ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

PRACE HABILITACYJNE Nr 13

BUDOWNICTWO Nr 7

GLIWICE 1961

POLITECHNIKA ŚLĄSKA zeszyty naukowe Nr 51

WILHELM KRÓL

SZTYWNOŚĆ PRZESTRZENNA Prefabrykowanych stropów gęstożebrowych

PRACA HABILITACYJNA

Data otwarcia przewodu habilitacyjnego 5. IX. 1961 r.

Oddano do wykowania 27. X. 1961N-12Nakład 300+35 egz.Ark. druk. 18Papier powielaczowy kl. V, 61×86, 70 gZamówienie nr 1451

ь.

Zakład Produkcji Pomocy Naukowych Politechniki Śląskiej w Gliwicach

1. W B t ę p

W rozwoju budownictwa uprzemysłowionego, mającego zapewnić sprawną realizację zadań budownictwa mieszkaniowego, użyteczności publicznej a nawet -w pewnym zakresie- budowli przemysłowych, trwają wciąż wszechstronne poszukiwania nowych rozwiązań konstrukcji stropów, lepszych zarówno pod względem technicznym jak i ekonomicznym od dotychczas stosowanych.

Z pośród różnych ustrojów stropów prefabrykowanych szczególnej uwagi wymagają stropy potrzebne dla szeroko u nas realizowanego budownictwa uprzemysłowionego stopnia pierwszego a więc zakładane na ścianach wykonywanych z cegły lub innych drobnych elementów czy luźnych materiałów budowlanych, bez stosowania większych maszyn montażowych. Stropy te spełniąć powinny szereg różnorodnych warunków, bardzo istotnych z punktu widzenia wykonawcy, inwestora i przede wszystkim użytkownika.

Stosowna konstrukcja stropu -powinna się składać z prefabrykatów o ciężarze pozwalającym na ręczne ich układanie na miejsca przeznaczenia, z pomocą tylko lekkiego sprzętu montażowego. Z uwagi na zadane duże tempo wykonawstwa, uniezależnianie robót budowlanych od warunków atmosferycznych i potrzebę jaknajwcześniejszego przekazywania budynków do użytku, dążyć należy do wyeliminowania z budowy t.zw. procesów mokrych, zaś dla oszczędności zużycia drewna i innych materiałów pomocniczych unikać stosowania deskowania i rusztowania stropów. Wymaga się, by każdy prefabrykat, o konstrukcji dostosowanej do warunków transportu i montażu, był przygotowany do samodzielnego przenoszenia zadanych obciążeń użytkowych bez stosowania na budowie betonu uzupełniającego. Pożądanym jest, aby bezpośrednio po zmontowaniu, strop był w stanie przenosić bezpiecznie obciążenia robocze, wynikające z dalszego toku budowy.

Utworzona z prefabrykatów konstrukcja stropu o równej, poziomej powierzchni górnej i dolnej, ma wykluczać t.zw. klawiszowanie, powodujące rysy, odpadanie tynków sufitu czy pęknięcia posadzki w pionowych płaszczyznach spoin przyległych do siebie elementów, ponadto ma zapewniać współpracę wszystkich elementów nośnych stropu przy dowolnym układzie, obciążeń użytkowych, oraz nie powinna wykazywać nadmiernych ugięć.

4 -

Dla spełnienia przez strop zadań poziomego tężnika budynku, konstrukcja stropu traktowanego jako belka – tarcza, o rozpiętości równej odstępowi poprzecznych ścian nośnych lub innych pionowych tężników, musi posiadać odpowiednią sztywność i wytrzymałość oraz należyte połączenia ze ścianami budynku, przygotowane na działanie w płaszczyźnie stropu poziomych sił z obciążenia parciem wiatru i i.

Oprócz warunków statyczno-wytrzymałościowych strop prefabrykowany, w zasadzie ognioodporny, powinien również spełniać odpowiednie warunki.izolacji termicznej, akustycznej i prząciwwilgociowej, zaś z uwagi na ekonomię wykorzystania przestrzeni zabudowanej i minimum kosztów inwestycyjnych, strop powinien posiadać jaknajmniejszą wysokość ustrojową i jaknajmniejszy ciężar własny.

W celu harmonijnego zrealizowania wymienionych postulatów założyć należy -wzorując się na idei budowy żywych ustrojów otaczającego nas świata- konsekwentny podział zasadniczych funkcji poszczególnych elementów komponowanego stropu, przyjmując taki jego ustrój, w którym zadania statyczno-wytrzymałościowe spełnią odpowiednio wykształcony szkielet nośny, zaś izolację termiczną, akustyczną i przeciwwilgociową zapewniają stosowne wypełniacze, maty lub płyty izolacyjne.

Zgodnie z przytoczoną myślą przewodnią zdecydowałem się -już we wstępnych rozważaniach- przyjąć za podstawowy element konstrukcyjny stropu, potrzebnego dla budownictwa uprzemysłowionego stopnia I, żelbetową belkę prefabrykowaną przekroju teowym. Przekrój ten bowiem pozwala na najlepsze wykorzystanie nośności stosowanych materiałów budowlanych, stwarzając zarazem dogodne warunki dla założenia odpowiednich izolacji, posadzki i płyty sufitowej, przy małej stosunkowo wysokości ustrojowej.

W trakcie ustalania programu opracowania podjętego tematu, otrzymałem w ramach Katędry Budownictwa Żelbetowego Politechniki Sląskiej w Gliwicach, zlecenie Bielskiego Przedsiębiorstwa Budownictwa Miejskiego na przeprowadzenie badań prototypu prefabrykowanego stropu, złożonego z żelbetowych belek teowych według projektu racjonalizatorskiego pracowników BPBM, oraz wydanie opinii o przydatności tego stropu dla potrzeb budownictwa miejskiego. Ponieważ konstrukcja przedłożonego stropu ani nie zapobiegała klawiszowaniu przyległych do siebie belek ani nie posiadała żadnych stężeń paprzecznych, można było dany projekt z miejsca zdyskwalifikować, albo też, wykorzystując przygotowane już belki teowe, wprowadzić w ustrój odpowiednie elementy wiążące oraz usztywniające i tym samym stworzyć konstrukcję stropu czyniącą zadość wyżej sprecyzowanym wymaganiom. Decydując się na tę drugą alternatywę, wykorzystałem istniejące i dodatkowo jeszcze przez BPBM z pewnymi zmianami wykonane belki teowe, łącząc zlecone badania belek teowych z badaniami usztywnień stropu, sporządzonych według własnej koncepcji.

W niniejszej pracy rozpatrzona została strona statycznowytrzymałościowa a w szczególności sztywność przestrzenna żelbetowego stropu prefabrykowanego gęstożebrowego, złożonego z jednoprzęsłowych belek teowych i specjalnych beleczek prefabrykowanych, stężających strop w kierunku poprzecznym do jego rozpiętości, oraz problem skuteczności zastosowanych elementów konstrukcyjnych, zabezpieczających poszczególne belki przed klawiszowaniem.

2. Cel i zakres pracy

Celem niniejszej pracy jest syntetyczne ujęcie zasad konstrukcyjnych, zapewniających ustrojowi prefabrykowanego

- 5 -

stropu gęstożebrowego potrzebną, ze względów użytkowych, sztywność przestrzenną.

Zasadnicza, teoretyczna część przedłożonej pracy obejmuje analizę matematyczną sztywności i nośności poszczególnych elementów oraz deformacji całej konstrukcji prefabrykowanego stropu gęstożebrowego, pod wpływem dowolnie na nim założonych obciążeń pionowych. Stosownie do struktury rozpatrywanych ustrojów stropu, traktuje się je jako ruszty płaskie, złożone z głównych prętów podłużnych i usztywniających poprzecznych o złączach przegubowych, z uwzględnieniem rzeczywistych cech ciągłości i efektywnej sztywności wszystkich konstrukcyjnych elementów. Wyłonione zagadnienia teoretyczne doprowadzono najpierw drogą wywodów analitycznych do postaci wzorów ogólnych, które następnie wykorzystano do rozwiązania liczbowego konkretnych przyjętych układów statycznych stropu.

Uzupełniająca część doświadczalna, o zakresie dostosowanym do możliwości technicznych wykonawcy, stanowi jedynie wycinkowe sprawdzenie, na prototypach wielkości naturalnej /1:1/, wyników rozważań teoretycznych. Przedmiotowe prace doświadczalne, przeprowadzone na terenie podległej B.P.B.M. Betoniarni w Cieszynie, przy wydatnej współpracy jej kierownika inż.J.Szołdry, objęły :

- a/ badania ugięć i wytrzymałości doraźnej pojedynczych prefabrykowanych belek teowych,
- b/ badania ugięć próbnego stropu utworzonego z pięciu prefabrykowanych belek teowych o żebrze - ściance perforowanej wykrojami kołowymi, połączonych wzajemnie punktowo w podłużnych spoinach przy pomocy stalowych uchwytów w formie krótkich dwuteowników, osadzonych na zaprawie cementowej,
- c/ badania ugięć próbnego stropu utworzonego z pięciu prefabrykowanych belek teowych o żebrze - ściance typu ramy Vierendeela, z zabezpieczeniem płyt przed klawiszowaniem przy pomocy cementowych dybli ciągłych

w odpowiednie sprofilowanych spoinach, oraz w dalszym etapie stężonego przy pomocy poprzecznego żebra rozdzielczego, złożonego z prefabrykowanych beleczek usztywniających.

-7 -

3. Charakterystyka konstrukcyjna badanych elementów i ustrojów stropu

Wszystkie użyte do badań elementy prefabrykowane wykonane zostały, według danych B.P.B.M., z betonu żwirowego o Rw = 200 kG/cm² i uzbrojenia prętami stalowymi o Qr = 2500 wzgl. 3600 kG/cm². Wiek prefabrykatów w czasie ich badania wahał się od 1 do 3 miesięcy, jakość wykonawstwa oceniono jako zadawalającą.

Kształt, wymiary i uzbrojenie badanych belek teowych poz.1 i 2 przedstawia rys.1, gdzie również uwidoczniony jest uchwyt stalowy poz.3 i betonowy dybel ciągły poz.4, ześ beleczki żebra rozdzielczego poz.5 przedstawiono na rys.2.

Zasadniczym wymiarem wszystkich badanych belek teowych jest ich stała wysokość h = 20 cm. Grubość płyt wszystkich belek zmienia się od $t_k = 3$ cm na krawędziach do $t_s = 5$ cm przy żebrze. Szerokość płyt wynosi : belek poz. 1 : b = 38 cm, belek poz. 2 : b = 50 cm.

W pracy rozpatrzono cztery zasadnicze ustroje stropu gęstożebrowego: I, II, III i IV.

3.1. Ustrój I stropu

Pierwszy badany ustrój stropu, przedstawiony na rys.3, utworzony z pięciu prototypowych belek teowych A,B,C,D,E o żebrach perforowanych otworami Ø 11 cm - /poz.1/, posiada rozpiętość w świetle $l_0 = 3,87$ m, rozpiętość teoretyczną l = 4,25 m i całkowitą szerokość B = 5.38 = 1,90 m. Przylegające do siebie belki teowe połączone są wzajemnie

- 9 -

w 1/3 rozpiętości stalowymi uchwytami poz.3, założonymi na zaprawie cementowej w podłużnych, kilku mm szerokości spoinach, utworzonych między ukośnie ściętymi,równoległymi bokami płyt teowych belek. Zaprawą cementową zalano również spoiny na całej ich długości pomiędzy uchwytami oraz pokryto – wyrównano bez uzasadnionej potrzeby – górną powierzchnię stropu. Końce belek osadzono na poprzecznych ścianach, murowanych z pustaków glinobetonowych i ujęto w ciągłe, usztywniające ławy betonowe o przekroju 40.20 cm.

Jako elementy zapobiegające klawiszowaniu belek uwzględnia się tutaj tylko stalowe uchwyty, traktując je jako zawiasy o poziomych osiach obrotu. Zaprawy w ciągłych spoinach podłużnych nie bierze się przy tym pod uwagę, zarówno z powodu niepewności wypełnienia nią ciasnych spoin jak i z powodu nikłej wytrzymałości spoiny na rozrywanie, przy obciążeniu belki zachodzącej ukośnie ściętym bokiem płyty pod równolegle ścięty bok belki przyległej.

3.2. Ustrój II stropu

Drugi badany ustrój stropu, przedstawiony na rys.4, o wymiarach 1 = 4,65 m, 1 = 4,82 m i B = 2,50 m, składa się z pięciu belek teowych A, B, C, D, E, o żebrach typu Vierendeela /poz.2/, przyczym podłużne, odpowiednio sprofilowane boki płyt tych belek pozwalają na utworzenie w powstałych między nimi szczelinach ciągłych spoin z zaprawy cementowej, które, po stężeniu pracując jako dyble /poz.4/ na docisk i ścinanie techniczne, mogą bezpiecznie przekazywać pionowe siły z jednej belki na drugą i zapobiegać klawiszowaniu stropu. Z czterech podłużnych szczelin dwie /między belkami E-D i D-C/ zalano - 1 dzień przed próbnym obciążeniem- zaprawą cementową, zaś pozostałe dwie /między belkami C-B i B-A/ pozostawiono puste, dla wykazania skiteczności wprowadzonych dybli. Ułożyskowanie belek tego stropu na podporach wykonano podobnie jak stropu pierwszego.

- 11 -

ugięcia.

3.3. Ustrój III stropu

Ten ustrój stropu składa się - wg. rys.4 - z pięciu belek teowych poz.2. ułożyskowanych na podporach jak w ustroju poprzednim, lecz zamiast zdyblowania podłużnych szczelin stykowych założono tutaj, w połowie rozpiętości stropu, poprzeczne żebro rozdzielcze. Zadaniem żebra rozdzielczego jest poprzeczne stężenie konstrukcji stropu a zwłaszcza wciągnięcie do intensywniejszej współpracy jaknajwiększej ilości jego składowych belek teowych przy obciążeniu n.p. tylko jednej z nich. Żebro to złożone jest z żelbetowych, s = 5,5 cm szerokich, prefabrykowanych beleczek usztywniających poz.5 /rys.2/, o długościach 2 b = 100 cm, odpowiadających osiowej odległości trzech przyległych do siebie belek teowych. Wysokość poprzecznych przekrojów beleczek usztywniających zmienia się liniowo od w_k = 3,5 cm na końcach do w = 6 cm w środku ich długości, dzięki czemu beleczki uzyskują profil podłużny w formie daszku dwuspadowego.

Kolejne beleczki usztywniające, zwrócone naprzemian swymi daszkowymi powierzchniami w górę i w dół i wsuwane sukcesywnie z postępem układania prefabrykowanych belek teowych w przygotowane w pionowych ściankach tych ostatnich wykroje między pasem dolnym i górnym, zachodzą wzajemne na siebie daszkowymi powierzchniami o długości b, tworząc ciągłe żebro rozdzielcze stropu, p.rys.2. Wzajemne połączenie poszczególnych beleczek usztywniających oraz ścisłe powiązanie utworzonego z nich żebra rozdzielczego z wszystkimi belkami stropowymi uzyskano przez wyklinowanie,klinami z twardego drewna, poziomych szczelin łożyskowych w wykrojach ścianek - żeber belek stropowych. W węzłach tych zapewnia się należyte pionowe dociski beleczek usztywniających do żeber belek stropowych.

Dla uzyskania lepszej wzajemnej współpracy beleczek usztywniających założyć można między ich powierzchniami daszkowymi kilku mm warstwę zaprawy cementowej, która oprócz zapewnienia ciągłego docisku, przeciwdziałać będzie,

- 13 -

dzięki przyczepności do beleczek dolnego i górnego ciągu, siłom ścinającym, rozwarstwiającym styki zachodzących na siebie beleczek.

Ustrój statyczny tak skonstruowanego, ciągłego żebra rozdzielczego, obciążony będzie jedynie siłami skupionymi, działającymi w punktach połączenia go z belkami stropowymi, czyli w t.zw. węzłach żebra.

W zależności od dokładności wykonania daszkowych płaszczyzn zachodzących na siebie beleczek składowych żebra i sposobu ich wzajemnego połączenia, rozróżnia się trzy rodzaje ustroju żebra rozdzielczego :

- a/ żebro złożone nieszczelnie, którego zachodzące na siebie beleczki składowe kontaktują się tylko w węzłach żebra, a zatem jedynie w węzłach zapewnione jest wzajemne przekazywanie sił i równe ugięcie beleczek górnych i dolnych,
- b/ żebro złożone szczelnie, w którym ciągły kontakt
 -docisk- uzyskany przez ewentualne wstępne sprężenie poprzecznym rozklinowaniem zachodzących na siebie beleczek, zapewnia wspólne ugięcia beleczek dolnych
 i górnych w zasadzie na całej ich długości, a conajmniej w rozklinowanych przekrojach żebra,
- c/ żebro zmonolitowane, t.j. utworzone przez szczelne i poziomo nieprzesuwne połączenie beleczek w ich daszkowych powierzchniach, n.p. przy pomocy warstwy zaprawy cementowej, dzięki czemu żebro rozdzielcze traktowane być może jako belka monolityczna o wysokości h = w_k + w_s. Jedynie w węzłach żebra, gdzie zbliżają się do siebie końce dwóch beleczek tego samego ciągu /dolne lub górne/, wysokość konstrukcyjna żebra wynosi w_s.

W przeprowadzonych badaniach terenowych zrealizowano jedynie strop z żebrem rozdzielczym odpowiadającym w przybliżeniu ustrojowi a lub b. Pozostały ustrój c żebra usztywniającego rozpatrzono jedynie teoretycznie, nie mogąc go w danych warunkach wykonawstwa sprawdzić doświadczeniem.

3.4. Ustrój IV stropu

Czwarty rozpatrywany ustrój prefabrykowanego stropu stanowi syntezę wyżej opisanych ustrojów II i III /p.rys.4/. Składowe belki teowe połączone są tutaj wzajemnie w podłużnych spoinach przy pomocy dybli z zaprawy cementowej i ponadto stężone poprzecznym żebrem rozdzielczym w środku rozpiętości stropu. W przeprowadzonych badaniach doświadczalnych zdyblowanie wykonano jedynie między belkami C-D i D-E, rozpatrując na tym ustroju - w stojącym do dyspozycji krótkim czasokresie - wpływ żebra rozdzielczego na strop o belkach teowych wzajemnie zdyblowanych i niezdyblowanych.

4. Schematy statyczne rozpatrywanych stropów

4.1. Schemat ustroju I

Ustrój pierwszy konstrukcji stropu /rys.3/ traktuje się jako ruszt belkowy o schemacie statycznym przedstawionym na rys.5. W schemacie tym założono swobodne podparcie każdej belki teowej l, umożliwiające obroty tylko w pionowej płaszczyźnie przechodzącej przez oś podłużną belki, zaś pełne utwierdzenie jej końców w wieńcach podporowych, wykluczające skręcanie - obroty przekroi podporowych w płaszczyznach prostopadłych do osi belki. Poprzeczki b, wystające wspornikowo z belek l w środku ich rozpiętości i imitujące odpowiednie poprzeczne pasmo stropowych płyt, spiętych w ich podłużnych stykach stalowymi uchwytami, łączą się wzajemnie w przegubach u. Szerokość tego pasma, istotną dla ustalenia sztywności uzyskanej z niego przegubowo ciągłej poprzeczki b, przyjęto do rozważań teoretycznych szacunkowo równą 1/3 l.

Rys.5. Schemat statyczny ustroju I rusztu stropowego

a/ rzut aksonometryczny rusztu

- b/ zwroty sił hiperstatycznych X do X₄ o znakach dodatnich /przekrój poprzeczny stropu z pionowo rozsuniętymi belkami/
- c/ wykresy momentów zginających M_1.M_ i skrącających
 M_sk belki B z przynależnymi poprzeczkami.
 pod działaniem siły X:=+ 1 liniami pełnymi oraz
 pod działaniem siły X:=- 1 liniami przerywanymi
- d/ wykres momentów zginających M₁ belki obciążonej siłą Q.

Przy założeniu dla każdej belki teowej symetrycznego układu obciążeń pionowych – normalnych do płaszczyzny rusztu, wystąpią tutaj cztery hiperstatyczne pionowe siły przegubowe X₁, X₂, X₃ i X₄.

4.2. Schemat ustráju II

Ustrój drugi stropu /rys.4/, przedstawiony.w schemacie statycznym na rys.6, stanowi ruszt prętowy podobny do poprzedniego z tym, że zamiast jednej poprzeczki środkowej posiada cztery ciągłe poprzeczki b, założone we wzajemnych odstępach 1/4 1. Szerokość pomyślanych tutaj pasm płyt stropowych belek teowych,odpowiadająca przyjętym poprzeczkom, wynosi 1/4 1.

Korzystając z symetrii us roju oraz z założenia obciążeń każdej belki teowej wzdłuż jej osi w sposób symetryczny, sprowadza się wyznaczenie występujących tutaj 16-tu hiperstatycznych sił przegubowych do obliczenia czterech madliczbowych X₁ - X₄ dla układu symetrycznego i czterech par /X₁, X₁ - X₄, X₄ / dla ukłedu antysymetrycznego

4.3. Schemat ustroju III

W ustroju trzecim konstrukcji stropu /rys.4 i 7/ pięć składorych belek teowych 1 stanowi sprężyste podpory ciągłego żebra rozdzielczego r. Oprócz dwóch skrajnych, statycznie wyznaczalnych sił podporowych R_A i R_E żebra rozdzielczego, w pozostałych punktach jego połączenia z belkami B, C i D występują trzy siły hiperstatyczne Y. Wykorzystując symetrię ustroju, traktuje się go jako dwukrotnie statycznie niewyznaczalny /Y₁ i Y₂ / w układzie obciążeń symetrycznym i o jednej nadliczbowej /Y₂ =-Y₂ / w układzie antysymetrycznym.

4.4. Schemat ustroju IV

Zakładając w przedstawionym na rys.4 ustroju IV rusztu stropowego te same oznaczenia jak w poprzednich ustrojach II i III, okazuje się ustrój cztwarty sześciokrotnie

Rys.8. Schemat statyczny ustroju IV rusztu stropowego rzut aksonometryczny.

