e~ i2iWo [ —^ - ]  dt (3.3-13)

for the probability  th a t the noise curren t will pass through the value I  
with positive slope during the in terval t, t +  dt. The expected num ber of 
such passages per second is

e~i 12̂ 0 ^  ji (-pg exp ectect num ber of zeros per second] (3.3-14)

The expression (3.3-13) m ay also be derived from  analogue of (3.3-5) 
ob ta ined  by replacing the zero in / ( 0 , 77; xf) by y.

In  some cases the integral

/o =  — 47t" [  f~w ( f) d f  
Jo

does no t converge.
An example occurs when we apply  a broad band  noise voltage to a  re

sistance and condenser in series. The power spectrum  of the voltage across 
the condenser is of the form

= y n b  (3'3- ,5>

Although fo  is infinite, /o  is finite and equal to ir/2a. A straightforw ard 
substitu tion  in our form ula (3.3-11) gives infinity as the expected num ber 
of zeros per second.

Some light is throw n on this breakdown of our formula when we consider
a noise curren t consisting of two bands of noise. One band is confined to
relatively low frequencies, and its power spectrum  will be denoted by 
Wi(/). The other band  is very narrow  and is centered a t  the relatively high 
fre q u en c y /2 . The com plete power spectrum  of our noise is then

w (f) =  wL(f) +  A 28( f  -  f 2)

28 On the Distribution of Values of Trigonometric Sums with Linearly Independent 
Frequencies, Amer. Jour. Math., Vol. LXV, pp 609-615, (1943).



where the u n it im pulse function 8 is used to  represen t the  very  narrow  band . 
The power spectrum  of the narrow  band  is approxim ately  the sam e as th a t  
of the wave A s / 2 cos 27r/2i.

The integrals occurring in our form ula are
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[  w (J ) d f  =  [  w i ( f )  d f  +  A 2 
Jo Jo

=  W  +  A 2

f  w ( f ) f 2 d f  = [  f w x i j )  d f  +  A 2f l  Jo Jo
2 j-2=  U  +  A %

W e suppose th a t  A  and  / 2 are such th a t

W  »  A 2 

U «  A 2f \  .

T hen our form ula (3.3-11) gives us the expected num ber of zeros

H a
pp/2

W e m ay give a qualita tive  explanation  of th is form ula if we regard  our 
noise cu rren t as com posed of a sm all com ponent

/ 2 =  2112A  cos 2trfit

due to  the narrow  band  superposed on a  large, slowly vary ing  com ponent 
due to  the lower band. Since the r.m .s. value of the  second com ponent is 
W 112 we m ay assign it  a  rep resen tative frequency f i  an d  w rite i t  approxi
m ately  as

J i  =  (2W )1/2 cos 2ttfit

T he zeros of the noise cu rren t are clustered around  the  zeros of the  second 
wave. N ear such a  zero t

h  =  ± (2 T T )1/227r/iAi

where At is the distance from  the zero. T he oscillations of I \  produce zeros 
when | 11 | is less th an  the am plitude of / 2 or when

A  >  lT 1/227r/1 | At |

and  the in terval over which zeros are produced is given by

„ . .  A W ~112
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T he num ber of zeros is this m ultiplied by 2/2 . Since there are 2/i such 
in tervals per second the num ber of zeros per second is

7r

This differs from  the resu lt given by our form ula by  a factor of 2/V. 
T his discrepancy is due to our representing the two bands by  the sine waves 
h  and I 2.

F rom  this exam ple we ob ta in  the p ic ture th a t when the in tegral for \p0 

converges corresponding to  A  —■» 0, while a t  the same tim e the in tegral for 
i/'o diverges, corresponding to  / 2 —» °o in such a  w ay th a t  ^4/2 —> °o , the 
noise curren t behaves som ething like a continuous function which has no 
derivative. I t  seems th a t  for physical system s the integrals will always 
converge since parasitic  effects will have the effect of m aking w(f)  tend to 
zero rapidly enough. The frequency which represents the region where 
th is occurs is of the order of the frequency of the microscopic wiggles.

So far we have been considering the formulas of this section in the m ost 
favorable light possible. There are experim ents which indicate the possi
b ility  of the form ulas breaking down in some cases. Prof. Uhlenbeck has 
po in ted  out th a t  if a very  broad band  fluctuation curren t be forced29 to  flow 
through a  circuit consisting of a condenser, C, in parallel w ith a series com
bination  of inductance, L,  and resistance, R,  equation (3.3-11) says th a t the 
expected num ber of zeros per second of the current, I ,  flowing through R

(and L)  is independent of R.  I t  is sim ply - (L C )~ 112. The differential
TT

equation  for I  is the sam e as th a t which governs the Brownian m otion of a 
m irror suspended in a  gas30, the gas pressure playing the role of R.  Curves 
are available for this m otion and  i t  is seen th a t their character depends 
greatly  upon the pressure31. U nfortunately , i t  is difficult to  tell from  the 
curves w hether the expected num ber of zeros is independent of the pressure. 
The differences between the curves for various pressures indicates th a t there 
m ay be some dependence*.

3 .4  T h e  D i s t r i b u t i o n  o f  Z e r o s

T he problem  of determ ining the d istribu tion  function for the distance 
between two successive zeros seems to be quite difficult and  apparently

29 For example, by putting the circuit in series with a diode.
30 This problem in Brownian motion is discussed by G. E. Uhlenbeck and S. Goudsmit, 

Phys., Rev., 34 (1929), 145-151.
31 E. Kappler, Annalen d. Phys., 11 (1931) 233-256.
* Since this was w ritten M. Kac and H. Hurwitz have studied the problem of the ex

pected number of zeros using quite a different method of approach which employs the 
“shot-effect” representation (Sec. 3.11). Their results confirm the correctness of (3.3-11) 
when the integrals converge. When the integrals diverge the average number of elec
trons, per sec. producing the shot effect m ust be considered.
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nobody has as y e t given a  sa tisfactory  solution. H ere  we shall give som e 
results which are re la ted  to  the general p roblem  an d  which give an  idea of 
the form  of the d istribu tion  for the region of sm all spacings betw een the
zeros.

We shall show (in the  work sta rting  w ith equation  (3.4-12)) th a t the  
probability  of the noise current, I ,  passing th rough  zero in the  in te rval 
t , t  +  dr  w ith a negative slope, when it is know n th a t I  passes th rough zero  
a t r =  0 w ith a positive slope, is

dr
2ir

[ ~ J 2 [ f f ]  (#8 -  ^ r 3/2[ 1 +  B  co t- \ - H ) ]  (3 .4-1)

where M 22 and  M 23 are the cofactors of ¿¿22 =  
m atrix

-po and  /Z23 =  — Pr in the

M  =
'Po
0
Pr 

Jp  t

0
- p "
~ P r
~ P r

Pr
~ P r
-p 'o

0

Pr
- P r

0
po_

(3.4-2)

- 1/2E  =  -  M'ln \

W e choose 0 <  cot-1  ( - H )  <  7 r, the  value 7r being taken  a t  t  =  0, and  the 
value 7t/2 being approached as r  —»• °o . I t  should be rem em bered th a t  we 
are w riting the argum ents of the correlation  functions as subscrip ts, e.g., 
— p "  is really

—P "(t) L  4tt2 [  f w ( j ) cos 2 tt/t d f  (3 .3-8)
Jo

As r  becomes larger and  larger the  behavior of I  a t  r  is influenced less 
and  less by the fac t th a t  i t  goes th rough  zero w ith a positive slope a t  r  =  0 . 
Hence (3.4-1) should approach the p robab ility  th a t, for any  in te rval of 
length d r chosen a t  random , I  will go th rough zero w ith a negative slope. 
Because of sym m etry , th is is half the p robab ility  th a t  i t  will go th rough 
zero. Thus (3.4-1) should approach, from  (3.3-10),

11/2

(3.4-3)
dr
2ir m

as r co. I t  ac tually  does this since M  approaches a diagonal m atrix
and  bo th  M 23 and  I I  approach zero w ith M i3/ H  
low pass filter cu tting  off a t /& (3.4-3) is

—p ip  0. F or a

dTfb3~m  (3 .4-4)

The behavior of (3.4-1) as r  —> 0 is quite a  b it m ore difficult to w ork out.
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M 22 and  M 23 go to zero as t 4, M 22 — M 23 as r 10, and consequently H  goes 
to  infinity as r  \  The final result is th a t (3.4-1) approaches

t  r  M o 4) — iAo

as t  —»0, assum ing exists. H ere the superscript (4) indicates the fourth 
derivative a t  r  =  0 ,

^  =  16ir4 [  f w ( f )  d f  (3.4-6)
Jo

For a low pass filter cu tting  off a t f b (3.4-5) is

dr  X  (2-irfb) 2 (3.4-7)

W hen (3.4-1) is applied to a low pass filter, i t  tu rns ou t th a t instead of r  
the variable

P = 2-irfbT, dip = 2irfb dr  (3.4-8)

is more convenient to handle. Thus, if we w rite (3.4-1) as p(p) dp, it fol
lows from  (3.4-4) and (3.4-7) th a t

P(<p) —* 27ry f i  =  -0919  as V ~ > 00

P(<p) ~ 4 30 as V

(3.4-9)

p(<p) has been com puted and p lo tted  on Fig. 1 as a  function of p  for the 
range 0 to  9. F rom  the curve and the theory  i t  is ev ident th a t beyond 
9 p(<p) oscillates abou t 0.0919 with ever decreasing am plitude.

W e m ay take p(p) dp  to  be the p robability  th a t  I  goes through zero in 
p,  p  +  dp, when it  is known th a t I  goes through zero a t  p  =  0 w ith a slope 
opposite to  th a t  a t  p. p(p) dp  exceeds the probability  th a t I  goes through 
zero a t  p  =  0 and  in p , p +  dp  w ith no zeros in between. This is because 
p{p) dp  includes all curves of the la tte r class and  in addition those which 
m ay have an  even num ber of zeros between 0 and  p .  F rom  this i t  follows 
th a t  the curve giving the p robability  density  of the intervals between zeros 
Oiust be underneath  the curve of p{p).

A p artia l check on the curve for p{p) m ay be obtained by com paring it 
w ith a probability  density  function obtained experim entally by M . E. 
Cam pbell for the intervals between 754 successive zeros. H e passed therm al 
noise through a band  pass filter, the lower cutoff being around 200 cps and 
the upper cutoff being around 3000 cps. The upper cutoff was ra the r g rad
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ual and  i t  is difficult to  assign a represen tative value. T he crosses on figure 
1 are ob ta ined  from  his d a ta  when we assum e th a t  his filter behaves like a 
low pass filter w ith a  cutoff a t  /& =  2850, this choice being m ade in  order 
to  m ake the m axim um  of his curve coincide w ith th a t  of p{<p).

I t  is seen th a t  some of the crosses lie above p(<p). T his is p robab ly  due 
to  the fac t th a t  the ac tua l filter differs som ew hat from  the assum ed low pass 
filter.

On Fig. 1 there is also p lo tted  a function closely rela ted  to (3 .4-1). I t  
is the low pass filter form  of the following: The p robab ility  of I  passing

Fig. 1—Distribution of intervals between zeros—low-pass filter 
y4A<p is probability of a zero in A<p when a zero is a t  origin.
yB^ip is probability of a zero in A<p when a zero is a t origin and slopes a t  zeros are of 

opposite signs.
Jb — P(<p),fb =  filter cutoff, t  =  time between zeros.

through zero in  r , t  +  dr  when it  is know n th a t  I  passes th rough  zero a t 
T =  0 is

[ i f ]  (*o -  p l r 3'2\i  +  H  ta n “ 1 n } (3.4-10)

where the no ta tion  is the sam e as in  (3.4-1) an d  — -  <  ta n  1 H  <  - .
2 ~  -  2

This curve should always lie above p(<p) and  the sm all difference between 
the curves ou t to  <p =  4 indicates th a t  [the true  d istribu tion  of zeros is given 
closely by  p(<p) ou t to  th is point.

W hen (3.4-1) is applied to  a  relatively  narrow  band  pass filter or some 
sim ilar device we m ay m ake some approxim ations and  ob ta in  an  expression 
som ew hat sim pler th an  (3.4-1). As a guide we consider our usual ideal



band pass filter whose range extends from/a t o /5 - The correlation function 
is given by (3.2-5).

/ r  =  — sin - r ' f b — f a)  cos x r(/5 -f  f a )

Tr (3.2-5)
f a  =  toof/s — / D)

From physical considerations we know that in a narrow filter most of the 
distances between zeros will be nearly equal to

f b + f a

i.e.. nearly equal to the distance between the zeros of a sine wave having 
the mid-band frequency. We therefore expect (3.4-1 to have a peak verv 
close to ti . We also expect peaks at 3 n , 5n  etc. but we shall not consider 
these. We wish to examine the behavior of (3.4—1 near ti .

I t  turns out that is nearly equal to M & so that E  is large and (3.4—1) 
becomes approximately

dr  I" f 0 T 2 1/23

2 iff
where r  is near n  .

In order to  see th a t  I / 5 3  is nearly  equal to 3 /«  we use the expressions

I / s  =  — f a  ( f t  —  f t )  —  f v p ' t

I/53 =  f r  (fo — ft)  “T f r f 'f

I/22 +  I/3  =  (fa — f-)[(fa  +  ft) ( f t  — fa ) — f t ]

=  f a  ~  ff)[B  -{- C]

I/ s  1/3 =  (fo +  &)[(|fo — fr ) (— f r  ~  fa . — f t ]

=  (¿0 - r  B  +  q

5  =  fspT — frfa

C  =  —fr?p" - f  — f t

From (3.2-5) it is seen that f r may be written as

f -  =  A  cos (fr, S  =  Tr(fb - f  fa)

where 3~i =  «- and -4 is a function of r  which varies slowly in comparison 
with cos S t .  We see that near n  , f -  is nearly equal to —f 0 . Likewise
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yp'T hovers around  zero and  is nearly  equal to  D ifferentiating  w ith
respect to  r  gives

\p'r =  A '  cos i6t  — A /3 sin /3t

ip" =  ( A "  — hl/32) cos ¡3t — 2A'/3 sin /3r

\[/'o =  4̂o/ — Ao/32 , xf/o =  Ao

where ylo and  A "  are the  values of A  and  its  second deriva tive  a t  r  equal 
to  zero. These lead to

B  = (A qA "  — A A o )  cos /3t — 2 A 0A'l3 sin /3r

C =  ( A A "  -  A ' 2) cos2 /3t -  AoAo +  (AJ -  ^ ) 2̂ 2

We wish to show th a t  C +  B  and  C — B  are  of the sam e order of m agni
tude. If we can do th is, i t  follows th a t  M n  ~  is m uch sm aller than  
M 22 +  M n  since xpo — xj/T1 is approxim ately  2\̂ 0 while î o +  xpri is quite small. 
Consequently we will have shown th a t  M n  is nearly  equal to M n  .

So far we have m ade no approxim ations. W e now express the slowly 
varying function A  as a power series in r . Since i/'o and  i/'o m ust be zero 
for the type of functions we consider, i t  follows th a t

A  = Ao +  j A o  +  ••

A '  =  tA o +  • •

A "  =  Ao' +  j A ^  +

w here we neglect all powers higher th a n  the  second. M ultip lication  and 
squaring gives

A 2 -  A 0 = t 2A 0Ao'

A A "  -  A '2 = AoAo +  ^  ( J L f f  -  A o 2)

= AoAo +  F

A 0A "  -  A A 0 = |  (A0A ^  -  A " 2) =  F

Since, for sm all r ,  A  and  A "  are nearly  equal to  Ao and  A ” , respectively
we see th a t  the difference on the left is sm all rela tive to  A o A o ,  i.e.,

| F |  < <  l i l ; ' !



O ur expression for B  and  C become approxim ately

B  =  F  cos i3t — 2 d o-4 "¡¡¡t sin /5r

C  =  F  cos2 [St  — -4o d ” sin2 /3r — d o d ”/S2T2

W hen r  is near n  , /3r is approxim ately w. H ence b o th  C +  B  and  C  — B  
are  approxim ately  —d o d 0 it' and are of the same order of m agnitude. Con
sequently  d/ 22 and  d/23 a re  bo th  nearly  equal and

d/23 =  >Ao[C -f- B]
a"  2 — —d  0 d  0 5T

W ren  this expression for d/23 is used our approxim ation to (3 .4- 1 ) gives 
us the re su lt: If the correlation function is of the form

ipT = A  cos S t

where d  is a slowly varying function of r, the probability  th a t the distance 
between two successive zeros lies between r  and  r  +  dr  is approxim ately

dr a
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2 [1 +  a‘-(r  -  n ) 2]3'2

where a is positive and

, _  dp/32 _  T
a — ,/ 2 , t i  — -

^4ot i IS

For our ideal band  pass filter w ith the pass b an d /i, — fa ,

I v a M 2 ,  n i  1

f b  —  f a  f b  +  f a

and  the average value of | r  — n  | is a-1 . Thus

ave. r  — ti< _  1 _  f b —  f a _  1 band  w idth
T i d T \  -p / 3  ( f b - j -  f a)  2 \ / 3  mid-frequency

dHren the correlation function cannot be p u t  in the form  assum ed above 
bu t still behaves like a sinusoidal wave w ith slowly varying am plitude we 
m ay use our first approxim ation to  (3.4-1). Thus, the probability  th a t  the 
distance between two successive zeros lies between r  and  r  +  dr  is approxi
m ately

b dr

[ f l  -  f l f 12

when r  lies near n  where n  is the sm allest value of r  which makes f T 
approxim ately equal to  — \po- This p robability  is supposed to  approach
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zero rap id ly  as r  departs from  n  , and  & is chosen so th a t  the  in tegral over 
the effective region around n  is un ity .

I t  seems to  be especially difficult to  get an  expression for the  d is tribu tion  
of zeros for large spacing. One m ethod, suggested b y  Prof. G oudsm it, is 
to  am end the conditions leading to  (3.4—1) by  adding conditions th a t  I  be 
positive a t  equally  spaced po ints along the tim e axis betw een 0 and  t . 

T his leads to integrals which are h a rd  to evaluate. F or one p o in t betw een 
0 and  r  the in tegral is of the  form  (3.5-7).

A nother m ethod of approach is to  use the m ethod  of “ in  and  exclusion” 
of zeros between 0 and  r . Consider the class of curves of I  having a zero 
a t  r  =  0. Then, in  theory , our m ethods will allow us to  com pute the func
tions po(r), pi(r, r ) , p 2(r, s, r ) , associated w ith th is class where 

po(r) dr  is p robability  of curve having zero in  dr 
pi(r, r) dr dr is p robab ility  of curve having zeros in  dr  an d  dr 
p2(r, s, r) dr dr ds is p robab ility  of curve having zeros in  dr, dr, and  ds 

In  fac t Po(t) dr  is expression (3.4-10). The m ethod  of in  an d  exclusion 
then  leads to  an  expression for Po(r) dr,  the p robab ility  of having  a zero 
a t  0 and  a zero in t ,  r  +  dr  b u t none betw een 0 and  r . I t  is

Po(r) =  M r )  -  Jji Pi(j,  r) dr  +  1

I  ^ r’ s ’ d r d s d t  +  ' ■ ■

H ere again we run  in to  difficult integrals. Inciden tally , (3.4-11) m ay be 
checked for events occurring independently  a t  random . T hus if v dr  is 
the p robab ility  of an  event happening in  dr,  then , if v is a co n stan t and  the 
events are independent, we have p o , p i , p 2 , • ■ • given by  v, v2, v3, ■ ■ ■ . 
F rom  (3.4—11) we obta in  the know n resu lt Po(r) =  ve~VT.

We shall now derive (3.4-1). T he w ork is based upon a generalization of 
(3 .3-5): If y  is a random  curve described by (3.3-1), the  p robab ility  th a t  y 
will pass through zero in  x \ , %i +  dx i w ith a positive slope an d  through 
zero in x2 , x2 +  dx2 w ith a negative slope is

/»+°o *0
—dxidxa drji / ¿ 172̂ 1^2p(0, 171, X i ; 0, 772, x2) (3.4-12)

Jo J -  00

where p(£ 1 , r j i , xi  ; £2 , V2 , *2) is the p robab ility  density  function  for the 
four random  variables

iii ~  F ( a i , U2 , ■ * * , (In j X{)

[  p 2(r, s, t )  dr ds 
Jo
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T he xi  and  xi p lay  the role of param eters in (3.4-12). This resu lt m ay be 
established in m uch the same way as (3.3-5).

W hen we identify  F  w ith one of our representations, (2.8-1) or (2.8-6), 
of the noise current I(t)  it is seen th a t  p  is norm al in  four dimensions. We 
m ay obtain  the second m om ents directly  from  this representation , as has 
been done in the  equations ju s t below (3.3-7). The same results m ay be 
ob ta ined  from  the definition of p(r) ,  and  for the sake of varie ty  we choose 
this second m ethod. We set Xi = t i , x2 =  h  +  r. Then

J i = H  =  m  =  i  o

+  T) =  p T (3.4-13)

where prim es denote differentiation -with respect to the argum ents. In te 
grating by  p a rts :

f  I '{ t  +  r) d l ( t ) =  [I'(t +  r)7(i)]or  ~  i  I " ( f  +  r )I( t)  dt 
Jo Jo

W e assum e th a t  I  and  its derivative rem ains finite so th a t  the in tegrated  
portion  vanishes, when divided by  T,  in  the lim it. Since

I " ( t  +  r)  =  1 {t +  r)

we have

171 ->72 =  =  — 'pr

Setting r  =  0 gives
_ 2 ~2
V i  =  172 =  — p o

in  agreem ent w ith the value of /¿22 obtained from  (3.3-7). In  the same 
way



where we have in teg rated  by  p a rts  in getting  £2?7i ■ S etting  r  =  0 and  using 
i/'o =  0 gives

HiVi =  =  0

In  order to ob ta in  the m atrix  M  of the second m om ents nrs in  & form  
fairly  sym m etrical abou t its  center we choose the 1, 2, 3, 4 order of our 
variables to be £ i , r)i, rj2 , £2 • F rom  equations (3.4-13) etc. i t  is seen th a t  
this choice leads to  the expression (3.4-2) for M .

W hen we p u t £1 an d  £2 equal to  zero, we ob ta in  for the  p robab ility  density  
function in  (3.4-12) the expression
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m  r i/2
- 4 ^ eXp 21 M

(M 22V1 +  2M23i7i??2 +  Mzzr)i)

Because of the sym m etry  of M , M u  is equal to  M i z . W hen, in  the  in tegral 
(3.4-12) we m ake the change of variable

r M22 t /2 r ^221
-|_2|M|J Vl’ y ~ l2\M\i

1/2

V2

we obtain

IT2 M  2

The double in tegral m ay be evaluated  by  (3.5-4). L e t

<p =  cos“ 1 (  -  =  co t"1 ( - 1 1 ), I I  =  M n [ M l2 -
\  M 22/

where H  is the sam e as th a t  given in (3.4-2). Our expression now becomes

d x  1 d x 2 1 M  13 / 2 ra | t t  r , - i  / m lI  Ml, - Mil1 + H cot <-«'
F rom  a p ro p erty  of determ inants

MiiMsz  — M lz =  | M  | (i/'o — i^2)

Using this to  elim inate | M  \ and  dividing by

" “11/2dx1 r -1̂ 01
27T L Wo J

which, from  (3.3-10), is the p robability  of going through zero in  x i , Xi +  ¿Xi 
w ith positive slope, gives the p robab ility  of going through zero in dx2 w ith
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negative slope when it  is known th a t I  goes through zero a t  x i  w ith positive 
slope:

I 1/2dx-i I" 'Po

J [Ml,  -  M \ m  -  m  ' {1 +  B  c o r 1 (-Z 7 )]

This is the sam e as (3.4-1).
T he expression (3.4-10) is the same as the probability  of I  going through 

zero in  dr  when i t  is known th a t I  goes through zero a t  the origin.with posi
tive slope. This second probability  m ay be obtained from  (3.4-1) by  add 
ing the p robability  th a t I  goes through dr  w ith positive slope when it  is 
known to go through zero with positive slope. Thus we m ust add the ex
pression containing the integral in which the integration  in bo th  rn and rj, 
run  from  0 to °o. In  term s of x  and y  this integral is

/ x d x  I dy ye 
Jo Jo

“2(3/ 23/M 22)xy
ll y  j o

JO JO

This is equivalent to a change in the sign of M n  and hence of H.  A fter 
this addition we m ust consider

1 +  H  cot-1 ( - # )  +  1 -  H  cot-1 H  

=  2 +  H  [cor1 ( - H )  -  cot-1 H]

=  2 +  H[t  -  2 cot“ 1 H]

=  2[1 +  H  ta n -1 H] 

and  this leads to  (3.4-10).