> Zwroty sił hiperstatycznych, wykresy momentów zginejących i skręcających od sił jednostkowych oraz obciążenia Q = 8 P - jak w schematach II i III, których syntezę stanowi niniejszy schemat IV.

statycznie niewyznaczalnym w układzie symetrycznym obciążeń i pięciokrotnie statycznie niewyznaczalnym w układzie antysymetrycznym obciążeń. Schemat statyczny tego ustroju podaje rys.8.

4.5. Uwagi wspólne

W powyższych schematach zakłada się, dla uproszczenia obliczeń, stałą sztywność każdego pręta na jego długości i jego wewnętrzną statyczną wyznaczalność. W rzeczywistości jednak zastosowane w przeprowadzonych badaniach belki prefabrykowane posiadają przekroje oraz momenty bezwładności zmienne na swej długości i stanowią same w sobie ustroje statycznie niewyznaczalne, np. belka Vierendeela i żebro rozdzielcze złożone z w.w. beleczek usztywniających. Należy zatem, przed przystąpieniem do teoretycznego rozwiązywania przedstawionych schematów statycznych rusztów stropowych, ustalić zastępcze stałe sztywności przekrojów poszczególnych prętów rusztu, jaknajlepiej odpowiadające rzeczywistym warunkom ich pracy w ustroju. Zagadnieniu temu poświęcono następujący rozdział pracy.

Dla obliczenia sztywności wszystkich prefabrykowanych prętów składowych rusztu przyjmuje się według $\begin{bmatrix} 6 & i & 7 \end{bmatrix}^{x}$ dla betonu o Rw = 200 kG/cm² moduł sprężystości E_{b} = 180 000 kG/cm², moduł odkształcenia postaciowego, według $\begin{bmatrix} 1 \end{bmatrix}$ przy założeniu liczby Poissona $\mu = 0.18$, $G = E_{b}$: 2 /1 + μ / = 76 000 kG/cm² oraz dla stali zbrojeniowej, uwzględnianej w przekrojach prętów zginanych i rozciąganych /w fazie I/, E_{z} = 2100 000 kG/cm², czyli $n = E_{z}/E_{b}$ = 11, m = G/E = 0.42.

x Liczby w nawiasach oznaczają pozycje literatury.

5.1. Belka teowa poz.1. z kołowymi wykrojami w ściance żebrze

Zasadniczy pełny przekrój poprzeczny belki wg.rys.1, bez uwzględnienia wykroi, posiada: pole $F_{1p} = 249 \text{ cm}^2$, odległość środka ciężkości od górnej krawędzi e = 6,3 cm, moment bezwładności względem poziomej osi bezwładności $I_{1p} = 9817 \text{ cm}^4$.

Przekrój poprzeczny belki przeprowadzony przez oś wy-kroju kołowego charakteryzują:

$$F_{10} = 194 \text{ cm}^2$$
, $e_{go} = 5,2 \text{ cm}$, $I_{10} = 7827 \text{ cm}^4$.

Jako czynnik zastępczej stałej sztywności giętnej E I rozpatrywanego pręta przyjmuje się szacunkowo wyznaczony moment bezwładności zginania

$$I_1 = I_{1p} - \frac{I_{1p} - I_{1o}}{3} = 9150 \text{ cm}^4$$

Potrzebny dla wyznaczenia sztywności skrętnej GC czynnik C – moment bezwładności skręcania przekroju belki teowej – oblicza się w sposób przybliżony jak dla figury złożonej z prostokątów, według [1] :

 $C = \sum C_{1i} = 2,456 \cdot 4^4 + 0,790 \cdot 5^4 = 1122 \text{ cm}^4$

Poprzeczki b w schemacie I - rys.5, zastępujące wspornikowo pracujący poprzeczny pas płyty belki teowej poz.1, rys.1, posiadają na swej długości b/2, przy założeniu ich stałej szerokości p = 1/3, zmienną sztywność giętną E I przekroju, wynikającą z liniowo zmiennej grubości płyty od t_k do t_s. Zastępczy stały moment bezwładności I tych prętów oblicza się z warunku równych ugięć pręta rzeczywistego i równoważnego pręta zastępczego o stałej wysokości przekroju, pod działaniem siły jednostkowej na końcu danego pręta wspornikowego:

$$f = \int_{0}^{b/2} \frac{y^2}{E \, Iy} \, dy = \frac{b^3}{24 \, EI_b} \quad \dots \dots /5.1.1./$$

Podstawiając w wyrażeniu pod całką Iy = $\frac{\frac{1}{3}/t_k + vy/^3}{12}$ gdzie v = $\frac{2/t_s - t_k/}{b}$

otrzymuje się

$$f = \int_{0}^{b/2} \frac{36 y^2}{E \cdot 1/t_k + v y/3} dy = \frac{36}{E \cdot 1 \cdot v^3}$$

$$\cdot \left[\ln / \frac{t_s}{t_k} / + 2 \frac{t_k}{t_s} - \frac{1}{2} / \frac{t_k}{t_s} / \frac{2}{-1,5} \right] \cdots \sqrt{5 \cdot 1 \cdot 2 \cdot 1}$$

$$K / = 0,03282/$$

Z porównania /5.1.1./ i /5.1.2./ wynike

Po podstawieniu za poszczególne czynniki odpowiednich wymiarów ustrojowych wg. rys.l, uzyskuje się wartość zastępczego momentu bezwładności przekroju poprzeczki b

$$I_{b} = \frac{425 \cdot 38^{3} \cdot 0.10526^{3}}{864 \cdot 0.03282} = 959 \text{ cm}^{4}$$

Do analogicznego wyniku dojść można według $\begin{bmatrix} 8 & i & 9 \end{bmatrix}$. 5.2. Belka teowa poz.2 z ścianką typu ramy Vierendeela Pełny przekrój poprzeczny belki teowej poz.2 wg.rys.2, przechodzący przez żebro nieosłabione wykrojem, posiada: $F_{1p} = 297 \text{ cm}^2$, $l_{gp} = 5,6 \text{ cm}$, $I_{1p} = 10433 \text{ cm}^4$, $C = 1500 \text{ cm}^4$. wobec zdecydowanie różnej pracy zginania rzeczywistej belki teowej o żebrze typu ramy Vierendeela od pracy

Rys.9. Belka stropowa typu Vierendeela, a - schemat statyczny, b - układ przygotowany, c - wykresy momentów zginajądych od sił jednostkowych I - X₆, działających na ustrij przygotowany d - wykres momentów zginających ustroju

rzeczywistego.

założonego w schematach II-IV preta 1 o stałym przekroju wyznaczyć na całej jego długości,/hależy potrzebny dla obliczenia statycznie niewyznaczalnego ustroju rusztu stropowego, zastępczy stały moment bezwładności i sztywność giętną rzeczywistej belki stropowej. Sztywność tę oblicza się w niniejszym przypadku z warunku równych strzałek ugięcia belki.Vierendeela i zastępczej równoważnej belki 1 o stałym momencie bezwładności, pod działaniem jednakowego, na całej długości obu belek równomiernie rozłożonego, obciężenia.

Przedmiotowa belka Vierendeela, traktowana jako ustrój symetryczny symetrycznie obciążony, stanowi układ 6-krotnie wewnętrznie statycznie niewyznaczalny. Podstawowy układ statycznie wyznaczalny -przygotowany-, w którym jednostkowymi siłami uogólnionymi zastąpiono wielkości nadliczbowe X₁-X₆ układu rzeczywistego, przedstawiono na rys.9.

Zadanie rozwiązuje się metodą sił [2]. Kolejne przemieszczenia δ_{ik} , δ_{iq} , δ_{xiP} oraz δ_{qP} , dla P = 1 dziąłającego w środku rozpiętości belki, wyraża się na podstawie zasady Bettiego - Maxwella wzorami ogólnymi :

$$\delta_{11} = \frac{2c}{EF_d} + \frac{2c}{EF_g} + \frac{2h^3}{3EI_g} + \frac{2ch^2}{EIg},$$

$$\delta_{12} = -\frac{c^2 \cdot h}{EIg}, \quad \delta_{13} = -\frac{h^2}{EI_g} - \frac{2ch}{EIg},$$

$$\delta_{14} = \frac{2c}{EF_d} + \frac{2c}{EF_g} + \frac{2c^2 \cdot h}{EIg},$$

$$\delta_{15} = -\frac{c \cdot h/2b + c/}{EIg}, \quad \delta_{16} = -\frac{2ch}{EIg}$$

$$\begin{split} \delta_{22} &= \frac{2}{3} \frac{c^2}{E \ Id} + \frac{2}{3} \frac{c^3}{E \ Ig} + \frac{2}{E \ F_g} + \frac{h}{E \ F'_g} + \frac{h}{E \ F'_g}, \\ \delta_{23} &= \frac{c^2}{E \ Id} + \frac{c^2}{E \ Ig}, \quad \delta_{24} = -\frac{c^2 \ h}{E \ Ig}, \\ \delta_{25} &= \frac{2}{2} \frac{b}{c^2 + 2} \frac{c^3}{c^3} + \frac{2}{2} \frac{b}{c^2 + 2} \frac{c^3}{c^3}, \\ \delta_{26} &= \frac{c^2}{E \ Id} + \frac{c^2}{E \ Ig}, \\ \delta_{33} &= \frac{2}{E \ Id} + \frac{2}{E \ Ig}, \\ \delta_{34} &= -\frac{2}{E \ Ig}, \quad \delta_{35} = \frac{2 \frac{b}{c} + c^2}{E \ Ig}, \\ \delta_{36} &= \frac{2c}{E \ Id} + \frac{2c}{E \ Ig}, \quad \delta_{44} = \frac{2/b tc/}{E \ F_g} + \frac{2h^2/b tc/}{E \ F_g}, \\ \delta_{45} &= -\frac{/b tc/^2}{E \ I_g}, \quad \delta_{46} &= -\frac{2/b tc/h}{E \ F_g}, \\ \delta_{45} &= -\frac{/b tc/^2}{E \ I_g}, \quad \delta_{46} &= -\frac{2/b tc/h}{E \ F_g}, \\ \delta_{55} &= \frac{2/b tc/^2}{E \ I_d} + \frac{2/b tc/^2}{E \ I_g}, \quad \delta_{46} &= -\frac{2/b tc/h}{E \ F_g}, \\ \delta_{56} &= \frac{/b tc/^2}{E \ I_d} + \frac{2/b tc/^2}{E \ I_g}, \quad \delta_{66} &= \frac{2/b tc/h}{E \ I_g}, \\ \delta_{56} &= \frac{/b tc/^2}{E \ I_d} + \frac{/b tc/^2}{E \ I_g}, \quad \delta_{66} &= \frac{2/b tc/h}{E \ I_g} + \frac{2/b tc/h}{E \ Ig} + \frac{2$$

$$-27 - \frac{1}{2} = \frac{1}{2} \int_{a+b+c}^{a+b+c} \int_{a+b}^{a+b+c} \int_{a+b}^{a+b+c} \int_{a+b}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_{a+b}^{a+b+c} \int_{a+b+c}^{a+b+c} \int_$$

. Ugiącie belki Vierendeela w środku jej rozpiętości, pod działaniem obciążenia równomiernie rozłożonego q /kG/cm/:

$$f^{V} = \int \frac{M_{q}}{E} \frac{M_{p}}{E} \frac{M_{q}}{E} \frac{M_{q$$

+
$$\int \frac{M_{xi}^{\circ}}{E} \frac{M_{p}^{\circ}}{E} = 1$$
 dx = $\delta_{qP} + \sum \delta_{x_i} P \cdots (5.2.1)$

Ugięcie belki zastępczej, pręta 1 o stałym momencie bezwładności I,

Z przyrównania /5.2.1./ do /5.2.2./

określa się zastępczy stały moment bezwładności belki teowej o żebrze ramowym typu Vierendeela

Dla danych ustrojowych: 1 = 482 cm, h = 15,7 cm, $a = 64 \text{ cm}, b = 77 \text{ cm}, c = 100 \text{ cm}, \text{Fg} = 205 \text{ cm}^2,$ Ig = 330 cm⁴, F_d = 42 cm², I_d = 52 cm⁴, F_g = 90 cm², I_g = 2430 cm⁴, F'_g = 50 cm², wprowadzonych w powyższe wzory ogólne, obliczono następujące wartości sił nadliczbowych: X₁ = + 501,299 q, X₂ = + 10,266 q, X₃ = + 1200,874 q, X₄ = + 1192,641 q, X₅ = - 20,173 q, X₆ = + 707,541 q.

Wartości momentów zginających M_q/kG cm/ wywołanych obciążeniem q = 1 kG/cm górnego pasa belki Vierendeela /poz.2/, czyli obciążeniem 200 kG/m² stropu, ustroju rzeczywistego, wynoszą :

 $M_1 = + 13.376$, $M_1 = - 4631$, $M_1 = - 18.007$ $M_2 = + 4480$, $M_2 = - 2190$, $M_2 = - 6670$

- 20 -

$$\begin{split} & \mathrm{M}_{3} \ \mathbf{1} = \mathrm{M}_{3} \ \mathbf{p} = + 1619, \ \mathrm{M}_{3} \ \mathbf{s} = 0 \\ & \mathrm{M}_{4} \ \mathbf{s} = + 707, \ \mathrm{M}_{4} \ \mathbf{p} = - 707, \\ & \mathrm{M}_{5} \ \mathbf{1} = + 646, \ \mathrm{M}_{5} \ \mathbf{p} = - 354, \ \mathrm{M}_{5} \ \mathbf{s} = + 1200 \\ & \mathrm{M}_{6} \ \mathbf{1} = \mathrm{M}_{6} \ \mathbf{p} = 637, \ \mathrm{M}_{6} \ \mathbf{s} = 0 \\ & \mathrm{Uniejscowienie} \ \mathbf{i} \ \mathbf{znaki} \ powyzszych \ momentów \ objaśnia \\ & \mathrm{rys.} 9 \ \mathbf{d}. \\ & \mathrm{Kontrola:} \ \mathbf{W} \ belce \ \mathbf{o} \ ustroju \ ramy \ \mathrm{Vierendeela} \\ & \mathrm{M}_{1/2} = /501, 299 + 1192, 641/ \ 15, 7 + 1819 + 637 = 29050 \ \mathrm{kGom} \\ & \mathrm{W} \ odpowiedniej \ belce \ prostej \ \mathrm{M} = \frac{\mathbf{1} \cdot 492^{2}}{8} = 29040 \ \mathrm{kGom} \\ & \mathrm{Przy} \ pomocy \ wzoru \ /5, 2, 1./ \ obliczone \ ugięcie \ belki \\ & \mathrm{Vierendeela} \\ & \mathrm{f}^{\mathrm{V}} = 0, 7109 \ \mathrm{cm} \\ & \mathrm{Zastępczy} \ moment \ bezwładności \ belki \ \mathrm{Vierendeela} \ \mathrm{wg.} \\ & ./5 \cdot 2 \cdot 3 \cdot / \\ & \mathrm{I}_{1} = \frac{5 \cdot 462^{4}}{364 \cdot 120 \ 000 \cdot 0, 7109} = 5490 \ \mathrm{cm}^{4}. \\ & \mathrm{Stanowi} \ \mathrm{on} \ \frac{3400 \cdot 100}{10433} = 52, 54 \ \% \ \mathrm{I}_{1p} \ / \mathrm{momentubez-} \\ & \mathrm{wladności} \ pełnego \ przektroju \ teowego/. \\ & \mathrm{Zastępczy} \ moment \ bezwładności \ poprzecznym \ pasmom \ płytowym \\ \mathrm{o} \ szerokości \ p = \frac{1}{4} \ i \ grubości \ zmiennej \ od \ \mathbf{t}_{k} \ / = 3 \ \mathrm{cm} / \\ & \mathrm{do } \ \mathbf{t}_{g} \ / = 5 \ \mathrm{cm} \ ustala \ się, \ podobnie \ jak \ w \ poz.5.1., \ podorstawiając \ jednak \ \mathbf{p} = \frac{1}{4} \ zamiost \ \frac{1}{3}. \ \mathrm{Otrzymuje} \ się \ twtaj \ \mathrm{ogdiny} \ wzor \\ & \mathrm{I}_{b} = \ \frac{1 \cdot b^{3} \cdot v^{3}}{1152 \ \mathrm{K}} \ \ldots \ / 5.2.5./ \end{split}$$

- 29 -

Dla konkretnych wymiarów wg. rys.2 :

$$I_{b} = \frac{482 \cdot 50^{3} \cdot 0.08^{3}}{1152 \cdot 0.03282} = 817 \text{ cm}^{4}$$

5.3. Żebro rozdzielcze złożone z beleczek poz.5

Sztywność giętna E I_y przekroju przedstawionego na rys.2 żebra rozdzielczego jest we wszystkich jego wyżej opisanych wariantach a, b, c zmienna na długości y /= 0 do b/. Potrzebną dla uproszczenia obliczeń ustrojów III i IV rusztu stropowego, zastęp:zą - stałą sztywność E I_r żebra rozdzielczego - równoważnego lub zastępczego ustala się z warunku identyczności odpowiednich cech deformacji, wydzielonych odcinków żebra rzeczywistego i analogicznego żebra zastępczego, przy działaniu na te odcinki identycznych obciążeń.

Z uwagi na występujące w praktyce różne kombinacje obciążeń stropów dowolnymi zestawami sił normalnych, wykazać najpierw należy różnice teoretycznych sztywności E I_r żebra zastępczego, obliczonych z odpowiednich deformacji ustroju rzeczywistego i zastępczego, przy działaniu na nie identycznych lecz kolejno możliwie jaknajbardziej od siebie różniących się schematów obciążeń. Do obliczeń statycznych rusztu wprowadzać następnie można będzie odpowiednio interpolowaną lub wprost tę obliczoną sztywność E I_r zastępczego żebra rozdzielczego, która odpowiada najtrudniejszym względnie dominującym warunkom jego pracy.

giętną prefabrykowanego żebra rozdzielczego dla dwóch przypadków obciążeń i spowodowanych nimi deformacji.

W alternatywie pierwszej wychodzi się z warunku równości strzałek ugięcia odcinków o długości 2b, żebra rzeczywistego /f/ i żebra zastępczego / f_r /, wywołanych działaniem na te żebra w kolejnych węzłach /w odstępach b/ sił skupionych P, skierowanych naprzemian w dół i w górę.

Rzeczywiste i przygotowane układy statyczne tej alterna-

tywy wraz z wykresami momentów zginających i deformacji odcinka 2b, dla wariantów a, b, c konstrukcji żebra rozdzielczego, przedstawiono na rys.10a, b, c. Na rys.10d przedstawiono odpowiedni układ statyczny żebra zastępczego o stałym momencie bezwładności przekrojów I_r, oraz wykres momentów zginających i strzałkę ugięcia

Układy statyczne rozpatrywanego żebra rozdzielczego, w wariantach jak wyżej, dla obciążeń wg. alternatywy drugiej, wraz z przynależnymi wykresami momentów zginających i deformacji, podano na rys.11 a, b, c, d.

Zmienne na długości b momenty bezwładności beleczek składowych prefabrykowanego żebra rozdzielczego /póz.5/ wyraża się funkcją

 $I_{y} = \frac{s/w_{k} + v \cdot y/^{3}}{12} gdzie v = \frac{w_{s} - w_{k}}{b} \cdot \cdot \cdot \cdot /5 \cdot 3 \cdot 4 \cdot /$

W wyniku kolejnych obliczeń ustala się, dla wszystkich wariantów konstrukcji prefabrykowanego żebra rozdzielczego i obu alternatyw jego pracy statycznej, wartości zastępczych sztywności E I, oraz ich stosunek /n/ do sztyw-

Rys.10. Układy statyczne żeber rozdzielczych a,b,c,ć z wykresami momentów zginających i ugięć, w alternatywie I obciążeń.

32

- 33 -

Wykres M_{(Bo}= M/b) analog. jak wyżej dla a)

Rys.11. Układy statyczne żeber rozdzielczych a,b,c.d z wykresami momentów sgin jących i ugięć, w alterna tywie II obciężen. ności E I_h = $\frac{s \cdot h^3}{12}$ żebra monolitycznego, o stałej szerokości s i wysokości h = W_k + W_s.

5.3.1. Żebro a/ złożone nieszczelnie z beleczek usztywniajacyche

Alternatival I - rys.10a

$$\delta_{yy} = 2.2 \int_{0}^{0} \frac{y^{2} dy}{E I_{y}} = \frac{4.12}{E.s} \int_{0}^{0} \frac{y^{2} dy}{/^{w}_{k} + v y/3} = \frac{48}{E.s.v^{3}} \cdot \frac{1}{2} \int_{0}^{0} \frac{y^{2} dy}{/^{w}_{k} + v y/3} = \frac{48}{E.s.v^{3}} \cdot \frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{w}_{k}} \int_{0}^{2} \frac{1}{\sqrt{w}$$

Zatem na górną belkę swobodnie podpartą w środku jej rozpiętości 2b działa siła P - 2Y = $\frac{P}{2}$, zaś na końce belek dolnych, wspornikowych o wysięgu b, działają siły Y = P_4. Strzałka ugięcia f rozpatrywanego, złożonego żebra rozdzielczego równa jest strzałkom ugięcia jego belek składowych.