3.5 M u l t i p l e  I n t e g r a l s  

We wish to  evaluate integrals of the form

J  =  [  dxi [  dx2e-x^ 2aX1*2̂  (3 .5-1)
Jo Jo

Our m ethod of procedure is to first reduce the exponent to  the sum  of 
squares by  a suitable linear change of variable and  then  change to  polar 
coordinates. This m ethod appears to work also for triple integrals of the 
same sort, b u t when it  is applied to a four-fold integral, the la s t in tegration  
apparen tly  cannot be p u t in  closed form.

The reduction of the exponent to  the sum  of squares is based upon the 
transform ation: If*

Xi =  h y i  -f- h ,D 2\ y ,  +  h ^ D ^ y ,  -(- • • • T" hnD n,iyn

x,  =  0 -f- h, Dnyo  d- d~ k n D n,2y n (3.5—2)

Xn — 0 + 0  +  • • • + 0  +  hn Dn.n yn

* T. Fort, Am. M ath. M onthly, 43 (1936), pp. 477-481. See also Scott and Mathews,
Theory of Determinants, Cambridge (1904), Prob. 63, p. 276.
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where Do =  1, A  =  an  , D r,r = D r- 1 , and  D rs is the cofactor of asr (or 
of ars because they  are equal) in  D r :

D r =

then, if none of the  D r’s is zero,

an ai2 • • • a\r 
Ö12 #22
# l r  ' ' * a Tr

hT =  [D r^D rT 112,

^  ar, %r xa = y\ + y\ + —  + yl 
1

F rom  (3.5-2); the Jacobian  d { x \ , • • • .vn) / d ( y i , • • • y n)  is equal to  D n112. 
Applying our transform ation  to  the  ex ponen t:

Xi =  y i  -  aD2 ll2y2

x2 =  0 +  D 2 ll2y2 

D 2 =  1 -  a2

Since x 2 runs from  0 to  °o so m ust y 2 . The expression for x \  shows th a t  y i  

runs from  a D 2 ll2y2 to  oo. T he in tegral is therefore

/  =  f  dy2 i
JO JaD21

e - v*-y> dy i

dyi dy2 =  p dp dd

W e now change to  polar coordinates: 

y i  =  p  cos (  

y 2 =  p sin 6 

y2 >  0 gives 0 <  0 <  7T 

y i  >  aD2 ll2y 2 gives cot 6 >  aD J112

and  ob ta in

J  =  D Ï 112 ÍJo
[  pe p dp 

Jo

=  § Z ¥ 1/2 cot“ 1 {aDJ112)

where the arc-co tangent lies betw een 0 and  tt. T his m ay be w ritten  in the  
sim pler form

T 1 / i  2\—1/2 —1 iJ  =  f  (1 — a )  cos a =  4j<p esc <p

where
a =  cos <p, 

i t  being understood th a t  0 <  <p <  it.



O ther integrals m ay be obtained by  differentiation. T hus from

[  dx f  dy e~x2~y2~2xy cos * =  %<p esc <p (3 .5-3)
Jo Jo

we obtain

[  dx [  dy xy  e- * 2- v ° - z * » c o s r  =  c g c 2 ^ ( 1  _  cQ t ^  (3 .5 - 4 )
Jo Jo

B y using the sam e transform ation we m ay obtain

f  dx f  dy y(Tx*~^jt2axv =  S -4 — (3.5-5)
Jo Jo 4 1 -p a

Of course, we m ay expand p a r t of the exponential in a power series and 
in tegrate  term wise b u t th is leads to a series which has to be sum m ed in each 
p articu lar case:

[ "  dx f  d y x n y me -x2- y2- 2axu 
Jo Jo

=  i  £  ( ~ 2a)r r  +  f  +  1^  r  +  r  +  1^

If we take — 1 <  i?(w) <  = § ,  — 1 <  i?(m) <  — §, the series m ay be 
summ ed when a  =  1. The result s ta ted  ju s t below equation (3.8-9) is ob
tained by  continuing m  and n  analytically.

The same m ethods will work when the lim its are ±  °° . We obtain, when 
m  and n  are integers,

P+°0 /.+»
i  —x 2— y 2—2 x y  cos <p &
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dx  / d y x n y
oo J—oo

0, n  +  m  odd

( m  +  n  +  l V  (3.5-6)

f r  \  2 /
P  ) V w  (sin <p) n+m+1

-  (  1 — n — m  1 — cos <p\
F I —n, —m; ^  —  ; --------— I , n  +  m  even

The hypergeom etric function m ay also be w ritten  as 

_  /  n  m l — n  m  . 2 \
F ( _ 2- —2 ’  ™  I )
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B y transform ations of this we are led to the following expression for th e  
in tegral

0, n  +  m  odd,

r( g ) rC-fJ)Ff .
(sin <p) n+m+1 V 2 ’

M1 +i)
— cos tp ) ,  m , n  b o th  even,

r 1 + _ .  1 — m  1 — n  3 2
cos <pF [ — - —  , — —  ; -  ; cos <p<pj ,(sin <p) n+m+1

m, n  odd

As was m entioned earlier, the m ethod used to evaluate the  double in te 
grals m ay also be applied to  sim ilar trip le integrals. H ere we s ta te  tw o
results ob ta ined  in  th is way.

/ dx dy dz exp [ — x  — y  — z — l e x y  — 2bzx — layz]
Jo Jo Jo

f f e ]  l j +/3 +  7 _ , r ]
o'» «00

/ dx d y  dz yz  exp [ — x  — y  — £  — l e x y  — Ibzx — la y z ]
Jo Jo Jo

_  V V  [~1 +  a — b
~  W ,  L 1 +  a

—  T T )  j (3 .5-7)

where ¡3 and  y  are ob ta ined  by  cyclic p e rm u ta tio n  of a, b, c from

a  =  cos

=  cot

—i a — cb
( i  -  c2) i/2( i  -  b2y 2 

a — be

. - i T  D S J 12

Sm L(1 — c2) ( l  — &2) J

D 1/2

where a, /3, y  all he in the  range 0, tt and  where

1 c b
Ds =  c 1 a

b a 1
=  1 +  2 abe — a — b — c

For reference we s ta te  the integrals which arise from  the definition of the 
norm al d istribu tion  given in  section (2.9)

Í +oo «+«> r n r n ni/2
d x i  ■ ■ ■ J  dxn exp |^-Ç ars3cra;sJ =

Í +co ~+CO r  n i r "
dxi ■ ■■ J  dXnXtXu exp j — X) J =

1/2
A  tu
~ ï

(3 .5-8)
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where the  quadra tic  form  is positive definite and  | a \ is its determ inant. 
.4 iu is the  cofactor of atu . Incidentally , these m ay be regarded as special 
cases of

C dxi ' " C  dxnf{t a-xrx)  f ( ? brxr)
d y y n- 2f ( x 2 +  y~)

( r n
F { x  ^  Arsbrbi

I

(3.5-9)

1/2-)

wliich is a generahzation of a resu lt given by  Schlomilch.*

3 .6  D i s t r i b e t i o x  o p  M a x im a  o f  N o is e  C u r r e n t

H ere we shall use a result sim ilar to  those used in  sections 3.3 and  3.4. Let 
y  be a random  curve given by  (3.3-1),

y  =  F (ai • • • ax  ; x). (3.3-1)

If  suitable conditions are satisfied, the probability  th a t  y  has a m axim um  in 
the  rectangle (.% , xj +  dxi , j i , y i  +  d § i), d x i and d y x  being of the same 
order of m agnitude, is°"

- d x i dyi_ f  p ( y i , 0, f ) f  dp
J—X>

(3.6-1)

an d  the expected num ber of m axim a of y  in a  <  x  <  b is obtained by  in 
tegrating  this expression over the range — =c <  yi <  x , a <  xi  <  b. 
P(%> »?j f)  is the  p robab ih ty  density  function for the random  variables

I  =  F (ax ,

> P ( &

, a.\ , A‘i)

(3.6-2)

X=Xl

* Höheren Analysis, Braunschweig (1S79), Vol. 2, p. 494, equ. (29).
32.4 w. Jour. Math.. Vol. 61 (1939) 409-416. A similar problem has been studied by 

E . L. Dodd, The Length of the Cycles Which Result From the Graduation of Chance 
Elements. -Inn. M ath. Stat., Vol. l0  (1939) 254-264. He gives a number of references 
to the literature dealing with the fluctuations of time series.
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In  our application  of th is resu lt we replace x  an d  y  by  t and  I  as before. 
Then

N

£ =  I  =  /  ] Cn CO S (cO » i ”  (fti)
1

V =  I '

f  =  I "

where the prim es denote differentiation w ith respect to  t. According to  the  
cen tral lim it theorem  the d istribu tion  of £, 77, f  approaches a  norm al law. 
The second m om ents defining this law m ay be ob ta ined  e ither from  the  
above definitions of £, 77, f , or m ay be obtained from  the  correlation function  
as was done in the work following equation  (3.4—13).

| 2 =  t/'o, t72 =  —t/'” , ¿77 =  0

irf =  / ' « / " ( O  =  L im it i  [ T r { t ) I " ( t )  dt
T —*oo 1  JO

=  L im it 1  [T 2(T) -  Z'2(0)] =  0
T-*  00

=  L im it i  f  dt
r->* J Jo

T .  .  d 2 ip(r) //
-  L im it v =  ior—>0 C/T

r  =  L im it I  [ T I " ( t ) I " { t ) dt
T-+00 1 J  0

=  L im it 4  i  I W ( t) I { t )d t
T —*oo 1  *0

where the superscrip t (4) represents the fourth  derivative. T he m atrix  M  
of the m om ents is .thus

M  =
î o 0 ¿ 0

0  M  o' 0

L'AÓ' 0 ^

T he determ inan t [ M  | and  the cofactors of in te rest are

\ M \  -  -  i ? )  (3 .6-3)

M n  =  — 'l'o4/o \  M i $  - -  \//0 2, M 33 =  — if'o'f'o
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T h e  p r o b a b i l i ty  d e n s i ty  fu n c tio n  in  (3 .6 -1 )  is

73

P (I,  0, f )  =  (2 tt)-3/2 I M  1 ~112

[  2 | M |

(3.6-4)
(M u l 2 +  M 33Ç2 +  2M i3/ f )

and  when th is is p u t in (3.6-1) and  the in tegration  w ith respect to  f  p e r
form ed we get

(2ir)~3/2dt I I M  I
Ms

1/2 —JWn/2/2l A/ I(y

(3.6-5)

for the probab ility  of a m axim um  occurring in  the rectangle d l  dt. As is 
m entioned ju s t below expression (3.6-1), the expected num ber of maxima 
in the in terval h  , t2 m ay be obtained by  in tegrating  (3.6-1) from  h  to  t2 
afte r replacing x by  t, and I  from  — »  to +  00 after replacing y  by  I .  W hen 
we use (3.6-4) i t  is easier to in tegrate  w ith respect to I  first. The expected 
num ber is then

= (i- - «c «“■ - 2,
Hence the expected num ber of m axim a per second is

z j }  r
2* L-K'J

1  r ^ T 2 _
[  f w ( J )  d f

J q_______________

[  / V / )  d f

1/2

(3.6-6)

For a band  pass filter, the expected num ber of m axim a per second is

j-5-11/2
[ 3 /6  - f a l  
L 5 y | - f j

(3 .6 -7 )

where fb  and  f a are the cut-off frequencies. P u ttin g  f a =  0 so as to  get a 
low pass filter,

=  .775/j (3 .6 -8 )
11/2
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From  (3.6-8) and  (3.6-5) we m ay ob ta in  the p robab ility  density  function  
for the m axim a in the case of a  low pass filter. T hus the  p robab ility  th a t 
a  m axim um  selected a t  random  from  the universe of m axim a will lie in 
I ,  I  +  d l  is

where

y  ~  V h

0 y I 2 3 4

Fig. 2—D istribution of maxima of noise current. Noise through ideal low-pass filter.
Pl(y)
^ 7=  d l  =  probability th a t a maximum of I  selected a t random lies between I  and I  +  dl. 

W hen y  is large and  positive (3.6-9) is given asym pto tically  by

dI_ y/} ye-v*i* 
y / t a  3

If we w rite (3.6-9) as pj(y) dy, the p robab ility  density  p t{y) of y  m ay  be 
p lo tted  as a  function  of y.  T his p lo t is shown in Fig. 2. The d istribu tion  
function P ( / max < y y / \ p 0) defined by

  r v
P ( I  max < yVto) = / pi{y )-dy  

J— oo

and  which gives the p robab ility  th a t a m axim um  selected a t  random  is 
less th an  a specified y y / \p 0 — I ,  is one of the four curves p lo tted  in Fig. 4.

If I  is large and  positive we m ay obtain  an  approxim ation  from  (3.6-5). 
We observe th a t

M n  =  iAo4) >  1 
I M  | \po\po4) — to '2 to

x =  O U T P U T  N O IS E  C U R R E N T  

R M S  V A L U E  O F I  ____
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so th a t when I  is large and  positive
-M h/2/21 Ml ^  - D M o

Also, in these circum stances the 1 +  erf is nearly  equal to two. Thus re
tain ing only the im portan t term s and  using the definitions of the M ’s gives 
the approxim ation to (3 .6-5):

I t  is interesting to note th a t the approxim ation (3.6-11) for the expected 
num ber of m axim a above h  is the same as the exact expression (3.3-14) for 
the  expected num ber of tim es I  will pass through 1 1 w ith positive slope.

3.7 R e s u l t s  o n  t h e  E n v e l o p e  o e  t h e  N o i s e  C u r r e n t

The noise curren t flowing in  the o u tp u t of a  relatively narrow  band  pass 
filter has the  character of a sine wave of, roughly, the m idband frequency 
whose am plitude fluctuates irregularly, the rap id ity  of fluctuation being 
of the order of the band  w idth. H ere we s tu d y  the fluctuations of the 
envelope of such a wave.

F irs t we define the envelope. L et f m be a  representative m idband fre
quency. Then if

7 1 = 1

33 This expression agrees with an estimate made by V. D. Landon, Proc. I .  R. E ., 29 
(1941), 50-55. He discusses the number of crests exceeding four times the r.m.s. value 
of I .  This corresponds to I f  =  16-Io.

(3.6-10)

From  this i t  follows th a t the expected num ber of maxima per second lying 
above the fine I  =  I \  is approxim ately33 when I f  is large,

(3.6-11)
=  e II X  I  [the expected num ber of zeros of I  per second]

Wffl 271~fm

the  noise curren t m ay be represented, see (2.8-6), by

(3.7-1)

(3.7-2)
— Tc cos cOtf, t Tg sin com I

where the  com ponents I c and  I s are
N

71 =  1 

N
(3.7-3)

1a — ^ . Cn sin (uv. t t <Pn)



The envelope, R,  is a function  of t defined by

R  =  M l  + '  /»]1/2 (3 .7-4)

I t  follows from  the cen tral lim it theorem  and  the definitions (3.7-3) of I c 
and  15 th a t these are two norm ally d istribu ted  random  variables. T hey  are 
independent since I J S =  0. T hey  bo th  have the sam e sta n d a rd  deviation , 
nam ely the square roo t of

Y c = T l = Y  =  f  w ( f )  d f  =  to  (3 .7-5)
Jo *

C onsequently, the p robability  th a t  the  po in t (/<,, I s) lies w ith in  the ele
m entary  rectangle d l cd l s is

7-2 , 7-2-

(3.7-6)
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d i e  d i g
exp

2tt̂ o

r  i i  +  i i
L 2̂0

In  much of the following work i t  is convenient to  in troduce ano ther ra n 
dom  variable 9 where

I c =  R  cos 9
(3.7-7)

I s — R  sin 6

Since Ic  and I s are random  variables so are R  and 6. T he differentials are 
rela ted  by

dlcdls  =  RdddR  (3.7-8)

and  the d is tribu tion  function  for R  and  6 is obta inable from  (3.7-6) when 
the change of variables is m ade:

dd R  d R  ^¡¡2/2̂ 0

2ir fa
e~K Wo (3 .7-9)

Since this m ay be expressed as a  p roduct of term s involving R  only and  6 

only, R  and  9 are independent random  variables, 9 being uniform ly dis
tr ib u ted  over the range 0 to  2ir and R  having the p robab ility  density34

# * - * ’» •  (3 .7-10)
Y0

Expression (3.7-10) gives the p robability  density  for the value of the  en 
velope. Like the norm al law for the instan taneous value of J ,  i t  depends 
only upon the average to ta l power

t o  =  [  w ( f )  d f
Jo

34 See V. D. Landon and K. A. Norton, I.R .E . Proc., 30 (1942), 425-429.
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We now study  the correlation between R  a t  tim e t and its value a t  some 
la te r  tim e t +  r . L et the subscripts 1 and 2 refer to the tim es t and  t +  r , 
respectively. T hen  from  (3.7-3) and the central lim it theorem  it  follows 
th a t the four random  variables I c l , J s l , I c2, / s2 have a four dimensional 
norm al distribution . This d istribu tion  is determ ined by the second! mo
m ents

I d  =  I s l  —  Icl —  / s 2  =  '/'O =  Mil

/ c l / , 1  / c 2 / , 2  'I

     1 N
Icllc2 Isl Is2 ~  ~ ^  ̂ Cn COS T ’ COtot)

Z n=l

/ w ( f ) cos 2t t ( /  -  f m)r  d f  =  mis Jo (3.7-11)

I  cl I s2 I& Isl /* ’ Cn Sin (tOft “  Olrn'r')L 71=1

/  w ( / )  sin  2 ir( / -  / m) r  d f  =  mu

1/0 0 Ml3 M14

0 —  M14 Ml3

M13 —  M14 ’/'0 0

Ml4 Ml3 0 »Ao

T he m om ent m atrix  for the variables in  the order I c\ , 1,1 , I c2 , /,2 is

3 /  =

and from  this i t  follows th a t the cofactors of the determ inant | M  | are 

M u  M u  =  M 30 =  M u  =  'M '/ 'o  —  M13 —  M14)

=  \p0A , A  — l/o Ml3 Ml4

A/12 =  il/34 =  0

3/13 =  3/24 =  —M13T

3 / j 4  =  — 3/23 = —  M M ^t

| M  I =  T 2

The p robab ih ty  density  of the four random  variables is therefore

(3.7-12)

-  2m i3( / i / s  +  I 2 I f )  ~  2 W 4 ( / i / 4  -  / 2 / 3) ]



where we have w ritten  h  , h  , h  , h  f° r I  c \ , I s i , I&.2 , R 2 • We now m ake 
the transform ation

7i =  i?i cos 0i h  — R 2 cos 02

/ 2 =  f?i sin 0i I 4 =  i ?2 sin 02

and  average; the resulting p robab ility  density  over 0i and  02 in  order to  get 
the p robab ility  th a t  R \  an d  i?2 lie in ¿-^1 an<I  -̂^2 • I t  is

U  r* r ̂  exp
4ir2 ̂ 4 Jo Jo

_  _ L  2m R i R i  cos W* “  0i) “  2n u R i R t  sin (02 -  0i)]
2̂ 4

Since the in tegrand  is a periodic function of 02 we m ay in tegrate  from  
02 =  0i to 02 =  0i +  2tt instead of from  0 to  2tt. This in teg ration  gives the 
Bessel function, I 0 , of the first k ind w ith im aginary argum ent. T he resu lt
ing p robab ility  density  for R i  and  i?2 is
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R] R 2
A

where, from  (3.7-12),

7o exp -  ^  (R \  +  R l)  (3.7-13)

A  =  \pl — n h  ~ ' B14

Mis and  n 14 are given by  (3.7-11). Of course, i?i and  R 2 are  always p o sitiv e . 
For an  ideal band  pass filter w ith cut-offs a t  f a and  f b we se t

f m =  w° fo r U < f < f i

and  ob ta in

l/'O =  wo( f b -  fa)

[ fb „ f x  S \ ^  Wo sin 7r(/6 - /a ) r
M13 =  / Wo cos 2 ir ( /  -  f m)T d f  =  --------------------------

J f a  » f

¡ • f b

- / w0 sin 2 ir ( /  — / m) r  d f  =  0Mil
^  f a

The h  te rm  in (3.7-13), which furnishes the correlation  betw een i?i and i?2 , 
becomes
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where x  is 7r(/& — /„ ) r .  W hen a; is a m ultiple of 7r, R i and  are independent 
random  variables. W hen x  is zero R\ and  f?2 are equal. H ence we m ay 
say, roughly, th a t the period of fluctuation of R  is the tim e i t  takes x  to  in
crease from  0 to  zr or (/& — / 0)_1. This is rela ted  to  the resu lt given in  the 
next section, nam ely th a t the expected num ber of m axim a of the envelope 
is .641 ( ft  — f a) p er second.

3 .8  M a x im a  o r  R

H ere we wish to s tudy  the d istribution  of the m axim a of R *  Our work 
is based upon the expression, cf. (3.6-1),

- d R d t  f  p(R ,  0, R " ) R ” d R "  (3.8-1)
*1—00

for the p robability  th a t  a m axim um  of R  falls w ithin the elem entary rec
tangle dR  dt. p (R ,  R \  R " )  is the probab ility  density  for the three dim en
sional d istribu tion  of R, R ',  R "  where the prim es denote differentiation with 
respect to  t.

We shall determ ine p(R , R ',  R " )  from  the probability  density  cf I c , l [ , 
l c , /  , / c , / s , which we shall denote by  X i , x%, • • • x$ . The interchange
of I s and  I c is suggested by  the la ter work. I t  is convenient to  introduce
the no ta tion

bn m M f  w ( / ) ( f  -  f my  d f
J0 ( 3 .8 - 2 )

¿0 =  Po

where f m is the  m id-band frequency, i.e., the  frequency chosen in  the defini
tion  of the  envelope R. bn is seen to be analogous to the derivatives of 
p(r)  a t  t  =  0.

F rom  the definitions (3.7-3) of I c and  I s we ob ta in  the second m om ents 

x \  =  i l  =  po =  b0

4  = 11=  b0

=  I ?  =  X  w ( f n)AfPTT2( f n — f mf  = h  
1

T  ,
=  Ic =  bi 

=  l c =  bi
~  7^2 z.x 6 =  Is  -  h

* Incidentally, most of the analysis of this section was originally developed in a study 
of the stability of repeaters in a loaded telephone transmission lme. The envelope, R, 
was associated with the “returned current” produced by reflections from line irregularities. 
However, the study fell short of its object and the only results which seemed worth sal
vaging a t  the time were given in reference25 cited in Section 3.3.
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 „ N

xfixo =  I d 's  =  2 2  w ( f n)Af2w(fn ~  fm) =  fa 
1

XiXs =  Is Ic =  —bl

% l% 3 -  I c l ' c  - - H  w ( / ) A / 4x 2( / „  -  f m ) 2 =  ~ f a  
1

XiXe =  I  s i "  =  — fa

X2X3 =  I  s i "  =  —  fa  

% h X f ,  =  I c  I s  =  f a

A l l  o f  t h e  o t h e r  s e c o n d  m o m e n t s  a r e  z e r o .  T h e  m o m e n t  m a t r i x  M  i s  t h u s

b o  b i  —  6 2 0 0 0

b i  b 2  —  fa 0 0 0

—  f a  — b 3  b i 0 ' t 0 ' * ï 0

M  =
0  0  0 fa - h - f a

0  0  0 - f a fa f a

0  0  0 - f a f a b l _

T h e  a d j o i n t  m a t r i x  i s

B o  B i  —  B 2 0 0 0

B i  B 2 2  — B 3 0 0 0

— B 2  — B o  B i 0 0 0

0 0  0 B o - B i  - - b 2

0 0  0 - B i 2 3  22 B o

0 0  0 - b 2 B o B i

B 0 c f a f a  -  b \ ) B b 2 2  = ( f a b i -  b l ) B

B 1 =  - ( f i f i i  —  b 2 f a ) B B 3  = —  ( f a f a -  b i f a ) B

b 2 ( f a f a  -  b l ) B B i  = ( b f i 2 -  b \ ) B

B  =  b o b f i i  T "  2  b f i 2 f a  

-  b l  -  f a b \  -  f a b \

I M  I =  B 2

w h e r e  B  i s  t h e  d e t e r m i n a n t  o f  t h e  t h i r d  o r d e r  m a t r i c e s  i n  t h e  u p p e r  l e f t  a n d  

l o w e r  r i g h t  c o r n e r s  o f  M .

¡ A s  i n  t h e  e a r l i e r  w o r k ,  t h e  d i s t r i b u t i o n  o f  x \ ,  • • • ,  x 3  i s  n o r m a l  i n  s i x  

d i m e n s i o n s .  T h e  e x p o n e n t  i s  —  [ 2  | M  | ] _ 1  t i m e s

B o ( x {  +  x \ )  +  2 B i { x i X i  —  x i x f )  —  2 B 2 ( x i X 3  +  x i x f )

+  B 2 2 ( x \  +  x l )  —  2 B a ( x 2 X 3  —  x -a x ô )  ( 3 . 8 - 4 )

+  B f x \  +  x \ )
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In  line w ith the earlier work we set

=  I c =  R  cos 6 xt  =  I 3 =  R  sin 6

x2 — l's =  R '  sin 6 +  R  cos 66'

Xi = l'c = R '  cos 6 — R  si(L 66'

x3 =  l'c =  R "  cos 6 — 2R '  sin 66'

— R  cos 66'~ — R  sin 66‘

x3 = I "  = R "  sin 6 +  2R' cos 66' 

-  R  sin 66'2 +  R  cos 66"

The angle 6 varies from  0 to  2tt and 6' and  6"  v ary  from  — °o to +  oo. By 
forming the Jacobian  i t  m ay be shown th a t

dxi dx2 • • • dx6 =  R 3 dR  dR ' d R "  dd d6' d6"

Also, the quantities in (3.8-4) are

The expression for p(R ,  0, R " )  is obtained when we set these values of the 
*’s in (3.8-4) and  in teg rate  the resulting probability  density  over the ranges

The in tegrations w ith respect to 6 and 6"  m ay be perform ed a t  once leaving 
p(R,  0, R ")  expressed as a single integral which, unfortunately , appears to 
be difficult to handle. For this reason we assume th a t w(f) is sym m etrical 
abou t the m id-band frequency f m . F rom  (3.8-2), b\ and  b3 are zero and 
from  (3.8-3), B i  and  B 3 are zero.

x \  +  x \  =  R 2 x i x 3 +  x6 =  R R "  — R 1 6'2

Xxx2 — XiX6 =  R 26' x \  +  x l  =  R '2 +  R 26'2 

x 2x 3 -  x 5x 6 =  R R " 6' -  2R '26' -  R 'R d "  -  R 26,z 

x t  +  x l  =  R " 2 -  2R R " 6'2 +  4R '26'2 +  4R R '6'6"

+  R 2 6'* +  R 26 "2

of 6, 6', 6":

(3.8-5)

exP ^  +  2B1R 26' -  2Bi (R R "  -  R 26'2)

+  B 22R 26'2 -  2B3R 6 '(R "  -  R 6'2)

+  B i(R " 2 -  2R R " 6'2 +  R 26'4 +  R 26" 2)]
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W ith  this assum ption (3.8-5) yields

p(R,  0, R " )  =  R \2 tv )~ w  B 7 1'2 f  dd' (3 .8-6)
J—cc

exp ~ [ B o R 2 +  R ( \B n  +  2B 2]R6/2 -  2B 2R " )  +  B , ( R "  -  R 6'2) 2]

The p robab ility  th a t  a m axim um  occurs in  the elem entary  rectangle dR  
dt is, from  (3.8-1), pit, R) dR  dt where

p{t, R) =  -  p (R ,  0, R " ) R "  d R "  (3.8-7)
J— oo

We p u t (3.8-6) in th is expression and  m ake the  following change of variables.

7 )1 /2

X = R0'\ y = R'
V 2 B  V 2 B

z =  , B \  -  R  =  H § =  i? (3.8-8)
V 2 ^ 4  B  V 2B 4

j (B 2 2 +  2 5 2) ["3 èo^"] X / ,  2
i  =  2 B Ï 1  _ 2  ~  » I J  =

2 -Bo 2 5 4 ¿>0̂ 4d —
' )  Z.**

where we have used the expressions for the J3’s ob ta ined  by  se tting  bi and 
¿3 to  zero in  (3.8-3). T hus

p it ,  R) =  ~  (y )  J  ydy f  %~in dx  (3.8-9)
b0b2 \ 2 i r /  Jo Jo

exp [ — a2 z2 +  2bzx +  2zy — (x +  y )2]

As was to be expected, th is expression shows th a t  p i t , R ) is independent of t.
A series for pit, R)  m ay be obtained by  expanding exp 2z(y +  bx) and  

then  in tegrating  term wise. W e use

V i r  T (y  +  1)T (m +  1)
W * * ' » -  ■

which m ay be evaluated by  setting

X  =  p 2 CO S2 (p, y  =  p 2 s i n 2 ip
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T he double in tegral in  (3.8—9) becomes

a / - ' S '  (2z) ‘ y' n ! b m T ( m  + b ) T ( n  —  m  + 2)
r  2 »-« w! — o m !( n  -  m) 1

ao 7i - a - z ~

=  tt2_5/2 Z  ^ -------* J »
n=o p / n I)

.4 .  _  Z  ~  }) (» -  M +  1)4", 0 <  „  (3.8-10)

where J o  =  1 and

-  " m v  •
7W!

A„  ~  («  +  1) (1 — b) 1" — ^ (1 — 6) 2, n  large

T he term  corresponding to  m =  0 in (3.8-10) is n +  1.
W e thus ob ta in

—ar-z~ /  j-) \  3 /2  ao n

P V . V - j r _ i A,
-tOq bo '\ /  7T n=0

r ( H ) (3.8-11)
a2z2 71/2 ao n i

L  (ffl* L  i ) 3/2z3/2 Z l S  ’1
4v  7T #0 71=0

(H )
We are in te rested  in  th e  expected num ber, .V, of maxima per second. 

F rom  the  sim ilar w ork for I ,  i t  follows th a t  N  is the coefficient of dt when 
(3.8-1) is in teg rated  w ith respect to  R  from  0 to  x  . Thus from  (3.8-7) and

d R  =  V M b f d z  = (2boB)ll2b7312 dz

— [25o(a2 — 1 )Y i2 dz

we find

N  =  [  p(t, R)  
Jo

dR

(a2 ~  1):
(2a)s/2

( h . ) i  ±
\ i r b j  m

( f + i ) - 4 .

( I l l ) “
(3.8-12)

E quations (3.8-11) and  (3.8-12) have been derived on the assum ption 
th a t  w{f) is sym m etrical abou t f m , i.e. the band  pass filter a tten u a tio n  is
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sym m etrical ab o u t the m id-band frequency. W e now go a  step  fu rth e r and  
assum e an  ideal band  pass filter:

w ( f )  =  w 0 f a < f  < f b

WU ) =  0 otherw ise (3.8-13)

2/rn =  fa  +  fb

P u ttin g  these in  (3.8-2) we ob ta in  zero for b\ an d  b3 an d  also 

bo -  m ( fh  — f a) =  h

b2 =  (fb -  fa )3

h  =  (fb  -  f a ?

a = (3 .8-14)

9JC
L 3 J  ~ '  m

— a2) =  f

(a2 -  D f 2* = [Uo]1,2z

r- “11/2

- i O0
| ¿

1

> fa), <?Z

n A n n An
0 1 4 6.775
i 2.3 5 8.333
2 3.735 6 9.9002
3 5.238 7 11.4736
A„  ~  1.5811 n  +  .3953

From  (3.8-12) we find th a t  the expected num ber of m axim a per second 
of the envelope is

N  k  .64110 (fb -  f a) (3.8-15)

assum ing an  ideal band  pass filter.
The d istribu tion  of the m axim a of R  for an  ideal b an d  pass filter m ay be 

obtained by  placing the  results of (3.8-14) in  (3.8-11). T his gives



I t  is convenient to define y  as the ratio

y  =  ___ * ___  =  A  =  ( i ) 1»«
J  r.m .s. / ( / )  ¿ I 12 W
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where R  is understood to correspond to  a m axim um  of the envelope. Since 
the value of R  corresponding to  a m axim um  of the envelope selected a t  
random  is a random  variable, y  is also a random  variable. I ts  probability  
density  is p R(y ) ,  where

p R(y ) d y  =  K ) d R
V yy> y  0.64110(/6 -  f a) 

p R{y) has been com puted and is p lo tted  as a function of y  in Fig. 3.

Fig. 3—Distribution of maxima of envelope of noise current. Noise through ideal band
pass filter.

dR  =  probability th a t a maximum of R  selected a t random lies between R  and
v 'f'o 

R  +  dR.

The d istribu tion  function P ( R ma* <  y \ / \ p 0) defined by

- P ( i ? m a x  <  y v 7^ )  =  f pn(y) d y  
Jo

and  which gives the probability  th a t  a m axim um  of the envelope selected 
a t  random  is less th an  a specified value y v V o  =  R, is p lo tted  in  Fig. 4 to 
gether w ith other curves of the same nature.

E N V E L O P E  O F O U T P U T  

N O IS E  C U R R E N T

R M S  N O IS E  C U R R E N T

R
y =



W hen y  is large, say  g rea ter th an  2.5,

86 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

P(i?max < y Vfo)

"*W ~  J ®  (y ~ 1)e

.64110

y vVo)- _  . /—
5  =  P (I  max <  y V to )  =  probability of random maximum of I  being less than  y v  • 

Similarly D = P (R  max <  yV~Po).



The asym pto tic  expression for p R(y) m ay be obtained from  the integral 
(3.8-9) for />(/, R). Indeed, replacing the variables of integration x, y  in 
(3.8-9) by

x'  =  .v 

y '  =  * +  y,

in tegrating  a portion of the y '  in tegral by  p arts , and assuming b <  1 
(a~ >  1, by  Schwarz’s inequality, so th a t b <  1 always) leads to

V« -«2/2^0
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when R  is large.
If, instead  of an  ideal band  pass filter, we assume th a t w{f) is given by  

=  i ^ 7 2 ^ e_</ /m )W ’ fm>> * (3-8-16)

we find th a t

h  =  1

by =  4ir'cr' 

bi =  167r4.3c4 

a2 =  3, b =  0 

A n =  (n +  1)

Some rough w ork indicates th a t the sum  of the series in (3.8-12) is near 
3.97. This gives the expected num ber of m axim a of the envelope as

N  =  2.52(7 (3.8-17)
p er second.

The pass band  is determ ined by  a. I t  appears difficult to com pare this 
w ith an  ideal band  pass filter. If we use the fact th a t the filter given by

passes the same average am ount of power as does an  ideal band pass filter 
whose pass band  is f b  —  f a ,  we have

f b —  f a  =  cts/ 2 tt

and  the expression for N  becomes 1.006 (fb — f a).

3 .9  E n e r g y  F l u c t u a t i o n  

Some inform ation regarding the sta tistica l behavior of the random  v ari
able



where l i t )  is a  noise cu rren t and  h  is chosen a t  random , has been given in  a 
recen t article .35 H ere we s tudy  th is behavior from  a som ew hat different 
po in t of view.

If we agree to  use the represen tations (2.8-1) or (2.8-6) we m ay  w rite, as 
in  the  paper, th e  random  variable E  as

i r/2
f i t )  dt (3 .9-2)

r /2

where the random ness on the righ t is due either to  the  an’s an d  bn’s if (2.8-1) 
is used or to  the <pn’s if (2.8-6) is used.

T he average value of E  is m T where, from  (3.1-2),
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/ Tl'l ___  pT/Z
I 2 it) dt =  \p{0) dt =  Txf/o

■r/2 J—T/ 2

=  T  [  w i f )  d f  
Jo

(3 .9-3)

Jo

The second m om ent of E  is

. r /2 n r /2/•■ J /Z  / . r / z

E 2 =  / d h  I dt2P i h ) P i h )  (3.9-4)
J -T /2  J -T /2

If, for the tim e being, we set i2 equal to  h  +  r ,  i t  is seen from  section 3.2 
th a t we have an  expression for the p robab ility  density  of 1 ( f )  an d  I f  +  r.) 
and  hence we m ay obta in  the required  av e rag e:

i i l l  =  A  f + d f  [ + ^ 2/ 1/2 exp 
^7Ty4. J—oo J—oo

( ~ 2j 2 C^°7i +  '/ 'o ll — 2^T7 i / 2) ^  

z42 =  i l  ~  f r  , A  =  / ( ¿ 1 ) ,  /*  =  J ( i i  +  r )  =  7 « 0

T he in tegral m ay be evaluated  by  (3.5-6) when we se t

(3.9-5)

  V t. ’

i/'t =  —'po cos (f 

A  =  \po sin <p

(3.9-6)

35 “ Filtered Therm al Noise—Fluctuation of Energy as a Function of In terval Length” , 
Jour. Acous. Soc. A m ., 14 (1943), 216-227.



Thus
l \ l 2 =  ^o(l +  2 cos2 <p)

(3-9-7)
=  ^0 +  2\PT

Inciden tally , this gives an  expression for the correlation function of f ( t ) .  
Replacing r  by its  value of t2 — h  and return ing  to  (3.9-4),

ZTi 2 « r /2

dti / dtzxpXti — ii) (3.9-8)
T/2 J—T/2

W hen we in troduce <rt , the stan d ard  deviation of E,  and use

<r\ =  E? —
we obtain

• 272 » 2 7 2
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• = r _

<r t  ~  (E  — E)  =  2 I dt 1 I dti I  (̂ 2 — ¿1) 
J - 2 7 2  4 - r /2

=  4 f  ( T  — x)\//2(x) dx 
Jo

where the second line m ay be obtained from the first either by  changing the 
variables of in tegration, as in (3.9-27), or by the m ethod used below in 
dealing w ith £ 3. I  am  indebted to Prof. K ac for pointing out the advantage 
obtained by  reducing the double integral to a single integral. I t  should be 
noted  th a t the  lim its of integration — T /2 ,  T /2  in the double integral m ay 
be replaced by  0, T  by m aking the change of variable t = t’ — T /2  for both 
h  and t2.

W hen we use

sHt) =  f  w ( f )  cos 2x /r d f  (2.1-6)
Jo

we obtain  the  result s ta ted  in the paper, namely,

4  -  [  » (a >  * h  [  » « 0  *  p f f i + y  (3 -0 -»

s in 2 7 r ( / i  - / 2) r l

2̂(/i -/2)2 J
If this form ula is applied to  a  relatively  narrow  band-pass filter and  if 

T(fb — fa) >  >  1 the contribution of th e / i  +  / 2 term  m ay be neglected and 
we have the approxim ation



90 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

where, from  (3.9-3)

m T =  woT(fb — fa) (3 .9-11)

T he th ird  m om ent 3  m ay  be com puted in  the  sam e way. H ow ever, in 
this case i t  pays to  in troduce the characteristic function  for th e  d istribu tion  
of 1(h), 1(h), 1(h). Since this d istribu tion  is norm al its  characteristic  
function  is

Average exp [ i z ih  +  iz2I 2 +  i z s h l

=  exp — (zi +  z2 +  zl) +  'l/(h  ~  h)ziZ2 ^  9-4 2 )

+  \p(h — h )Zi Z'6 +  f ( h  ~  h )z 2 Z3J  

F rom  the definition of the characteristic  function i t  follows th a t  

p i p  =  -c o e ff .  of ^  ch. f.

=  r/'o +  2i/'o(i/'2i +  f h  +  ^ 32)  ̂ ^

-f- 8\p2i1pnf32

where we have w ritten  for f ( t 2 ~  h),  etc. W hen (3.9-13) is m ultiplied 
by  dt\ dt2 dt%, the variables in teg rated  from  0 to T,  and  th e  above double 
in tegral expression for o> used, we find

(E  — E )3 = 2 !22 f dt\ f dt2 [dh f 2i f s i  f a  •
J0 J 0 Jo

D enoting the triple integral on the righ t by  /  and differentiating,

%  =  3 f dh  f  d h H h  ~  h ) f ( T  -  h ) i ( T  -  h)
a l  Jo Jo

=  3 dx I d y f ( x  — y ) f ( x ) f ( y )
Jo Jo

— 6 dx  I d y f ( x  — y)f(x)\f/(y)
Jo Jo

In  going from  the first line to the  second h  and h  were replaced by  T  — x  and  
T  — y,  respectively. In  going from  the  second to  the  th ird  use was m ade of 
the  relations symbolized by

Jr»T r*T r»T i»T
' dx I d y =  dx dy  +  dx  I dy
0 Jo Jo Jo Jo Jx

p T  p x  p T  p v

=  dx dy  +  / dy dx
Jo Jo Jo Jo
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and  of the  fact th a t the integrand is sym m etrical in *  and y. In tegrating  
d J / d T  w ith respect to T  from 0 to T h using the form ula i

noting th a t J  is zero when T  is zero, and dropping the subscript on 7! finally 
gives

(E  E )  3 (E  E )  — 3 !2 / dt\ / dt2 / dt% / <¿̂4 ̂ 21 ̂ 31 4̂2 4̂3
Jo Jo Jo Jo

which m ay be reduced to the sum of two triple integrals. I t  is interesting 
to  note th a t the expression on the left is the fourth  sem i-invariant of the 
random  variable E  and gives us a measure of the peakedness of the dis
tr ibu tion  (kurtosis). Likewise, the second and third moments about the 
m ean are the second and  th ird  sem i-invariants of E. This suggests th a t 
possibly the higher sem i-invariants m ay also be expressed as similar m ultiple 
integrals.

So far, in  this section, we have been speaking of the sta tistica l constants 
of E. The determ ination  of an  exact expression for the probability  density 
of E ,  in  which T  occurs as a param eter, seems to  be quite difficult.

W hen T  is very  sm all E  is approxim ately I 2(t)T. The probability  th a t 
E  lies in d E  is the p robability  th a t tjie cu rren t lies in —7, —I  —d l  plus the 
probability  th a t  the cu rren t lies in 7 , 1 +  d l:

and  T  is assum ed to  be so sm all th a t I(t)  does no t change appreciably during 
an  in te rv a l of length T.

W hen T  is very  large we m ay divide i t  in to  a num ber of intervals, say n, 
each of length  T /n .  L e t E r be the contribution  of the r  th  interval. The 
energy E  for the entire in terval is then

If the sub-in tervals are large enough the E r’s are substan tia lly  independent 
random  variables. If in addition  n  is large enough E  is d istribu ted  nor

d T  / f ( x )  dx  =
'0

E 4 m ay be trea ted  in a  similar way. I t  is found th a t

where E  is positive,

E  =  E i  +  £2 +  • • • E n
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m ally, approxim ately. Hence when T  is very  large the p robab ility  th a t  E  
lies in  (IE is

d E  (.E -  m Ty-
 s  exp -   r ~2 (3 .9-15;

V  2tt 2cft

where

m T =  T  [  w ( f )  d f  
Jo

a r  =  T  i  w 2( f )  d f  
Jo

(3.9-16)

the second relation  being obtained by le tting  T  —> °o in  (3 .9-9). The 
analogy w ith C am pbell’s theorem , section 1.2, is evident. W hen we deal 
w ith a  band  pass filter we m ay use (3.9-10) and  (3.9-11).

Consider a  relatively  narrow  band  pass filter such th a t  we m ay find a  T
for which T fa >  >  2tv b u t T ( fb — f„) <  <  .64. T hus several cycles of fre
quency/a are contained in  7’bu t, from  (3.8-15), the  envelope does n o t change 
appreciably during this in terval. T hus th roughou t th is in te rv a l 1(f) m ay 
be considered to be a sine wave of am plitude R.  T he corresponding value 
of E  is approxim ately

b  =  t y

where the d istribu tion  of the envelope R  is given by  (3.7-10). F rom  this 
i t  follows th a t  the p robab ility  of E  lying in d E  is

d E  E  d E  —ElmT ( 7 c\ 1 *7\T T , exp -  —  =  —  e r  (3.9-17)
tf'ol yo I  m T

when E  is sm all b u t n o t too small.
W hen we look a t  (3.9-14) and  (3.9-17) we observe th a t  th ey  are of the 

form

a +iE  „-aEn+1 j?n

+  (3 -9' 18)

M oreover, the norm al law  (3.9-15), m ay be ob ta ined  from  th is by  le ttin g  n 
become large. This suggests th a t  an  approxim ate expression for the  dis
tr ibu tion  of E  is given by  (3.9-18) when a and  n  are  selected so as to  give 
the values of m T and  a T ob ta ined  from  (3.9-3) an d  (3.9-9). T his gives



and  if we drop the subscrip t T  and  substitu te  the value of a in  (3.9-18) we 
get

( m E \ n
\  a2 )  (  m E \  , ( m E \  vi _ ^

(3'9_20)
A n idea of how this d istribu tion  behaves m ay be obtained from  the 

following tab le:
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n * . 2 6 * .5 0 * .7 5
* .2 5 * .7 5

* . 5 0 * . 5 0

0 0 .29 .695 1.39 .415 2 . 0 0
1 1.45 .96 1 . 6 8 2.69 .572 1.60
2 2.4 1.73 2.67 3.94 .647 1.47
3 3.4 2.54 3.67 5.12 .692 1.39
5 5.4 4.22 5.67 7.42 .744 1.31

1 0 10.5 8.63 10.67 13.02 .808 1 . 2 2
24 25 21.47 24.67 28.17 .870 1.14
48 50 44.1 48.7 53.5 .905 1 . 1 0

where n  is the exponent in  (3.9-20). The column T ( f b~ f a ) holds only for a
narrow  band  pass filter and was obtained by  reading the curve yA in Fig. 1 
of the above m entioned paper. The figures in this column are no t very 
accurate. The next three columns give the points which divide the dis
tribu tion  in to  four in tervals of equal p robability :

/yyĵ ^
*.25 =  > £.25 =  energy exceeded 75%  of tim e

#.6o =  — , £.60 =  energy exceeded 50%  of tim e

*.75 =  ’ £ -76 ~  energy exceeded 25%  of tim e

The values in these columns were obtained from Pearson’s table of the in
com plete gam m a function. The last two columns show how the d istribu
tion  clusters around the average value as the norm al law is approached.

F or the larger values of n  we expected the norm al law (3.9-15) to be 
approached. Since, for this law the 25, 50, and 75 per cent points are a t 
m  — .675<r, m, and m  +  ,675<r we have to  a first approxim ation

T O 2

*.63 =  —  = ( »  +  1) ~  T ( f b - f a )

*.26 =  ^  ( m  —  .6 7 5 < r )  =  *.50 —  . 6 7 5 \ / * e o
a

*.75 =  *.60 T~ . 6 7 5 \ / X.so

T his agrees w ith the table.



T hiede86 has stud ied  the  m ean square value of the fluctuations of the  
in tegral

A f t )  =  f  I \ r ) e ~ a<t- T) dr  (3.9-22)
J— oo

The read ing  of a h o t wire am m eter through which a cu rren t I  is passing is 
p roportional to A ft) .  a  is a constan t of the m eter. H ere we s tu d y  A ft )  by
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4 0  50  60

E I

Fig. 5*—Filtered therm al noise—spread of energy fluctuation

t l + T

•P ft) dt, ti random, I  is noise current.

yi — E jb/E .w  , yo — E.n,/E.sa. 
f t  ~  f a  =  band width of filter.

first obtaining its correlation function. This m ethod  of approach enables 
us to  extend T hiede’s results

The d istribu ted  portion  of the power spectrum  of A ft)  is given by  (3 .9- 
30). W hen the power spectrum  w ff)  of I  ft) is zero except over the band  
fa  <  /  <  fb  where i t  is w0 , the  pow er spectrum  of A ft)  is

H r »  -  f a - f )  r -  „  ^  r  ^  r  r
«< + 4xT for I T  | « f ‘

and  is zero from  fb — f a up to  2fa . The spectrum  from  2f a to  2fb is n o t zero, 
and  m ay be obtained from  (3.9-34). The m ean square fluctuation  of A ft)  
is given, in  the general case, by  (3.9-28) and  (3.9-32). F or the  band  pass 
case, when (/& — f a) / a  is large,

A ft )  — A  r  ~ 6,1/2
r.m .s. _ [  .«. T

l u h  -  / , ) }
6 Elec. Nachr. Tek., 13 (1936), 84r-9S. This is an excellent article.
: Note added in proof. The value of yi a t 0 should be .415 instead of .403.