4

1.1

$$f = \int_{0}^{\infty} \frac{P \cdot y^{2} dy}{4 \cdot E I_{y}} = \frac{12 \cdot P}{4 \cdot E \cdot S} \int_{0}^{\infty} \frac{y^{2} dy}{\sqrt{w_{k} + v_{y}}} = \frac{3 \cdot P}{E \cdot S \cdot v^{3}} \cdot \frac{1}{1 \cdot 1 \cdot V_{w_{k}}} = \frac{1}{2} \cdot \frac{w_{k}}{w_{s}} - \frac{1}{2} \cdot \frac{w_{k}}{w_{s}} - \frac{1}{2} \cdot \frac{w_{k}}{w_{s}} - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{w_{k}}{w_{s}} - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{w_{k}}{w_{s}} - \frac{1}{2} \cdot \frac{1}$$

- 34 -

Strzałka ugięcia żebra równoważnego o stałej sztywności E I_r -podobnego do przedstawionego na rys.10 d- wynosi wg. /5.3.1./

$$f_r = \frac{P b^3}{24 E I_r}$$

Z warunku f = f. oblicza się zastępczy, równoważny moment bezwładności żebra złożonego nieszczelnie, a schemacie statycznym wg.rys.10a,

Dla podanych na rys.2 wymiarów beleczek usztywniających

$$I_r = \frac{5.5 \cdot 50^3 \cdot 0.05^3}{72 \cdot 0.03583} = 34 \text{ cm}^4.$$

Stosunek tego momentu do $I_h = 393 \text{ cm}^4$.

$$n = \frac{I_r}{I_h} = 0,0865.$$

Alternatywa II - rys.11a Z rys.11a wynika $\mathbf{Y} = \mathbf{B} = \frac{\mathbf{M}}{\mathbf{b}}$

Analogicznie do/5.3.1.2./ oblicza się

$$f = \int \frac{y^2 dy}{E I_y} = \frac{12 M}{E s b \cdot v^3} K \dots /5.3.1.4./$$

Krzywizna średnia żebra rzeczywistego, obliczona wg. wzoru /5.3.2./ wynosi

Z przyrównania prawych stron równań /5.3.3./ i /5.3.1.5./ otrzymuje się
Dla wymiarów beleczek usztywniających podanych na rys.2:

$$I_r = 102 \text{ cm}^4$$
. W stosunku do $I_1 = 393 \text{ cm}^4$
 $n = \frac{I_r}{I_1} = 0,2595$

5.3.2. Żebro b/złożone szczelnie z beleczek usztywniających - rys.10b i 11b

- 36 -

Zamiast ciągłego przylegania beleczek górnych do dolnych zakłada się tutaj w celu uproszczenia obliczeń- na długości każdej beleczki, w odstępach b/3, 7 przekroi kontaktowych, w których przekazują się ich wzajemne oddziaływania Y₁, Y₂, Y₃ i B.

Alternatywa I - rys.10b

Wykorzystując symetrię i antysymetrię rozpatrywanego układu, z którego wynikają równości $Y_1 = B$ oraz $Y_2 = Y_3$, rozwiązanie przyjętego ustroju sprowadza się do wyznaczenia jednej tylko nadliczbowej siły uogólnionej $Y = Y_2 = Y_3$, gdyż z warunku rzutów $B = Y - \frac{P}{P} / p$. rys.lo b/ $\delta_{yy} = \frac{2/3}{2} \frac{b}{\sqrt{4}} \frac{y - \frac{b}{2}}{4} \frac{2}{E} \frac{1}{y} dy + 2 \cdot \frac{b}{\sqrt{2}} \frac{\left[\frac{b}{3} + 2/y - \frac{2}{3} b\right]^2 dy}{2/3b} = 4 E I_y$ $= \frac{6}{E \cdot s} \left\{ \frac{1}{\sqrt{3}} \left[\ln \frac{w_k + \frac{2}{3} bv}{w_k + \frac{1}{3} bv} + \frac{2 w_k}{w_k + \frac{2}{3} b v} - \frac{2 w_k}{w_k + \frac{1}{3} b \cdot v} + \frac{2}{2/w_k} + \frac{1}{3} b \cdot v + \frac{2}{\sqrt{w_k} + \frac{2}{3} b v/2} + \frac{2}{2/w_k} + \frac{1}{3} b v/2} \right] - \frac{2 \cdot b}{3 \cdot \sqrt{2}} \cdot \frac{1}{\sqrt{w_k} + \frac{2}{3} b v} + \frac{1}{w_k + \frac{1}{3} b v} + \frac{w_k}{2/w_k + \frac{2}{3} b v/2} + \frac{w_k}{2/w_k + \frac{2}{3} b v/2} + \frac{1}{2/w_k + \frac{1}{3} b v} + \frac{w_k}{2/w_k + \frac{2}{3} b v/2} + \frac{w_k}{2/w_k + \frac{2}{$ - 37 -

$$+ \frac{1}{w_{k} + \frac{2}{3} b v} + \frac{w_{k}}{2 w_{s}^{2}} - \frac{w_{k}}{2/w_{k} + \frac{2}{3} b v/^{2}} + \frac{.../5.3.2.2/}{.../5.3.2.2/}$$

Strzałka ugięcia rozpatrywanego układu żebra rozdzielczego:

$$f = -B \int_{0}^{b} \frac{-\frac{y^{2}}{E} \frac{dy}{I_{y}}}{\frac{E}{I_{y}}} + Y \left[\int \frac{y / y - \frac{b}{3} / \frac{dy}{E}}{\frac{E}{I_{y}}} + \int \frac{y / y - \frac{2}{3} / \frac{dy}{2}}{\frac{E}{I_{y}}} \right] + \int_{0}^{b} \frac{y / y - \frac{2}{3} / \frac{dy}{2}}{\frac{E}{I_{y}}} + \dots \dots / 5 \cdot 3 \cdot 2 \cdot 3 \cdot / \frac{2b}{3}$$

Dla wymiarów beleczek wg.rys.2 oblicza się z powyższych wzorów $\delta_{yy} = 0,13248, \delta_{yB} = -0,35972 B, oraz poszukiwane$

 $Y = -\frac{\delta_{y B}}{\delta_{yy}} = 2,71528 Y - 0,67882 P$ czyli Y = $\frac{0.67882 P}{1,71528} = 0,39575 P$

oraz B = /0,39575 - 0,25000/P = 0,14575P

Uwaga: Dla kontroli, niezależnie od powyższego, rozwiązano przyjęty układ żebra jako 3-krotnie statycznie niewyznaczalny, uzyskując wobec pewnych zaokrągleń w toku obliczeń: $Y_{1} = -0,14784$ P, $Y_{2} = 0,39870$ P, $Y_{3} = 0,39552$ P oraz B = 0,14638 P.

Z powodu ograniczenia objętości niniejszej pracy, obszernych tych obliczeń się tutaj nie przedstawia. Wykazane różnice odpowiednich wartości mieszczą się w granicach błędów dopusżczalnych.

Z rozwiązania równania /5.3.2.3./ otrzymano dla konkretnych wartości liczbowych f = 0,00029 P/cm/.

N.p. dla P = 100 kG strzałka ugięcia f = 0,029 cm = 0,3 mm. Strzałka ugięcia żebra równoważnego, o stałym momencie bezwładności I,, wg. /5.3.1./

$$f_r = \frac{P \cdot 50^2}{24 \cdot 180000 I_r} = \frac{0.029 P}{I_r}$$

Zastępczy stały -równoważny- moment bezwładności I żebra rozdzielczego, obliczony z warunku $f = f_r$

$$I_r = \frac{0.029}{0,00029} = 100 \text{ cm}^4$$

Stosunek tego momentu do momentu bezwładności pełnego przekroju monolitycznego żebra rozdzielczego I_b = 393 cm⁴:

$$n = \frac{I_r}{I_h} = 0,2545$$

Uwagi konstrukcyjne

% przypadku działania na żebro rozdzielcze sił P w sposób zaznaczony na rys.lob grubymi liniami pełnymi, występujące między beleczkami składowymi żebra,pionowe siły B są ciągnieniami zaś Y ciśnieniami. W przypadku działania sił P w porządku przedstawionym na rys.lob cienkimi liniami przerywanymi, siły wewnętrzne B będą ciśnieniami a siły Y ciągnieniami. Zrealizowanie tych sił w ustroju żebra rozdzielczego możliwe jest przez odpowiednie rozklinowanie łożysk poszczególnych beleczek rozdzielczych we wszystkich węzłach -gniazdach teowych belek stropowych i rozklinowanie wzajemne beleczek w odstępach conajmniej b/3, dzięki czemn uzyska się pionowe dociśnięcie, czyli poprzeczne wstępne sprężenie, wzajemnych styków zachodzących na siebie daszkowych powierzchni beleczek żebra.

Sprawa ta wymaga oczywiście dalszych badań doświadczalnych.

Alternatywa II - rys.11b

Podobnie do alternatywy I wyznacza się tutaj tylko jedną nadliczbową siłę uogólnioną Y_u która -według oznaczeń na rys.11b- stanowi parę sił Y o ramieniu <u>b</u>. Pozostała siła

$$-\frac{w_{k}}{2/w_{k} + \frac{1}{3} b v/^{2}} - \frac{1}{2 v} \left[\frac{1}{/w_{k} + \frac{2}{3} b v/^{2}} - \frac{1}{/w_{k} + \frac{1}{3} b v/^{2}} \right] + \frac{1}{2 v} \left[\frac{1}{w_{k} + \frac{2}{3} b \cdot v/^{2}} \right], \dots \frac{1}{5 3 2.4 \cdot 1}$$

$$\delta_{y M} = \int_{1/3b}^{2/3b} \frac{-\frac{M}{b} y/\frac{2}{b} y - 1/}{E I_{y}} dy + \int_{2/3b}^{b} \frac{-\frac{M}{b} y dy}{E I_{y}}$$

$$= -\frac{12 \text{ M}}{\text{s}} \left\{ \frac{3}{b \sqrt{3}} \left[U \right] - \frac{1}{\sqrt{2}} \left[\frac{1}{w} \right] + \frac{1}{\sqrt{2}} \left[-\frac{1}{w_{g}} + \frac{1}{w_{g}} \right] \right\}$$

+
$$\frac{w_{k}}{w_{k} - \frac{2}{3} b v}$$
 + $\frac{w_{k}}{2/w_{g}^{2}} - \frac{w_{k}}{2/w_{k} + \frac{2}{3} b v/2}$. ./3.3.2.5/

-

Strzałka ugięcia

$$f = \int_{0}^{b} \frac{y^{2} dy}{E Iy} - Y \begin{bmatrix} \frac{2}{3b} \frac{y}{y} - \frac{b}{3} \frac{3}{b} \\ \frac{y}{y} - \frac{b}{3} \frac{3}{b} \\ \frac{y}{y} - \frac{b}{3} \frac{3}{b} \frac{3}{b} dy + \frac{b}{3} \frac{3}{b} \frac{y}{y} + \frac{b}{3} \frac{y}{b} \frac{y}{b} \frac{y}{y} + \frac{b}{3} \frac{y}{b} \frac{y}{b} \frac{y}{b} \frac{y}{y} + \frac{b}{3} \frac{y}{b} \frac{y}{b}$$

Fo podstawieniu do powyższych wzorów wartości liczbowych Wg.rys.2 otrzymano: $\delta_{yy} = +0,0004145 \text{ oraz}$ $\delta_{yM} = -0.0129469 \frac{M}{5}$ Stąd $Y_u = -\frac{\delta_y M}{\delta_{yy}} = +0,624700 M$

$$B = \frac{M + Y}{D} = + 0,032494 M$$

$$X = X_u = + 0,037482 M$$

Strzałka ugięcia wg. /5.3.2.6./: f = 0.012059 M E

oraz krzywizna wg. $/5.3.2./: \frac{1}{R} = \frac{2.0.012059 \text{ M}}{50^2 \cdot \text{E}}$

Przyrównując prawe strony wzorów ostatniego i /5.3.3./, otrzymuje się $I_r = 103,66 \text{ cm}^4 \text{ czyli } n = \frac{I_r}{I_h} = 0,2637.$

5.3.3. Żebro c/ zmonolitowane - rys.10c i 11c

Alternatywa I - rys.10c

Strzałka ugięcia tego ciągłego żebra rozdzielczego, wg.rys. 10c h-n/2

$$f = -\frac{p}{2} \left[\frac{p}{2} \int_{0}^{b \cdot y} - \frac{y^{2}}{E I_{s}} dy + \int_{p/2}^{b \cdot y} \frac{by - y^{2}}{E I_{h}} dy + \int_{0}^{b \cdot y} \frac{b \cdot y}{E I_{h}} dy + \int_{0}^{b \cdot y} \frac{y}{E I_{s}} dy + \int_{0}^{b \cdot y} \frac{y}{E I_{s}} dy + \int_{p/2}^{b \cdot y$$

Przyjmując b = 50 cm, p = 7 cm, I_h = $\frac{5.5 \cdot 9.5^3}{12}$ = 393 cm⁴, $I_{a} = \frac{5.5 \cdot 6.0^{2}}{12} = 99 \text{ cm}^{4}$, obliczono Wg. /5.3.3.1./ f = 0.000153194 PAnalogicznie do /5.3.1./ $f_h = \frac{P \cdot 50^3}{24.180000.393} = 0,000073624 P$ Stad $I_r = 393$ $\frac{0.073624}{0,153194} = 189 \text{ cm}^4 \text{ oraz } n = \frac{I_r}{I_h} = 0,4806$ Alternatywa II - rys. 11c Stosownie do/5.3.3./ $\frac{1}{R} = \int \frac{M}{EI} \frac{dy}{EI} = \frac{M/b-p/}{EI_{h}} + \frac{M}{EI_{h}}$ Po oznaczeniu $\frac{I_s}{I_s} = W$ $\frac{1}{R} = M \frac{\frac{b-p}{\pi} + p}{E I_{h} \cdot \pi} \cdots$. . . /5.3.3.2./ Analogicznie $\frac{1}{Rr} = \frac{M, b}{E I_r} \dots$ /5.3.3.3./ Z warunku $\frac{1}{R} = \frac{1}{R}$ otrzymuje się R R_ Podstawiając wartości: w = $\frac{99}{393}$ = 0,2519, b = 50 cm, p = 7 cm otrzymuje I = 0,70621 · I = 277 cm⁴ czyli n = 0,70621

- 43 -

5.3.4. Żebro rozdzielcze e/ złożone z założonych obok siebie beleczek o stałej wysokości h = $w_k + w_g$ oraz szerokości $\frac{s}{2}$; czyli o I_e = I_h/2 = const, przesuniętych wzajemnie o pół długości 25 - p.rys.12e.

- 44 -

Ten rodzaj żebra rozdzielczego ani żebro f/ analizowane w następnym punkcie 5.3.5., o ustroju statycznym podobnym do rozpatrzonego wyżej /w punkcie 5.3.1./ żebra a/ złożonego nieszczelnie z beleczek o zmiennej wysokości, nie zostały w ramach przeprowadzónych przeze mnie badań zrealizowane. Niniejsze rozważanie ma na celu uzupełnienie danych o wpływie kształtu beleczek składowych na efektywną sztywność giętną utworzonych z tych beleczek żeber rozdzielczych.

Alternatywa I

Stosownie do wyników rozważań przeprowadzonych w punkcie 5.3.1., strzałka ugięcia

$$f = Y \int_{0}^{b} \frac{y^{2} dy}{E I_{e}} = \frac{P b^{3}}{12 E I_{e}} = \frac{P b^{3}}{6 E I_{h}} \cdot \cdot \cdot /5.3.4.1./$$

2 warunku f = f_r wynika I_r = 0,25 I_h = 98 cm⁴, czyli
n = 0.25

Alternatywa II

Strzałka ugięcia rozpatrywanego układu wynosi

$$f = \frac{M \cdot b^2}{3 E I_e} = \frac{2 M b^2}{3 E I_h}$$

Wypośrodkowana krzywizna osi żebra wygiętego momentem M wg. /5.3.2./

$$\frac{1}{R} = \frac{2 f}{b^2} = \frac{4 M}{3 E I_h}$$

Z warunku $\frac{1}{R} = \frac{1}{R_r}$ oblicza się $I_r = 0,75 I_h = 295 cm^4$, czyli
 $n = 0,75$

Rys.12. Żebra rozdzielcze e/ i f/,

złożone z beleczek o stałym momencie bezwładności, połączonych wzajemnie tylko w węzłach powiązania z belkami teowymi stropu, w odstępach b.

Tablica I. Zestawienie bezwzględnych wartości oraz stosunków %% do I_h, zastępczych momentów bezwładności gięcia żebra rozdzielczego I_r dla jego ustrojów a-f, w alternatywach obciążeń I i II /Ustrój d dotyczy monolitycznego żebra ciągłego o stałym przekroju s.h/

Alterna-	Ustrój żebra rozdzielczego											
obciążeń	a		Ъ		. 0		e		ſ		đ	
	c¤ ⁴	%	cm ⁴	%	cm ⁴	90	cm ⁴	%	cm ⁴	2	cm ⁴	73
I	34	9	100	25	189	48	98	23	25	6	393	100
II	102	26	104	26	277	70	·295	75	74	19	. 39 3	100

5.3.5. Żebro rozdzielcze f/ złożone z założonych na sobie i przesuniętych wzajemnie o pół długości 2b beleczek o stałej wysokości $\frac{h}{2} = \frac{w_k + w_s}{2}$ oraz szerokości s, czyli I

$$o I_{f} = \frac{h}{8} = const. / p.rys.12 f/$$

Alternatywa I

Analogicznie jak wyżej /5.3.4.1./ otrzymuje się tutaj

$$f = \frac{P \cdot b^3}{12 E I_f} = \frac{2 P b^3}{3 E I_h} = \frac{P \cdot b^3}{24 E I_r} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \frac{15 \cdot 3 \cdot 4 \cdot 3 \cdot 1}{24 E I_r}$$

oraz
$$I_r = 0,0625$$
 $I_h = 25$ cm⁴, czyli

n = 0,0625

<u>Alternatywa II</u>

Podobnie do /5.3.4.2./ ustala się

 $\frac{1}{R} = \frac{16 \text{ M}}{3 \text{ E I}_{h}}$

oraz I, = 0,1875 I, = 74 cm⁴, czyli

n = 0,1875

5.3.6. Konkluzja

Wyniki przeprowadzonych wyżej obliczeń zastępczych momentów bezwładności gięcia poszczególnych ustrojów prefabrykowanego żebra rozdzielczego o jednakowym zasadniczym obrysie przekroju s . h = 5,5 . 9,5 cm, przedstawiono w tablicy 1. Widoczne z tego zestawienia zróżnicowanie efektywnych sztywności giętnych żebra, w zależności od sposobu wzajemnego ułożenia jego składowych beleczek prefabrykowanych, od ich kształtu oraz od układu obciążenia na żebrze, nie pozwala ⁻ na ścisłe ustalenie jednego uniwersalnego zastępczego momentu bezwładności danego ustroju, lecz nasuwa potrzebę dobieranie['] różnych sztywności żebra rozdzielczego stosownie do działającego na nie układu obciążeń.

Uznając, że zastosowane w relacjonowanych niniejszym badaniach, prefabrykowane żebro rozdzielcze zbliżone jest swą konstrukcją najbardziej do ustroju statycznego b, oraz że w tym ustroju zastępcze sztywności giętne dla obu krańcowych alternatyw obciążenia I i II stropu są prawie jednakowe, <u>przyjmuje się</u> do dalszych obliczeń rusztu stropowego /III i IV/ stały efektywny zastępczy moment bezwładności żebra rozdzielczego I_r = 100 cm⁴.

W znanych dziełach naukowych, ujmujących zagadnienia statyki ustrojów rusztowych, jak n.p. [3,5], przedstawione są rozwiązania rusztów płaskich, złożonych z krzyżujących się prętów ciągłych, nieprzerywanych, o stałej w zasadzie sztywności przekrojów na długości pręta.

Wobec wyłonienia w rozpatrywanych niniejszym ustrojach rusztu stropowego poprzeczek, utworzonych z odpowiednio pomyślanych pasów poprzecznych płyty stropowej helek teowych, powiązanych wzajemnie w podłużnych krawędziach stalowymi uchwytami lub ciągłymi dyblami spoinowymi -na wzór zawiasów, powstał problem uwzględnienia w pracy statycznej rusztu nieciągłej sztywności tych poprzeczek a w szczególności - oprócz liniowej znieny wysokości ich przekroju - uwzględnienia przegubów /zawiasów/ istniejących w środku wszystkich przęseł, między poszczególnymi belkami teowymi. Wynikły stąd, na drodze analitycznego rozumowania,przedłożone niżej rozwiązania, prowadzące stosunkowo szybko do wyznaczenia sił wewnętrznych i deformacji wszystkich prętów ustroju. Zaznaczyć należy, że w przeprowadzonych rozważaniach uwzględniono sztywność zginania belek głównych i poprzeczek, oraz sztywność skręcania belek głównych, zakładając jednak tylko przegubowe połączenie dodatkowej poprzeczki – prefabrykowanego żebra rozdzielczego- z belkami głównymi rusztu.

6.1. Ustrói I rusztu stropowego

Cztery nadliczbowe siły przegubowe X₁ - X₄, ustroju przedstawionego na rys.5, wyraża się wzorami ogólnymi, uzyskanymi metodą biegunów sprężystych [2] w sposób następujący.

Cechy spreżyste

W przemieszczeniach S_{ik} , obliczanych z równań pracy przygotowanej, uwzględnia się tylko wpływ momentów zginających i skręcających, pomijając jako nieznaczny wpływ sił poprzecznych.

$$\delta_{x1x1} = 2 \cdot \int_{0}^{b/2} \frac{y^2}{E I_b} dy + 4 \int_{0}^{\frac{1}{2}} \frac{x^2}{4 \cdot E I_2} dx + 4 \cdot \int_{0}^{1/2} \frac{b^2}{16 \cdot CC} dx =$$

$$\frac{b^2}{16}$$

$$x_{1}^{x_{2}} = -\frac{\delta_{x1x2}}{\delta_{x1x1}} = -\frac{L}{\kappa}$$

$$\delta_{x1x3} = \delta_{x1x4} = 0, \quad x_{1}^{x_{3}} = x_{1}^{x_{4}} = 0$$

-- 48 ---

- 49 -

$$\bar{\mathbf{x}}_{1}^{Q} = -\frac{\delta_{\mathbf{x}_{1}}^{Q}}{\delta_{\mathbf{x}_{1}\mathbf{x}_{1}}} = +\frac{R}{K}$$

$$\delta_{\mathbf{x}_{2}}^{Q} = 0 - \bar{\mathbf{x}}_{1}^{Q} \cdot \mathbf{x}_{1}^{X} \geq \cdot \delta_{\mathbf{x}_{1}\mathbf{x}_{1}} = +\frac{R+L}{K}$$

$$\bar{\mathbf{x}}_{2}^{Q} = -\frac{\delta_{\mathbf{x}_{2}}^{Q}}{\delta_{\mathbf{x}_{2}}\mathbf{x}_{2}} = -\frac{R+L}{K^{2}-L^{2}}$$

$$\delta_{\mathbf{x}_{3}}^{Q} = -\frac{R}{K^{2}-L^{2}} \cdot \mathbf{x}_{3}^{2} = -\frac{\delta_{\mathbf{x}_{3}}^{Q}}{\delta_{\mathbf{x}_{3}}\mathbf{x}_{3}} = \frac{+R}{K/K^{2}-2} \frac{L^{2}}{L^{2}}$$

$$\delta_{\mathbf{x}_{4}}^{Q} = +\frac{R}{K/K^{2}-2} \frac{L^{2}}{L^{2}} \cdot \bar{\mathbf{x}}_{3}^{Q} = -\frac{\delta_{\mathbf{x}_{4}}^{Q}}{\delta_{\mathbf{x}_{4}}\mathbf{x}_{4}} = -\frac{R}{K^{2}/K^{2}-2} \frac{L^{2}}{L^{2}/L^{2}/K^{2}-L^{2}/L^{2}}$$

Oznaczając mianownik ułamka podającego wartość \bar{x}_{4} literą M $M = K^{2} / K^{2} - 2 L^{2} / - L^{2} / K^{2} - L^{2} / \dots / 6.1.4. /$ można zapisać $X_{4}^{Q} = \bar{x}_{4}^{Q}$ oraz wszystkie dalsze siły X_{1} następująco : $X_{4}^{Q} = \bar{x}_{4}^{Q} = - \frac{R L^{3}}{M} \dots / 6.1.5. /$ $X_{3}^{Q} = \bar{x}_{3}^{Q} + X_{4}^{Q} \cdot X_{3}^{Z} = + \frac{K R L^{2}}{M} \dots / 6.1.6. /$ $X_{2}^{Q} = \bar{x}_{2}^{Q} + X_{3}^{Q} \cdot X_{2}^{Z} + X_{4}^{Q} \cdot X_{2}^{Z} = - \frac{R L / K^{2} - L^{2} / ... / 6.1.7. /}{M} \dots / 6.1.7. /$ $X_{1}^{Q} = \bar{x}_{1}^{Q} + X_{2}^{Q} \cdot X_{1}^{Z} + X_{3}^{Q} \cdot X_{1}^{Z} + X_{4}^{Q} \cdot X_{1}^{Z} = - \frac{R L / K^{2} - L^{2} / ... / 6.1.7. /}{M}$ $X_{1}^{Q} = \bar{x}_{1}^{Q} + X_{2}^{Q} \cdot X_{1}^{Z} + X_{3}^{Q} \cdot X_{1}^{Z} + X_{4}^{Q} \cdot X_{1}^{Z} = - \frac{R L / K^{2} - L^{2} / ... / 6.1.7. /}{M}$

. 50 -

Pla obcieżenia Q działającego na belkę B

$$\delta_{x_1} Q = R, \quad \overline{x}_1^Q = -\frac{R}{K},$$

$$\delta_{x_2} Q = \frac{R/K-L'}{K}, \quad \overline{x}_2^Q = -\frac{R}{R+L}$$

$$\delta_{x_3} Q = -\frac{RL}{K+L}, \quad \overline{x}_3^Q = +\frac{RL/K-L'}{K/K^2-2L^2/K},$$

$$\delta_{x_4} Q = +\frac{RL^2/K-L'}{K/K^2-2L^2/K}, \quad \overline{x}_4^Q = -\frac{RL^2/K-L'}{K^2/K^2-2L^2/K^2-L^2/K^2-L^2/K}$$
(Zznaczając mianownik ostatniego ułamka literą H.zgodnie z /5.1.4./, otrzymuje się podobnie jak wyżej wartości X₁ :

$$x_4^Q = -\frac{RL^2/K-L'}{M}, \quad \dots \quad \dots \quad \dots \quad /5.1.9./$$

$$x_5^Q = +\frac{K R L/K - L/}{M}, \quad \dots \quad \dots \quad \dots \quad /5.1.41./$$

$$x_2^Q = -\frac{R/K^2 - L/K-L}{M}, \quad \dots \quad \dots \quad /5.1.41./$$

$$x_1^Q = -\frac{R [K/K^2 - 2L^2/-L/K^2-L^2]}{M}, \quad \dots \quad \dots \quad /5.1.41./$$

$$x_1^Q = -\frac{R [K/K^2 - 2L^2/-L/K^2-L^2]}{M}, \quad \dots \quad \dots \quad /5.1.41./$$

$$x_1^Q = -\frac{R [K/K^2 - 2L^2/-L/K^2-L^2]}{M}, \quad \dots \quad \dots \quad /5.1.41./$$

$$x_1^Q = -\frac{R [K/K^2 - 2L^2/-L/K^2-L^2]}{M}, \quad \dots \quad \dots \quad /5.1.41./$$

$$x_1^Q = -\frac{R [K/K^2 - 2L^2/-L/K^2-L^2]}{M}, \quad \dots \quad \dots \quad M$$

$$\begin{split} & \int_{X_{3}} \zeta_{2} = - \frac{R}{\frac{K^{2} - L^{2}}{R^{2} - L^{2}}}, \quad \overline{X} = \frac{R}{R} \frac{/R^{2} - L^{2} - KL/}{/R^{2} - 2L^{2}/} \\ & \int_{X_{1}} \zeta_{2} = \frac{LR}{K} \frac{/R^{2} - L^{2} - KL/}{K/R^{2} - 2L^{2}/}, \quad \overline{X}_{4} = \frac{LR/R^{2} - L^{2} - KL/}{R^{2}/R^{2} - 2L^{2}/L^{2}/R^{2} - L^{2}/} \end{split}$$
Przy zastosowaniu wzoru /6.1.4./ otrzymuje się analogicznie jak poprzednio :
$$& \chi_{4} = - \frac{R L}{M} \frac{/R^{2} - KL - L^{2}/}{M} = \chi_{1} \qquad (6.1.13.)/$$

$$& \chi_{3} = + \frac{K R/R^{2} - KL - L^{2}/}{M} = \chi_{2} \qquad (6.1.14.)/$$
Momenty zginające i ugięcia belek oblicza się,
dla wyżej przytoczonych układów obciążeń stropowych rusztu wg. następujących wzorów :
'oment zginający w środku rozpiętości belki teowej /M_{0,5} 1/
M = $\frac{Q + 1}{R} + /X_{1} + X_{p} / \frac{1}{4} \qquad (6.1.15.)/$
Strzałka ugięcia - przemieszczenie pionowe osi- w środku rozpiętości belki teowej

$$f = R + \frac{1^3}{42 EI_1} / X_1 + X_p / \dots / 6.1.16. /$$

Przemieszczenia przegubów uli up /lewego i prawego/ poprzeczki danej belki teowej

$$f_{u_1} = R + \frac{1}{2} K X_1 + L X_p$$

Uwaga: Przemie szczenia te wyrażone wzorami /6.1.17./ oznacza się krótko: , fA1, fB1, FB2, fC2, fD2 i.t.d., przyczym istnieje kontrola poprawności obliczeń : $f_{A1} = f_{B1}$, $f_{B2} = f_{C2}$ i.t.d., co znaczy, że przemieszczenia obu przyległych do siebie belek są w danym przegubie takie same.

Do wzorów /6.1.15.-17./ wprowadzić należy siły X_l i X_p danego układu obciążeń ze znakami dodatnimi /+/ jeżeli siły te działają na przeguby /lewy lub prawy/ poprzeczki rozpatrywanej beli teowej w kierunku zgodnym z kieruhkiem obciążenia Q, t.zn. zwrócone są ku dołowi, zaś ze znakiem ujemnym /-/ jeżeli zwrócone są przeciwnie.

Przy belkach nie obciążonych bezpośrednio ciężarem Q, przyjąć oczywiście należy 21 i R równe zero.

W rozpatrywanym ustroju rusztu, dla belki A jest $X_1 = 0$ 2a5 X = X₁, natomiast dla belki B: $X_1 = X_1$ oraz $X_p = X_2$ 1.t.d.

6.2. Ustrój II rusztu stropowego

Z uwagi na bardziej złożoną postać funkcji wzajemnych przemieszczeń jednostkowych δ_{ik} oraz δ_{ip} , wyraża się tutaj -w oparciu o rys.6- wzorami ogólnymi jedynie te, jednostkowe przemieszczenia, natomiast hiperstatyczne siły X₁ - X₄ obliczone zostaną dla kolejnych układów obciążeń wprost w szczegółowych wartościach liczbowych w dalszym rozdziale 7.

· 10

$$\delta x_{1}x_{1} = 8 \cdot \sqrt[6]{\frac{1 \cdot y^{2}}{E}} dy + 2 \cdot \sqrt[6]{\frac{1 \cdot 2x}{E}} \frac{1}{E} \frac{1}{E}$$

analogicznie $\delta_{x_1 x_2} = \frac{11 \cdot 1^3}{64 \text{ EI}_1} + \frac{b^2 \cdot 1}{8 \text{ CQ}}, \quad \delta_{x_1 x_4} = -\frac{11 \cdot 1^3}{192 \text{ EI}_1} + \frac{b^2 \cdot 1}{8 \text{ CO}},$ $\delta_{x_1 x_3} = -\frac{9 \cdot 1^3}{64 \text{ EI}_1} + \frac{3 \cdot b^2 \cdot 1}{8 \cdot 00},$ $\delta_{x_2 x_2} = \frac{b^3}{3 \text{ EI}_b} + \frac{5 \cdot 1^3}{64 \text{ EI}_1} + \frac{b^2}{8 \text{ CO}}, \quad \delta_{x_3 x_3} = \frac{b^3}{3 \text{ EI}_b} + \frac{9 \cdot 1^3}{32 \text{ EI}_1} + \frac{3 \cdot b^2 \cdot 1}{4 \cdot 00},$ $\delta_{x_2 x_3} = -\frac{11 \cdot 1^3}{192 \text{ EI}_1} + \frac{b^2 \cdot 1}{8 \text{ CO}}, \quad \delta_{x_3 x_4} = \frac{11 \cdot 1^3}{96 \cdot \text{EI}_1} + \frac{b^2 \cdot 1}{4 \text{ CO}},$ $\delta_{x_2 x_4} = -\frac{5 \cdot 1^3}{192 \text{ EI}_1} + \frac{b^2 \cdot 1}{8 \text{ CO}}, \quad \delta_{x_4 x_4} = \frac{b^3}{3 \text{ EI}_b} + \frac{5 \cdot 1^3}{96 \text{ EI}_1} + \frac{b^2 \cdot 1}{4 \text{ CO}},$ $\delta_{x_2 x_4} = -\frac{5 \cdot 1^3}{192 \text{ EI}_1} + \frac{b^2 \cdot 1}{8 \text{ CO}}, \quad \delta_{x_4 x_4} = \frac{b^3}{3 \text{ EI}_b} + \frac{5 \cdot 1^3}{96 \text{ EI}_1} + \frac{b^2 \cdot 1}{4 \text{ CO}},$

Obciążenie użytkowe Q, równomiernie rozłożone na całej długości poszczególnych belek stropowych, zastępuje się tutaj ośmiu siłami skupionymi $\frac{P}{2} = \frac{Q}{8}$ /p.rys.6/, działającymi na pomyślanych poprzeczkach wspornikowych, za pośrednictwem podkładek z podłużnych listw drewnianych, założonych w odległości $\frac{D}{4}$ od osi podłużnej belki. Stąd oblicza się :

Dla obciążenia Q = 8. $\frac{P}{2}$ założonego na belce środkowej "G" $\delta_{x_1Q} = 2 P \left[\frac{b}{2} \int \frac{/y - b}{E} \int \frac{.y}{E} \frac{.y}{$

54

- 55 -

 $\delta_{x_4} = -\frac{5 \cdot P b^2}{192 \cdot EI_b} - \frac{1 \cdot Pl^2}{12 EI_1}$,

Uwaga

Obliczone przy pomocy powyższych wzorów przemieszczenia $\delta_1 = 0$ oraz niewiadome X₁ – X₄ jako funkcję sił P należy, dla dalszego zastosowania, wyrazić jako funkcje obciążeń Q, pamiętając że P = 0/4.

· · .

Dla kolejnych układów symetrycznych obciążenia rozpatrywanego rusztu stropowego, przynależne momenty zginające i przemieszczenia wynoszą :

Momenty zginające w środku rozpiętości belek teowych /M05 1/

$$M_{0} = \frac{Q.1}{8} + \frac{1}{3} X_{1} + X_{2} + \frac{1}{4}$$

$$M_{B} = \frac{Q.1}{8} + \left[\frac{3}{X_{1}} + \frac{X_{3}}{4} + \frac{X_{2}}{2} + \frac{X_{4}}{4} + \frac{2}{2} \frac{Y_{2}}{2} \right] \frac{1}{8}$$

$$M_{A} = \frac{Q.1}{8} + \frac{1}{3} \frac{X_{3}}{3} + \frac{X_{4}}{4} + \frac{2}{2} \frac{Y_{2}}{4} + \frac{Y_{1}}{8} \cdot \frac{1}{8} \cdot \frac{1}{6} \cdot$$

Strzałki ugięcia belek teowych, w środku ich rozpiętości

$$f_{0} = \frac{1^{2}}{E I_{1}} / \frac{41}{3072} + \frac{39}{512} I_{1} + \frac{47}{1536} I_{2} + \frac{1}{48} I_{1} / \frac{1}{48}$$

$$f_{B} = \frac{1^{3}}{E I_{1}} \left[\frac{41}{3072} + \frac{39}{1024} \right] / X_{1} + X_{3} + \frac{47}{3072} \right] / X_{2} + X_{4} +$$

Przemieszczenia przegubów, położonych w odległości 1/8 1 od środka rozpiętości, kolejnych belek teowych

$$f_{C_{1}} = \frac{\delta_{x1} Q}{4} + \frac{b^{3}}{24 EI_{b}} + \frac{9}{128} = \frac{1^{3}}{E_{1}} / \frac{1}{x_{1}} + \frac{11}{384} \frac{x_{2}}{2} + \frac{39}{2048} \frac{1}{1} / \frac{1^{3}}{E_{1}}$$

$$f_{B1} = \frac{\delta_{x1}}{4} + \frac{\delta_{x3x3}}{8} x_{1} + \frac{\delta_{x3x4}}{8} x_{2} - \frac{\delta_{x1x3}}{4} x_{3} + \frac{\delta_{x3x4}}{8} x_{3} + \frac{\delta_{x3x4}}{8} x_{3} + \frac{\delta_{x3x4}}{4} x_{4} + \frac{39}{2048} x_{2} - \frac{13}{11}$$

$$f_{B3} = \frac{\delta_{x3}}{4} - \frac{\delta_{x1x3}}{4} x_{1} - \frac{\delta_{x2x3}}{4} x_{2} + \frac{\delta_{x3x3}}{8} x_{3} + \frac{\delta_{x3x4}}{8} x_{4} + \frac{39}{2048} x_{2} - \frac{13}{11}$$

$$f_{A3} = \frac{\delta_{x3}}{4} + \frac{\delta_{x3x3}}{8} x_{3} + \frac{\delta_{x3x4}}{8} x_{4} + \frac{39}{2048} \cdot \frac{1}{8} x_{3} + \frac{\delta_{x3x4}}{8} x_{4} + \frac{39}{2048} \cdot \frac{1}{8} x_{3} + \frac{\delta_{x3x4}}{8} x_{4} + \frac{\delta_{x3x3}}{8} x_{3} + \frac{\delta_{x3x4}}{8} x_{4} + \frac{39}{2048} \cdot \frac{1}{72} + \frac{1}{2} x_{1} / \frac{13}{EI_{1}}$$

$$f_{A5} = \frac{\delta_{x3}}{4} - \frac{\delta_{x1x3}}{4} x_{3} - \frac{\delta_{x1x4}}{4} x_{4} + \frac{39}{2048} \cdot \frac{1}{72} + \frac{1}{2} x_{1} / \frac{13}{EI_{1}} - \frac{1}{74} - \frac{1}{74}$$

57

Uwagi:

- 1/ We wzorach /6 2 1 5 -7/ zawarte siły Y₁ i Y₂ pochodzą z działania zebra rozdzielczego r /poz.5/, stanowiącego integralną część ustroju IV rusztu stropowego.
 W rozpatrywanym niniejszym ustroju II rusztu stropowego należy przyjąć Y₁ = Y₂ = 0.
- 2/ Do wzorów powyższych wprowadzić należy odpowiadające danemu schematowi obciążeń siły X_i oraz Y_i ze znakami dodatnimi /+/, jeżeli ich działanie na rozpatrywaną belkę zwrócone jest z góry w dół. W przeciwnym razie siły te wprowadzić do równań ze znakami ujemnymi /-/.

Przy obliczaniu momentu zginającego i przemieszczeń A i B w ustroju IV, należy znaki sił Y przyjąć stosownie do zwrotu tych sił w odniesieniu do żebra rozdzielczego.

3/ Wszystkie przemieszczenia jednostkowe dik oraz dię, obliczone dla konkretnego układu statycznego, zachowuj w powyższych wzorach swoje znaki.

Wyrazy 3072 A oraz Sxi Q występują tylko

w równaniach belek bezpośrednio obciążonych siłą Q.
4/ Kontrolą poprawności obliczonych wielkości są, m.i. równe przemieszczenia przyległych do siebie belek w ich wspólnych przegubach, n.p. f_{C1} = f_{B1}, f_{B3} = f_{A3}. Przemieszczenia f_{A5} dotyczą punktów U5 belek A, położonych na zewnętrznych krawędziach płyt tych skrajnych belek rozpatrywanego ustroju, symetrycznie do przegubów 3 - p.rys.4.

6.2.2. Układ antysymetryczny

$$\int_{x_{1}x_{1}}^{1/2b} \int_{0}^{2} \frac{1}{EI_{b}} dy + 4 \cdot \int_{0}^{3/8} \frac{1}{EI_{1}} dx + 4 \cdot \int_{3/8}^{1/2} \frac{1}{2} dx + 4 \cdot \int_{3/8}^{1/2} \frac{1}{3/8} 1$$

$$\int_{3/8}^{3/8} \frac{1}{2} \frac{1$$

i analogicznie .

$$\delta_{x_1 x_2} = \frac{11 \ 1^3}{192 \ \text{EI}_1} + \frac{3 \ b^2 \ 1}{8 \ \text{GC}}, \quad \delta_{x_1 x_3} = -\frac{9 \ 1^3}{64 \ \text{EI}_1} + \frac{3 \ b^2 \ 1}{8 \ \text{GC}}$$

- 58 -

belek

$$\delta_{x_{1}x_{4}} = -\frac{11}{192} \frac{1^{3}}{192} + \frac{b^{2}}{8} \frac{1}{00},$$

$$\delta_{x_{2}x_{2}} = \frac{b^{3}}{3} \frac{5}{EI_{b}} + \frac{5}{192} \frac{1^{3}}{EI_{1}} + \frac{5}{8} \frac{b^{2}}{00},$$

$$\delta_{x_{2}x_{3}} = -\frac{11}{192} \frac{1^{3}}{EI_{1}} + \frac{b^{2}}{8} \frac{1}{00},$$

$$\delta_{x_{2}x_{4}} = -\frac{5}{192} \frac{1^{3}}{EI_{1}} + \frac{b^{2}}{8} \frac{1}{00},$$

$$\delta_{x_{2}x_{4}} = -\frac{5}{192} \frac{1^{3}}{EI_{1}} + \frac{b^{2}}{3} \frac{1}{EI_{1}} + \frac{b^{2}}{4} \frac{1}{00},$$

$$\delta_{x_{3}x_{4}} = \frac{b^{3}}{96} \frac{1}{EI_{1}} + \frac{b^{2}}{4} \frac{1}{00},$$

$$\delta_{x_{4}x_{4}} = \frac{b^{3}}{3} \frac{5}{EI_{b}} + \frac{5}{96} \frac{1^{3}}{EI_{1}} + \frac{b^{2}}{4} \frac{1}{00},$$

$$\delta_{x_{4}x_{4}} = \frac{b^{3}}{3} \frac{5}{EI_{b}} + \frac{5}{96} \frac{1^{3}}{EI_{1}} + \frac{b^{2}}{4} \frac{1}{00},$$

$$\delta_{x_{4}x_{4}} = \frac{b^{3}}{3} \frac{1}{EI_{b}} + \frac{5}{96} \frac{1^{3}}{EI_{1}} + \frac{b^{2}}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{2}{00},$$

$$\delta_{x_{4}x_{4}} = \frac{5}{192} \frac{1}{E} \frac{1}{b} + \frac{2}{b} \frac{1}{4} \frac{1}{4} \frac{2}{00},$$

$$\delta_{x_{4}x_{4}} = \frac{5}{192} \frac{1}{E} \frac{1}{b} + \frac{2}{b} \frac{1}{4} \frac{1}{00},$$

$$\delta_{x_{5}} = \frac{5}{192} \frac{1}{EI_{b}} + \frac{2}{b} \frac{1}{2} \frac{1}{4} \frac{1}{00},$$

$$\delta_{x_{5}} = \frac{5}{192} \frac{1}{EI_{b}} + \frac{2}{b} \frac{1}{2} \frac{1}{4} \frac{1}{00},$$

$$\delta_{x_{5}} = \delta_{x_{4}} = 0 \dots (6.2.2.2.7)$$

- 59 -

Dla kolejnych układów antysymetrycznego obciążenia rozpatrywanego rusztu stropowego, przynależne momenty zginające i przemieszczenia wyniosą :