\ \  e s ta r t  by  se tting  t  =  t — u  which transform s the in tegral for A ft) in to

Af t )  =  f  I2ft  -  u)e~au du  (3.9-23)
Jo

In  order to  ob ta in  the correlation function T (- )  for Af t )  we m ultip ly  Af t )  
by  A  ft +  -) and  average over all the possible currents
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* ( r )  =  A  ft) A  ft +  r)

=  f  e~au du [  M  dv ave. I 2ft  -  u ) I 2ft +  t  -  v)
Jo Jo

Ju s t as in  (3.9-4) the  average in  the in tegrand  is the correlation function of 
f f t ) ,  th e  argum ent being t + r — v - t  +  u =  r - \ - u - v .  F rom  (3.9-7) 
i t  is seen th a t  this is

ipo +  2\p2fr  +  u  — v)

where \j/fr) is the correlation function of I  ft). Hence

^ f T) =  -v; +  2 i  du f  dv e~au~av \j/2fr  +  u — v) (3.9-24)or Jo Jo

From  the in tegral (3.9-23) for A ft)  i t  is seen th a t  the average value of 
A ft )  is

A  J p  (3.9-25)
a  a

where we have used

'/'o - t/JO) =  [  w f f )  d f  =  P  
Jo

Using th is resu lt again, only this tim e applying i t  to  A ft) ,  gives 

A?f1) =  ^ (0 )

=  A 2 +  2 f  du f  dv e~au- avi 2fu  -  v)
JQ JQ

(3.9-26)

The double integrals m ay be transform ed by  means of the change of 
variable u  -\- v = x, u  — v == y. T hen  (3.9-24) becomes

F i r )  =  A~ +  dy J  dx  +  dy J  rfoj e~axf 2fr  +  y)

° „  "  (3.9-27)
=  A 2 +  -  [  e~ay[ f2fT +  y)  +  \f/2fr  — y)] dy 

a Jo



W hen we m ake use of the fac t th a t  ^ f y)  is an  even function  of y  we see, from  
(3.9-26), th a t  the m ean square fluctuation  of Af t )  is

{Af t )  -  m  =  -  A 2 =  \  j f  e~ayi 2fy) dy  (3.9-28)

T (r )  m ay be expressed in  term s of integrals involving the pow er spectrum  
wf f )  of I  ft). The w ork s ta rts  w ith (3.9-24) an d  is m uch the  sam e as in  
going from  (3.9-8) to  (3.9-9). The resu lt is

T (r )  =  A 2 +  [  dfi f  df2wf f f ) w f f 2)
JQ JO

T cos 2-irffi +  f i ) T , cos 2x ( / i  — f j )T "j
L«2 +  [2rr(/i +  / 2)]2 a2 +  [2*{fi ~  f*)]2]

I t  is convenient to  define w f —f )  for negative frequencies to  be equal to 
wf f ) .  The in teg ration  w ith respect to  f 2 m ay then  be tak en  from  — x  to 
+ 00 and we get

* ( ' )  - * + f  *  C  / - h m T - %  < 3 -9 ' 2 9 )

The power spectrum  Wf f )  of Af t )  m ay be ob ta ined  by  in teg rating  T ( r ) :

W f f )  =  4 f  'T (r) cos 2irfr dr  Jo
L et us concern ourselves w ith the  fluctuating  po rtion  Af t )  — A  of Af t ) .  
I ts  power spectrum  W cff)  is

Wc f f )  =  4 / ( ¥ ( r )  — A 2) cos 2 tt/ t  drJo
The in tegration  is simplified by  using F ourier’s in tegral form ula in  the form

[  dr f  df2F ff2) cos 2-irfu — / 2) r  =  %Ffu)Jo J-x
W e get

Wcff) =  g2 1 ^ 2  .2 J  d ffw ffjw ff +  fl) +  w ffi)w f-f +  fl)}
° (3.9-30)

1 f +c0
  272 / w f f i ) w f f  -  / i )  dfi

J— co
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a 2 +  4tt jf

The sim plicity  of th is resu lt suggests th a t  a sim pler deriva tion  m ay be 
found. If we a t te m p t to  use the  resu lt

w f f )  =  L im it  ( 2 .5 -3 )
T —>oo J-



where S f f )  is given by  (2.1-2) we find th a t  we need the result 

L im it |  f T dh  f  d h ^ irM~l{) l \ h ) l \ t 2)
T - *  oo i  JO JO

r+x  (3.9-31)
=  / ~  f i )  d f i

J —  oo

where /  >  0 and I  ft) is a noise curren t w ith wf f )  as its power spectrum . 
This m ay be proved by using (3.9-7) and

A® n 4-00
8 / f~f r)  cos 27r/V dr — w f x ) w f f  — x) ¿x 

Jo J— oo

which is given by  equation (4C-6) in Appendix 4C.
An expression for the m ean square fluctuation of A ft) in term s of wf f )  m ay 

be obtained by se tting  r  equal to zero in (3.9-29)
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{Af t )  -  A ) 2 =  * (0 )  -  A

’+°° 7, wf f Awf f i )  (3.9-32)n -t-oo

=  d f i  d f i  
j  0 J— 00 2 a 2 +  4 ^2( / 1 - / 2)2

The same result m ay be obtained by  integrating  W cff),  (3.9-30), from  0
to  oo ;

I  a< + L  (3.9-33)

Although this differs in  appearance from  (3.9-32) i t  m ay be transform ed
in to  th a t  expression by  making use of w f —f )  =  wf f ) .

Suppose th a t  I  ft) is the curren t through an  ideal band  pass filter so th a t 
wf f )  is zero except in  the b a n d /0 <  /  <  /& where it  is w0 . Then, if 3fa >  f b ,

A  =  -  I  -  fa)  (3.9-34)
a

i +oo
w f x ) w f f  — x) dx  =

oo

' 2wl f f b - f a - / )  0 < / < / * - / „

w l f f  -  I f  a) 2f a < f < f b + f a

[ w l f l f b - f )  f b + f a < f <  2f b

and  is zero outside these ranges. The power spectrum  W f f )  m ay be ob
ta ined  im m ediately from  (3.9-30) by  dividing these values by  a  +  4tt2/ 2. 

F rom  (3.9-33)

7777 ----------7 (2  0...2 ( fb ~ fa  { fb  -  f a -  f )  d f
~  A )  =  2w‘ I  j  +

r fb + f .  ( J  _  2 f a)  2 r 2 fi  (2 f b  -  / )
+  w ° / 2 1 ,  2/o d f  +  Wo / - 2  , ,  2 n  df

j  2 fa  a  +  47T2/ 2 J / 6+ / a  «  +  47T2/ 2
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If an  exact answer is desired the in tegrations m ay be perform ed. W hen we 
assume t h a t / i  — f a <  <  fb + / «  we m ay ob ta in  approxim ations for the  la s t 
two integrals.

-1 2 tt( /6 -  fa)J \ 2(A(i)  -  *4)
2r=  w 0 'fb fa tan

1 a  +  4:TT2(fb — fa ) '  _j_
- 4 ? l 0 g  ■   +

(fb -  fa)
a2 +  Air-(fb

' a ? ______ 1

+ /a)2J
F urtherm ore, if 2ir(fb — fa ) /a  is large we have

(A(t)  -  Ä ) 2 

and  the relative r.m .s. fluctuation  is 

r.m .s. of

w0
fb fa

Y ( Ad )  -  Ä) ~ a
Ä  J M -  fa)  J

1/2

This resu lt m ay also be obtained from  (3.9-10) and (3.9-11) by  assum ing 
a  so Small th a t  the in tegral for A (t)  m ay  be broken  in to  a g rea t m any  in 
tegrals each extending over an  in te rval T. a T  is assum ed so sm all th a t 
e~au is substan tia lly  constan t over each in terval.

3.10 D i s t r i b u t i o n  o f  N o i s e  P l u s  S i n e  W a v e

Suppose we have a steady sinusoidal cu rren t

I p — I P{t) =  P  cos (cOpt — <pp) (3.10-1)

W e pick tim es h  , t2 , • • • a t  random  and  note the corresponding values of 
the current. How are these values d istribu ted? Picking the tim es a t  ran 
dom  in  (3.10-1) is the sam e, s ta tis tica lly , as holding t cons tan t an d  picking 
the  phase angles &p a t  random  from  the range 0 to  2ir. If I v be regarded  as 
a random  variable defined by the random  variab le <pp , its  characteristic  
function is

»2?r
ave. e - l i t

I  U P * )

zP cos (.oipt—<p) dip

and its  p robab ility  density  is

i f
2tt J-o

1
e~izIp Jo(Pz) dz m  I

I

( P 2 -  Ą )  

o

- 1/2 <  P  

>  P

(3.10-2)

(3.10-3)

In  this case i t  is sim pler to  ob ta in  the  p robab ility  density  d irec tly  from  
(3.10-1) instead  of from  the characteristic function.



Xow suppose that we have a noise current I s  plus a sine wave. By com
bining our representation i 2.8-6 for I y  with the idea of <pp being random 
mentioned above we are led to the representation

I ( t )  = / = / ,  +  Iy

— P  COS (tip# <Pp) -T H  CTi COS (t int — a n),  (3.10-4)
1

c \  =  2 w ( f n) X f

where and <p\. • - • are independent random angles.
If we note I  at the random times 6 . i* —  how are the observed values 

distributed.-' Since I¡> and Iy may be regarded as independent random 
variables and since the characteristic function for the sum of two such vari
ables is the product of their characteristic functions we have from 3.1-6) 
and (3.10-2)
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= J P P z j  exp (it (3.1C-5)

which gives the characteristic function of I .  The probability density- of I
* ST 
I S

t  c  m p , )  *  -  w ' w .  r

In the same way the two-dimensional probability density of 7i . 7a . 
where 7i =  I  i is a sine wave plus noise 3.10-4 and 72 =  I  t -}- r is its 
value at a constant interval r  later, may be shown to be

Oil -  7: r 1:2 f *  T B <fi) 1
~ 2 T ~ l  d>“ P j  <31(W)

where

B (e)  =  H X h  -  p  COS o f  +  (7, -  P  cos (0 -f  t!,-))2]

-  2#r(7i -  P  cos 0)(7* - P  cos (0 +  c^t)) 

The characteristic function for 7i and 7? is

7a(P V  2«u cos copr)
(3.10-8)

X  exp («2 -j- eS) — & W j

A dinereat derivation of this exoresrion is given by W. R. Bennett. Jour. Acous. Soc. 
Amur., Vol. 15, p. 165 Jam. 1914 : B S .T J . ,  VoL 23, p. 97 Jan. 1944 .



100 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

Sometimes the  d istribu tion  of the  envelope of 

I  — P  COS fit +  Iff (3 .10- 9 )

where I c is the  com ponent of JV “ in  phase” w ith cos fit an d  I s is th e  com 
ponent “ in  phase” w ith sin fit:

Since Ic  and  I s are d is tribu ted  norm ally ab o u t zero w ith  a  variance of 
fio , the p robab ility  densities of the  variables

respectively. Setting

x =  R  cos 0 

y  =  R  sin d

and  using these d istribu tions shows th a t  the  p ro b ab ility  of a  p o in t (x , y) 
lying in  the ring R , R  +  d R  is

* =  P  +  Ic  

y = h
are

2
(2irfio) 1/_ exp — A—

(3.10-11)

where I o is the Bessel function w ith im aginary  argum ent.
oo J2n
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and  is a tabu la ted  function. Thus (3.10-11) gives the probability  density 
of the envelope R.

The average value of R n m ay be obtained by  m ultiplying (3.10-11) by  R n 
and  in tegrating from  0 to ° ° . Expansion of the Bessel function and  term - 
wise in tegration  gives

-  ( W r j  l )  1; - Q  (3.10-12)

where iFi  is a hypergeom etric function.88 In  going from  the first fine to 
the second we have used K um m er’s first transform ation of this function. 
A special case is

=  P 2 +  2\po (3.10-13)

W hen only noise is present, P  =  0 and

R  = (2̂o)1/2r(f) = '
(3.10-14)

R 2 =  2\po

Before going fu rther w ith (3.10-11) it  is convenient to m ake the following 
change of no ta tion

® ,1/2 > ~  .1/2 ’ a ~  .1/2 (3.10—15)
Y o Yo ' Yo

“a” is the ra tio  (sine wave am plitude)/(r.m .s. noise current).
In stead  of the random  variable R  we now have the random  variable v whose 
probability  density  is

p(v) =  ii exp ——y — J Io{av) (3.10-16)

Curves of p(v) versus v are p lo tted  in Fig. 6 for the values 0, 1, 2, 3, 5 of a. 
Curves showing the probability  th a t v is less th an  a  sta ted  am ount, i.e., dis
tribution  curves for v, are given in Fig. 7. These curves were obtained by 
integrating p(v) numerically. The following useful expression for this 
probability  has been given by  W. R. B ennett in some unpublished work.

J  p(u) du -  exp ——y—J S  h (a v ) (3.10-17)

38 Curves of this function are given in “Tables of Functions” , Jahnke and Emde (1938), 
p. 275, and some of its properties are stated in Appendix 4C.
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This is obtained by  in tegration  by  p a rts  using

J  u n In-i(au) du  =  u l n{au)jd

W hen av > >  1 b u t 1 < <  a -  v, B en n ett has shown th a t  (3.10-17)

leads to

1

exp
(v — a f

3 (a  +  v) 2 — 4t)~ 
8aa(a — v)2

(3.10-18)

This form ula m ay also be obtained by  p u ttin g  the asym pto tic  expansion 
(3.10-19) for p{v) in  (3.10-17), in tegrating  by  p a rts  twice, and  neglecting 
higher order term s.

W hen av becomes large we m ay replace Io(av) by its asym pto tic  expres
sion. The expression for p(v) is then

p(v) (' + m) Wexp (3A0~19)
T hus when either a becomes large or v is far ou t on the  ta il of the  p robab ility  
density  curve, the d istribu tion  behaves like a  norm al law. In  term s of the 
original quantities, the norm al law has an  average of P  and  a s ta n d a rd  devia
tion  of p i 12. This stan d ard  deviation is the sam e as the s ta n d a rd  deviation
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of the instantaneous values of I y .  When av  »  1 and a »  v — a we m ay 
expand the  coefficient of the exponential term  in (3.10-19) in powers of

Fig. 7—D istribution function of envelope R o i l  (t) — P  cos pt +  Iy

(v — a )¡a .  In teg rating  th is expansion termwise gives, when term s of m agni
tude less than  a~3 are neglected,

rv 1 1 v — a
I  p ( u ) d , =  - + - 2 e r f ^

1 r v — a 1 + (v — a)2'1 r (y *7 fl)2~l
|  2 a v / 2^: ~  4a +  8a2 J  exP [_ 2 J
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W hen I  consists of two sine waves plus noise

I  =  P  cos pt +  Q sin  qt +  I N , (3.10-20)

where the rad ian  frequencies p  and  q are incom m ensurable, the p robab ility  
density  of the envelope R  is

R  r  r /o (2 f r ) /o (W o (e rV ~ * ° r2/2 dr  (3.10-21)
•Io

where p 0 is I n  ■ W hen Q is zero the in tegral m ay be eva lua ted  to  give 
(3.10-11). W hen bo th  P  and  Q are zero the p robab ility  density  for R  
when only noise is p resen t is obtained. If there are th ree sine waves instead 
of two then  another Bessel function  m ust be placed in  the in tegrand , and 
so on. To define R  i t  is convenient to  th in k  of the  noise as being confined 
to  a relatively  narrow  band  and  the  frequencies of the  sine waves lying 
w ithin, or close to, th is band. As in  equations (3.7-2) to  (3 .7-4), we refer
all term s to a represen tative m id-band frequency f m =  o>m/27r by  using
equations of the type

cos pt =  cos [{p — wm)t +  wmt\

=  cos {p — um)t cos ccmt — sin (p — com)t sin umt.

In  th is w ay we ob ta in

V = A  cos umt — B  sin wmt = R  cos (umt +  6) (3.10-22)

where A  and  B  are relatively  slowly vary ing  functions of t given by

A  =  P  cos (p — coOT)/ +  Q cos (q — com)t

“1~ ^   ̂ Cn CO S (cO/i t  (dm t  tpn)

(3.10-23)
B  =  P  sin {p — um)t +  Q sin (q — wm)t

“1“  }  1 Cn s i n  (¿On t  (dm t  <Pri)
n

and

R 2 =  A 2 +  B 2, R  >  0
(3.10-24)

ta n  8 =  B / A

As m ight be expected, (3.10-21) is closely associated w ith th e  problem  
of random  flights and  m ay be obtained from  K luyver’s resu lt39 by  assum ing

39 G. N. Watson, “Theory of Bessel Functions” (Cambridge, 1922), p. 420.



the noise to  correspond to  a very large num ber of very  sm all random  dis
placem ents.

A nother w ay of deriving (3.10-21) is to assume (p — wm)t, (q — u m)t, 
<pi, <P2 , ■■ ■ are independent random  angles. The characteristic function 
of A , B  is

ave. eiuA+i°B =  M P V ^ T ^ ) M Q V ^ + ^ ) e ~ w m M )

The p robability  density  of A ,  B  is
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iuA—ivB  ̂ iuA-HvBave. e

W hen the change of variables

A  — R  cos 6 u  — r  cos <p

B  — R  sin 9 v =  r sin ^

is made the in tegration  w ith respect to  <p m ay be perform ed. The double 
in tegral becomes

[  r J 0(P r )J 0(Qr)Jo(Rr)e^ al2)T2 dr 
:tt J o2ir

This leads directly  to  (3.10-21) when we observe th a t  dA dB  §f RdRdd. 
Incidentally , if

I  =  <2(1 +  k cos pi) cos qt +  I N

in  which p  < <  q, sim ilar considerations show th a t  the probability  density  
of R  is

^  [  da i  r J 0(Rr)Jo[Qr(l +  k  cos a)]<TWo/2)r2 dr
Z7T Jo Jo

when a>m is taken  to be q. The in tegration  w ith respect to  r m ay be per
formed. This relation  is closely connected w ith (3.10-11).

R eturning now to  the case in  which I  is the sum  of two sine waves plus 
noise, we m ay show from  (3.10-21) and

r +1nr  - +
/  R n^ J o ( R r )  d R  =   W  A l

r"+2T ( - * \



th a t  the average value of R n is, when — 2 <  re (n) <  — |,
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2"+1r
Rn = (‘ + t) r  r ^ M P r j M Q r M * 0̂ 1* dr 

Jo

,  X oc «, ( ~ i )  ( - % ) k( - y ) m (3-10-25)

I t  appears very  probable th a t  th is resu lt could be extended, b y  ana ly tic  
continuation , to  positive in teger values of n. W e have used the  n o ta tio n

(a)o =  1 , (a)fc =  a (a + 1) • • ■ (a +  k — 1)

p i  Qi (3.10-26)

y = tyo

and  have denoted the Legendre polynom ial b y  Pk(z). The series converge 
for all values of P, Q, and \po and  te rm inate  when n  is an  even positive integer.

W hen cc or y,  or bo th , are large in  com parison w ith  u n ity  we m ay  use the  
in tegral for R n to  ob ta in  the  asym pto tic  expansion, assum ing Q <  P  so 
th a t  y  <  x,

-  2 \ i  —  - F '  ( *  -  I ' k  -  \  '■1 ' I  (3 ' 10- 27)

Wdien n  is an  even positive in teger th is series term inates and  gives the  sam e 
expression as (3.10-25). W hen n  is an  odd in teger the 2i i  m ay  be expressed 
in  term s of the com plete elliptic functions E  and  K  of m odulus y1,2.v-1' 2:

i F i ( - b  - I ;  1 ; 2 )  =  - E  — - ( l  -  K
\  X )  7T TT \  X )

H I ) - i l
(3.10-28)

The higher term s m ay be com puted from

a( 1 — z f  iP\{a  4" 1, a +  1; 1; z) =  (2a — 1)(1 +  z)ip\{a,  a ; 1; z)

+  (1 -  a)2F i(a  1  1, a  -  1; l ; i )  (3.10-29)
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which is a special case of

a b ( y  +  1>(1 — s r  2F i{a  +  1, b  +  1; c; s )  =  A  2F i(a ,  b; c; s)

-  (T -  l ) (c  -  a)(c -  b )  z F ^ a  -  1, b  -  1; c;z)  (3.10-30) 

where y  — c — a — b  and

A  =  (7 2 -  1 )T +  (1 -  z)[(y  -  l) (c  -  b)(b -  1 ) +  (y  +  1 )a(c - a  -  1 )]

A lthough th is expression does n o t show it, A  is really  sym m etrical in  a 
and  b . A sym m etrical form  m ay be obtained by  using the expression ob
ta ined  b y  p u ttin g  s =  0 in  (3.10-30).

3.11 Sh o t  E f t e c t  R e p r e s e n t a t io n

In  m ost of the  w ork in  this p a r t  the representations (2.8-1) or (2.8-6) 
have been used as a s ta rting  po in t. H ere we po in t ou t th a t the sho t effect 
represen tation  used in  P a r t I  m ay also be used as a s ta rting  po in t.

For example, suppose we wish to  find the two dimensional d istribu tion  of 
I  it) and  l i t  +  r  discussed in  Section 3.2. This is a special case of the d istri
bu tion  of th e  two variables

(3.11-1)

m  =  F it  -  4 )

J(f)  =  E  G(t -  4 )
k= —oo

w here we now assume 
*

/ -|-oo - H
F(t) dt =  / G(t) dt =  0 (3.11-2)

X X

in  order th a t  the  average values of I  and  J  m ay be zero. In  fact, to  get
I ( t ~ r  t )  from  J  it we se t G(t) equal to Fit  +  r).

The d istribu tion  of I  and  J  m ay  be obtained in  m uch the  same m anner
as was the d istribu tion  of I  alone in  section 1.4. The characteristic func
tion  of the d istribu tion  is

/ ( « ,  v) =  ave. ¿ ul^ j

r+“  (3.11-3)=  exp v [ '  _  u  dt
J—X

where v is the  expected num ber of events (electron arrivals in  the shot effect) 
per second. The p robab ility  density  of I  and  /  is
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The sem i-invariants \ m,n are given by  the generating function 

log f ( u ,  v) =  ^ 2  {iu )m(iv)n +  o[(iu)k, (iv)k]
m,n= 1 W • ^  •

and  are

=  * i +M Fm(t)Gn(t) dt (3.11-5)
J— oo

As v —> oo the d istribu tion  of I  and J  approaches a  two dim ensional norm al 
law. The approxim ation to  th is norm al law  m ay be ob ta ined  in m uch the
same m anner as in  section 1.6. F rom  our assum ption  (3.11-2) i t  follows
th a t  Aio and  Aoi are zero. F rom  the rela tion  betw een the  second m om ents 
and  sem i-invariants A we have

i +OO
F (() dt

00
/ +00

F(i)G(t) dt (3.11—6)
oo

i -foo

G2(t) dt
00

where the no ta tion  in  the subscripts of the n ’s differs from  th a t  of the  A’s, 
the change being m ade to bring it  in line w ith sections 2.9 an d  2.10 so th a t  
we m ay w rite down the norm al d istribu tion  a t  once.

The form ulas (3.11-6) are closely re la ted  to R ow land’s generalization of 
Cam pbell’s theorem  m entioned ju s t below equation  (1.5-9).



P A R T  IV

X O IS E  T H R O U G H  N O N -L IN E A R  D EV IC ES

4.0 I n t r o d u c t i o n

We shall consider two problem s which concern noise passing through 
detectors or other non-linear devices. The first deals w ith the sta tistica l 
properties of the o u tp u t of a  non-linear device, th a t is, w ith its  average 
value, its  fluctuation abou t th is average and  so on. The second problem  
m ay be sta ted  more definitely: Given a non-linear device and  an  in p u t 
consisting of noise alone, or of noise plus a signal. W hat is the power 
spectrum  of the ou tpu t?