Momenty zginające w środku rozpiętości belek teowych /M_{0,5} 1/ M_C = 0

$$M_{B} = \frac{Q1}{8} + \left[\frac{3}{X_{1}} + \frac{X_{3}}{4} + \frac{1}{X_{2}} + \frac{X_{4}}{4} + \frac{2}{2} \frac{1}{8} \right]$$

$$M_{A} = \frac{Q1}{8} + \frac{1}{3} \frac{X_{3}}{X_{3}} + \frac{X_{4}}{4} + \frac{Y_{2}}{\frac{1}{8}} + \frac{1}{3} \frac{1}{8} + \frac{1}{3} \frac{1}$$

$$f_{g} = 0$$

$$f_{B} = \frac{1^{3}}{EI_{1}} \left[\frac{41}{3072} + \frac{39}{1024} / X_{1} + X_{3} / \frac{47}{3072} / X_{2} + X_{4} / \frac{47}{3072} \right]$$

$$+ \frac{1}{48} \frac{1}{2} \frac{1}{2} \frac{1^{3}}{48} / \frac{41}{3072} + \frac{39}{1024} - \frac{1}{2} \frac{47}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} / \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} / \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} / \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} / \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} / \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} / \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} - \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} - \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} \frac{1}{2} - \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} - \frac{1}{2} \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} - \frac{1}{2} \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} - \frac{1}{2} \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac{1}{2} \frac{1}{96} - \frac{1}{2} \frac{1}{1024} - \frac{1}{2} \frac{1}{3072} - \frac$$

Przemieszczenia przegubów u położonych w odległości 1/8 1 od środka, rozpiętości, kolejnych belek teowych

a

$$\begin{aligned} \mathbf{f}_{G1} &= \frac{\int_{X1} Q}{4} / \frac{b^{3}}{24 \text{ EI}_{b}} + \frac{3}{16 \text{ GC}} / X_{1} + \frac{b^{3}}{16 \text{ GC}} X_{2} \\ \mathbf{f}_{B_{1}} &= \frac{\int_{X1} Q}{4} + \frac{\int_{X3X3} X_{3}}{8} X_{1} + \frac{\int_{X3X4} X_{2} - \frac{\int_{X1X3} X_{3}}{4} X_{3} + \\ &= \frac{\int_{X1X4} X_{4}}{4} X_{4} + \frac{39}{2048} X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{B3} &= \frac{\int_{X3} Q}{4} - \frac{\int_{X1X3} X_{1} - \frac{\int_{X3X4} X_{2}}{4} X_{2} + \frac{\int_{X2X3} X_{3}}{8} X_{3} + \\ &+ \frac{\int_{X2X4} X_{4} + \frac{39}{2048} X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A3} &= \frac{\int_{X3} Q}{4} + \frac{\int_{X3X3} X_{3}}{8} X_{3} + \frac{\int_{X3X4} X_{4} + \frac{39}{4096} X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X4} X_{4} + \frac{39}{4096} - X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X4} X_{4} + \frac{39}{4096} - X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X4} X_{4} - \frac{39}{4096} - X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X4} X_{4} + \frac{39}{4096} - X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X4} X_{4} + \frac{39}{4096} - X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X4} X_{4} + \frac{39}{4096} - X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X4} X_{4} - \frac{39}{4096} - X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{EI_{1}} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X3} X_{3}}{4} - \frac{\int_{X1X4} X_{4}}{4} - \frac{39}{4096} - X_{2} \frac{1^{3}}{EI_{1}} \\ \mathbf{f}_{A5} &= \frac{\int_{X3} Q}{EI_{1}} - \frac{\int_{X3} Q}{EI_{1}} - \frac{\int_{X3} Z_{3} - \frac{\int_{X3} Z_{3} - \frac{\int_{X3} Z_{3} - \frac{\int_{X3} Z_{3}}{4} - \frac{\int_{X3} Z_{3} - \frac{\int_{X3} Z_{3} - \frac{\int_{X3} Z_{3}}{4} - \frac{\int_{X3} Z_{3} - \frac{J_{3} - \frac{J_{3}}{Z_{3}} - \frac{J_{3} - \frac{J_{3}}{Z_{3}} - \frac{J_{3} - \frac{J_{3} - \frac{J_{3}}{$$

- 61 -

Uwagi podane dla układów symetrycznego obciążenia, na końce poprzedniego punktu 6.2.1., są w całej rozciągłości ważne również dla niniejszym rozwiązanego układu antysymetrycznego obciążenia.

6.3. Ustrói III rusztu suropowego.

Wzorami ogólnymi wyraża się tutaj tylko przemieszczenia jednostkowe δ_{yy} i δ_{yy} , na podstawie których obliczone zostaną w rozdziale 7 liczbowe wartości sił hiperstatycznych Y, i Y, dla konkretnych wymiarów i obciążeń ustroju. Żebro rozdzielcze r o zastępczej stałej sztywności giętnej przekroju EI, traktuje się w statycznie wyznaczalnym układzie zastępczym jako belkę o rozpiętości = 4b, swobodnie podpartą - nierozdzielnie przegubowo związaną w punktach A i E ze skrajnymi belkami teowymi stropu, w środku ich rozpiętości. Siły Y = 1, działające na ten ustrój w punktach skrzyżowania żebra rozdzielczego z belkami teowymi C względnie B i D, wywołują wzajemne pionowe przemieszczenia przyległych do siebie elementów stropu. Przemieszczenia té składają się z ugięć żebra rozdzielczego i ugięć bezpośrednio siłą Y = 1 obciążonej belki teowej oraz z wpływu ugięć skrajnych belek teowych A i E, na skutek sił podporowych RA i RE żebra, wywołanych danym obciążeniem Y.

Przebieg sił w rozpatrywanym ustroju III przedstawiono na rys.7.

 $\frac{5.3.1. \text{ Układ symetryczny}}{f_{y3 y1}} = 2 \frac{\frac{1/2}{2} \frac{x^2}{4} \frac{dx}{4} + 4}{0} \frac{\frac{1/2}{2} \frac{x}{4} \frac{dx}{16}}{16} + 2 \frac{2b}{0} \frac{2}{4} \frac{2}{4} \frac{y}{4} \frac{dy}{4}}{16} = \frac{1^3}{32} \frac{1}{16} \frac{4}{3} \frac{b^3}{3} \frac{1}{16}$

- 63 -

i analogicznie

Momenty zginające i ugięcia stropowych belek teowych w środku ich rozpiętości wynoszą :

$$M_{0,51} = \frac{41}{8} / Q + 2 Y \text{ araz}$$

$$f = / \frac{41}{3072} + \frac{1}{48} Y / \frac{1^3}{EI_1} \dots (6.3.1.5) /$$

Dla każdej belki wprowadza się oczywiście siły Q i Y bezpośrednio na tę belkę w rozpatrywanym schemacie działające, przyczym dla belek skrajnych A lub E wprowadzić należy zamiast Y przynależną siłę R_A względnie R_E.

Maksymalny moment zginający żebra rozdzielczego wyznacza się przez próby jednym ze wzorów:

 $M_{r} = R_{A} \cdot b \ln M_{r} = /2 R_{A} + Y_{2} / b \cdot \cdot /6.3.1.6 /$

Znaki sił Q, R_A i Y₂ wynikają ze zwrotów tych sił w odniesieniu do rozpatrywanego pręta ustroju stropowego. Siły działające w dół są dodatnie /+/, zaś działające w górę ujemne /-/.

6.3.2. Układ antysymetryczny

W układzie tym Y, = 0, wobec czego

т

$$\delta_{y_1y_1} = \delta_{y_1y_2} = 0$$

$$\delta_{y_2y_2} = 4 \cdot \int_{0}^{1/2} \frac{1}{4} \frac{2}{4} \frac{1}{4} \frac{1}{1} + 4 \cdot \int_{0}^{1/2} \frac{1}{16} \frac{1}{16} \frac{1}{11} + 4 \cdot \int_{0}^{1/2} \frac{1}{16} \frac{1}{11} \frac{1}{10} \frac{1}{10}$$

$$\frac{M}{y_1} = 0, \quad \begin{cases} y_2 = -\frac{41}{384} \\ y_1 = 0, \\ y_1 = -\frac{41}{384} \\ y_1 =$$

Momenty zginające i strzałki ugięcia oblicza się tutaj również wyżej podanymi wzorami /6.3.1.5. i 6./

6.4. Ustrój IV rusztu stropowego

W ustroju tym, stanowiącym syntezę ustroju II i III, zachowują swoją ważność wzory na przemieszczenia $\int_{x,x,} \int_{y,y,}$ $\int_{xp} i \int_{yp}$, przedstawione wyżej w ustępach 6.2. i 6.3. Dodatkowo wyznacza się poniżej w oparciu o rys.8, wzajemne przemieszczenia \int_{xy} .

$$\frac{6.4.1. \text{ Układ symetryczny}}{\int_{x_1y_1}^{3/8} = -2 \cdot \int_{2}^{3/8} \frac{1}{2x} \frac{2 \text{ dx}}{2 \text{ EI}_1} - 2 \cdot \int_{3/81}^{1/2} \frac{3 \text{ lx dx}}{4.2 \text{ EI}_1} = \frac{39 \text{ l}^3}{512 \text{ EI}_1}$$

i analogicznie

$$\int_{x_{2}y_{1}}^{y_{1}} = -\frac{47}{1536} \frac{1^{3}}{\text{EI}_{1}}, \qquad \int_{x_{3}y_{1}}^{y_{3}} = -\frac{39}{1024} \frac{1^{3}}{\text{EI}_{1}},$$
$$x_{4}y_{1} = -\frac{47}{3072} \frac{1^{3}}{\text{EI}_{1}}, \qquad x_{1}y_{2} = +\frac{39}{512} \frac{1^{3}}{\text{EI}_{1}},$$

$$\delta_{x_2y_2} = + \frac{47 \, 1^3}{1536 \, \text{EI}_1}, \quad \delta_{x_3y_2} = - \frac{39 \, 1^3}{256 \, \text{EI}_1},$$
$$\delta_{x_4y_2} = - \frac{47 \, 1^3}{768 \, \text{EI}_1} \quad \dots \quad \dots \quad \dots \quad /6.4.1.1./$$

6.4.2. Układ antysymetryczny

We be
$$\mathbf{x}_{1} = 0$$
:
 $\delta_{\mathbf{x}_{1}\mathbf{y}_{1}} = \delta_{\mathbf{x}_{2}\mathbf{y}_{1}} = \delta_{\mathbf{x}_{3}\mathbf{y}_{1}} = \delta_{\mathbf{x}_{4}\mathbf{y}_{1}} = 0$
 $\delta_{\mathbf{x}_{1}\mathbf{y}_{2}} = + \frac{39 \, 1^{3}}{512 \, \mathrm{EI}_{1}}, \quad \delta_{\mathbf{x}_{2}\mathbf{y}_{2}} = + \frac{47 \, 1^{3}}{1536 \, \mathrm{EI}_{1}},$
 $\delta_{\mathbf{x}_{3}\mathbf{y}_{2}} = - \frac{117 \, 1^{3}}{1024 \, \mathrm{EI}_{1}}, \quad \delta_{\mathbf{x}_{4}\mathbf{y}_{2}} = - \frac{47 \, 1^{3}}{1024 \, \mathrm{EI}_{1}} \cdot \cdot \cdot /6 \cdot 4 \cdot 2 \cdot 1/$

Po wyznaczeniu /w następującym rozdziale 7 niniejszej pracy/ dla poszczególnych schematów obciążeń wszystkich sił X i Y, oblicza się przynależne momenty zginające i przemieszczenia belek ustroju IV rusztu stropowego, według wzorów /6.2.1.5-7/ i /6.2.2.5 - 7/, podanych przy rozpatrywaniu ustroju II rusztu oraz /6.3.1.6./ - ustroju III rusztu.

7. Liczbowe rozwiązania przyjętych ustrojów statycznych rusztu stropowego

7.1. Ustrój I stropu

W oparciu o wyniki rozważań przedstawionych wyżej w rozdziałach 5.1. oraz 6.1. obliczono, dla ustroju I o charakterystyce prętów: l = 425 cm, $I_1 = 9150$ cm⁴ C = 1122 cm⁴, b = 38 cm, $I_b = 959$ cm⁴, E = $E_b = 180000$ kG/cm², m = G/E = 0,42, następujące wartości przemieszczeń jednostkowych $\int x_1 x_1 = K = 28,729277 \cdot 10^{-4}$ wg. /6.1.1./ $\int x_1 x_2 = L = 5,188573 \cdot 10^{-4}$ wg. /6.1.2./ $\int x_1 Q = -R = -6,068928 \cdot 10^{-4} \cdot Q$ wg. /6.1.3./ <u>Tablica II</u>. Zestawienie sił hiperstatycznych, momentów zginających i strzałek ugięcia belek ustroju I rusztu stropowego dla obciążeń pojedyńczych belek siłą Q kG równomiernie rozłożoną na całej długości belki.

Wielkość	Mnoż-	Obciążenie Q spoczywa na belce							
1202 0000	nik	A	B	C	D	E	stka		
X ₁	Q	0,21862 *	0,17776	0,03323	0,00625	0,00137	kG		
X _Z	88	0,04086	0,18526	0,18401	0,03461	0,00763	11		
X3	89	0,00763	0,03461	0,18401	0,18526	ō,040 86	11		
X4	97	0,00137	0,00625	0,03323	0,17776	0,21862	11		
M max	n	29,896	14,554	14,023	14,554	29,896	kGcm		
f A l	81	4,4157	0,9223	0;1724	0,0324	0,0071	10- ⁴ cm		
f A	TT .	3,9460	1,7261	0,3227	0,0607.	0,0134	¥1		
f _{Ap} =f _{B1}	88	2,9284	2,5535	0,4773	0,0898	0,0198	. II		
1 B	38	1,7261	2,5439	1,4641	0,2754	0,0607	11		
f _{Bp} =fc1	11	0,5474	2,4854	2,4709	0,4540	9,1024	H		
1°C	11	0,3227	1,4628	2,4953	1,4628	0,3227	F1		
fcp=fD1	11	0,1024	0,4640	2,4709	2,4854	0,5474	11		
r _D	11	0,0607	0,2754	1,4641	2,5439	1,7261	H		
f _{Dp} =fEl	17	0,0198	0,0898	0,4773	2,5535	2.9284	Ħ		
Ĩ	Ħ	0,0134	0,0607	0,3227	1,7261	3,9460	71		
f Ep	11	0,0071	0,0324	0,1724	0,9223	4,4157	11		

Uwagi:

1/ Wartości sił i przemieszczeń, podane w powyższej tablicy bez znaków, odpowiadają zwrotom załcżonym na rysunkach schematów statycznych. Znaki - /minus/ umieszczone nad odnośnymi liczbami w tablicy oznaczają zwroty przeciwne.

2/ Dla pojedynczej belki poz.1 swobodnie podpartej, nie usztywnionej rusztowo, M_{max} = 53,125 Q hG cm f_{max} = 6,069 10⁻⁴ Q cm Przy pomocy wzorów /6.1.4 - 17/ obliczono dla obciążenia kolejnych belek A, B, C, D, E siłami Q, wszystkie siły hiperstatyczne X₁, momenty zginające i przemieszczenia, zestawiając je w tablicy II.

Uzyskane wyniki służyć mogą, podobnie jak wartości linii wpływowych, do obliczenia sił przegubowych, sił poprzecznych, momentów zginających i strzałek ugięcia każdej belki składowej ustroju, przy dowolnym schemacie obciążeń Q na stropie.

7.2. Ustrój II stropu

Dla danych ustrojowych: l = 482 cm, $I_1 = 5490 \text{ cm}^4$, $C = 1500 \text{ cm}^4$, b = 50 cm, $I_b = 817 \text{ cm}^4$ $E = E_b = 180000 \text{ kG/cm}^2$, m = G/E = 0,42, obliczono na podstawie wyprowadzonych w rozdziale 5.2. wzorów ogólnych, następujące przemieszczenia jednostkowe.

7.2.1. Układ symetryczny

Edx	1 ^x 1	=	+	9	373,2949	EQ	12×3	Ħ	-	929,4	974
Еδх	1 ^x 2	=	+ :	3	744,8416	Еζ	x2x4	=	-	292,0	876
е Sx	1×3		- :	2	151,0826	EQ	13 X3	-	+	7222,	2123
ESX	1×3	=	-		929,4973	Eδ	x x4		+2	815,3	4 41
ESX	212	#	+ .	1	883,6116	EÓ	x4 x4	58	+1	591,5	240
					p						

Dla obciążenia Q = 8 2 założonego na belce środkowej C $E \delta x_1 Q = +4 040,9124 P$ $E \delta x_2 Q = +1 703,7435 P$ $E \delta x_3 Q = E x_4 Q = 0$ Dla obciążeń Q = 8 2 założonych na belkach B i D $E \delta x_1 Q = -4040,9124 P = -E \delta x_2 Q$ $E \delta x_3 Q = -1703,7435 P = -E \delta x_3 Q$

Dla obciażeń Q = 8 P/2 założonych na belkach A i E
$E \delta x_1 Q = E x_2 Q = 0$
$\delta x_3 Q = -4040,9124 P$
$\delta x_4 Q = -1703,7435 P$
Wyniki dalszych obliczeń, X, M, f, zestawiono w tablicy III.
7.2.2. Układ antysymetryczny
$E \delta x_1 x_1 = + 5071,1297$ $E \delta x_2 x_3 = - 929,4974$
$E \delta x_1 x_2 = + 1885,8466 E \delta x_2 x_4 = - 292,0876$
$E \delta x_1 x_3 = -2151,0826$ $E \delta x_3 x_3 = +7222,2123$
$E \delta \mathbf{x}_1 \mathbf{x}_4 = - 929,4973$, $E \delta \mathbf{x}_3 \mathbf{x}_4 = + 2815,3441$
$E \delta x_2 x_2 = + 1299,4364$ $E \delta x_4 x_4 = + 1591,5240$
Dla obciążenia Q'= + 4 P/2 i - 4 P/2 na belce C.
$z \delta z_{q} Q = + 482,1589 P$
E d = + 243,0716 P
Edra = Edra = 0
Dla obciążenia Q = + 8 P/2 na belce B i Q = - 8 P/2 na
belce D.
$E^{0}x_{1}Q = -4040,9124 P = -E^{0}x_{3}Q$
$E^{0}x_{2}Q = -1703,7435 P = -E^{0}x_{4}Q$
Dla obciążenia $Q = + 8 P/2$ na belce A i $Q = -8 P/2$ na belce
E.
E Sx, Q = E Sx2Q = 0
$E\delta_{x_3} Q = -4040,9124 P$
Ed x Q = - 1703, 7435 P

Tablica III. Zestawienie sił hiperstatycznych, momentów zginających i strzałek ugięcia belek <u>ustroiu II</u> rusztu stropswego <u>dla obciąże-</u> <u>mia symetrycznego</u> kolejnych par belek

B1(am1 + Y1 + YKG								
Wielkość	Mnoż-	Obciążen	Jedno-					
	AIK.	AIE	BID	C	Darg			
X	Q	0,03200	0,05924	0,09124	kG			
X2	11	0,00802	0,05375	0,06176	42)			
X3	88	0,12323	0,09124	0,03200	11			
X ₄	tt.	0,06979	0,06176	0,00802	13			
M 0,5·1	11	33,7733	26,0648	19,8244	kGcm			
1 A5 =1 E5	11	9,477	3,523	1,059	10 ⁻⁴ cm			
f A = f E	11	8,595	5,010	1,520	81			
f A3 = f B3=	F 81	6.486	5.783	1.762	97			
=1 E3. = 1D3								
f B = f D	81	5,010	6,627	3,489	11			
f B1=f C1 =	2 88	0.004	6 406	1 734	11			
= I D1		2,821	0,480	41124				
fC	н	3,040	6,977	5,1067	85			

Tablica IV. Zestawienie sił hiperstatycznych, momentów zginających i strzałek ugięcia belek <u>ustroju II</u> rusztu stropowego dla <u>obciąże-</u> <u>nia antysymetrycznego kolejnych</u> par belek A i E oraz B i D siłami + Q i - Q kG.

Wielkość	Mnoż-	Obciążen	ie Q na	belkach	Jedno-
		AIE	BID		
$X_1 = -X_1^3$	Q	0,06138	0,13248	0,01647	kG
X2 = - X2	H	0,02214	0,07318	0,02949	n
$X_3 = -X_3^\circ$	Ħ	0,13248	ō,07110	0,00906	n
$X_4 = -X_4^3$	11	0,07319	0,05105	ð,00097	87
M 0.5 1	n	31,8950	15,9678	0	kGem
1 A5=-1 E5	11	9,156	2,780	0,258	10 ⁻⁴ cm
f A ==f E	11	8,137	3,950	0,374	
f A3=f E3 =fB3=-fD3	it .	5,956	4,560	0,436	Π
fB = - fD	H	3,950 .	4,180	0,847	Ħ
fB1 = - fD1 =fC1= - fC1	Ŧ	1,390	3,172	1,144	Π
fC	Ħ	0	0	0	11

- 70 -

<u>Tablica V.</u> Zestawienie sił hiperstatycznych, momentów zginających i strzałek ugięcia <u>ustroju</u> II rusztu stropowego, dla obciążenia <u>pojedynczych</u> belek siłą Q kG /superpozycja wartości tablic III i IV/.

Tielkość	Mnoż-	Obciąże	Jednos-				
	nik	A	В	C	D	E	tka
X	Q	0,04669	0,09586	0,09124	0,03662	0,01469	kG
X2	11	0,01508	0,06347	0,06177	5,00972	0,00706	11
*3	11	0,12785	ō,08117	0.03200	ō.01007	0,00462	ŧı
X ₄	n	0,07149	0,05640	0,00801	0,00535	0,00170	н
4	83	ō,00170	0,00535	0,00801	0,005640	0,07149	PI
33	11	0,00462	ō,01007	ō,03200	0,08117	0,12785	11
X2	17	0,00706	ō,00972	0,06177	0,06347	0,01508	21
-19	(1	0,01469	0,03662	ō,09124	0,09586	0,04669	ţT
M max	13	32,8341	21,0263	19,8244	21,0263	32,8341	kGem
f _{A5}	н	9,3165	3,1515	1,0590	0,3715	0,1605	10 ⁻⁴ om
¹ A	n	8,3660	4,4800	1,5200	0,5290	0,2290	PI
IA3= B3	11	6,2205	5,1715	1,7620	0,6115	0,2645	11
r _B .	11	4,4800	5,4035	3,488	1,2235	0,5285	Ħ
fB1=f01	11	2,1055	4,8290	4,7240	1,6570	0,7155	11
fo	11	1,5200	3,4885	5,1067	3,4885	1,5200	11
f _{C1} =f _{D1}	н	0,7155	1,6570	4,7240	4,8290	2,1055.	H
fD	-11	0,5285	1,2235	3,488	5,4035	4,4800	H.
1D3=1E3	II	0,2645	0,6115	1,7620	5,1715	6,2205	IT
E	11	0,2290	0,5290	1,5200	4,4800	8,3660	H
IE5	, 11 ,	.0,1605	0,3715	1,0590	3,1515	9,3165	- 11-2 10

- Uwagi: 1/ Wartości sił i przemieszczeń, podane w powyższej tablicy bez znaków, odpowiadają zwrotom założonym na rysunkach schematów statycznych. Znaki - /minus/ umieszczone nad odnośnymi liczbami w tablicy oznaczają zwroty przeciwne.
 - 2/ Dla pojedynczej belki stropowej /poz.2/, swobodnie podpartej i nie usztywnionej rusztowo, M0.5 1 = 60,250 9. kGcm, f0.5 1 = 14,7548 9. 10⁻⁴ cm.
Zestawienie wyników dalszych obliczeń ustroju II rusztu stropowego, dla obciążenia antysymetrycznego, założonego na belkach wg. kolejnych schematów, podano w tablicy IV.

7.2.3. Obciążenie Q = 8 P/2 założene na pojedynczych belkach rusztu stropowego

Wszystkie siły hiperstatyczne X, momenty zginające M_{0,5} 1 oraz strzałki ugięcia f, wywołane obciążeniem pojedynczych belek ustroju II rusztu stropowego, uzyskano przez superpozycję odpowiednich wartości liczbowych z tablic III oraz IV i zestawiono je w tablicy V. Należy przy tym zaznaczyć, że dla obciążenia belek A, B, D, E, dodaje się połówki odpowiadających sobie wartości liczbowych z tablic III i IV, natomiast dla obciążenia belki C przepisuje się całkowite wartości liczbowe z tablicy III do tablicy V. Wartości liczbowe tablicy V są porównywalne z odnośnymi wartościami zestawionymi w tablicy II dla ustroju I rusztu stropowego.

7.3. Ustrój III stropu

W obliczeniach tego ustroju, wg. wzorów rozdziału 6.3., przyjęta: 1 = 482 cm, I₁ = 5490 cm⁴, b = 50 cm, I₂ = 100 cm⁴ /stosownie do konkluzji rozdz.5.4./.

7.3.1. Układ symetryczny

$$E \delta_{y_1y_1} = + 2 304,0765, E \delta_{y_1y_2} = 2 716,6065, E \delta_{y_2y_2} =$$

=5 033,0929
Przy obciążeniu Q = 8 P/2 na belce C
 $E \delta_{y_1}Q = - 272,22713 Q, E \delta_{y_2}Q = 0$
Przy obciążeniach Q = 8 P/2 na belkach B i D
 $E \delta_{y_1} = 0, E \delta_{y_2}Q = -544,45426 Q$
Przy obciążeniach Q = 8 P/2 na belkach A i E
 $E \delta_{y_1}Q = + 272,22713 Q, E \delta_{y_2}Q = + 544,45426 Q$
Obliczone .stąd wartości X, M, 1, zestawione w tablicy VI

Tablica VI. Zestawienie sił hiperstatycznych. momentów zginających i ugięć belek ustroju III rusztu stropowego dla obciążenia symetrycznego kolejnych par belek siłami + Q i + Q kG

	Mnoż	Obciążen	ie Q na	belkach	Jedno-
Wielkość	nik	AIE	B 1 D	C	stka
Y ₁	8	0,02583	0,35076	0,32493	kG
÷2	11	0,122117	0,29750	0,17538	- 91
$R_A = R_E$	11	0,109202	0,12210	0,012915	89
M0.51	11	47,09116	24,4012	21,0959	kGcm
M _{r max}	11	5,4601	6,1060	7,4775	11
$f_A = f_E$	11	12,5457	2,88298	0,30489	10 ⁻⁴ cm
$f_B = f_D$	Ð	2,88298	8,10042	4,14034	11
fc	TT	0,60978	8,28066	7,4528	Ħ

Uwaga: Wartości sił i przemieszczeń, podane w powyższej tablicy bez znaków, odpowiadają zwrotom założonym na rysunkach schematów statycznych. Znaki - /minus/ umieszczone nad odnośnymi liczbami w tablicy oznaczają zwroty przeciwne.

Tablica VII. Zestawienie sił hiperstatycznych,

momentów zginających i ugięć belek ustroju III rusztu stropowego dla obciążenia antysymetrycznego kolejnych par belek A i E oraz B i D siłami + Qi - QkG.

Wielkość	Mnoż- n ik	+Q 1 -Q 1 A 1 E	na belk. B 1 D	Jedno- stka
Y2 =-Y'2	Q.	0,18406	0,36812	kG
$R_A = - R_E$	ţI.	0,09203	0,18406	11
^M 0,51	11	49,1603	15,8915	kGcm
Мг щах	ft	4,6015	9,2030	11
IA= - IE	n	12,95111	4,34525	10 ⁻⁴ cm
B = fD	87	4,34525	6,43324	\$ 9

$$Y_1 = 0, f_0 = 0$$

Uwaga: Wartości sił i przemieszczeń, podane w powyższej tablicy bez znaków, odpowiadają zwrotom założonym na rysunkach schematów statycznych. Znaki - /minus/ umieszczone nad odnośnymi liczbami w tablicy oznaczają zwroty przeciwne.

Tablica VIII. Zestawienie sił hiperstatycznych, momentów zginających i ugięć belek <u>ustroju III</u> rusztu stropowego dla obciążenia <u>pojedynczych belek</u> siłą Q kG, równomiernie rozłożoną na całej długości <u>kolejnych belek</u> /superpozycja wartości tablic VI i VII/.

Wielkość	Mnoż-	Obciążen	nie 🤤 zaž	łożone na	belce		Jedno-
	nik,	A	B	C	D	E	stka
RA.	8	0,10062	0,15308	0,01291	0,03098	0,00858	kG
¥2.	н	0,15309	0,33281	0,17538	0,03531	0,03097	n
¥1	П	0,01292	0,17538	0,32493	0,17538	0,01292	n
Y2.	11	0,03097	0,03531	0,17538	0,33281	0,15309	E1 .
RE	11	0,00858	0,03098	0,01291	0,15308	0,10062	11
M 0,5 1	H	48,1258	20,1463	21,0959	20,1463	48,1258	läcem
^M r max	н	5,0308	7,6545	7,4775	7,6545	5,0308	t1
Ĩ	H S	12,7484	3,6141	0,30489	0,73113	0,2027	10 ⁻⁴ c
B	Ħ	3,6141	7,26680	4,14033	0,83360	0,7311	H
¹ C	11	0,30489	4,14033	7,4528	4,14033	0,30489	11
1 D	n	0,7311	0,83360	4,14033	7,26680	3,6141	21
fE	ft	0,2027	0,73113	0,30489	3,6141	12,7484	11

- Uwagi: 1/ Wartości sił i przemieszczeń, podane w powyższej tablicy bez znaków, odpowiadają zwrotom założonym na rysunkach schematów statycznych. Znaki - /minus/ umieszczone nad odnośnymi liczbami w tablicy oznaczają zwroty przeciwne.
 - 2/ Dla pojedynczej belki stropowej /poz.2/, swobodnie
 podpartej i nie usztywnionej rusztowo,
 M0,5 1 = 60,250 Q kGcm
 f0,5 1 = 14,7548 Q . 10⁻⁴cm.

7.3.2. Układ antysymetryczny $E \delta y_1 y_1 = E \delta y_1 y_2 = 0; E \delta y_2 y_2 = + 1479,0098$ Przy obciążeniu Q = + 8 P/2 na belce B i-Q =-8 P/2 na belce D. $E \delta y_1 Q = 0, E \delta y_2 Q = -544,45426 Q$ Przy obciążeniu Q = + 8 P/2 na belce A i Q = -8 P/2 na belce E.

 $\delta_{y_1} = 0$, $E \delta_{y_2} = + 272,22713 =$ Przynależne wartości Y, M, f, zestawiono w tablicy VII.

7.3.3. Obcieżenie Q = 8 P/2 założone ma pojedynczych belkach rusztu stropowego

Z superpozycji wartości liczbowych tablic VI i VII, przeprowadzonej podobnie jak w rozdziale 7.2.3., otrzymano wszystkie poszukiwane siły,momenty i strzałki ugięcia belek ustroju III rusztu stropowego, które wpisano do tablicy VIII.

7.4. Ustrói IV stropu

Przy zachowaniu charakterystycznych cech prętów tego ustroju, stanowiącego syntezę ustrojów II i III, według danych w odnośnych rozdziałach 6.2. i 6.3., wykorzystuje się tutaj obliczone w tych rozdziałach przemieszczenia jednostkowe θ_{XX} , $\delta_{Y,Y}$, $\delta_{Y,Q}$, a oblicza jedynie, wg. wzorów /6.4.1.1. -2/, przemieszczenia δ_{-} .

7.4.1. Układ symetryczny

 $E \delta x_{1}y_{1} = -1553,68708 = -E \delta x_{1}y_{2}$ $E \delta x_{2}y_{1} = -624,13135 = -E \delta x_{2}y_{2}$ $E \delta x_{3}y_{1} = -.776,84456, E \delta x_{3}y_{2} = -3107,29665$ $E \delta x_{4}y_{1} = -312,05548, E \delta x_{4}y_{2} = -1248,26270$

Wyniki szczegółowych obliczeń rozpatrywanego ustroju 6-krotnie statycznie niewyznaczalnego / X_1 , X_2 , X_3 , X_4 , Y_1 , Y_2 /, wraz z momentami zginającymi i przemieszczeniami, dla trzech kolejnych schematów obciążeń, zestawiono w tablicy IX.

Tablica IX.Zestawienie sił hiperstatycznych, momentów
i ugięć belek
zginających/ustroju IV rusztu stropowego
dla obciążenia symetrycznego kolejnych par
belek siłami + Q i + Q kG.

Wielkość	Mnoż-	Obciążeni	Le Q na l	elkach	Jedno-
	nik	AIE	BiD	C	stka
X ₁	Q	0,01281	0,04851	0,06381	kG
<u>x</u> 2.	11	0,00707	0,05493	0,06204	11
×3	11	0,11978	ō,08075	0,03905	11
X4	н	0,06660	0,06153	0,00305	11
Y2	11	0,02439	0,04066	0,06503	11
¥1	п	0,08694	0,03590	0,12283	11
$R_A = R_E$	11	0,01908	0,02270	0,00362	11
M 1/2	Ħ	33,3619	22,0358	15,80960	kGem
M ^r max	17	-3,1276	+1,1353	+2,8892	11
$f_{A5} = f_{E5}$	21	+9,1812	+3,696	1,149	10 ⁻⁴ cm
$\mathbf{r}_{A} = \mathbf{r}_{E}$	n	+8,349	+5,087	+1,674	H
fA3 = fB3 =fE3 = fD3	11	+6,309	+5,742	1,979	n
$\mathbf{f}\mathbf{B} = \mathbf{f}\mathbf{D}$	79	+5,087	+6,567	+3,484	11
fB1 = fC1 =fC1 = fD1	81	3,130	6,440	4,460	н
fC	Ħ	3,348	6,968	4,760	11

Uwaga:

Wartości sił i przemieszczeń, podane w powyższej tablicy bez znaków, odpowiadają zwrotom założonym na rysunkach schematów statycznych. Znaki - /minus/ umieszczone nad odnośnymi liczbami w tablicy oznaczają zwroty przeciwne. Tablica X . Zestawienie sił hiperstatycznych, momentów zginających i ugięć belek ustroiu IV rusztu stropowego dla obciążenia antysymetrycznego kolejnych par belek A i E oraz B i D silami + Q 1 - Q kG.

Wielkość	Mnoż nik	Obciąż.Q A 1 E	na belk. B i D	Jedno- stka
$X_1 = - 1$	8	0,06274	0,10628	kG
X2 = -X2'	н	0,02232	0,06969	87
X3 = X3	n	0,14059	0,03496	91
$\mathbf{x}_4 = -\mathbf{x}_4$	81	0,07300	0,04741	8
12 = - 12	11	0,00741	0,14196	11
$R_A = - R_E$	n	0,00370	0,07099	n
M 1/2	87	31,8010	10,55807	kGcm
M	81	0,1851	3,5488	11
f A5=-f E5	11	9,107	3,188	10 ⁻⁴ cm
f A =-f E	TT	8,134	4,000	fi
1A3 = 1B3 =-1E3=-1D3	81	5,974	4,212	H
fB = - fD	-11	4,000	3,651	Ħ
fB1 = fC1= =-fD1==fC1'	99	1,421	2,618	11
fC	71	0	0	11

Tablica XI.

Zestawienie sił hiperstatycznych, momentów zginających i strzałek ugięcia belek <u>ustroju IV</u> rusztu stropowego dla obciążeń <u>pojedyńczych belek siłą</u> Q kG /superpozycja wartości tablic IX i X/.

Wielkość	Mnoż-	Obciążen	ie Q zał	ożone na	belce		Jedno-
	MTK	A	B	C	• D	E	BVAG
X ₁	Q	0,03777	0,07739	0,06131	0,02888	0,02496	kG
X2	11	0,01469	0,06231	0,06204	0,00738	0,00763	11 -
X ₃	11	0,12518	0,05785	0,03905	0,02289	0,00541	21
X ₄	11	0,06980	0,05447	0,00505	0,00706	0,00320	17
RE	*	0,00769	0,024 4	0,00362	0,04685	0,01139	17
Y ₂	91	0,00849	0,09131	0,06503	0,05065	0,01590	11
Y ₁	-11	0,04347	0,01795	0,12283	0,01795	0,04347	15
¥2'	PT	0,01590	0,05065	0,06503	0,09131	0,00849	52
RA	31	0,01139	0,04685	0,00362	0,02414	0,00769	71
X ₄ '	Ħ	0,00320	0,00706	0,00505	0,05447	0,06980	17
X3' .	Ħ	0,00541	0,02289	0,03905	0,05785	0,12518	11
X2'	F1	0,00763	0,00738	0,06204	0,06231	0,01469	11
X ₁ ,	88	0,02496	`T,02838	0,06131	0,07739	0,03777	11
M 1/2	Ħ	32,5814	16,2969	15,8096	16,2969	32,5814	kGom
M max	н	1,6563	2,3420	2,8892	2,3420	1,6563	11
f A5	H	9,144	3,442	1,149	0,254	0,037	10 cm
Î A	11	8,241	4,543	1,674	0,543	0,107	n
f A3 = f B3	E1	6,141	4,977	1,979	0,765	0,167	11
f B	11	4,543	5,109	3,484	1,458	0,543	81
f B1 = f01	Ħ	2,275	4,529	4,460	1,911	0,854	11
fC	11	1,674	3,484	4,780	3,484	1,674	11
f C1' = fD1	11	0,854	1,911	4,450	+,529	2,275	11
fD	81	0,543	1,458	3,484	5,109	4,543	. 11
f D3 = fE3	11	0,167	0,765	1,979	4,977	6.141	21
ſE	11	0,107	0,543	1,674	4,543	8,241	- 11
f E5	п	0,037	0,254	1,149	3,442	9.144	11

Uwagi: 1/ Wartości sił i przemieszczeń, podanę w powyższej tablicy bez znaków, odpowiadają zwrotom założonym na rysunkach schematów statycznych. Znaki - /minus/ umieszczone nad odnośnymi liczbami w tablicy oznaczają zwroty przeciwne.

- 78 -

7.4.2. Układ antysymetryczny

 $E \delta_{x_1y_2} = + 1553,6808, E \delta_{x_3y_2} = - 2330,53001$ $E \delta_{x_2y_2} = + 624,13135 E \delta_{x_4y_2} = - 936,19576$

Odnośne wyniki dalszych obliczeń tego układu przedstawiono w tablicy X.

7.4.3. Obciążenia Q = 8 P/2 założone na pojedynczych belkach rusztu stropowego

Wszystkie siły hiperstatyczne X, Y, momenty zginające M oraz strzałki ugięcia kolejnych belek ustroju IV rusztu stropowego, dla obciążeń Q = 8 P/2 zakładanych na pojedynczych belkach, uzyskane przez superpozycję odnośnych wartości liczbowych z tablic IX i X, zestawiono w tablicy XI.

8. Badania w naturze

Zrealizowany * dniach 2-4.VII.1960 r. i 2-7.II.1961 r. na terenie W.W. Betoniarni * Cieszynie program badań objął trzy belki pojedyncze craz trzy ustroje rusztów stropowych, złożonych /każdy/ z pięciu belek teowych zgodnie z zakresem pracy podanym wyżej w punkcie 2.

Próbne obciążenie aż do złamania prototypów pojedynczych belek teowych poz.l /z otworami kołowymi w żebrze/ - fot. rys.16 oraz poz.2 /o żebrze typu ramy Vierendeela/ - fot. rys.17, wykazały nieco większą ich sztywność i wytrzymałość od wynikających z obliczeń statycznych, wykonanych przy założeniu rzeczywistych cech geometrycznych przekrojów i przyjętych wg. norm właściwości mechanicznych betonu i stali badanych prefabrykatów.

Z uwagi na wymaganą zwięzłość niniejszego opracowania nie przytacza się tutaj odnośnych wyników doświadczalnych ani obliczeń statycznych pojedynczych belek stropowych. Natomiast przebieg i szczegółowe wyniki badania deformacji złożonych konstrukcji rozpatrywanych stropów prefabrykowanych, potrzebne dla weryfikacji wyników teoretycznych rozważań sztywności przyjętych ustrojów rusztowych, zostaną poniżej, w krótkości przedstawione.

2.1. Stanowisko badawcze i urządzenia pomiarowe

W baraku o murowanych ścianach, drewnianej konstrukcji dachowej i betonowej podłodze, przygotowano dwie równoległe do siebie ściany – stanowiska, służące jako podpory dla badanych układów belek stropowych. Obydwie ściany o grubości 38 cm, długości ok. 2,50 m i wysokości 1,86 m, złożone we wzajemnej odległości odpowiadającej rozpiętości danych belek stropowych, wymurowano z glinobetonowych pustaków /Rw = 140 kG/cm2/ na zaprawie cementowo-wapiennej /l:1:3/ p.fot. rys.18. Na ścianach tych oparto, za pośrednictwem ław betonowych, belki stropowe o ustroju I oraz II-IV, jak to opisano w punktach 3.1. do 3.4.

Do pomiaru ugięć -pionowych przemieszczeń poszczególnych punktów- belek stropowych pod obciążeniem próbnym, zastosowano 24 czujniki sprężynowe o dokładności odczytów 0,01 mm. Czujniki ustawiono pod badanym stropem na drewnianych rusztowaniach z kozłów i brusów, w trzech szeregach, w układzie przedstawionym na rys.3 i 4 oraz fot. rys.19 i 20. Zwrócić należy uwagę, że drewniane kozły i brusy użyte do rusztowania, wzięto z nieosłoniętego placu składowego Betoniarni, gdzie na skutek długotrwałych deszczów w okresie poprzedzającym badania, drewno zostało silnie zawilgocone. Fakt ten tłumaczy wykazane później nieregularności przemieszczeń belek stropowych, wynikające ze zmian objętościowych drewna rusztowaniowego zwłaszcza najintensywniej wysychającego w pobliżu koksiaka, służącego do ogrzewania pomieszczenia badawczego /w lutym 1961 r./.

8.2. Próbne obciażenia rozpatrywanych ustrojów stropu

Do próbnego obciążenia badanych.stropów użyto jako balastu prefabrykowane blok# gruzobetonowe /kominowe/, mniejsze o wymiarach 25 . 25 . 14 cm z otworem Ø 14 cm, o przeciętnym ciężarze 13,8 kG, względnie większe o wymiarach 38 . 38 . 14 cm z otworem Ø 14 cm, o przeciętnym ciężarze 38.0 kG. Bloki te zakładano na stropie ręcznie, pojedynczymi rzędami równomiernie na całej długości poszczególnych belek, stosując jako podkładki po dwie podłużne drewniane listwy, dla symetrycznego rozłożenia obciążenia w przekroju poprzecznym belki. Kolejne układy obciążeń badanych stropów, oznaczone schematami obciażeń I - VIII. zestawiono w tablicach XII i XIII. W zestawieniach tych pominieto cieżar własny belek stropowych, gdyż w stosowanym sposobie pomiaru ugięć nie został on również ujęty. Obciążenia próbne stropu dobierano teoretycznie w ten sposób, by wywołaby one jak największe sfalowanie poprzeczne stropu, w granicach do momentu rysującego belki włącznie. Bezpośrednio po naniesieniu każdej partii obciążenia i ok. 20 minut później t.j. przed przystąpieniem do obciążania dalszego czyli przed przygotowaniem nowego schematu obciążeń, dokonywano odczytów wszystkich czujników, notując je w rubrykach "o" odnośnych tablic XIV względnie XV. W tablicach tych podano również różnice "r" następujących po sobie odczytów oraz Zr w odniesieniu do odczytu danego i początkowego każdego czujnika, dla badanego ustroju rusztu stropowego. Zwrócić należy uwagę, że w tablicy XV umieszczono pod 1.p. 21 - 26 wyniki pomiarów przemieszczeń stropu o ustroju O/II, w którym powiązane były wzajemnie tylko belki E, D i C przy pomocy zdyblowania /poz.4/ spoin między ich płytami, zaś pod 1.p. 27 do 48 wpisano wyniki pomiarów przemieszczeń stropu o ustroju III/IV, utworzonego z ustroju poprzedniego przez założenie w środku jego rozpiętości poprzecznego rozdzielczego żebra usztywniającego /prefabrykatów 'poz.5/.