There does no t seem to be m uch published m ateria l on the first problem . 
However, from  conversation w ith other people, I  have learned th a t  i t  has 
been studied independently  by  several investigators. The same is probably  
true of the second problem  although here the published m ateria l is som ewhat 
more plentiful. This m akes i t  difficult to assign credit where credit is due. 
M uch of the m ateria l given here h ad  its  origin in  discussions w ith friends, 
especially w ith W . R . B ennett, J . H . V an M eek, and  D avid  M iddleton. 
Help was obtained from  the recent paper'3' by  B ennett, and  also from  tire 
m anuscript of a  forthcom ing paper by  M iddleton .40

4.1 Low F r e q u e n c y  O u t p u t  o p  a  S q u a r e  Law D e v i c e

L et the o u tp u t curren t I  of the device be re la ted  to  the in p u t voltage U by

I  =  a V 2 (4.1-1)

where a  is a  constan t. W hen the power spectrum  of U is confined to  a 
relatively narrow  band , the power spectrum  of I  consists of two portions. 
One portion  clusters around  twice the m id-band frequency of U and  the 
other around zero frequency. We are in terested  in  the low frequency 
portion. The cu rren t corresponding to  th is portion  will be denoted by  
1 1( , and  is the cu rren t which would flow if a low pass filter were inserted 
in the o u tp u t to rem ove the  upper portion  of the spectrum . I t  is convenient 
to  divide I  tl  in to  two com ponents:

I d  =  Idc +  I l f  (4.1-2)

37 Loc. d t .  (Section 3.10).
Cruft Laboratory and the Research Laboratory of Physics, H arvard University, 

Cambridge, Mass. In  the following sections references to Bennett’s paper and Middle
ton’s m anuscript are made by simply giving the authors’ names.
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where the subscripts s tan d  for “ to ta l low” frequency, “ d irec t cu rren t.” 
and  “ low frequency,” respectively. We have

l i e  =  average h i  = h i  14.1-3)

M ean Square I l f  =  average (h i  — h e f  =  i l l  — l i e

P robably  the sim plest m ethod of obtain ing I dc is to  square the given ex
pression for V  and  p ick  ou t the term s independent of tim e. T hus if

V  = P  cos pt +  Q cos qt +  VN (4.1-4)

we have

h e  — a  ^ y -  \  (4 .1-5)

I l f  m a y  also be obtained by picking ou t the low frequency term s. H ow 
ever, here we wish to  use the square law device, and  the linear rectifier in  the
next section, to illu stra te  a general m ethod of dealing w ith the s ta tis tica l 
properties of the o u tp u t of a non-linear device when the in p u t voltage is 
restric ted  to  a relatively  narrow  band.

If none of the low frequency spectrum  is rem oved by  filters,

I t l  =  «  y  (4 .1-6)

where R  is the envelope of V. The p robab ility  density  and  the sta tistica l 
properties of h i  m ay be derived from  this rela tion  when the d istribu tion  
function  cf R  is know n .41 Before discussing these properties we shall 
establish (4.1-6).

E quation  (4.1-6) is a special case of a  more general resu lt established 
in Section 4.3. H ow ever, its tru th  m ay be seen by  tak ing  the exam ple

V  M P  cos pt 4- Q cos qt +  VN (4.1-4)

w h ere /p =  p / 2-w a n d / ? =  q / 2ir lie w ithin, or close to , the  band of the noise 
voltage VN .

B y using form ulas of the type

cos pt =  cos [(p  — um)t +  u>mt\
(4 .1-7)

=  cos (p  — ccm)t cos wmt — sin (p  — u m)t sin u>mt

41 When part of the low-frequency spectrum is removed, the problem becomes much 
more difficult. I *  may be obtained as above, b u t to get I i t  is necessary to first deter
mine the power spectrum of I  (Section 4.5) and then integrate over the appropriate por
tion of it. Concerning the distribution of I l f , our present knowledge tells us only th a t it 
lies between the one given by (4.1-6) and the normal law which it  approaches when only 
a narrow portion of the low frequency spectrum is passed by the audio frequency filter 
(Section 4.3).

110 B E L L  S Y S T E M  T E C H N I C A L  J O U R N A L
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we m ay refer all term s to  the m id-band frequency f m = (x>m/ 2~, as is done 
in  equations (3.7-2 ) to (3.7-4).

In  th is way we ob ta in

where .4 and  B  are relatively slowly varying functions of t given by

T his definition of R  has also been given in  equations (3.10-22, 23, 24). 
The envelope of V  is R  and the  o u tp u t curren t is

only te rm  in  I  con tributing  to  the low frequency o u tp u t is aR~ 2 which is 
w hat we wished to  show.

We now re tu rn  to  the  sta tistica l properties of I tl . F irst, consider the 
case in  which V  consists of noise only, Y  =  T'v , so th a t  the  probability  
density  of the  envelope R  is

T =  A  cos u mt  — B  sin coj = R  cos (a>J, +  0), (4.1-8)

A  =  P  cos { p  — a >m)t +  Q  C O S  ( q  — 0 ^ ) 1  +  X  cos (coj — ccmt — cc„),
n

B  =  P  sin  { p  — ccm) t  +  Q  sin ( q  — tcm) t  +  sin ( w n /  — ccm t  —  c? „ )

Ti

and

Since R  is a slowly vary ing  function of tim e, so is R 2. The power spectrum  
of R " is confined to  frequencies m uch lower th an  2f m and  consequently the 
power spectrum  of R" cos (2oimt +  26) is clustered around 2fm. . Thus the

R - p i  2 0̂

'/'o
(3.7-10)

where

h  =  \rms V x f  =  V% (4.1-11)

Hence

(4 .1 -1 2 )
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Second, consider the case in  which

V  = VN +  P  cos pi (4 .1 -1 3 )

where p / l i r  lies near the noise band  of VN . The p robab ility  density  of the 
envelope R  is

square value of the signal. These two equations show th a t  Idc an d  the 
rm s value of I f f  are independent of the d istribu tion  of the  noise pow er 
spectrum  in VN as long as the in p u t V  is confined to a rela tively  narrow  band. 
In  o ther words, although this d istribu tion  does affect the power spectrum  
of the o u tp u t, i t  does n o t affect the d.c. and  rm s I f f  when po and  P  are  given. 
T h a t the sam e is also true  for a  large class of non-linear devices was first 
poin ted  o u t by  M iddleton (see end of Section 4.9).

• 42W hen the voltage is

42 These results are special cases, obtained by assuming no audio frequency filter, of 
formulas given by F. C. Williams, Jour. Inst, of E. E ., 80 (1937), 218-226. Williams also 
discusses the response of a linear rectifier to (4.1-4) when P  »  Q +  VN . An account 
of Williams’ work is given by E. B. Moullin, “ Spontaneous Fluctuations of Voltage,” 
Oxford (1938), Chap. 7.

(3.10-11)

From  th is and  equations (3.10-12), (3.10-13), we find

(4.1-14)

I \ f  =  I'U -  I le  =  ÿ u 0 +  p 2] h  (4.1-15)

In  (4.1-14) po is the m ean square value of VN and  P 2/ 2 is the m ean

V  = VN +  P  cos pt +  Q cos qt, 

p 9^ q, we obta in  from  equation  (3.10-25)

(4.1-4)

2

(4.1-16)
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4.2 L ow  F r e q u e n c y  O u t p u t  o e  a  L i n e a r  R e c t i f i e r  

In  the case of the  linear rectifier

V  <  0
(4.2-1)

V  >  0

the low frequency o u tp u t current, assuming no audio frequency filter, is

T aR
h i  =  —  (4.2-2)7T v J

This form ula, like its  analogue (4.1-6) for the square law  device, assumes 
th a t the applied signal and  noise he w ithin a relatively  narrow  band. I t  
m ay be used to com pute the probability  density and  sta tistica l properties 
of 1 a  when the corresponding inform ation regarding the envelope R  of the 
applied voltage is known.

The tru th  of (4.2-2) m ay be seen by  considering the o u tp u t 1. I t  con
sists of the positive halves of the  oscillations of aV .  The envelope of 1 is 
the same as th a t of a lb  However, the  area under the loops of 1 is only abou t 
1/tr of the area under aR ,  this being the ra tio  of the area under a loop of 
sin x  to  the area of a rectangle of un it heigh t and  length 2 -. F rom  the 
low frequency po in t of view these loops of I  merge in to  a curren t which 
varies as a R /n .

W hen F  is a sine wave plus noise,

V  =  VN +  P  cos pt  (4.1-13)

the average value of / ¡ ¿ i s 43

- jy
(4.2-3)

where I 0 , 1 i are Bessel functions of im aginary argum ent and

P 2 ave. sine w ave power
X T  ■ (4.2—4)2po ave. noise power

43 This result was discovered independently by several investigators, among whom we 
may mention W. R. Bennett and D. O. North. The latter has applied it  to noise measure
ment work. He has found th a t the diode detector, when adapted to noise metering, is a 
great improvement over the thermocouple, and has used noise meters of this type satis
factorily since 1940. See D . O. N orth, ‘’The Modification of Xoise by Certain Non- 
Linear Devices” , Paper read before I.R .E ., Jan. 28, 1944.



ypo being the average value of V% . E quation  (4.2-3) follows from  the 
form ulas (3.10-12) and  (4B -9). W hen x  is large the asym pto tic  expansion 
(4B -3) of the JFi gives
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a
Idc ~  -7T

P  +  Ü  +  . . . ]  (4 .2-5)
2P 8P 3 I

Sim ilarly, the m ean square value of I d  is

f t  ^  # ( P 2 +  2\po) (4 .2-6)
i t  ir

and  the m ean square value of the low frequency cu rren t I l f  , excluding the 
d.c., is given by

i f f  =  l f e -  i ic

W hen x  is large we have

(4.2-7)

and  when x  =  0 ,

l b  =  £ * , ( 2  ~ l )  (4 .2-8)

Curves for Idc are given in  F igures 1, 2 and  3 of B e n n e tt’s paper. He 
also gives curves, in  Fig. 4, showing i } /  versus x. T hese show th a t  the 
effect of the higher order m odulation term s is sm all w hen I l f  is com puted 
b y  adding low frequency m odulation products.

W hen V  consists of two sine waves plus noise,

V  =  VN +  P  cos pt +  Q cos qt, (4.1-4)

the average value of I d  is, from  (3.10-25), a so rt of double 1.F1 function :

; .  =  - «  =  « ( § ) ' " Ê  £  I v . a B . ( - * ) * ( - ? ) ■
7T \ 2 l T /  *= 0 m= o  k l k l m l m i

(4/o\112 v' (—jffc / D (x +
" “ W

(4.2-9)

w here
->2P  0

x  =  a t e , y  =  ttt , Pk(z) =  Legendre po lynom ial (4.2-10) 
Pr  o 2po

If x is large and y  <  x, we have from  (3.10-27) the  asym pto tic  expression

u ^ - p i U (k - h k ~ b i | )  ( 4 .2 - n )
7T i—o k l X K \  X j
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T he ¡Fi m ay  be expressed in  term s of the  com plete elliptic functions E  and 
K  of m odulus y1 V " 1 :. Thus

and  the h igher term s m ay be com puted from  the recurrence rela tion

3 10_2£  ‘ ^  fir5t te rm -- k =  ° ’ in  gives I dc when the  noise is
ab sen t.“

The m ean square value of /■ / is

F rom  this expression and  our expression for l dc, the  rm s value of the  low 
frequency current, 1(, . excluding th e  d.c., m ay be com puted. F or example, 
when the noise is sm all,

The term  independent of * o gives the m ean square low frequency cu rren t 
in  the absence of noise. As Q goes to  zero 4.2-15 approaches the leading 
te rm  in (4.2-7), as i t  should. W hen P  = Q our formula breaks down and 
i t  appears th a t  we need the  asym pto tic  behavior of45

In  view of the  questionable n a tu re  of the derivation  given in  Section 3.10 
of equations 4.2-9 and  (4.2-11) i t  was though t th a t  a num erical check on 
their equivalence would be w orth while. Accordingly, th e  values x  =  4. 
y =  3 were used in  the  second series of (4.2-9 . I t  was found th a t  the

term s were taken. The resu lt obtained was

I d  J  2.5502 
a / 2^0

a  See W. R . Bennett, B S .T J . .  Vol. 12 (1933), 228-243.
This may be done by the method given by W. B. Ford, Asymptotic Developments 

Univ. of Mich. Press .1936 . Chap. VI.

(3.1C-28)

a
[2*o +  P 2 +  Q2] (4.2-14)n n

(4.2-15)

largest te rm  ' ab o u t 130; in  the  sum m ation  occurred a t  k =  1 1 . In  all, 24



F or the sam e values of x  and  y  the asym pto tic  series (4.2-11) gave

2.40 +  0.171 +  .075 +  0.52 +  ••• •

If we stop iust before the sm allest te rm  we get 2.57 for the  sum . If  we 
include the sm allest term  we get 2.65. This agreem ent indicates th a t  
(4.2-11) is ac tually  the asym pto tic  expansion of (4.2-9).

W hen the voltage is of the form

V  =  Q( 1 +  k cos pi)  cos qt +  VN

we m ay use

^ = ( 2 W ' t ( i  + 1 ) 1 1 “  '

iFi ^  ; 1 ; —y ( l  +  k cos 0) 2J  d0
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(4.2-16)

where R  is the envelope w ith respect to  the frequency q/2ir an d  y  is given 
by  (4.2-10). The in tegral m ay be evaluated  by w riting i-Fi as a power 
series and  in tegrating  term wise using the resu lt

1 f 2ir
—  / (1 +  k cos d)( cos mO dd

'  (4.2-17)
( ~ l ) m  , ,,m  p  [ m  -  I  m  -  I  +  1 . . , 2]

=  2 ^ r ( ~ i )  1 1  \ j x ~  • — 2—  J

where m  is a non-negative integer, I  any  num ber,

(a)m =  oi{a +  1 ) ■ • • (a +  m  — 1 ), (a)o =  1 , an d  (0)o =  1 .

The in tegral m ay also be evaluated  in  term s of the  associated Legendre 
function.

B y applying the m ethods of Section 3.10 to  (4.2-16) we are led to

R2 = Q2( 1 + f) + 2*0
•  /  (4.2-18)

* ~ J j b  { ~ % 7 h)s i ;  k2)

where the asym pto tic  series holds when y  is very  large an d  k  is n o t too close 
to  un ity . These expressions give

i f f  ~  K  ( q 2 I  +  *o[2 -  (1 -  k 2) - 112} +  • • • )  (4.2-19)
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The reader m ight be tem pted  to associate the coefficient of \pa in  ( 4 .2 -1 9 )  

w ith the continuous portion  of the o u tp u t power spectrum . However, this 
would n o t be correct. I t  appears th a t  the principal con tribution  of the 
continuous portion  of the power spectrum  to i } /  is a f y o / i r 2, ju s t as in  ( 4 .2 - 7 )  

when k is zero. The difference between this and  the corresponding term  
in ( 4 .2 - 1 9 )  seems to  arise from  the fact th a t  the am plitude of the recovered 
signal is n o t exactly  aQk/iv b u t is modified by  the presence of the noise. 
This general type of behavior m ight be expected on physical grounds since 
changing P, say  doubling it, in  ( 4 .2 - 7 )  does no t appreciably affect the l \ f  
in ( 4 .2 - 7 )  (which is due en tirely  to the continuous portion  of the noise 
spectrum ). The m odulating wave m ay be regarded as slowly m aking 
changes of this so rt in  P.

4 .3  S o m e  S t a t is t ic a l  P r o p e r t i e s  o f  t h e  O u t p u t  o f  a  G e n e r a l  

N o n - L i n e a r  D e v i c e

Our general problem  is th is : G iven a non-linear device whose o u tp u t I  is 
related to its in p u t V  by  the relation

I  =  ~  [  F ( i u ) e iv u  d u  ( 4 A - 1 )
Z7T J  c

which is discussed in A ppendix 4A. L et the in p u t V  contain noise in add i
tion to the signal. Choose some frequency band  in the o u tp u t for study . 
W hat are the sta tistica l properties of the cu rren t flowing in  this band?

I t  seems to be difficult to  handle this general problem . However, i t  
appears th a t the two following results are true.

1. As the o u tp u t band  is chosen narrower and  narrow er the sta tistica l 
properties of the corresponding curren t approach those of the random  noise 
current discussed in  P a r t I I I  (provided no signal harm onic lies w ithin the 
band). In  particu lar, the instantaneous cu rren t values are d istribu ted  
normally.

2. W hen the in p u t V  is confined to a relatively narrow  band  the power 
spectrum  of the o u tp u t I  is clustered around  the 0th (d.c.), 1st, 2nd, etc. 
harmonics of the m idband frequency of V. The low frequency o u tp u t in 
cluding the d.c. is

I d  =  ¿ o ( jR )  = ■ £ -  f  F { i u ) M u R ) d u  ( 4 .3 - 1 1 )
Z7T J  c

where R  is the envelope of V .
The envelope of the n th  harm onic of the ou tpu t, when n  >  0, is

A n ( R )  =  -  [  F ( i u ) J n { u R )  d u  ( 4 .3 - 1 )IT J  c
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The m athem atical s ta te m en t is

QO
1  =  X ) A n{R) COS (numt +  nd) (4 .3-9)

n = 0

where f m =  wm/(27r) is the rep resen tative m id-band frequency  of V  an d  0 
is a rela tively  slowly vary ing  phase angle. T he resu lts of Sections 4.1 
and  4.2 are special cases of this.

M iddleton’s resu lt th a t  the noise pow er in  each of the  o u tp u t bands (in 

the entire band  corresponding to  a given harm onic) depends on ly  o n F *  =  
x//0 and  n o t on the spectrum  of VN , where VN is the noise vo ltage com ponent 
of V,  m ay also be ob ta ined  from  (4.3-9). We no te th a t  th e  to ta l pow er 
in  the n th band  depends only on the m ean square value  of its  envelope 
^ „ (E ) , and  th a t  the p robab ility  density  of the envelope R  of th e  in p u t in 
volves VN. only through \po.

The argum ent we shall use in  discussing the first re su lt is n o t v e ry  sa tis 
factory . I t  runs as follows. The o u tp u t cu rren t I  m ay  be d iv ided  in to  two 
p arts . One consists of sinusoidal term s due to the signal. T he o ther con
sists of noise. We shall be concerned Only w ith the  la tte r  which we shall 
call I N . The correlation betw een two values of I N sep ara ted  b y  an  in te rv a l
of tim e approaches zero as the  in te rval becomes large. L e t r  be an  in te rv a l
long enough to  ensure th a t  the two values of I N a re  su b stan tia lly  
independent. Choose an  in te rval of tim e T  long enough to  con ta in  m any  
in tervals of length  r . E xpand  I N as a Fourier series over th is in te rval. 
W e have

T ®o , v '  I 2irnt . , . rnt
I n  =  x  +  2 ^  \ an cos ——  +  bn sin -

2  7 1 = 1  \_ 1  1

. an -  ibn = l f T e~i2mtlTI N(t) dt 
1 Jo

B B
L et the b and  chosen for s tu d y  be/o  — -  to / 0 +  -  and  le t

T  (/o ~  D  =  ’  r ( /o +  ? )  =  (4-3-3)

where n\  and  n i  are integers. The num ber of com ponents in  th e  b an d  is 
(«2 — ni). We suppose B is such th a t  th is is sm all in  com parison  w ith  T / t . 
The o u tp u t of the band  is

(4 .3-2)

T y  F 2im  ■ , . 2irn t \  .
J n =  \ an cos t +  bn sm — - (4 .3-4)71=711 L 1 -L J
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where

J  i  ib \  =  I  dt
1 J 0

(4.3-5)
n = / o T  +  (» - , « T )

We choose the band  so narrow  th a t

»2 — ® i «  T / r  or /3r <<C 1 (4.3-6)

This enables us to write approxim ately

«» -  k  =  E  e- ^ anlT)- f °)n I  r  dt
r=l I  j(r-l) r

f i  = T / t , T  being chosen to make n  an integer. Suppose we do this for 
a large num ber of in tervals of length T. Then I N(t) will differ from  in terval 
to interval. The se t of integrals for r = 1 gives us an  array  of values which 
we regard as defining the d istribu tion  of a complex random  variable, say 
x-i. Similarly the se t of integrals for r =  2 defines the distribution  of a 
second random  variable x 2 , and so on to xTl . Because we have chosen r  
so large th a t I N(t) in any  one integral is p ractically  independent of its values 
in the other integrals we m ay say th a t X i , x 2 , ■ ■ ■ x ri are independent.

W e have

A  -  a»» =  E  « ~ t ((n/r)T ^T=1

&n\ - f l  ( W i .  r i - l

dn2 ibr2

and  if n 2 — wi<< r\ , as was assum ed in (4.3-6), we m ay apply the central 
lim it theorem  to show th a t ani , bn i , ani+ i , ■ • • an2 , b„ 2 tend to  become in
dependent and  norm ally d istribu ted  abou t zero as we le t the band  w idth 
¡3 0 and  T  oo (and hence r\ —* oo) in such a way as to  keep n 2 — n\
fixed. In  th is work we m ake use of the fact th a t I N(t) is such th a t the real 
and im aginary p a rts  of x 1; x 2, ■ ■ ■ xr all have the same average and standard  
deviation. I t  is convenient to assum e/oT  is an integer.

Thus as the band  w idth /3 approaches zero the band ou tpu t J N given by 
(4.3-4) m ay be represented in the same way, nam ely as (2.8-1), as was the 
random  noise cu rren t studied  in P a r t I I I .  Hence J N tends to have the

T 1 _____B2^(Bi-H/!T)g/n)rr ^

r = l

ri
2 i r ( ( n 2 / r ) - / o ) r r
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sam e properties as the random  noise cu rren t studied there. F or exam ple, 
the  d istribu tion  of J N tends tow ards a norm al law. In  our discussion we 
h ad  to  assum e th a t  «  1. If the  voltage V  applied to  the  non-linear 
device is confined to  a relatively  narrow  frequency band , say  /& — f a ,  i t  
appears th a t  the in te rval r  (chosen above so th a t  I  it) and  l i t  +  v) are  sub
stan tia lly  independent) m ay be taken  to  be of the  order of 1 /(/&  — / 0). 
In  this case J N tends to behave like a random  noise cu rren t if ¡3/ (/& — /a ) is 
m uch sm aller th a n  unity .

W e now tu rn  our a tten tio n  to  the second s ta tem en t m ade a t  the  begin
ning of th is section. L e t the applied  voltage be confined to  a  rela tively  
narrow  band  so th a t  i t  m ay be represented  by  equation  (4.1-8) of Section 
4.1,

V  =  R  cos ( u j  +  0), R  >  0, (4.1-8)

where f m = u m/ i 2ir) is some rep resen tative frequency w ith in  the  band  
and  R  and  6 are functions of tim e which v a ry  slowly in  com parison w ith 
cos umt. We call R  the  envelope of V.

From  equation  (4A-1)

I  -  —  [  F{iu)eiuR 003 (“mt+e) du  (4.3-7)
2 TT J c

We expand the  in tegrand  by  m eans of

cos ,  M £  ej n  cog nipJn{^  (4 .3-8)
71=0

where eo is 1 and  en is 2 w hen n  >  0 and  J n(x) is a  Bessel function . 
T hus

00

I  =  2 2  A n(R)  cos (numt +  nd) (4.3-9)
71=0

where

A n{R) =  [  F{iu)J„(uR) du  (4.3-10)
Z7T J c

Since I? is a  rela tively  slowly vary ing  function of tim e we expect the 
same to  be tru e  of A „(R ), a t  least for m oderately  sm all values of n. T hus 
from  (4.3-9) we see th a t  the  power spectrum  of I  will consist of a  suc
cession of bands, the n th band  being clustered around  th e  frequency  n fm . 
If  we elim inate all of the ban d s except th e  n th by  m eans of a  filter we
see th a t the  o u tp u t will have the envelope A niR)  when n  gt 1. T ak ing
n  to  be zero, shows th a t the low frequency o u tp u t is sim ply

A 0{R) 4 L *  f  F ( iu )Jo (uR ) du  
Ztt J c

(4 .3 -1 1 )



M A T H E M A T I C A L  A N A L Y S I S  OF R A N D O M  N OI S E 121

T ak ing  n  to  be one shows th a t  the band  around f m is given by

AiCR) y
R (4.3-12)

T h e  s ta tis tica l properties of the low frequency o u tp u t and of the  en
velopes of the o u tp u t bands m ay be obtained from  those of R.  For ex
am ple, the probability  density  of A n(R) is of the form

where p (R ) is the probability  density  of R. In  this expression R  is con
sidered as a  function of A n .

I t  should be no ted  th a t  we have been assum ing th a t all of the band 
surrounding the harm onic frequency nfm is taken. W hen we take only a 
portion  of it ,  p resum ably  the sta tistica l properties will tend to  approach 
those of a random  noise cu rren t in accordance w ith the first sta tem en t made 
a t  the beginning of this section.