Tablica XII. Zestawienie schematów obciążeń stropu o ustroju I, siłami Q w kG, równomiernie rozłożonymi wzdłuż poszczególnych belek.

Sche-	Obcią	żenie (dzia	ła na	belki	55
mat	A	В	C	D	E	
0	-	-	-	-	- /-	
I	-	-	-	-	345	345
II	-	-	-	345	345	69 0
III	345	-	-	345	34 5	1035
IV	345	34 5	-	34 5	345	1380
V	690	345	-	345	690	2070
VI	1035	1035	-	-	-	2070
VII	1035	1035	69 0	-	-	2760
VIII	1035	1035	1035	345		3450

Tablica XIII. Zestawienie schematów obciążeń stropów o ustrojach II,III i IV /kombinowanych/ siłami Q w kG,równomiernie rozłożonymi wzdłuż poszczególnych belek

Sche-	Obciąż	tenie (dzia	ta na	belki	ΣQ	
mat	A	B	C	D.	E		
0	-	-	00900	-	-		
XI	-		-	-	1596	1596	
XII	1026	-	-		1596	2622	
XIII	-	-	-	-	1064	1064	
XIV	-	1064	-	-	1064	2128	
XV	-	-	1064	1064	-	2128	
XVI	-	1064	1064	1064		3192	
XVII	1064		1064	1064	-	3192	
XVIII	1064	•	1064	-	1064	3192	

	2	- 83 -
Wuniki namiarów nienewsch przewiegzozoń beleż stwanawsch w ustwadu T. dekonawsch w deklad ()		
(400 mm przy pomocy orudników pr.4 do 24		
17100 mm przy pomocy czujnikow nr 1 ab 24		
Taolica XIV.		
Czujnik		
Pomiar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16 17 18 19	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ε τ ο, τ Στ ο τ Στ ο τ Στ ο τ Στ ο	$\mathbf{r} \Sigma \mathbf{r}$ o $\mathbf{r} \Sigma \mathbf{r}$ o $\mathbf{r} \Sigma \mathbf{r}$ o $\mathbf{r} \Sigma \mathbf{r}$ o $\mathbf{r} \Sigma \mathbf{r}$ l.p
1 2 VTT 11,58 0 1.71 1.51 3.05 P.21 2.43 P.13 1.00 1.91 2.00 2.40 1.00 2.44	2.49 2.25 1.99 1.89 1.95	2.37 2.85 2.07 2.52 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11 2.62 13 13 2.40 17 17 2.16 17 17 2.14 26 26 2.24	4 29 29 2.75 38 38 3.28 43 43 2.51 44 44 3.07 55 55 2
Image:	35 2 91 29 42 2.70 30 47 2.37 21 38 2.39 25 51 2.61	37 66 3, 16 41 79 5, 68 40 83 2, 91 40 84 3, 45 38 93 3
	74 5 25 34 76 3 00 30 77 2 63 26 64 2.63 24 75 2 92	1 87 3.37 21 100 8.88 20 103 3.09 18 102 3.65 20 113 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 65 40 116 3 38 38 2 09 36 700 2 99 35 3 14	1 32 119 3.66 29 + 16 28 131 3.39 26 128 3.89 24 137 5
$\frac{1}{1000} = \frac{1}{1000} = 1$		1 70 189 4 41 75 4.95 79 210 4.15 80 208 4.75 84 221 6
6 19,00 V 1,65 4 19 1,77 10 24 9,95 11 91 2,05 28 65 2,05 16 54 2,58 16 59 2,65 24 63 4,12 92 208 4,47 81 200 4,01 89 221 4,07 70 10 24 9,05 28 65 2,05 16 54 2,58 16 59 2,65 24 63 4,12 92 208 4,47 81 200 4,01 89 221 4,07 70 10 24 9,05 28 65 2,05 16 54 2,58 16 59 2,65 24 63 4,12 92 208 4,47 81 200 4,01 89 221 4,07 70 10 24 9,05 28 65 2,05 16 54 2,58 16 59 2,65 24 63 4,12 92 208 4,47 81 200 4,01 89 221 4,07 70 10 24 9,05 28 65 2,05 16 54 2,58 16 59 2,65 24 63 4,12 92 208 4,47 81 200 4,01 89 221 4,07 70 10 24 9,05 28 65 2,05 16 54 2,58 16 59 2,65 24 63 4,12 92 208 4,47 81 200 4,01 89 221 4,07 70 10 24 9,05 28 65 2,05 16 54 2,58 16 59 2,65 24 63 4,12 92 208 4,47 81 200 4,01 89 221 4,07 70 10 24 9,05 28 65 2,05 16 20 10 10 10 10 20 10 20 1	91 1,1 00 190 1 ,00 70 185 7,00 09 109 7,00 68 70 7,01	1 190 4 38 3 4.67 28 182 3.68 47 151 4.21 52 169 7
$\frac{7}{10,55} \sqrt{1} \frac{1,95}{5,29} \sqrt{1} \frac{1,95}{5,29} \sqrt{1} \frac{1,92}{5,29} \sqrt{1} \frac{1}{5,29} \frac{1}{13} \frac{1}{5,29}$	105 105 105 106	102 202 5 37 05 5, 51 84 266 4 48 80 241 4:94 73 242 8
8 14,15 V11 2,00 7 27 2,02 10 51 5,62 15 54 2,68 5 47 5,17 19 74 5,47 20 134 3,51 32 132,88 58 107 2,87 30 88 2,81 28 79 6,07 78 409 6,08 80 401 6,55 85 406 5,54 96 454 6,15 99 5	99 5,5105 400 5,95104 5,06 109 507 4,0101 4,87	
9 14,35 V111a 2,00 0 27 2,20 18 69 3,79 17 71 2,74 6 55 3,34 17 91 5,82 35 169 3,70 40 172, 13 25 132 3,14 27 15 3,13 32 111 6,95 88 497 6,98 90 491 7,45 90 496 7,35 101 555 7,17 102 10	01 7,58 103 509 7, C 109 +82 5,25 119 428 5,44 130 990 5,20	
$0 17,32 \text{ VIIIb} 1,973 24 2,15 5 64 3,79 0 71 2,75 1 54 3,34 0 91 8,86 4 173 3,80 9 181_{3,20} 7 139 3,20 6 21 3,19 6 117 7,06 11 508 7,14 16 507 7,68 18 514 7,57 22 577 7,36 21 20 21 20 21 20 21 20 21 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20 $	$227,8224$ $5337,2722$ 22^{204} $5,47$ 22448 $6,024414$ $5,40$	
1.3.VII. 8,40 VIIIc 1,86 11 13 1,96 19 45 3,63 16 55 2,56 19 35 3,23 11 80 8,81 5 168 3,67 13 168,11 9 130 3,07 13 108 3,15 4 113 6,46 60 448 6,98 16 491 7,48 15499 7,48 9 568 7,24 12 5	10 7,87 7 532 7,18 9 495 5,56 9 457 6,02 0 414 5,46	6 471 0,84 4 447 9,80 2 401 2,00 22 222 0,08 9 226 11
2 4.VII. 8,25 VIIId 1,75 11 2 1,63 33 12 3,33 30 25 2,33 23 12 3,12 11 69 8,68 13 155 3,57 10 158 2,94 17 113 2,93 14 94 5,02 13 100 6,59 13 461 6,80 18 473 7,40 8 491 7,48 0 568 7,20 4 50	06 7,76 5 527 7,28 505 6,63 7 464 6,06 4 418 5,53	<u>7</u> 458 6,91 <u>7</u> 454 5,86 0 401 5,60 0 353 6,03 5 351 12
$3 11,57 0 \times 1,02 73 71 0,87 76 64 2,40 93 68 1,53 80 68 1,87 125 56 1,87 181 26 1,73 184 26 1,38 156 43 1,70 123 29 1,93 109 9 1,05 554 93 1,99 481 8 2,82 458 33 2,52 496 72 2,61 459 100 100 100 100 100 100 100 100 100 10$	47 2,97 479 48 2,79 449 56 2,23 449 24 1,87 41 1 2,54	4 ²⁹⁹ 59 3,0 ³ 66 3,18 33 2,2 ¹ 14 2,87 35 13
4 13,02 0b 1,03 1 70 0,84 3 67 2,37 3 71 1,50 3 71 1,85 2 58 1,85 2 28 1,73 0 26 37 1 44 1,68 2 31 1,90 3 12 1,05 0 93 2,03 4 4 2,35 3 36 2,52 0 72 2,65 4	51 2,17 6 18 1,38 1 0 2,52	2 2 57 3,2 18 84 - 2,80 7 28 14

Tablica XV. Wyniki pomiarów pionowych przemieszczeń belek stropowych ustrojów kombinowanych II, III i IV, dokonanych z dokładnością 1/100 mm przy pomocy czujników nr 1 do 24

Denter	Czujnik	Sales Program	1	2	7		-	T					The second s						40	10	10	20	21	22	23	24	LD.
To Det		h 1		6	2	4	>	6	1 7	8	9	10	11	. 12	13	14	. 15	16	11	10							1
The Day	Godzina ot	C D .	r Ir o	r Er o	r Er	0 r 2:	r o r Σ.	r o r Er	DΣΣ	ror	r o r Er	O r S	r o r zr	DI	Στο τ Σι	r o r ∑r	o r Sr	o r Sr	o r Sr	o r Sr	D r Sr	D T ZT C	r Si	OT	Er o r	Er o r	Σr
21 2.1	I. 13,15 (0,70	104	060		037	216	315	118	117	115	154	115	210	115	216	114 2	10	187	210	249	113 11	4	149	115	122	21
22 196	1r. 14,00 XI	0,84	14 122	18 090	30	070 33	270 54	460 144	254 136	254 237	265 150	276 100	265 450	578 468	643 528	806 590	738 624 11	00 890 1	192 1005	242 1032	1422 1174	1523 1410 13	1 17	174 25	157 42	176 54	55
23	14,30 XI	I 1,23	39 53 140	18 36 110	20 50	089 19 5	298 28 5	230332273004	2732010126	14 7704 224	C4 047 000 000	E/0 126	207 170	015 037	705 973 230 7	58 1030 224 814	957 219843 13	26 226 1115	428 236 24	1478 236 126	1673 250 427	1780 257 1007 16	8 37	54 193 19	44 181 24	66 189 13	67 23
24	. 15,10 XI	092	31 22 123 .	17 19 100	10 40	078 17 4	284 14 6	8 973 973	1684 - 15	60 1070	363 -	551 275 3	97 544 279 429	770 201	564 742 131 6	27 945085 729	849 108 735	28 098 1018	1346 082 115	395 083 118	1616 057 367	7 716 064 1003 12	9 39	15 171 22	22 165 16	58 182 7	60 24
25 3.I	I. 9,35 XI	072	20 2 114	3 10 089	11 29	066 12 2	282 2 6	67 67	1618 -	1543	491 184 248	367 184 2	13 363 181 248	770 4	560 741 1 6	26 945 0 729	865 16 751 2	65 37 1055	141 065 22	462 067 125	1687 71.438	1327 111 1714 12	4 5	10 167 4.	18 162 3	47 184 2	62 25
26	10,20 0	063	9 7 105	9 1 048	41 12	0,0 66 3	225 57 9	1244 749 928	596 90	4 000 543 8	435 22 226	350 17 1	96 345 18 230	170 4	200771 7 2		415 450 301 6	518 647 40	78 733 49	1 739 723 52	818 869 569	9 723 1104 610 (98 26	13 140 27	9 118 44	3 137 47	15 26
27 3.I	1. 11,00 0	144	213	179		220	222	286	257	273	255 060	161 169 0	27 179 166 064	457 222	227 302 379 2	230	297 2	231	166	212 -	087	147 22	1	229	265	254	27'
28	11,34 XII	I 147	3 222	9 186	7	237 17	259 37	370 84	353 96 .	. 380 107	372 117	359 114	403 146	289	4.63 200	483 253	273 276 6	542 411	651 485	735 523	658 571	914 767 23	7 16	247 18	294 29	287 33	28
29	12,05 XII	I 146	1 2 222	C 9 185	1 6	237 0 1	259 '0 3'	7 370 0 84	353 0 9	6 380 0 1	07 373 1 118	360 1 1	14 405 2 148	404 1/3	176 465 2 2	10 486 3 256	575 2 278 6	546 4 415	657 6 49	1 741 6 529	665 7 578	8 920 6 773 23	7 0	16 246 1	17 294 0	29 287 0	33 29
30	12.30 XIV	154	8 10 237	15 24 195	10 16	247 10 27	276 17 5	+ 827 457 541	375 522 61	8,007 663 7	70 1070 701 819	667 7	81	045 300	556 703 323 5	38 752266 522	820 245 523 8	360 214 629	828 171 66	2 915 174 703	827 162 740	0 0 138 911 20	51 24	40 276 30	47 316 22	51 297 10	43 30
31	13,00 XIV	153	1 9 236	1 23 195	0 16	247 0 27	276 0 54	832 5 546	380 5 62	3,040 6 7	76 1074 10 1829	1027 8 7	89 054 797	850 5	561 796 3 5	41 754 2 524	821 1 524 8	862 2 631	831 3 66	5 917 2 705	828 1 741	1 2 913 20	51 0	40 277 1	48 316 0	51 297 0	43 31
32	13,18 XV	149	4 5 330	5 17 202	7 23	255 8 35	265 11 43	3 638 194 352	695 Ton 43	9 879 170 6	061010 70 000	967	061 7 804	1395	106 1281, 2510	26 1250 476 100	10 1096 99910	12150 781	900 069 73	4 923 006 711	752 076 665	5 261265 628 2	58 3	37 270 7	41 328 12	53 287 10	33 32
33	13,45 XVI	150	1 6 240 10	0 27 210	8 31	265 10 49	280 15 5	3 102 389 744	1075 379 81	8 555 326 9	32 221 604 750	213 579 -	21 284 45 759	294 949	407 576 200 13	16 572 332 133	236 275	491227 1008	348 172 90	6 385 13 803	345 123 790	0 364 03 731 2	73 1.5	52 307 37	78 352 24	87 292 5	5 38 33
34	14,20 XVI	150	0 6 240	0 27 210	0 31	265 0 49	280 0 58	3 104 016 757	1097 22 844	01128 016 9	48 844 1378	792 13	21	617 022	429 500 023 13	39 505 023 135	5575 021 1338	503012 1020	355 007 91	3 390 005 868	350 005 795	5 368 004 735 2	1 2	50 304 3	75 352 0	87 292 0	0 38 34
35 4.I	I. 9,30 XVI	139 1	1 5 235	5 22 199	11 20	257 8 37	275 5 53	1072029 786	1131 034 874	4 144 045 9	93 914 070 1448	813 21	94 262 27 1435	700 003	312 682 083 14	22 675 080 143	0791417	549046 066	386 031 94	4 416 026 894	357 007 302	2 368 0 735 2	57 4	46 302 2	73 350 2	85 291 7	1 37 35
36	9,55 XVI	150 1	1 6 231	4 18 198	1 19	257 0 37	275 0 53	648 576 362	1621 400 136	4 584 395	802 10 1336	700 109 0	820 10 129	620 080	432 617 065 13	57 626 049 386	5 509 045 372	513 036 1080	358 028 91	6 387 029865	335 022 780	0 350 18 717 2	96 029	75 293 009	64 349 1	84 291 0	0 37 36
37	10,15 XVI	II 150	0 6 230	1 17 195	3 16	255 2 35	290 15 68	3 647 1 1361	1613 8 75	6 272 13 13	76 76 037 200	742 20 12	50 774 40 1040	549 71	1361 524 93 12	64449 177 209	434 175 11975	23 101040	410 52 96	8 483 96 961	571 236101	6 668 318 103 2	96 0	75 291 2	62 346 3	81 309 18	3 55 37
38	11,00 XVI	II 150	1 7 229 3	1 16 1,95	0 16	255 0. 39	290 0 68	3 655 8 1369	1618 5 36	1 575 3 13	79 752 31296	740 3 12	49 767 4 1240	545 4	357 521 3 126	1 446 3 1206	423 11 11865	23 0 1040	412 2 97	0 486 3 964	579 8 102	4 678 10 10492	96 0	75 291 0	62 346 0	81 309 0	0 55 38
38	11,45 XVI	II 149	2 5 226	5 13 193	2 14	253 2 33	288 . 2 68	6 657 2 1371	620 2 1363	3 578 3 13	82 761 1 1295	740 0 12	48 768 1 1243	500 1	1361 521 0 126	1 443 3 1203	5 419 4 1182 5	25 2 1042	419 7 97	7 495 9 973	588 9 103	3 686 8 1053 2	96 0	75 291 0	62 345 1	80 309 0	0 55 39
40	12,30 XVI	II 146	3 2 224	2 11 190	3 11	251 2 31	287 1 65	657 0 1371	619 1 36	2 580 2 13	84 761 0 1395	230 1 12	47 765 1 1245	548 1	360 519 2 125	9 442 1 1203	3 418 1 1181	24 1 1041	418 1 97	6 495 0 973	588 0 103	3 687 1 1054 2	95 1	74 290 -1	61 345 0	80 309 0	0 35 40
41 5.11	. 8,55 XVI	I 126 2	0 18 206 18	3 7 166	24 13	231 20 11	286 1 64	+ 702 45 1416	656 037-399	91612 82 14	16 772 11 1306	750 11 12	59 776 9 125	550 2	362 517 2 125	7 439 3 1199	412 6 1175	518 6 1035	419 1 97	7 494 1 972	589. 1 103	4 695 8 1062 2	35 10	64 281 9	52 339 6	74 298 11	1 44 41
42	12,15 XVI	I 137 1	1 7 206 0	7 164	2 15	231 0 11	287 1 65	5 702 0 1416	658 2 140	1-615 3 14	19 772 0 1306	752 2 12	60 776 0 125	550 0	1362 518 1 125	8 439 0 1199	9 412 0 1175	519 1 1036	420 1 97	8 495 1 973	598 9 103	4 698 3 1065 2	35 0	64 281 0	52 339 0	74 298	0 44 42
43 6.11	. 9,00 XVI	I 123 1	+ 21 203 3	10 160	4 19	230 1 10	287 0 65	728 26 1442	680 22 42	31635 20 14	39 700 18 1324	769 17 12	77 700 12 125	562 12	1374 530 12127	0 450 11 1210	0 421 9 1184	528 9 1045	431 11 98	9 508 13 988	602 4 104	7 714 16 081 2	87 2	66 281 0	52 337 2	72 300 2	2 46 43
44	12,45 XVI	I 116	7 28 196 7	7 17 154	6 25	231 1 11	287 0 6	5 747 19 1461	1698 18 44	1652 17 14	56 804 14 1339	779 10 12	87 001 13 127	577 15	1389 545 15128	5 464 14 1224	4 435 14 1198	546 18-063	450 19 100	8 534 261012	628 26 107	73 738 241105 2	90 3	69 282 1	53 335 2	70 303 3	5 49 44
45	20,00 XVI	I 105 I	1 39 186 10	27 142	12 37	220 11 0	272 15 50	740 7 1454	1698 0 44	1 -	802 2 1335	787 8 12	05 -	579 2	1391 556 11129	96	435 0 1198	540 6 1057	· ·	536 2 1014	606 22 105	716 221083 2	80 10	59 275 7	46 327 8	62 296	7 42 45
46 7.11	- 7,50 XVI	I 093 12	2 51 176 10	37 130	12 49	211 9 9	262 10 40	775 35 1489	1735 37 475	8 -	838 36 1372	2013 26	24 7	602 23	1414 565 9 130)5 -	454 19 1217	559 19 1076	P	535 0 1014	621 15 106	6 733 17. 100 2	78 2	57 275 0	46 320 7	55 292 1	4 38 46
47	11.30 XVI	I 091	2 53 175 1	38 130	0 49	212 1 8	261 1 39	788 13 1502	1743 8 .486	6 -	843 5 1377	817 4 13	25 -	602 0	1414 567 2 130	07 -	453 1 1216	562 3 1079	-	548 121020	635 14 108	30 749 16 116 2	79 1	58 275 0	46 311 9	46 295 7	3 41 47
+0	12,05 0	03 20	× /> 1/318	56 108	22 71	193 19 27	240 21 18	000 788 714	940 803 683	3 -	034 809 568	007 810 5	15 -	800 802	612 0=10740	558	738 715 501	968 594 485	•	994 554 4/4	945 690 39	9,03 846370 2	46 33	25 245 30	16 280 31	72 564 58	4 13 48
		States States					Contraction in the second			of the second state of the second				000	310		The second second second second	Tona and the second second	the state of the s					Prove Prove Prove Prove			

1 ... 4.

Rys. 14 Wykresy pionowych przemieszczeń belek stropowych sstroju II na szerokości belek C-D-E i o - bez powiazania z pini belek A i B

- 89 -

-

ほ

-

ΞĒ.

31-

....li

SH.

15

4

市田工作

 Oznaczenia:
 pomierzone przemieszczenia belek przy

 podporach oraz w środku rozpiętości

 podporach oraz w środku rozpiętości

 podporach oraz w środku rozpiętości

 podporach oraz w środku rozpiętości

L.p.22 Schemat I 1596 k0

+-

12 - 11

47

Sa

Lep-23 schemat II

1596 kG

and and a second

Rys.16. Próbne obciążenie belki teowej poz.1

Rys.17. Probne obciążenie belki stropowej poz.2

Rys.18. Widok tylnej powierzchni ściany podporowej hadanego stropu wraz z trzema rzędami bloków obciążenia próbnego X ... otwierająca się spoina pod ławą łożyskową belek stropowych.