W hen we app ly  (4.3-11) to  the square law device we have

where the p a th  of in tegration  passes under the origin. These two results 
agree w ith those obtained in  Section 4.1 and 4.2 from  simple considerations. 
As a final exam ple we find the low frequency ou tp u t of a biased linear 
rectifier in term s of the envelope R  of the applied voltage. F rom  the table 
of F(iu)  given in  A ppendix 4A we see th a t F(iu)  corresponding to

(4.3-13)

W hen we app ly  (4.3-11) to  the linear rectifier:

1 = 0, V  <  B

I  — V  — B ,  V  >  B



122 B E L L  S Y S T E M  T E C H N I C A L  J O U R N A L

IS
- iu B

?(»«) =  — ¡ r  

C onsequently , the low frequency o u tp u t is

¿ 0(£ )  =  - J _  [  e~iuBJ 0(u R )u ~2 du
ZtT J— co

where the p a th  of in teg ration  is indented  dow nw ards a t  the  origin. W hen 
B  >  R  the value of the in tegral is zero since then  the  p a th  of in teg ration
m ay be closed in  the lower half p lane by  an  infinite semi-circle T his value
also follows a t  once from  the physics of the problem . W hen —R < B < R  
we m ay in teg rate  by  p a rts  and  get

1 C ̂"co
Ao(E) =  A  e~iuB[iBJo(uR) +  R J i (u R ) \u ~ l du

Z7T J - o o

=  — — +  -  [  [B sin uB Jo(uR ) +  R  cos u B Ji(uR )}u~ l du  
2 i i o  .

(4.3-14)

=  — — +  — arc  sin ^  R 2 — B 2
2 7T R  7T

S . S » /  1 1 . 1 W \  » s  R f
— 2 +  * F \ —2 ' - 2 ’ 2 ■ & ) ■  - R < B <

R

This hypergeom etric function tu rns up again in  equation  (4.7-6). Also 
in the range —R < B  <  R,

dAo 
d R

i  r .  b 2

7T y  R 2

W hen B  is negative and  R  < —B,  the p a th  of in teg ra tion  m ay be closed 
by an  infinite semicircle in the upper half p lane and  the  value of the  in tegral 
is proportional to the residue of the pole a t  the o rig in :

K ) < - «AoCR) =  27ri ) ( - Í B )

- - B

Thus, to  sum m arize, the low frequency o u tp u t for our linear rectifier is, 
for B  >  0, (R  is always positive)

Ao(R) = 0 ,  R  <  B

B  B  B  1 P  S   (4 .3-15)MR) =  +  -  arc sin ^  d—  VR2 -  B 2, B  <  R
I  7T R  7T
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and  for 7> <  0 i t  is 

A 0(R)  =  | B  | , R  < \ B \

w m  _  , | £ |  , | £  I . 1 5  1 1 I____ ,___ (4.3-16)
-4o(x?) =  + —  + ----- arc sin I— +  -  v ' R 2 -  B 1, \ B  \ < R

¿ T V  K  7T

where the  arc sines lie between 0 and ir/2 . Ao(R) and its first derivative 
w ith respect to  R  are continuous.

F rom  (4.3-15), the d.c. o u tp u t curren t is, for B  >  0,

Idc =  I b [ ~ f  +  f  arC Sin |  +  I  V i ?2 -  5 2]  P(R) dR  (4.3-15)

where p(R)  is the p robab ility  density  of the envelope of the inpu t V, e.g., 
P(R) is of the form  (3.7-10) for noise alone, and  of the form (3 .10- 1 1 ) for 
noise plus a sine wave. Similarly, the rm s value of the low frequency 
cu rren t , excluding d.c., m ay be com puted from

7 1  = % -  i l

where, if B  >  0,

— r  B  B  B  1 "is
t i t  =  J b I j  “  arc s in ^  +  -  V i ?2 -  B 2 p (R )  d R  (4.3-16)

If T' consists of a  sine wave of am plitude P  plus noise Vy , so it m ay be 
represented as (4.1-13), and  if P  »  rm s VN , the d istribution  of i? is 
approxim ately  norm al. If, in addition , P  — B  »  rm s V x  >  0, (4.3-15), 
(4.3-16), and (3.10-19) lead to the approxim ations

B  , B  . B  , 1 7  xhn
Idc ~  —— +  -  arc sin -  +  -  \ /  P '1 — B-  +

2 ir P  7T 2 - i r \P -  — B-

(4-3_i7)

The second expression for id c assumes P  »  B.  W'hen 5 = 0 ,  tliese re
duce to  the  first term s of (4.2-5) and  (4.2-7). By using a different 
m ethod M iddleton  has ob ta ined  a  more precise form  of this result.

Inciden tally , for a  given applied voltage, / dc( + )  for a positive bias | B  | 
is re la ted  to  Jdc(—) for a negative bias — | B  \ by

/d c ( - )  =  } B \  +  7dc(+) (4.3-18)

M so r.m .s. 7 ^ /(+ )  is equal to r.m .s. 7 ^ (  —). E quation  (4.3-18) follows 
from  a  physical argum ent based on the areas underneath  a curve of 7  for
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the two cases. B oth  of the above relations follow from  form ulas given by  
M iddleton when V  is the sum  of a sine wave plus noise. T hey  m ay also be 
derived from  (4.3-15) and  (4.3-16).

4 .4  O u t p u t  P o w e r  S p e c t r u m

The rem ainder of ¡Part IV  will be concerned w ith m ethods of solving the 
following problem : Given a non-linear device and  an  in p u t voltage con
sisting of noise alone or of a  signal plus noise. W h a t is the  pow er spectrum  
of the ou tpu t?

In  some ways the answer to  this problem  gives us less inform ation  th an  
the m ethods discussed in  the first th ree sections. F o r exam ple, beyond 
giving the rm s value, i t  tells us very  little  ab o u t the p robab ility  density  of 
the cu rren t corresponding to  a given frequency band  of the o u tp u t. On 
the other hand , this rm s value m ay be found (by in teg rating  the power 
spectrum ) for any  band  we choose to  s tudy . The m ethods described earlier 
depended on the  in p u t being confined to a rela tively  narrow  b an d  and  gave 
inform ation regarding only the en tire  band  corresponding to  a given h a r
monic (Oth, 1st, 2nd, etc.) of the inpu t. T here was no w ay to  s tu d y  the 
o u tp u t when p a r t  of a band  was elim inated  by  filters except by  obtain ing 
the power spectrum  of some function of the envelope.

A t p resen t there appear to be two general m ethods available for the 
determ ination  of the o u tp u t power spectrum  each w ith its own advantages 
and  disadvantages. F irs t there is the d irect m ethod  which has been used 
by W . R . B ennett*, F. C. Williams**, J . R . R agazzini46 and  o thers. The 
noise is represented  as the sum  of a  finite num ber of sinusoidal com ponents. 
The typ ical m odulation p ro d u ct is com puted and  the o u tp u t pow er spectrum  
is obtained by  considering the density  and  am plitude of these products. 
T he chief advan tage of this m ethod lies in  its  close re la tion  to  the  known 
theory  of m odulation  in  non-linear circuits. G enerally, the lower order 
m odulation  products are the only ones which con tribu te  significantly to  the 
o u tp u t pow er and  when they  are known, the problem  is well along tow ards 
solution. The m ain  d isadvantage is the labor of counting the m odulation  
p roducts falling in a given in terval. H ow ever, B en n ett has developed a 
m ethod for doing th is .47

The fundam ental idea of the second m ethod  is to  ob ta in  the  correlation 
function for the o u tp u t curren t. F rom  this the o u tp u t pow er spectrum  m ay 
be ob ta ined  by  F ourier’s transform . The correlation function  m ethod  and 
its  varia tions are of more recent origin th an  the d irec t m ethod. T hey  have

* Cited in Section 4.0. Also much of this writer’s work on interference in broad band 
communication systems may be carried over to noise theory w ithout any change in the 
methods used.

** Cited in Section 4.1.
^P roc . I .R .E . Vol. 30, pp. 277-288 (June 1942), “The Effect of F luctuation Voltages 

on the Linear D etector.”
47 B .S .T .J ., Vol. 19 (1940), pp. 587-610, Appendix B.
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been discovered independently  and  a t  abou t the same tim e, by several 
workers. In  a paper read before the I .R .E ., Jan . 28, 1944, D. 0 .  N orth  
described results obtained by  using the correlation function. J. H. Van 
Vleck and  D . M iddleton have been using the two varia tions of the m ethod 
which we shall describe in Sections 4.7 and  4.8, since early  in 1943. A 
p rim itive form  of the m ethod of Section 4.8 had  been used by  A. D. Fowler 
and  the w riter in some unpublished m ateria l w ritten  in 1942. Recently, 
I  have learned th a t a m ethod sim ilar to the one used by Fowler and  myself 
had  already been used by K u rt F ranz in 1941.48

T he correlation function m ethod avoids the problem  of counting the 
m odulation products. However, in some cases i t  becomes ra the r unwieldy. 
P robably  it  is best to have bo th  m ethods in m ind when investigating any 
particu lar problem . The direct m ethod will be illustrated  by  applying it 
to  the square law detector. Two approaches to the correlation function 
m ethod will then  be described and applied to examples.

4.5 N o is e  T h r o u g h  S q u a r e  L a w - D e v ic e

P robably  the m ost d irect m ethod of obtaining the power spectrum  W (f)  
of I ,  where

I  =  a V 2, (4.1-1)

V  being a noise voltage, is to  square the expression
M

V  =  V N =  X  Cm COS (wM t — <pm) (2.8-6)
l

in which ch is 2w (fm)Af, wm =  2irfm , f m — m A f  a n d ^ i ,<pt, • ■ • <pm are random  
phase angles.

Considerable sim plification of the algebra results when we replace the 
represen tation  (2.8- 6) by

V N =  \  E  cmeima^ f -  (4.5-1)
L —oo

H ere we have added a term  Co/2 so as to  no t have any  gaps in the sum m ation 
and have in troduced the definitions

C—m Cm

V-m =  —<Pm (4.5-2)

a =  2irAf

48 “ Die Übertragung von Rauschspannung über den linearen Gleichrichter,” Hochfr. 
n. Elektroakust., June 1941. Other articles by Franz are (I am indebted to Dr. N orth 
for the follo'wing references) “Beitrage zur Berechnung des Verhältnisses von Signal 
Spannung zu Rauschspannung am Ausgang von Empfängern” , E .N .T ., 17, 215, 1940 and 
19, 285, 1942. “Die Amplituden von Geräuschspannungen” , E .N .T ., 19, 166, 1942. 
The M ay 1944 (p. 237), issue of the Wireless Engineer contains an abstract of “The In 
fluence of Carrier Waves on the Noise on the Far Side of Amplitude-Limiters and Linear 
Rectifiers” by  Franz and Vellat, E .N .T ., Vol. 20, pp. 183-189 (Aug. 1943).
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Squaring (4.5-1) gives the double series
a 4 -co + o o

T/2 _  I  i ( ,m + n ) a t - i< p m -i< ? n
V  N  —  "7 /  J /  - /  I 'm  &

4  —oo —oo

*  + oo  +30
1 V-'' . Jkat—i<Pk-n—i(Pn

—  ~ /  j  /  j  Cjc— n  C n  &
4  Jc= —00 71=—CO

Suppose we wish to  consider the com ponent of of frequency /*  =  kAf.  
I t  is seen to  be

^  + oo

Ajc cos (co&£ — ypk) — -  Cfc—n cn cos (kat <pjc—n (4.5—3)
Z  71=—00

The power spectrum  W ( / )  of /  a t  frequency /*  is a 2 tim es the coefficient of
A f  in  the m ean square value of (4.5-3) where the average is taken  over the
(p’s. Thus

2 + o o  + oo

W (j^ )A / — —- ^  1 ^  y C]̂—n Cn Ck—̂nCm 
4  —oo — 00

X  ave. cos (&ai — ipk-n — Vn) cos (kat — ph-m ~  Vm)

where the sum m ations extend over m  and  n. L e t n  be fixed and  consider 
those values of m  which give an  average different from  zero. W e see th a t 
m  =  n  and  m  =  k — n  are two such values. The only o ther possibilities 
are m  =  —n  and  m  — — k +  n, b u t these lead to  term s containing (except 
when n  or k equal zero) three different angles, <pn , <p*_n , and  <?*+„ which 
average to  zero. Using the fac t th a t  the average of cosine squared  is one- 
half and th a t  for a given n  there are two such term s, we get

m f m  =  t  £  c L nd
4  7 l= — 00

=  a A f  £  w(fh  -  f n) w ( f n)A f
71 = —00

where in the la st step  we have used

/*_„ =  (k  -  n )A f  =  / * - / „  

and  have im plied, from  c_n =  cn , th a t

w (/_„) =  w ( —nAf)  =  w {—f n)

is equal to w (fn).
Thus, from  (4.5-4), we get for the power spectrum  of I

(4.4-5)
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w ith the understanding  th a t /  is no t zero and

w ( —x)  =  w(x). (4.5-6)

The resu lt which is obtained by using (2.8-6), involving the cosines and 
only positive values of m, is

This contains only positive values of frequency. (4.5-5) and  (4.5-7) are 
equivalen t and  m ay readily be transform ed in to  each other.

The first in tegral in (4.5-7) arises from  second order m odulation products 
of the sum  type and  the second in tegral from  products of the difference 
type. This m ay be seen by  w riting the current as

T he power in  the range f k , f k +  A /is the power due to m odulation products 
of the difference type, uh+l p  cot, plus the power due to the m odulation 
products of the sum  type, cok_ i  +  cot ■ In  the first type I  runs from  1 to  °o 
an d  in  the second type I  runs from  1 to k — 1 .

Consider the  difference type first, and for the m om ent take bo th  k and -t 
to  be fixed. The two sets m  = k +  I, n  = I  and  m = l , n  = k -\- I  are the 
only values of m  and  n  in (4.5-8) leading to cou+l — cot ■ The two corre
sponding term s in  (4.5-8) are equal because cos (—x) is equal to  cos x. The 
average powrer contribu ted  by  these twTo term s is

( ^ ck+t  ct ) X  {Average of (2 cos [(«*:+t  -  to/)/ -  cpk+t +  to /)2)
/  (4.5-9)

=  | ( aCk+tct)2

The powder con tribu ted  to  f k , f k  +  A / by  the difference m odulation p roducts 
is obtained by  sum m ing I  from  1 to oc :

oo oo
I  QLI  Oi 'y_J Cm Cn COS (tOm / <pm) COS ( COn t  cpn)

(4.5-8)

+  cos [(wm -f- con)t +  cpm -f- tpn]}

00

y  Z )  ckJrt c \  =  2a Z  r̂ (/*+/)w (//)(A / ) 2 
1 t =  i  7=i

This leads to  the second term  in (4.5-7).
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Now consider the m odulation p roducts of the sum  type. The term s of 
th is type in (4 .5- 8) which give rise to  the  frequency w* are those for which 
m  +  n  is equal to  k. L e t n  be 1 then  m  =  k  — 1. The phase of th is te rm  
is random  w ith respect to all the  o ther te rm s except the one given by  n  =  
k — 1 , m  =  1 which has the sam e phase. The average pow er con tribu ted  
by  these two term s in (4.5-8) is, as in (4.5-9),

This disposes of two term s for which m  +  n  is equal to  k. T ak ing  n  to  be 2 
and  going through the sam e process gives two m ore. T hus, assum ing for 
the m om ent th a t  k is an  odd num ber, the pow er con tribu ted  to  the in terval 
fh , fk  +  A / by  the sum  m odulation  p roducts is

and  th is leads to  the second te rm  in (4.5-7).
W hen the voltage V  applied  to  the square law device is the sum  of a noise 

voltage VN and  a sine w ave:

g(aCiCfc_i)

1 (*—1)/2 H k— 1 r-fk
-  Ż  (acnck- n) 2 =  J  Z  (oiCnC/c-n) 2 a A f  1 w (J)w (Jk -  f )  d f
2 n=i 4 n=l *0

V  =  P  COS pt  +  VN , (4.1-13)

we have

V 2 =  P 2 cos2 pt +  2P V N cos pt +  V l (4.5-10)

F rom  the two equations

we see th a t  / ,  or a V 2, has a dc com ponent of

(4.5-11)

which agrees w ith (4.1-14), and  a sinusoidal com ponent

a P 2

—  cos 2pt (4.5-12)

The continuous pow er spectrum  W c{f) of the rem aining po rtion  of I  m ay 
be com puted from
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F sing  the representation  (2 .8- 6) we see

2-PT a- cos pt  =  P  cm[cos (comi +  pt -  pm) +  cos (umt — pt — ym)] 
1

For the  m om ent, we take p  =  2-rA /. The term s perta in ing  to  frequency 
fn  =  »A / are those for which

where only positive values of in are to  be ta k e n : If n  >  r, then  m  is n  — r 
or r  +  ». I f  n  <  r, then  in is r — n or r +  n. In  either case the values 
of in are n — r \ and  n  +  r. The term s of frequency f n in 2 P Y N cos pt 
are therefore

P c \ - r \  COS (2 l ! f j  — lp \n - r \ )  +  Pcn+T COS (2?lf„t — ipn+r)

and  the m ean square value of this expression, the average being taken over 
the  cFs, is

we see th a t  the  continuous portion  i r c(/) of the power spectrum  of I  is

where w (—f )  has the same value as w(J).
E quation  (4.5-13) has been used to com pute TTTC( /)  as shown in Fig. 8. 

The in p u t noise is assum ed to  be uniform  over a band  of w idth /3 centered a t  
f p , c f. F ilter c, Appendix C. By noting the area under the low frequency 
portion  of the spectrum  we find

Since the m ean square value of the in p u t TV is pa = ßu'o, i t  is seen th a t

of I f / , the low frequency current, excluding the d.c. If audio frequency

Wm +  p =  2?rfn | wm — p  | =  2t / „

m +  r =  11 | m  — r \ = n

m — 11 — r m  =  r ±  n

W c( f )  =  d - p \ w { j  -  f p) +  w { f + f p)}

(4.5-13)

this equation agrees w ith the expression (4.1-15) for the m ean square value



filters cu t ou t p a r t  of the spectrum , W c( f )  m ay be in teg rated  over the  re 
m aining portion  to  give the m ean square value of the corresponding o u tp u t 
current. This idea is m entioned in the footnote perta in ing  to  equation  
(4.1-6).

If V  consists of W  plus two sinusoidal voltages of incom m ensurable fre
quencies, say

V  = P  cos pt  +  Q cos qt +  VN ,
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CONTINUOUS PORTION OP OUTPUT SPECTRUM OF SQUARE LAW DEVICE

Fig. 8

the  continuous portion  W c( f )  of the pow er spectrum  of I  m ay be show n to  be 
(4.5-13) plus the additional term s

d ( f [ w ( f  -  f q) +  w ( f  +  / , ) ]  (4.5-14)

where f q denotes q / 2ir.
W hen the voltage applied to the square law  device (4.1-1) is49

V(t) =  <2(1 +  k cos pt)  cos qt +  VN

=  Q cos gi +  y  cos (P  +  g)i +  y  COS (P  -  q)t +  V N 

the resulting curren t contains the dc com ponent

\  <22 (i +  f )  +  « j f  w i f )  d f  (4.5-16)

49 A complete discussion of this problem is given by L. A. MacColl in a manuscript
being prepared for publication.



M A T H E M A T I C A L  A S  A L Y S I S  OF R A X  DOM X O I S E 131

The sinusoidal term s of I  are obtained by  squaring

Q(  1 +  k cos pt) cos qt

and  m ultiplying by  a.  The rem aining portion  of I  has a  continuous power 
spectrum  given by

As m entioned in  Section 4.4 these m ethods for determ ining the o u tp u t 
power spectrum  are based on finding the  correlation function A'i-j for the 
o u tp u t current. F rom  th is the power spectrum , W ( f ) ,  of the o u tp u t cur
re n t m ay be obtained from  (2.1-5), rew ritten  as

I t  will be recalled th a t  W(f)Am  m ay be regarded as the  average power which 
would be d issipated b y  those com ponents of I  in  the  b a n d / ,  /  -j- A f  if I  were 
to  flow through a  resistance of one ohm.

The in p u t of the  non-linear device is taken  to  be a  voltage Y it  . I t  m ay, 
for example, consist of a  noise voltage Y x {t) plus sinusoidal com ponents. 
The o u tp u t is taken  to  be a cu rren t l i t ) .  The non-linear device is specified 
by  a rela tion  between Y{t) an d  l i t ) .  In  th is w ork l i t )  a t  tim e t is assum ed 
to  be com pletely determ ined b y  th e  value of Y i t )  a t  tim e t.

Two m ethods of obtaining T' ( t) will be described.
fa) In teg rating  the  two-dim ensional p robab ility  density  of Y  t and  

Y i t  -f- t) over the  values allowed by  the  non-linear device. This 
m ethod, which is especially direct when applied to  noise alone through 
rectifiers, was discovered independently  by  V an M eek and  X orth .

(b) In troducing  and using the  characteristic function, which for the sake 
of brev ity  will be abbrev iated  to  ch. f., of the two-dimensional prob
ab ility  d istribu tion  of Y it)  an d  Y i t  -}- r) .

w here/p  denotes p, 2-  a n d / 9 denotes qjl-x.

4.6 T w o C o r r e l a t io n  F u n c t io n  [Me t h o d s

'o
(4.6-1)



4.7 L in e a r  D e t e c t io n  o e  N o is e — T h e  V a n  V l e c k - N o r t h  M e t h o d

T he m ethod due to  Van Vleck and  N orth  will be illu stra ted  by  using it  
to  determ ine the o u tp u t power spectrum  of a linear detecto r when the in p u t 
consists of noise alone.

The linear detector is specified by

/ (t) — ^  ^ (4 7-1)
[ ) \F ( i ) ,  V{t) > 0 ,  1 J

which m ay be ob ta ined  from  (4.2-1) by  se tting  a  equal to  one, and  the in p u t 
voltage fs

f | |  -  VN(t) (4.7-2) •

where VN(t) is a noise voltage whose correlation function  is ^ ( t )  and  whose 
power spectrum  is w(f).

The correlation function T ( t )  is the average value of I{ t ) I ( t  +  t ) .  This 
is the same as the average value of the function

, . J V iF 2 , when bo th  F x , F 2 >  0 , 7 .
^ ( F x, F 2) =  an  0ther F ’s, (4‘/_3)

where we have set

F i  =  f | |

F 2 =  V(t  +  r)

The tw o-dim ensional d istribu tion  of F i and  F 2 is given by  (3.2-4), and  
from  th is i t  follows th a t  the  average value of an y  function  F ( V i ,  F 2) is

C  m  C dv> t j w w  exp [ _2iVi {*‘ v l + h V l ~ 2*’ Vi Fi)]
(4 .7-4)

where

| M  [ =  — i/4 .

For the linear rectifier case, where F ( F i ,  F 2) is given by  (4.7-3), the 
in tegral is
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m \-1I2~
Z tt J oJo dVll exP |̂  —2]”m] 'PoVl — 2fTFiF2)J

= ¿ ( 1 - 4 + 4 «
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where we have  used (3.5—A) to  evaluate the integral.’ The arc cosine is 
taken  to  be between 0 and  We therefore have for the correlation func
tion  of I(t) ,

* (r) = h  ~ + 005-1 [ 7 7 ])  (4-7_5)

The power spectrum  IT' (f)  m ay be obtained from  this by use of (4.6-1). 
For this purpose it  is convenient to  write (4.7-5) in term s of a hypergeo
m etric function. By expanding and  com paring term s i t  is seen th a t

4 2ir \  21 2 >2 ’ + l )
,  (4.7-6)

=  ^  +  p -  +  * +  term s involving $ ,  \p l , etc.
*x 2 n -iTnf/o

As will be discussed more fully in  Section 4.8, a constan t term  A~ in \J/(r) 
indicates a  d irect cu rren t com ponent of I{ t) of .4 am peres. Thus I { t ) has 
a dc com ponent equal to

1
X rm s value of V{t) (4.7-7)

This agrees w ith (4.2-3) when the P  of th a t equation  is set equal to  zero. 
In tegrals of the form

Gn{f)  =  f  ip? cos 2ir /r  dr  
Jo

which resu lt when (4.7-6) is p u t in  (4.6-1) and  in teg rated  term wise are 
discussed in  A ppendix 4C. F rom  the results given there i t  is seen th a t if 
we neglect and  higher powers we ob ta in  an  approxim ation for the con
tinuous portion  W c(f) of IT'(f):

w c( j)  =  (A (/) +  Wm
Tnf/Q

(4.7-8)
w ( f )  , 1 1 r *

=  - J -  +  r r 4  / W {x)w{f -  x ) dx 4  -±TDpQ 2 J—oo

where w ( —f )  is defined as w(f).
W hen T'.v(i) is uniform  over a relatively narrow  band  extending from 

f a to  fb  so th a t  w(f)  is equal to K'o in  th is band  and  is zero outside it, we m ay 
use the results for F ilter c of Appendix 4C. The fo and  3 given there are 
rela ted  to  f a and  /& by

/ .  = / o - f ,  / » = / o  +  f
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and  the value of Wo'taken there is the same as here and  is fo//3. T he value 
of Gi(f)  given there leads to the approxim ation, for low frequencies:

I ' r f p ( f o  L ,

=  s  A  -
4tT \  fb — J a j

when 0 <  /  < f b  — fa , and  to Wo(f) ~  0 for fb — fa <  f  <  fa ■ B y se tting  
P equal to zero in the curve given in  Fig. 8 for W c(f) corresponding to  the 
square law. detector, we see th a t  the low frequency po rtion  of the pow er 
spectrum  is triangular in  shape and  is zero a t  f  = ¡3. T hus, looking a t  
(4 .7- 9), we see th a t  to a first approxim ation the shape of the o u tp u t pow er 
spectrum  is the same for a linear detector as for a square law  detector when 
the in p u t consists of a relatively  narrow  band  of noise.

An approxim ate rm s value of the low frequency o u tp u t cu rren t m ay be 
obtained by  in tegrating  (4.7-9)

  nfl fa
l a  =  W B{f) d f  Jo

=  ~ / ° )  _  fpl
87r Sir

rm s low freq. cu rren t =  X  rm s applied voltage (4.7-10)

I t  is seen th a t this is half of the d irect curren t. I t  m u st be k ep t in  m ind  
th a t  (4.7-10) is an  approxim ation because we have neglected \pt and  higher 
powers. The true value m ay be obtained from  (4.2-8). I t  is seen th a t  the 
coefficient (87r)~1/2 =  0.200 should be replaced by

m r  t 209
W c{f) for o ther types of band  pass filters m ay be ob ta ined  by  using the  

corresponding G’s given in  appendix 4C. I t  tu rns ou t th a t (4.7-10) holds 
for all three types of filters. This is a special case of M idd leton’s theorem , 
m entioned several tim es before, th a t  the to ta l pow er in  any  m odulation  
p roduct (it will be shown la ter in Section 4.9 th a t  the terrm /v in  (4.7-6) 
corresponds to the 11th order m odulation  products) depends only on th e  
to ta l in p u t power of the applied noise, no t on its  spectra l d istribu tion .

4 .8  T h e  C h a r a c t e r i s t i c  F u n c t i o n  M e t h o d

As m entioned in  the preceding p a rts , especially in  connection w ith equa
tion (1.4-3), the ch. f. of a random  variable x  is the  average value of exp
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(■tux ). This is a function of u. The ch. f. of two random  variables x  and 
y  is the average value of exp (iux  +  ivy) and is a function of u  and  v. The 
ch. f. which we shall use here is the ch. f. of the two random  variables V(lj  
and V(t  +  t )  where V(t) is the voltage applied to the non-linear device, and 
the random ness is introduced by i being selected a t random , r  rem aining 
fixed. We m ay w rite this characteristic function as

1 f 7
g(u, v, t) =  L im it -  / exp |iuV (t)  +  ivV{t +  r)] dt (4.8-1)

T—>oo 1 ”0

If V{t) contains a noise voltage VN{t), as it always does in this section, and 
if we use the representation (2.8-1) or (2.8-6) a large num ber of random  
param eters (an’s and  bn’s or (pn’s) will appear in (4.8-1). In accordance 
with our use of such representations we m ay average over these param eters 
w ithout changing the value of (4.8-1) and m ay thereby sim plify the in tegra
tion.

For example suppose
V(t)  =  V„(t) +  VN{t) (4.8-2)

where V s(t) is some regular voltage which may, e.g., consist of one or more 
sine waves. Substitu ting  this in (4.8-1) and using the result (3.2-7) th a t 
the ch. f. of Vf/(t) and  VN(t +  r)  is

gx(u, v, r ) =  ave. exp [iuVN{t) +  ivVN{t +  r)] 

=  exp r ah , I , i  <4'8-3) 2  \u  +  V) — V r m

ipr =  ip(r) being the correlation function of VN{t), we obtain for the ch. f. 
of V(t)  and  V(t  +  r),

g{u, v, t )  =  exp 2 m  +  v ) — 1pTuv

i r T
X L im it -  / exp [iuVs(t) +  ivV ,( t  +  r)] dt 

r-*» 1 Jo
(4.8-4)

=  gN(u, v, t)%s(u, v, t )

In  the last line we have used gH(u, v, r)  to denote the lim it in the line above:

1 r T
gs(u, v, r) =  L im it -  / exp UuVB(t) +  ivV,(t  +  r)] dt (4.8-5)

T —»oo J- «A)

T he principal reason we use the ch. f. is because quite a few non-linear 
devices m ay be described by the integral

I  =  ±  [  F(iu)eiVn du  
2 t  J c

(4 A -1 )
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w here the function  F(iu)  and  the  p a th  of in teg ration  C are chosen to  fit the 
device. Exam ples of such devices are given in  A ppendix 4A. T he corre
la tion  function  ’4f(r) of I{t)  is given by

T ( t )  =  L im it ^  +  r )  dt
r-*«> 1 Jo

=  L im it f T dt [  F(iu)eiuV(t) du f  F(iv)eivV^ T) dv
t-+ co 4 tr  T  Jo J c J c

=  —  f  F(iu) du [  F(iv )  dv ( 4 . 8 - 6 )
47T" J C J c

L im it i  [  exp [iuV{t) +  ivV (t  +  r)] dt
T -* o o  1 JO

== — - [  F(iu)  du [  F(iv)g(u, v, t )  dv 
4:7r  Jc J c

This is the fundam ental form ula of the  ch. f. m ethod.
W hen V(t) is the sum  of a  noise voltage and  a  regular vo ltage, as in  

(4 .8-2), (4.8-6) becomes

* ( r )  =  — - [  F ( i u ) e ~ ! m t  du [  F(iv)e 
47r2 J c J c

Wol2)v2

C Jc ' ' (4 .8-7)

e | p  gs(u, v, t )  dv

where gs(u, v, r )  is the ch. f. of V s(t) an d  V s(t +  r )  given b y  (4 .8-5). This
is a  definite expression for T ( t). All th a t  follows is devoted  to  the  evalua
tion of th is in tegral and  to  the evaluation  of

W ( f )  = 4  f  T ( t )  c o s  2 ir fr  d r  (4 .6-1)
Jo

for the  power spectrum  of I .
Quite often I ( t )  will contain dc and  periodic com ponents. I t  seems con

ven ien t to  deal w ith these separate ly  since th ey  correspond to  te rm s in  
T ( t )  which cause the in tegral (4.6-1) for W ( f ) to  diverge. In  fac t, from  
Section 2.2 i t  follows th a t  a correlation function  of th e  form

C2
A 2 +  — cos 2irfot (2.2—3)

corresponds to  a  cu rren t

A  +  C cos (27t/oí — <p) (2.2- 2)
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(4.8-8)

where the phase angle <p cannot be determ ined from  (2.2-3) since it  does not 
affect the average power.

Consider the correlation function for V(t) =  V a(t) +  VN(t) given by 
(4.8-2). I t  is

L im it i  I" f  +  r ) d t +  f  V a( t)V N(t +  r)  dt
T —+ao J- L J 0 »70

+  jf  V N(t)V a(t +  r ) d t  +  jf  VN(t)VN(t +  r)

Since F s(i) and  Vxit) are unrelated  the contributions of the second and 
th ird  integrals vanish leaving us w ith the resu lt

Correlation function of V(t)  =  Correlation function of V a(t)
(4.8-9)

+  Correlation function of VN(t).

Now as r  —> oo the correlation function of VN(t) becomes zero while th a t of 
V s(t) becomes of the type (2.2-3) given above. Hence the correlation func
tion of the regular voltage V s(t) m ay be obtained from  V (t) by letting  r  —> oo 
and  picking ou t the non-vanishing term s. A lthough we have been speaking 
of V(t),  the same results hold for I ( t ) and  this process m ay be used to pick 
ou t those p arts  of 4 t(r) which correspond to the dc and periodic com ponents 
of 1 (t). Thus, if we look a t  (4.8-7) we see th a t as r  —> oo, \pr —>■ 0, while the 
gs (u, v, t) corresponding to Vs(t) given by  (4.8-5) remains unchanged in 
general m agnitude. This last s ta tem en t m ay be hard  to  see, b u t exam ina
tion of the cases discussed la ter show th a t i t  is true, a t  least for these cases. 
Thus the portion  of T (r )  corresponding to  the dc and  periodic com ponents 
of I(t)  is, setting  \pT =  0 in (4.8-7),

T ^ t )  =  [  F(iu)e~ ('l'ol2)u2 du [  F (iv)e~^ol2)v2gs(u, v, t )  dv (4.8-10)
4 7 r J  c  J  c

where the subscrip t «3 indicates th a t ^ „ ( r )  is th a t p a r t  of 47(t) which does 
no t vanish as r  —»■ °° .

We m ay w rite (4.8-9), when applied to l i t ) ,  as

T (r )  =  T „ (r )  +  T c(r) (4.8-11)

where T c(r) is the correlation function of the “ continuous” portion  of the 
power spectrum  of I ( t ).

Incidentally , the separation  of T (r )  into the two p arts  shown in  (4.8-11) 
m ay be avoided if one is willing to use the 8(f) functions in  order to in te rp re t 
the in tegral in  (4.6-1) as explained in  Section 2.2. This m ethod gives the 
proper dc and  sinusoidal com ponents even though (4.6-1) does no t con
verge (because of the presence of the term s leading to T M(r)).
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4 .9  N o is e  P l u s  S i n e  W a v e  A p p l i e d  t o  N o n - L i n e a e  D e v i c e

In  order to  illustrate  the characteristic function m ethod  described in 
Section 4.8 we shall consider the case of a non-linear device specified by

1 =  1 - 1  F{iu)eiVu du  (4A -1)
2 tt J c

when V  consists of a noise voltage plus a sine w av e :

V(t)  =  P  cos pt +  VN{t) (4.1-13)

As usual, VN{t)  has the power spectrum  w( f ) an d  the correlation  function  
P(t). iJ/(t) is often w ritten  as pT for the sake of shortness. Com paring 
(4.1-13) w ith (4.8-2) gives

Vs(f) — P  cos pt (4.9-1)

Our first ta sk  is to com pute the ch. f. gs{u, v, r)  for the p a ir of random  
variables V s(t) and  V s(t +  r ) . We do th is by  using the in tegral (4 .8-5):

i  rga(u, v, t) =  L im it — / exp [iuP  cos pt +  ivP  cos p it  +  r)] dt
t->oo T  Jo (4.9-2)

=  J o ( P V u 2 +  z>2 +  2uv cos pr)

where Jo is a Bessel function . T he in teg ration  is perform ed by  w riting

u  cos pt +  v cos p it +  r) =  (m +  v cos pr)  c o s  pt — v sin p r  sin  pt

=  y / « 2 +  f2 +  2uv cos p r  cos {pt +  phase angle)

and  using the integral

M i )  = ^ f ^ costdt

T he correlation function for (4.1-13) has also been given in Section 3.10.
T he correlation function T ( r )  for I{t)  m ay  now be ob ta ined  by  su b sti

tu ting  the above expressions in (4.8-7)

¥(t) = I f  du F(iu)e- (HI2)u2 [  dv F{iv)e~ ^ mv2
4 tr - J c  J c  ( 4 .9 - 3 )

e~'f'ruvj 0{ p ^ / u o _j_ v2 _j_ 2Uv cos pr) .

T M(r), the correlation function for the d.c. and  periodic com ponents of I ,  
m ay, according to  (4.8-10), be ob ta ined  from  this by  se tting  p T equal to  zero.

W hen we have a particu la r non-linear device in m ind the appropria te  
F{iu)  m ay often be ob ta ined  from  A ppendix 4A .  For exam ple, F{iu)  for a 
linear rectifier is — u~L Inserting  th is value in (4.9-3) gives a definite



double in tegral for ^ ( r ' .  I f  there were some easy w ay to evaluate this in 
tegral then  everything would be fine. U nfortunately, no simple m ethod of 
evaluation  has y e t been found. However, one m ethod is available which is 
closely rela ted  to  the d irect m ethod used by  B ennett. I t  is based on the 
expansion

g,{u, v, r) =  M P V u 2 -r  P2 +  2uv cos pr)
00

=  2 3  en( —) nJ n (P u )J n(Pv) cos npT  (4.9-4)
n=0

6d =  1, e„ =  2 for n  >  1 

This expansion enables us to  w rite the troublesome term s in (4.9-3) as 

e *tUT J o ( P y  u- +  s2 2uv cos pr)

I f  £  ( - ) ■ " * . .  COS n p r  ( 4 ' 9 " 5 ’n=0 k= 0 R I

The v irtue of this double sum  is th a t  i t  simplifies the in tegration . Thus, 
p u ttin g  it  in  (4.9-31 and  setting

=  l~  I  F ( iu )u : J n(Pu)e~ t̂ o!2)u' du  (4.9-6)
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gives
00 oo ^

=  23 23 T7 Vrfp.kin COS npr  (4.9-7)
n =0 k = 0  R  .

The correlation function ^ „ ( r )  for the dc and  periodic com ponents of I
are obtained b y  letting  -  —> x  where p T —> 0. Only the term s for which
k  =  0 rem ain:

sc
|&=c(t) =  23 hia cos npr  (4 .9-8)

n =  0

Comparing th is w ith the know n fac t th a t  the correlation function of

A  -j- C cos (2 - fd  — <p) (2.2-2)
is

A 2 +  — cos 2 - fo r  (2.2-3)

and rem em bering th a t  eo is one while e„ is two for n >  1 shows th a t 

A m plitude of dc com ponent of I  = Jim

n p  (4.9-9)
A m plitude of —̂  com ponent of I  = 2hno

L a



Incidentally , these expressions for the am plitudes follow alm ost a t  once from  
the d irect m ethod of solution. This will be shown in connection w ith equa
tion  (4.9-17).

Since the correlation function T c(t)  for the continuous po rtion  W c(f) of 
the power spectrum  for I  is given by

T c(r) =  ¥ ( t) -  T oo(t), (4.8-11)

we also have

T c( t )  =  X )  X)-TT t r  ^rk en COS n p T  (4.9-10)
n=0 k= 1 «!

W hen this is substitu ted  in

W c( f )  =  4 f  T c(t)  cos 2tv/ t dr  (4.9-11)
Jo

we obtain

™  -  S  £  * •  [G* (f  - 1 ) + a  ( / + £ ) ]
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where

Gfc(/) =  [  'Pt cos 2irfr dr  (4.9-13)
Jo

is the function stud ied  in A ppendix AC. Gk(f) is an  even function  of / .  The 
double series (4.9-12) for W c looks ra th e r  form idable. H ow ever, when we 
are in terested  in a particu la r po rtion  of the frequency spectrum  often only 
a few term s of the series are needed.

I t  has been m entioned above th a t  the d irect m ethod of ob tain ing the o u t
p u t pow er spectrum  is closely re la ted  to  the equations ju s t derived. We 
now s tu d y  th is relation.
• We s ta r t  w ith the following resu lt from  m odulation  th eo ry 50: L e t the 
voltage

V  5= P 0 cos Xo +  P l cos Xi +  • ■ ■ +  PN cos xN
(4.9-14)

xk =  pkt, k  =  0, 1, • ■ • N ,

where the pk s are incom m ensurable, be applied to the device (4A-1). The 
o u tp u t cu rren t is

co co

I  ^ / * * * ^  • -mjv
m0=0 m.ff= 0 (4.9—15)

• • • emN cos m 0Xo cos t ti iX i • • • cos m N x N

50 B ennett and Rice, “Note on M ethods of Computing M odulation Products,” Phil. 
Mag. S,7, V. 18, pp. 422-424, Sept. 1934, and B ennett’s paper cited in Section 4.0.
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where e0 =  1 and em =  2 for m  >  1. W hen the p roduct of the cosines is 
expressed as a sum  of cosines of the angles mo xo ±  m\ X\ • • • ± m NxN , i t  is 
seen th a t  the coefficient of the typical term  is A mo...mN , except when all 
the m ’s are zero in  which case it  is JAo-.-o. Thus

j A oo...o =  dc com ponent of I  

I A mo...m/f | =  am plitude of com ponent of frequency (4.9-16)

2^  | m 0po ±  m-ipi ±  • • • ±  m NpN \

For all values of the m ’s,

i M C N
Am(j'-‘mw I F ( iu ) Jmr(.Pr'W) du

TT J C r=0 (4.9-17)

M  — mo -f- mi  +  • • • +

Following B en n ett’s procedure, we identify  V  as given by  (4.9-14), w ith

V  =  P  cos pt +  VN (4.1-13)

by setting P 0 = P ,po  = p, and representing the noise voltage VN by the sum
of the rem aining term s. Since this makes P i , PN all very  small, Laplace’s
process indicates th a t  in (4.9-17) we m ay p u t

n H P r U )  -  exp -H. i-  (P i  + . . . +  P i )
r=1 4 (4.9-18)

_ _  g-|i’0«2/2

We have used the fac t th a t \po is the m ean square value of VN . I t  follows 
from these equations th a t

dc com ponent of T — ~  [  F ( iu )J 0(Pu)e(~'l'o/2)u2 du  
2 7T J c

Com ponent of frequency ^  =  — [  F ( iu )J n(Pu)e~'l'°u212 du
2 i r  7T J  c

These results are identical w ith those of (4.9-9).
The equations ju st derived show th a t hno is to  be associated w ith the wth 

harm onic of p. In  much the same way it  m ay be shown th a t hnk is to be 
associated with the m odulation products arising from  the n th harm onic of 
p  and k of the elem entary sinusoidal com ponents representing VN . We 
consider only com binations of the form  pi ±  pi  ±  p z , taking k =  3 for ex
am ple, and neglect term s of the form  3pi  and  2pi ±  p% . The form er type 
is much more num erous, there being abou t A 3 of them  while there are only 
ab o u t N  and  N 2 , respectively, of the la tte r  type.
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We again take k =  3 and  consider m i , m 2 , m z to  be one, and  p *  , • ■ • »to 
to be zero, corresponding to  the m odulation p ro d u ct np  ±  pi  ±  pz ±  pz ■ 
By m aking the same so rt of approxim ations as B ennett does we find

A .- ..........=  f  F ( i u ) J n(P u)u3e(- “2/2U° du
7r o J c

P i  P 2 P, h
=  4 ^«3

W hen any  o ther m odulation p roduct of the form  np  ±  pTl ±  p T2 ±  pr3 is 
considered we get a sim ilar expression in which P \P 2Pz is replaced by  
P riPr2Prs . This m ay be done for any  value of k. The resu lt indicates 
th a t  hnk , and  consequently also the («, k ) th term s in  the double series 
(4.9-10) and  (4.9-12) for T c(r) and  IT C(/), are to be associated w ith the 
m odulation products of order (■n , k),  the n  referring to  the  signal and  the  k 
to  the noise com ponents.

We now m ay sta te  a theorem  due to  M iddleton regarding the  to ta l pow er 
in  the m odulation products of a given order. For a given non-linear device 
(i.e. F(iu)  is given), the to ta l power which would be d issipated  by  all of the 
m odulation p roducts which are of order (n, k) if I  were to  flow th rough  a 
resistance of one ohm  is

l M 0 )  =  h \ k I  6n[F*]p -̂  (4.9-19)

The im p o rtan t fea tu re of this expression is th a t  i t  depends only on the  r.m .s. 
value of VN and on F(iu).  I t  depends n o t a t  all upon  the  spectra l dis
tribu tion  of the noise power in the input.

The proof of (4.9-19) is based cn  the relation

T„fc(0) = f  W nh{ f )  d f
Jo

between the to ta l power dissipated by  all the (n, k) order p roducts and  the 
corresponding correlation function ob ta ined  from  (4.9-7).

This theorem  has been used by  M iddleton to  show  th a t  when the  in p u t 
is confined to a relatively  narrow  frequency band , so th a t  the o u tp u t spec
tru m  consists of bands, the power in each band  depends only on V% an d  n o t 
on the spectrum  of VN .

4.10 M is c e l l a n e o u s  R e s u l t s  O b t a in e d  b y  C o r r e l a t io n  F u n c t io n

M e t h o d

In  th is section a num ber of results which m ay be ob ta ined  from  the theory  
given in  the sections following 4.6 are given.



W hen the in p u t to the square law device

I  =  a V 2 (4.1-1)

consists of noise only, so th a t  V  = VN , the correlation function for I  is

'J '( t)  =  a[\pl +  2 t l ]  (4.10-1)

where \pT is the correlation function of VN . This m ay be com pared with 
equation  (3.9-7). W hen V  is general,

T (r )  =  ave. +  t)

=  ave. a  V 2{t)V2(t +  r)

=  a  X  Coefficient of in power series expansion (4.10 2)

of ch. f. of V{t),  V{t +  r)

where we have used a known p roperty  of the characteristic function. An
expression for the ch. f., denoted by g{u, v, r), is given by (4.8-4). For
example, when V  consists of a sine wave plus noise, (4.1-13), the ch. f. is
obtainable from  (4.9-3). Hence,

2 2 
U  V

T ( t )  =  Coeff. of - j -  in expansion of

a J o ( P \ / u 2 +  v2 +  2uv cos PT)

f  f t  f 2 , 2x , 1  (4.10-3) X  exp — — [u +  v ) — trUv

( j  +  ^  cos 2p r  +  2P2t r  COS pT +
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2a

The first two term s give the dc and second harm onic. The last two term s 
m ay be used to com pute W c(f) as given by (4.5-13).

Expressions (4.10-1) and  (4.10-3) are special cases of results obtained by 
M iddleton who has studied the general theory of the quadratic rectifier by 
using the Van Vleck-North m ethod, described in Section 4.7.

As an  example to which the theory of Section 4.9 m ay be applied we con
sider the sine wave plus noise, (4.1-13), to be applied to the p-law rectifier

/  =  0, V  <  0
(4.10-4)

I  =  V ”, V  >  o

F rom  the table in Appendix 4A  i t  is seen th a t 

F{m) — r(p  +
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and  th a t  the  p a th  of in teg ration  C runs along the real axis from  — °o to  °o 
w ith a dow nw ard inden ta tion  a t  the origin. The in tegral (4.9-6) for hnk 
becomes

n+k—v—1

2tt

(v -k)/2

_ ( * )
n/2 T(y +  1)

2 r  ^

p 2
* “  2^o

2 — k  — n  +  V
iP i »  +  i ;  - * )  (4 -10- 5)

where the in teg ration  has been perform ed by  expanding /„ (P m ) in  powers 
of u  and  using

I e u du =  ie~UT a x sin XttIXX)

p £ _ X (1 -  e~2Xl>)r(X) (4.10-6)

iire
~  ax r ( l  -  X)

i t  being understood th a t  arg u  =  0 on the  positive po rtion  of C.
F rom  (4.9-9), the dc com ponent of I  is

-  r ( )  ' " s | g )  (4.10-7)
2 r

which reduces to  the expression (4.2-3) when v =  1 for the linear rectifier 
(aside from  the factor a).

W hen the in p u t (sine wave plus noise) is confined to a re la tive ly  narrow  
band, and  when we are in te rested  in the low frequency o u tp u t, consideration 
of the m odulation p roducts suggests th a t  we consider the difference p roducts 
from  the products of order (0, 0), (0, 2), (0, 4), • ■ • (1, 1), (1, 3), • • • (2, 0), 
(2, 2), • • • etc. where the typ ical p ro d u ct is of order (n, k ). T he orders 
(0, 0) and  (2, 0) give the dc and  second harm onic and  hence are n o t con
sidered in the com putation  of W c(f). Of the rem aining term s, either (0, 2) 
or (1, 1) gives the g rea test con tribu tion  to the series (4.9-12) and  (4.9-10) 
for W c(f)  and  T c(r). The rem aining term s contribu te less and  less as n  and
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k increase. The low frequency portion  of the continuous portion  of the 
o u tp u t power spectrum  is then, from  (4.9-12),

^ c ( / )  =  2 \ ^ 02^ 2( /)  “t- hoiGtif)  +  • • •

+  j-, h n [ G i ( f  — / 0) +  G i ( f  +  /o ) ]  +  —| h\%[Gz(f  — /o )  ( 4 .1 0 - 8 )

+  G a ( f  +  /o ) ]  +  2 |  ^ 22^ 2  ( /  — 2 /0) +  G%(f  +  2 /o)] +  • • •

F rom  Table 2 of Appendix 4C we m ay pick  o u t the low frequency portions of 
the G’s. I t  m ust be rem em bered th a t Gm(x) is an  even function of a; and 
th a t  0 <  / < C f o .

As an  example we take the in p u t noise VN to  have the same w (j ) and 
as F ilter a, the norm al law  filter, of Appendix 4C, so th a t

and assume th a t the sine wave signal is a t  the middle of the band, giving 
P — 27t/o. T hus, from (4.10-8), for low frequencies and the norm al law 
distribu tion  of the in p u t noise power,

+i h k J '"*8”+k m  & (4-10-9)

Although we have been speaking of the p-law rectifier, equation (4.10-9) 
gives the low frequency portion  of W c(f),  corresponding to  a norm al law 
noise power, for any  non-linear device provided the proper h„k’s are inserted.

W hen we set v equal to one in the expression (4.10-5) for hnk we m ay ob
ta in  the results given by  B ennett. M iddleton has studied the ou tp u t of a 
biased linear rectifier, when the in p u t consists of a sine wave plus noise, and 
also the special case of the unbiased linear rectifier. He has com puted the 
ou tpu t for a wide range of the ratios P 2/ p o , B 2/\p0 where B  is the bias. In  
order to  cover the entire range he had  to  derive two series for the corre
sponding hnk’s, each series being suitable for its particu lar portion  of the 
range.



A special case of (4.10-9) occurs when noise alone is applied to a linear 
rectifier. The low frequency portion  of the o u tp u t pow er spectrum  is

l : ) m (  2 )™ 1 e - / 2/4mir2
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^ 0
CO

V
7T m =  1

l/'O
- 3 / 2

7T

2<j

ml m l a \ /A n n r

K /2/4ff2 +  647 / 2  (4-10' 10)

J _   L_L , . .
2 5 6 s /  3

where we have used (4.7-6) and  T able 2 of A ppendix 4C. 
The correlation function of

V s =  P  cos pt +  Q cos qt,

where p  and q are incom m ensurable, is

]

J 0( P V u 2 +  fl2 +  2uv cos pr)  X  J o { Q s /u 2 +  fl2 2uv cos qr)

F rom  equations (4.9-16) and  (4.9-17) i t  is seen im m ediate ly  th a t

hm  = —  [  F ( iu )J 0(Pu)Jo(Qu)e-(u2l2Ho du  (4.10-11)
27T J C

is the d.c. com ponent of I  when the applied  voltage is

P  cos pt +  Q COS qt -f  VN . (4.1-4)

J . R . Ragazzini has ob ta ined  an  approxim ate expression for the o u tp u t
power spectrum  when the voltage

V  p  V s +  Kv
(4.10-12)

Vs =  Q(1 +  r cos pt)cos qt

is im pressed on a linear rectifier.46 In  term s of our no ta tio n  his expression 
for the continuous portion  of the pow er spectrum  is (for low frequencies)

'Wo(f )  given by  equation  1 f .
(4.5-17) for square law device JtFo?(Q2 +  2\p0) ^  L (4.5-17) ôr s9u a re law device_

The a  is p u t  in the denom inator to cancel the a  in  the expression (4.5-17). 
We take the linear rectifier to be

S - K  < v

and  replace the  index of m odulation , k, in  (4.5-17) by r.

46 Equation (12), “The Effect of Fluctuation Voltages on the Linear D etector,” Proc. 
I.R .E ., V. 30, pp. 277-288 (June 1942).
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¡Ragazzini’s form ula is quite accurate when the index of m odulation r  is 
small, especially when y  =  Q2/(2i/'0) is large. To show this we p u t r =  0 
in (4.10-13) and obtain

w h e re /g =  q/(2w). This is to  be com pared with the low frequency p o r
tion of W c( f )  obtained by specializing (4.10-8) to obtain  the o u tp u t power 
spectrum  of a linear rectifier when the inpu t consists of a sine wave plus 
noise. The leading term s in (4.10-8) give

The values of the h ’s appropriate to a linear rectifier are obtained by  se t
ting v =  1 in  (4.10-5) and noticing th a t Q now plays the role of P.

Incidentally, the first approxim ation to the ou tp u t of a linear rectifier 
given by (4.10-16) is interesting in its own right. Fig. 9 shows the low fre
quency portion  of W c(f) as com puted from  (4.10-16) when the in p u t noise 
is uniform ly d istribu ted  over a narrow  frequency band  of w idth ¡3, f q being 
the m id-band frequency. ¿ a  and  ¿ o2 m ay be obtained from  the curves 
shown in Fig. 10. In  these figures P  and  x  replace Q and y  of (4.10-17) in 
order to keep the no ta tion  the same as in Fig. 8 for the square law device. 
These curves m ay also be obtained from  equations (33) to (43) of B ennett’s 
paper.

The following values are useful for our comparison.

|V W(/S - / )  +  <32w ( / 9 + / )

14 10-15)

(4.10-16)

¿ 0 2  =  (2-mpo) l l2 i F i ( i ;  1 ; — y )

y = Q2/W o)

(4.10-17)

W hen x  = 0n x  = 0 WTien x  is large

¿ii = 0  ¿ h =  1/ir

¿ 0 2  =  (.2-mpo) 11 ~ ¿ 0 2  =  1 /(irQ).

(4.10-18)

The values for large * are obtained from  the asym ptotic expansion (4B  — 3) 
given in A ppendix 4B.
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LOW  FREQUENCY O U TP U T OF L I N E A R  R E C T IF IE R  
A P P R O X I M A T I O N  -S E C O N D  ORDER PRODUCTS O N L Y

Fig. 9

Fig. 10—Coefficients for linear detector output shown on Fig. 9 

p h i = iFAh 1; - X )  hn =  \  iF ift;  2; -*)

We m ake the first com parison betw een (4.10-15) an d  (4.10-16) by  le tting  
Q —•» oo. I t  is seen th a t  bo th  reduce to

Wc{f )  A  - 2 [w i f i  -  / )  +  w ( f g +  / ) ]  (4.10-19)
7T



M A T H E M A T I C A L  A N A L Y S I S  OF R A N D O M  N OI S E 149

which shows th a t  the agreem ent is perfect in this case. N ext we le t Q =  0. 
The two expressions then  give

W e(J) =  - j ^ —r [  w( x ) w( f  -  x) dx
A Z T T x y o  J — oo

where A  = tt for Ragazzini’s form ula and  A  =  4 for (4.10-16). T hus the 
agreem ent is still quite good. The lim iting value for (4.10-16) m ay also 
be obtained from  (4.7-8).

Even if the index of m odulation r is no t negligibly small i t  m ay be shown 
th a t when Q —» W c(f )  still approaches the value given by (4.10-19). 
Ragazzini’s formula gives a som ew hat larger answer because i t  includes the 
additional term s, shown in (4.5-17), which contain k2/4 ,  b u t this difference 
does no t appear to be serious. If the Q2 +  2\p0 in the denom inator of (4.10- 
13) be replaced by Q2 +  +  2\po the agreem ent is im proved.

A P P E N D IX  4A

T a b l e  o f  N o n -l in e a r  D e v ic e s  Sp e c i f i e d  b y  I n t e g r a l s

Quite a num ber of non-linear devices m ay be specified by  integrals of the 
form

I  =  f  F(iu)eiVudu  (4A-1)
Z ir  j  c

where the function F(iu)  and the p a th  of in tegration  C are chosen to  fit the 
device.* The table gives examples of such devices. Some im portan t cases 
cannot be sim ply represented in this form. An example is the lim iter

I  =  -  aD, V < - D

I  =  a V , - D < V  <  D

I  =  aD, D < V (4A-2)

which m ay be represented as

du2a  f  .
—  / si
7T Jo

I  =  — / sin Em sin Du

t\ i 2a  C ivu - =  — aD  +  — . / e sin Du —
z i a  J c u

(4A-3)

where C runs from  — oo to  +  °o and  is indented downward a t  the origin. 
This is no t of the form  assum ed in the theory  of P a r t IV. However it 
appears th a t  i t  would n o t be difficult to extend the theory in  the particu lar 
case of the lim iter.

* Reference 50 cited in Section 4.9.
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I  =  —  f  F (iu)elVu du 
2ir J c

I F(iu ) C Type of Device

I  = a V n, n  integer a  m ! 

(iii)n+1
Positive Loop 

around u =  0
« th  power device

I  =  a (V  — B )n, n 
integer

“  n[ r—iuB
(iu)n+1

Positive Loop 
around u =  0

n t h  power device 
w ith bias

II 
II

a 
o

y
T A 

A
 

^
lo ex. a. 

(in)2 u2
Real u axis from 

— to +  <x> w ith 
downward in
dentation a t 
u =  0

Linear rectifier 
cut-off a t 
V  =  0

1 =  0, V < B 
i  =  a ( v  -  B y ,
V  > B
v any positive number

aT(v  +  1) __iuB 
( iu y +i

11 pth power recti
fier w ith bias

7 =  0, V <  0 
I  = a V , 0 < V  < D  
I  = aD, D < V

a( 1 -  e~iuD) 
(iu)2

(C Linear rectifier 
plus limiter

1 =  0, 7  <  0 
I  = <p(V), V > 0 F(p) =  [  e~p<v(t) dt 

JO

u

A P P E N D IX  4B

T h e  F u n c t i o n  i F i ( a ;  c; x )

In  problem s concerning a  sine wave plus noise the  hypergeom etric func
tion

1F 1(a-, c; z) =  1 +  ^  ^  • • • (4B -1)

arises. H ere we s ta te  some of its p roperties which are of use in  the  theory  
of P a r t IV. Curves of iF i(a; c; z) are given for a =  — 4, — 3.5 •• • , 3.5, 
4.0 and  c — — 1.5, — .5, +  .5, 1, 1.5, 2, 3, 4 in the 1938 edition, page 275, 
of “Tables of F unctions” , by  Jahnke an d  Em de. A lis t of p roperties of the 
function and  other references are also given. In  ad d itio n  to  these refer
ences we m ention E. T . Copson, “ F unctions of a  Com plex V ariab le” (Ox
ford, 1935), page 260.

If  c is n o t a negative in teger or zero

iF i(a; c; z) = e \F i(c  — a; c; — z). (4B -2)
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W hen R  (s) >  0 we have the asym pto tic  expansions

iFi(a; c; s) I W  f  , (1 -  a)(c -  a) 
r ( a > M |_ ~r  1 Is

_ (1 — û)(2 -  a)(c  — a)(c  - a  +  1) ,

^  T(c

(4E-3)

_j_ a (a +  1) (1 +  a — c){2 +  a — c) ,
' 2!s2 ", "r '" J

M an y  of the hypergeom etric functions encountered m ay be expressed in 
term s of Bessel functions of the first k ind for im aginary argum ent. The 
connection m av be m ade bv m eans of the rela tion51

& ( v  + \ , 2 v  + IS-*) ¿1 p2'r (J' (4B-4)

together w ith the  recurrence relations

F<+ Fa- F c+ F c- F

1. a (a — c) c “  2a  — z
2. ac (c -  a)z — c(a 4~ s)
3. a 1 — c c — a — 1
A.

5.
—c —z
a  — c c — 1

c
1 — a  z

6. (c  — d)z c(c -  1) c ( l  — M— z)

For example, the first recurrence relation is obtained from  line 1 as follows

aF{a - f  1 ; c ;  z )  4 -  0  — c)F(a — 1; c; z )

4 - (c — 2a — z)F(a; c; s ) =  0 (4B-5)

These six relations between the contiguous iF i functions are analogous to 
the 15 relations, given by  Gauss, between the  contiguous 2Fi hypergeom etric 
functions and  m ay be derived from  these by  using

iFi(a; c; z) =  L im it 2Fa a, b; c; \  ) (4B-61
\  b/

A recurrence relation  involving two iFi  s of the type (4B -4 may7 be ob
ta ined b y  replacing a by- a 4~ 1 in the relation given by  row four of the table

51 G. X . W atson, “Theory- of Bessel Functions” iCambridge, 1922j, p. 191.



and  then  elim inating iFi(a +  1 ; c; z) from  th is re la tion  a n d  the  one ob ta ined  
from  row 3 of the  table. There results

iFi(a;  c; z) =  iF i(a ; c — 1; z) +  F{a  +  1; c +  1; z) (4B -7)

Setting f  equal to  zero and  one in  (4B—4) and  a  equal to  j ,  c equal to  2 in
(4B -7) gives

( I ; 3; * )  =  ^ - V i  M  ( l )  (4B -8)

S tarting  w ith these relations the relations in  the tab le enable us to  find 
an  expression for iFi(n  +  f z )  where n  an d  m  are  integers. A num ber 
of these are given in B e n n e tt’s paper. In  p articu la r, using (4B -2),

A  ( - 1 ;  i ;  - » )  -  f "  [ ( 1  +  i ) U  ( ? )  +  r f .  ( ? ) ] .  (4B-9)

A P P E N D IX  4C

T h e  P o w e r  S p e c t r u m  C o r r e s p o n d i n g  t o  

Q uite often we encounter the in tegral

Gn(f )  =  [  h K Q r  COS 2 tt/ t  d r  (4C-1)
Jo

where \p(r) is the correlation function  corresponding to  the  pow er spectrum  
w( f ) .  F rom  the fundam ental rela tion  betw een w( f )  an d  ^ ( r )  given by 
(2.1-5),

Gi( f )  =  (4C-2)

The expression for the spectrum  of the p ro d u c t of tw o functions enables us 
to  w rite G„(J) in  term s of w{f).  We shall use the following form  of this
expression: L et Fr(f) be the spectrum  of the function  <pT(r)  so th a t

<pr(r) =  [ +C° F r( f ) e2ri/T df, r =  1 , 2 
J— oo

152 B E L L  S Y S T E M  T E C H N I C A L  J O U R N A L

/ -t-OO

<Pr(r)

00

+00

e~2Ti/T dt
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/»+00

<Pi(r)(p2(r)e~2nfT dr =  / F i(x)F 2( f  — x) dx  (4C-3) 
00 J—00

i.e., the spectrum  of the p roduct <pi(t)^2( t)  is the in tegral on the right. 
If <pi(t) and  (p2( t)  are  real even functions of r ,  (4C-3) m ay be w ritten  as

r  1 r +°°
/ i i W w W  cos 2ir/r dr = -  I F i{x)F2{ f  — x) dx  (4C-4) 

•'O Z J—oo

In  order to  ob ta in  G2(f) we se t ^ i(r)  and  tp2(r) equal to ip{r). We m ay 
then  use (4C-4) since \p(r) is an  even real function of r . W hen <pT(r) is an 
even real function of r  we see, from  the Fourier integral for F r(f),  th a t Fr(f) 
m ust be an  even real function of / .  We therefore set

2 F r(f)  =  w(f), r  =  1 ,2

and  define w(  / )  for negative /  by

/ )  =  w(f) (4C-5)

E quation  (4C-4) then  gives

1 f +x
Gi i f )  =  q / w ( x ) w ( f  — x) dx

0 J— co

1 K
=  8 Jo ~  x) dx  (4C-6)

1 f°°
+  -  / w( x ) w ( f  +  a;) dx  

4 Jo

where in  the second equation  only positive values of the argum ent of w( f )  
appear.

In  order to get G3(f )  we se t <p^j) equal to ^ ( r ) ,  2 7 + /)  equal to w (/), and 
equal to  / 2(r) . Then

/ + / )  =  2 [  <p2(t)  cos 27r /r  dr  
Jo

=  2G2(/)

and from  (4C-4) we obtain
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E quation  (4C -7) suggests th a t  we m ay w rite the expression for G2( / )  as

This is seen to be true  from  (4C -2) and  (4C -6). In  fac t i t  appears th a t

m ight be used for a step  by  step  com putation  of Gn{f ) .
We now consider Gn( f ) for the case of rela tively  narrow  b an d  pass filters. 

As examples we take filters whose characteristics give the  following w ( f) ’s 
an d  ^ ( r ) ’s

We shall refer to these filters as F ilter a, F ilter b, and  F ilte r c, respectively. 
All have fo as the m id-frequency of the pass band. The constan ts have 
been chosen so th a t they  all pass the same average pow er when a  wide band  
voltage is applied:

and  i t  is assum ed th a t  fo 78> a, fo 7i> a, fo ¡3 so th a t  the pass bands are 
rela tively  narrow.

Expressions for Gn( f ) corresponding to  several values of n  are given in 
Table 2. W hen n  =  1, Gx(f)  is sim ply w (/) /4 . G2( / )  is ob ta ined  by  se t
ting  n  =  2 in  the definition (4C -1) for Gn(f),  squaring the  <Kt)’s of T able 1, 
and  using

(4C -8)

(4C -9)

T a b l e  1

Filter w( f )  for /  >  0 \p{r)

a e - C / - / 0 ) 2 / 2 ^

W T *
t o e - 2 ^ 2  C O S  2-rrfo T

b
'Iii a 1 ^og— cos 2lvf 0r

■K a:2 +  ( /  — To)2

w( f )  =  Wo =  to /ß  for

c
8 8 

/ o - f < / < / o + 2
sin 7t/3t 

\¡/Q---------  cos 2irfo t
7rßr

w{ f )  = 0  elsewhere

ipa = w ( f ) d f  =  m ean square value of I (t )  or V(t)

cos2 2vfoT =  \  +  4 cos 4-7r/or
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The expression for Gi{f )  given in T able 2 corresponding to  F ilte r  c is 
exact. The expressions for F ilters a  and  b give good approxim ations around  
/  =  0 a n d /  =  2/o where G2( f )  is large. H ow ever, they  are n o t exact because 
term s involving /  +  2/0 have been om itted . I t  is seen th a t  all th ree G2’s 
behave in the sam e m anner. E ach has a peak  sym m etrical ab o u t 2/o whose 
w idth is twice th a t  of the  original w( f ) ,  is alm ost zero betw een 0 an d  2/o, 
and  rises to  a peak  a t  0 whose heigh t is tv/ice th a t  a t  2 /o .

G3( / )  is ob ta ined  by cubing the / ( r )  given in T able 1 and  using

F rom  the way in  which the cosine term s combine w ith cos IttJ j  in  (4C -1) we 
see th a t  G3( /) ,  for our relatively  narrow  band  pass filters, has peaks a t  fo 
and  3 /o , the first peak  being three tim es as high as the  second. The ex
pressions given for G3( /)  and  G i(J)  are approxim ate in the sam e sense as are 
those for G2( / ) . I t  will be observed th a t  the coefficients w ithin the brackets, 
for F ilters a and  b, are the binom ial coefficients for the value of n  concerned. 
Thus for n  — 2, they  are 2 and  1, for n  — 3 they  are 3 and  1, and  for n  — 4 
they  are 6, 4, and  1.

The higher Gn( f) ’s for F ilters a and  b m ay be com puted in  the  sam e way. 
The integrals to be used are

In  m any of our examples we are in te rested  only in  the values Gn( f ) for 
/  near zero, i.e., only in th a t peak  which is a t  zero. I t  is seen th a t  Gn(f)  
has such a  peak  only when n  is even, th is peak  arising from  the constan t 
te rm  in  the expansion

cos3 2 t /0t  =  f  cos 2-k/ qt +  f  cos ó i r /o r .

— f cos 2kx  +  2k cos 2{k — l ) x  +
2 L 2!

{2k) (2k -  1)
2!

cos 2 {k — 2)x

(k -  ! ) ! ( £  +  1)1
cos 2x  + W 1

k \ k \ 2j



Abstracts of Technical Articles by Bell System Authors
Historical Background of Electron Optics4 C . J. C a l b ic k . The discov

ery  of electron optics resulted from studies of the action, upon electrons or 
o ther charged particles, of electric and m agnetic fields employed for the 
purpose of obtaining sharply defined beams. The original B raun tube 
(1896) em ployed gas-focusing, as did the low-voltage cathode-ray oscil
loscope developed by Johnson in 1920. I t  was early discovered th a t an 
axial m agnetic field could be used to concentrate the electrons into a beam, 
and this m ethod came into wide use in the field of high-voltage cathode-ray 
oscillography. In  1927 Busch published a theoretical study of the action 
of an axially-sym m etric m agnetic field upon paraxial electrons, showing 
th a t the equation of the trajectories of the electrons was similar to th a t of 
the paths of light rays through an axially sym m etric optical system. He 
concluded th a t such magnetic fields constituted lenses for electrons and pre
sented experim ental confirmation. In  1931 Knoll and Ruska presented a 
large am ount of additional experim ental m aterial and used the words “elec
tron optics” to describe the analogy. In  1932 Bruche and Johannson p ub 
lished the first electron micrographs.

The D avisson and Germer electron diffraction experiments (1927) em
ployed electron beam s formed by electron guns consisting of a  therm ionic 
cathode em itting electrons which were accelerated by potentials applied to a 
series of plates containing aligned apertures. The resu ltan t beam  was 
quite divergent. Davisson and Calbick made a theoretical and experim ental 
study of the forms of such beams. They concluded th a t the distorted elec
tric field in the vicinity  of an aperture in a charged plate constituted a lens 
for charged particles (1931). The optical analogy was either a cylindrical 
or a spherical lens, according as the aperture was a slit or a  circular hole. 
The theory was confirmed by photographing the forms of electron beams, 
and by construction of an electrostatic electron microscope whose experi
m ental magnification agreed w ith the theoretical.

Coaxial Cables and Associated Facilities? J . J . P il l io d . (,Summary of 
Talk before St.  Louis Electrical Board of Trade, October 17, 1944.) Coaxial 
cables provide means of transm itting  frequency bands several million cycles 
in w idth over a m etal tube a little larger than  a le^d pencil, w ith a copper 
wire extending along its axis. Several of these tubes can be placed in a 
lead sheath.

The frequency band transm itted  over coaxial cables m ay be split up so as 
to provide several hundred telephone circuits or, w ithout such division,

1 Jour. Applied Physics, October 1944.
2F M  and Television, November 1944.
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coaxial cables will provide for b road-band transm ission service such as is 
required for television.

A cable is now being installed between Terre H au te  and  St. Louis which 
contains six coaxial tubes to provide telephone circuits, and  which m ay, 
in the future, find use in connection w ith the provision of in te rc ity  television 
networks.

The s tructu re  of the tubes used w ith coaxial cables consists of a central 
copper conductor w ithin a copper tube abou t \  in. in diam eter, m ade from 
flat copper strip  which is form ed around the insulating discs. A round each 
copper tube are two steel tapes which supplem ent the shielding of the copper 
tube in preventing interference between tubes in close proxim ity. The cen
tra l conductor is separated  from  the outer conductor by  slo tted  insulating 
disks which are forced onto the wire. The cables are form ed w ith  an  appro
priate  num ber of these tubes along w ith some sm all gauge pairs used for 
control and  operating purposes.

In  the case of underground cables buried d irectly  in the  earth , ju te  or plas
tic protective coverings are used to assist in reducing sheath  corrosion. 
In  some p a rts  of the country  it  is essential to add  a m etal covering outside 
the lead sheath and the plastic or ju te  to p ro tec t the cables against the 
operations of ground squirrels or pocket gophers. In  certain  areas these 
anim als have been found to carry  aw ay long sections of the ju te  covering 
and will chew holes in the lead sheath unless o ther m etal p ro tection  is pro
vided. Copper is sometimes used for th is m etal covering to assist in light
ning protection.

Repeaters in the coaxial system  are now located a t  in tervals of abou t five 
miles. Power for repeaters in the auxiliary sta tions is supplied from  the 
ad jacen t m ain stations located a t  som ething over 50 miles a t  60 cycles over 
the coaxial conductors themselves.

Coaxial cables are in regular operation between New Y ork and  Philadel
phia and between M inneapolis and  Stevens P oint, W isconsin, a to ta l dis
tance of nearly  300 miles. A netw ork of such cables to ta ling  ab o u t 7,000 
route miles and  including a second transcon tinen ta l cable route is being 
p lanned over additional routes. The requirem ents of the arm ed forces, 
general business conditions, the volum e and distribu tion  of long distance 
telephone messages, the availability  of the necessary m anufactured  cable 
and equipm ent, and other factors m ay m odify the ex ten t of th is construc
tion, the tim e of starting , and  the routes which will be undertaken .

Western Electric Recording System— U. S .  Naval Photographic Science 
Laboratory , 3 R. O. S t r o c k  a n d  E. A. D i c k i n s o n .  T his paper describes 
the complete 35-mm film and 33^ or 78 rpm . disk recording and  re-recording 
equipm ent installed for the U. S. N avy  a t  the Photographic Science L abora
tory, Anacostia, D . C. M odern design, excellent perform ance, and  ease of 
operation are features of the installation.

3 Jour. Soc. Motion Picture Engineers, December 1944.
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