Rys.19. Widok od dołu ustroju III/IV stropu, z środkowym szeregiem czujników

Rys.2C. Fragment badanego stropu z poprzecznym żebrem usztywnia jącym

Rys.22. Podwieszenie płyt suchego tynku "Nidagips" do belek teowych prefabrykowanego stropu, a - przy pomocy ocynkowanych haków dociśniętych klinami do pasa dolnego belki, b - przy pomocy ocynkowanych gwoździ do drewnianych listw lub klocków, związanych opaskami z bednarki z belkami stropowymi

Dla zbadania woływu czasu -zjawisk reologicznych- na deformacje rozpatrywanego ustroju konstrukcyjnego, pozostawiono na stropie próbne obciążenia według schematu VIII przez dwie względnie trzy doby, odczytując w tym czasie kilkakrotnie wskazania czujników. Po zdjęciu ze stropu całkowitego obciążenia próbnego, czyli przy schemacie obciążeń O wykonano ostatnie odczyty czujników, wskazujące mniejwięcej trwałe ugięcia belek stropu. Niestety na skutek wyżej wspomnianego wysychającego drewna rusztowań oraz niewątpliwie pewnego obniżania się podłoża pod przypodporowymi kozłami i czujnikami w wyniku konsolidacji obciążonego tu najbardziej gruntu, obraz pionowych, przemieszczeń belek stropowych, wynikający z ich ugięcia pod obciążeniem próbnym, uległ pewnemu spaczeniu. Zaburzenia te widoczne są z rysunków 13. 14. 15 - wykresów pionowych przemieszczeń, zwłaszcza punktów przypodporowych niektórych belek, wykazujących newet ujemne wartości osiadań, czyli ich końcową "niweletę" ponad stanem początkowym.

W czasie przeprowadzania obciążeń próbnych kontrolowano stale stan poszczególnych belek i ich wzajemnych połączeń. Oprócz cienkich rys w przekrojach rozciąganych nie zauważono żadnych innych uszkodzeń konstrukcji stropu.

Przy zakładaniu na stropie o ustroju II - IV obciążenia próbnego, otworzyły się na tylnych powierzchniach ścian podporowych szczeliny "×" w poziomie podstawy ławy wienczącej strop - p.rys.18. W czasie badań ustroju I stropu, ławy stropowe były monolitycznie związane /zabetonowane/ z podpierającymi je ścianami i żadnych rys na tych ścianach nie zauważono.

8.3. Analiza wyników próbnych obciażeń

Wynikające z próbnych obciążeń przemieszczenia pionowe trzech badanych ustrojów stropu przedstawiono na wykresach ugięć – rys.13, 14, 15. Cienkie linie przerywane cznaczają tutaj przemieszczenia punktów przypodporowych 1-5, linie kropkowane przemieszczenia odpowiednich punktów stropu przy podporze przeciwległej, zaś linie grube, ciągłe, oznaczają przemieszczenia kolejnych punktów pomiarowych założonych w środku rozpiętości belek stropowych.

Dla konfrontacji przemieszczeń pomizrzonych z ugięciami obliczonymi, na podstawie wyprowadzonych wzorów ogólnych i tabelarycznych zestawień liczbowych, podanych w uprzednich rozdziałach niniejszej rozprawy, naniesiono również te ostatnie na odpowiednie rysunki /13, 14, 15/, przyczym wszystkie obliczone ugięcia belek w miejscach X, X, i U₅,

położonych w odległości 1/8 l od środka rozpiętości teowych belek, przetransponowano, stosując mnożnik 1,07, na środek rozpiętości tych belek. Mnożnik 1,07 wynika ze stosunku f /0,5 l/ do f /3/8 l/, ugięć belki swobodnie podpartej, pod obciążeniem równomiernie rozłożonym, obliczonych dla środka ich rozpiętości

$$f_{0,51} = \frac{5 \cdot q \, 1^4}{384 \, \text{EI}}$$

oraz dla x = 3/8 l wg. relacji

fx	-	<u>q 14</u>	<u>x</u> .	- 2 /	× 1	3+1	X	14	-
		24 E1	T		T		1	1	

Przemieszczenia obliczone dla ustroju I stropu zaznaczono na rys. 13 kółkami i połączono wzajemnie liniami wężykowatymi. Analogicznie oznaczono na rys.14 przemieszczenia, obliczone wzorami wyprowadzonymi dla ustroju II rusztu stropowego. Na rys. 15 przedstawiono trójkącikami i pojedynczymi liniami przerywanymi przemieszczenia obliczone dla ustroju III, zaś kwadracikami i podwójnymi liniami przerywanymi - dla ustroju IV.

Bliższe omówienie wyników badań doświadczalnych w zestawieniu z wynikami wyżej podanych rozważań teoretycznych, ujęto w następujących punktach.

8.3.1. Ustrój I

Przedstawione na rys.13 linie pomierzonych obniżeń belek stropowych, w środku ich rozpiętości, posiadają w zasadzie przy wszystkich schematach obciążeń przebieg ciągły, świadczący o wspólnych ugięciach przyległych do siebie krawędzi belek. Wykazany tymsamym brak klawiszowania sąsiednich belek stropu potwierdza należyte działanie stalowych uchwytów poz.3, założonych we wszystkich spoinach podłużnych belek. Sporadyczne uskoki w wykresach przemieszczeń pomierzonych, wysokości kilku setnych mm, pochodzą przypuszczalnie z nieznacznych obsunięć trzpienia czujnika po nierównościach powierzchni żelbetowej belki, przy współudziale pewnych wstrząsów, towarzyszących każdemu zakładaniu balastu na strop.

Ustalone pomiarami maksymalne ugięcia belek badanego stropu, dla kolejnych schematów obciążeń okazują się prawie dwu krotnie mniejsze od obliczonych teoretycznie. Przyczyną tej tak dużej różnicy ugięć jest przede wszystkim fakt obustronnego utwierdzenia sprężystego wszystkich badanych belek w masywnych ławach żelbetowych, pcłączonych monolitycznie z ścianami podporowymi, podczas gdy w rozważaniach teoretycznych tego ustroju założono swobodne podparcie belek stropowych na ścianach. Drugim czynnikiem przesztywnienia badanego stropu jest założona na jego powierzchni średnio 0,5 cm gruba warstwa zaprawy cementowej.

Obydwa czynniki usztywniające badany strop ponad założenia programowe, zrealizowane zostały przez personel techniczny Betoniarni, z myślą o "jaknajsolidniejszym wykonawstwie", pomimo odnośnych zastrzeżeń autora koncepcji badań.

Abstrakując zatem od porównywania bezwzględnych wartości przemieszczeń pomierzonych i obliczonych, można jednak na podstawie odpowiadających sobie wykresów rys.13/ stwierdzić naogół dobrą korelację prostą między przynależnymi do tego samego schematu obciążeń liniami ugiącia. Spostrzeżenie to potwierdza zgodność pracy rzeczywistego ustroju badanego stropu z przedłożonym teoretycznym ujęciem.

Potwierdza się tutaj równocześnie, wykazana obliczeniami statycznymi, zdecydowana redukcja momentów zginających oraz ugięć bezpośrednio obciążonej belki, kosztem usztywnienia poprzecznie pracującą płytą stropową i współdziałania belek sąsiednich, w stosunku do samodzielnej pracy belki teowej, nie związanej z belkami przyległymi. Uzyskana pewność rozkładu obciążenia jednej belki także na belki sąsiednie, pozwala na lepsze wykorzystanie nośności wszystkich belek stropu i dopuszczenie działania na nie większych sił skupionych.

Pozostałe, trwałe ugięcia badanego stropu, po zdjęciu z niego obciążenia próbnego, mieszczą się w granicach dopuszczalnych, według obowiązujących norm [6].

8.3.2. Ustrój 0/II

Wobec pozostawienia w badanym stropie między belkami A, B i C spoin otwartych a zdyblowania wzajemnego tylko belek C, D i E wzdłuż ich wspólnych spoin stykowych, można do ustroju II zaliczyć tylko prawą pcłowę /C, D i E/ stropu, podczas gdy belki połowy lewej /A, B, C/, wzajemnie nie powiązane, pracują niezależnie od siebie i dlatego tę część obciążonego próbnie stropu oznaczono symbolem O.

Wykreślone na rys.14 linie pomierzonych obniżeń poszczególrych belek stropowych, pod dziełaniem kolejnych schematów obciążeń, odpowiadają wyraźnie pracy rzeczywistego ustroju i w zakresie belek E, D oraz częściowo C zbliżone są do linii ugięć obliczonych dla ustroju II.

Niestety niekonsekwencja konstrukcji badanego stropu nie pozwala tutaj na ściślejszą konfrontacją wyników obliczeń teoretycznych z wynikami pomiarów, zwłaszcza w odniesieniu do belek A i B, które zasadniczo uginają się wyłącznie pod obciążeniem na nich spoczywającym. Pewne przemieszczenia tych belek, notowane w związku z obciążaniem belek sąsiednich / i nawzajem/ spowodowane zostały niestety przez przypadkowe ich potrącenia i chwilowe odkładanie bloków obciążeniowych w czasie ich transportu, a także na skutek sztywnego zamocowania wszystkich belek w ławach wieńczących strop, które to ławy doznawały skręceń za obciążanymi belkami stropowymi.

Na ustroju tym wykazano wybitne znaczenie dybli poz.4 jako elementów zabezpieczających przyległe belki przed klawiseowaniem oraz zapewniających współpracę wszystkich belek stropowych przy dowolnym układzie obciążeń.

8.3.3. Ustrój III/IV

W zakresie belek A, B i lewej połowy C, strop ten pracuje według założeń ustroju III, natomiast na pozostałej szerokości według założeń ustroju IV. Dlatego też, oprócz wyników przeprowadzonych pomiarów przemieszczeń III/IV, podano na rys.15 oddzielnie ugięcia teoretycznie obliczone dla ustrojów III i IV. Korelacja odnośnych linii ugięcia rzeczywistego /pomierzonego/ i obliczonego jest tutaj, zwłaszcza w partii środkowej szerokości stropu, zaburzona faktem częściowego nałożenia na ustrój III ustroju IV stropu. Pomimo to jednak widoczne jest z rys.15 dość wyraźne podobienstwo przebiegu odkształceń pomierzonych w czasie próbnych obciążeń i odkształceń obliczonych dla wyidealizowanych ustrojów stropu.

Wykresy odpowiadających sobie ugięć stropu obliczonych dla ustroju III i IV, oraz przemieszczeń pomierzonych na badanym prototypie, pozwalają na stwierdzenie, że zarówno zastosowane żebro rozdzielcze poz.5 jak i dyble poz.4 wciągają do współpracy wszystkie składowe belki rozpatrywanego stropu, jednak -przy danej, stosunkowo małej sztywności giętnej żebra rozdzielczego- skuteczniejsze są tutaj dyble. Oprócz tego z wykresów widać, że przed klawiszowaniem krawędzi przyległych do siebie belek teowych zabezpieczają tylko dyble, gdyż żebro rozdzielcze, pomimo swej ciągłości ustrojowej, nie kontaktuje się z krawędziami płyt belek • teowych a jedynie łączy i wpływa niwelująco na różnice ugięć żeber tych belek. Wykazane po odciążeniu stropu jego ugięcia "trwałe" są wynikiem przede wszystkim plastyczności odkształcanego materiału stropu, zaś przyczyną widocznego z wykresów względnego podwyższenia się przypadporowych punktów pomiarowych stropu jest wspomniany już wyżej skurcz technologiczny drewnianego rusztowania, na którym oparte zostały czujniki.

8.3.4. Ogólna ocena wyników przeprowadzonych badań

Pomimo znacznego ograniczenia programu badań, tak co do ilości rozpatrywanych ustrojów komponowanego stropu, ilości próbnych obciążeń, jak i czasu przeznaczonego na poszczególne próby, uzyskane wyniki stanowią zdecydowane potwierdzenie skuteczności działania wszystkich zastosowanych tutaj elementów usztywniających konstrukcję prefabrykowanego stropu gęstożebrowego oraz stanowią przekonywującą weryfikację wyników uprzednio przeprowadzonych rozważań teoretycznych.

W zakresie stosowanych obciążeń próbnych, powodujących, zgodnie z tegretycznymi przewidywaniami, lokalne zarysowania włoskowate głównych belek teowych stropu, nie uległ uszkodzeniu żaden element usztywniający: stalowy uchwyt, cementowy dybel, czy prefabrykowane ciągłe żebro usztywniające. Z obliczeń statycznych tych elementów w przyjętych ustrojach rusztu stropowego wynika, że przy najniekorzystniejszych kombinacjach rozmieszczenia obciążenia użytkowego na stropie /do p = 500 kG/m2/ naprężenia w tych elementach i kontaktujących z nimi powierzchniach belek stropowych nie przekraczają nigdzie wartości dopuszczalnych dla zastosowanych materiałów konstrukcyjnych. Dyble cementowe spełniają tutaj rolę sprężystych półprzegubów o czynnejwysokości równej szerokości bruzdy w płytach, t.j.ok.2 cm. Przeprowadzone badania wykazały, że zastosowane tutaj bardzo ekonomiczne z uwagi na ciężar własny i zużycie stali zbrojeniowej /ok. 5 kG/m2 stropu/, prefabrykowane belki stropowe poz.2, o wysokości 20 cm, szerokości 50 cm i rozpiętości teoretycznej 482 cm, przy ciężarze własnym belki g = ok. 60 kG/m, wykazują pod działaniem obciążenia próbnego stropu p = ok. 500 kG/m2 strzałki ugięcia rzędu 15 mm, co stanowi mniej niż 1/300 ich rozpiętości. Ugięcia te mieszczą się wg. NiTU-123-55 [4] w granicach dopuszczalnych dla stropów żelbetowych i upoważniają do uznania sztywności badanego ustroju stropowego za wystarczającą w budownictwie mieszkaniowym, oraz użyteczności publicznej.

9. Praca statyczna prefabrykowanego stropu gęstożebrowego jako poziomego tężnika wiatrowego

Oprócz przenoszenia obciążeń pionowych, bardzo istotnym zadaniem stropów jest ich współudział w zapewnieniu konstrukcji budynków sztywności przestrzennej. Przy spełnianiu tego zadania konstrukcja stropu pracuje jako pozioma sztywna belka - tarcza, powiązana na swym obwodzie nieprzesuwnie z podłużnymi i poprzecznymi ścianami nośnymi budynku, przekazując na nie odpowiednie siły poziome. Zasadniczym obciążeniem poziomym budynków jest parcie wiatru i z reguły na jego działanie oblicza się i konstruuje stosowane stężenia.

Niniejszym rozpatrzony zostanie pod względem statyczno wytrzymałościowym strop prefabrykowany, złożony z opisanych poprzednio belek teowych, pracujący jako poziomy tężnik budynku -sztywna tarcza-, obciążony parciemwiatru.

Zakłada się przykładowo ustrój budynku dwutraktowy o podłużnych ścianach nośnych założonych we wzajemnych odstępach

1 = 5 m, czyli szerokość stropu = wysokości tarczy B = 10 m, odstęp nośnych ścian poprzecznych - tężników pionowych = dłuości pomiomego tężnika L = 30 m, oraz wysokość kondygnacji 3 m. Parcie wiatru w = 100 kG/m2 ścian podłużnych czyli w₁ = 0,3 T/m długości L - p.rys.21.

Prefabrykowany strop zwieńczony jest żelbetową ławą o przekroju 30 . 30 cm, spoczywającą na ścianach obwodowych i podłużnej wewnętrznej. W ławie tej, pełniącej także rolę pasów poziomej belki -tarczy, zakotwione są wszystkie prefabrykowane belki stropowe przy pomocy wypuszczonego z ich czół uzbrojenia.

Moment beswkadności przekroju poprzecznego zwieńczonej tarczy stropowej, o zasadniczej grubości 3 cm /minimalna grubość płyty prefabrykowanych belek teowych stropu/ I = 6,32 m4, momenty statyczne, miarodajne do obliczania naprężeń ścinających w przekrojach l i 2 tarczy /p.rys.21/ wynoszą $S_I = 0,43$ m3, $S_{II} = 0,77$

Homent zginający
$$M_{L max} = \frac{\overline{W_1 \cdot L^2}}{8} = 33,75 \text{ tm},$$

siła poprzeczna $Q_{L max} = \frac{\overline{W_1 \cdot L}}{2} = 4,5 \text{ T}.$

Naprężenia w tarczy, traktowanej jak zwykła belka:

$$G_{1-1} = \frac{33,75}{6,32} = 25,1 \text{ T/m2} = 2,51 \text{ kG/cm2}$$

/0,5 1/

 $T_{1-1} = \frac{4.5 \cdot 0.43}{6,32.0,03} = 10,4 \text{ T/m2} = 1,04 \text{ kG/cm2}$ /0,01/

$$T_{2-2} = \frac{4.5 \cdot 0.77}{6,32.0,03} = 12,3 \text{ T/m}2 = 1,83 \text{ kG/cm}2$$

/0,01/

Obliczone naprężenia rozciągające jak i ścinające są znacznie niższe od dopuszczalnych dla betonu prefabrykatów a także dla zaprawy cementowej o Rw conajmniej 80 kC/cm2, z której utworzone są dyble poz.4 w podłużnych spoinach między przyległymi do siebie stropowymi belkami teowymi.

Przewidując jednak ostrożnie, że w spoinach zdyblowanych powstać mogły rysy na skutek działania momentów zginających przy poprzecznym rozkładzie obciążeń użytkowych stropu, powodujące zmniejszenie wysokości podłużnego przekroju dybli do t = 1,5 cm, dochodzi się do naprężeń dwukrotnie większych od wyżej obliczonych, które również są jeszcze niższe od dopuszczalnych wg. obowiązujących norm.

Jeżeli natomiast się założy, że zmonolitowanie stropu przy pomocy dybli z zaprawy cementowej w spoinach między belkami teowymi nie zostało należycie zrealizowane lub też zostało zniweczone, n.p. następiła utratą przyczepności dybli do sprofilowania płyty belek przy znaczniejszych dynamicznych obciążeniach stropu, wtedy tężnik stropowy należy traktować jak ustrój ramowy, n.p. złożonego typu Vierendeela, którego pasami są ławy wieńczące a słupkami teowe belki stropowe.

W takim ustroju ciągnienia osiowe w pasach -ławach wieńczących- przeniesione zostaną stosunkowo łatwo przez założone w nich zwykle konstrukcyjne uzbrojenie podłużne /n.p.4 Ø 10/. Siły poprzeczne wywołują w tych ławach /wszystkich trzech/ naprężenia ścinające

 $T \approx \frac{4500}{3.30.0,85.25} = 2,35 \text{ kG/cm2, czyli także niższe od}$

dopuszczalnych.

Natomiast momenty zginające poziomo stropowe belki teowe, wynoszące w przybliżeniu w przekrojach przy podłużnych ławach nad ścianami zewnętrznymi i środkową

spowodowałyby tutaj w belkach teowych poz.2 naprężenia rzędu

 $G \approx \frac{M_1 max}{W} = \frac{281000 \cdot 6}{3 \cdot 50^2} = 223 \text{ kG/cm2, co oczywiście}$

jest niedopuszczalne.

Wobec tego, w przypadku braku zapewnienia przeniesienia sił poprzecznych Q w spoinach między poszczególnymi belkami prefabrykowanego stropu, nie można rozpatrywanego stropu uznać za tarczę -wiatrownicę, stężającą budynek.

Cczywiście wzajemn-e powiązanie przyległych do siebie belek teowych można osiągnąć także przy pomocy stalowych łączników, rozmieszczonych wzdłuż krawędzi płyt tych belek stropowych. Łączniki w formie odcinków blach lub kształtowników, przyspawane do wypuszczonego z płyt stropowych uzbrojenia, muszą być zaprojektowane i zrealizowane dla przeniesienia całej maksymalnej siły ścinającej, obliczonej dla danej krawędzi stykowej.

Dalszym prostym sposobem zmonolitowania prefabrykowanych belek teowych w sztywną tarczę stropową jest założenie ma stropie odpowiednio uzbrojonej warstwy nadbetonu, lecz ten sposób nie odpowiada zasadniczym tendencjom prefabrykacji w budownictwie.Wymaga on bowiem dość obszernych "procesów mokrych" na budowie, powoduje znaczne zwiększenie ciężaru konstrukcji stropu i dodatkowe zużycie stali zbrojeniowej.

Jakkolwiek program przeprowadzonych przeze mnie badań terenowych nie obejmował badania wytrzymałości na podłużne ścinanie wzajemnych połączeń belek teowych, to jednak na podstawie poczynionych ogólnych spostrzeżeń można uznać, że przyczepność zaprawy cementowej dybli do sprofilowanych powierzchni stykowych /bruzd/ prefabrykowanych płyt tych belek jest nie mniejsza niż odpowiednia wytrzymałość zaprawy w spoinach muru ceglanego. Sugestia ta pozwala przypuszczać, że wprowadzone w niniejszej pracy dyble cementowe, wykonane z przestrzeganiem wszystkich znanych warunków zapewniających powiązanie nowego betonu /zaprawy cementowej/ z betonem starym /prefabrykowanymi płytami/ będą w stanie przenieść bezpiecznie również siły ścinające, wynikające z tarczowego działania stropu. Sprawa ta wymaga jednak ściślejszego zbadania i stanowi temat dalszych oddzielnych doświadczeń.

- 109 -

10. Wnioski

- 1/ W wyniku przeprowadzonych rozważań teoretycznych i badań doświadczalnych można stwierdzić, że przyjęta forma ustrojowa przedmiotowego stropu czyni zadość postawionym na wstępie niniejszej pracy wymaganiom statyczno-wytrzymałościowym, przy małej stosunkowo wysokości konstrukcji 20 cm, ciężarze własnym ok.120 kG/m² i zużyciu stali zbrojeniowej ok. 5 kG/m². Dalszą oszczędność stali a zarazem zwiększenie sztywności giętnej belek teowych można uzyskać, wprowadzając zamiast zbrojenia pasa dolnego ze stali miękkiej, odpowiednią listwę strunobetonową. Koncepcja ta ma być zrealizowana w dalszym etapie badań.
- 2/ Przedstawiony ustrój nośny stropu, o gładkiej górnej powierzchni, pozwala na bezpośrednie ułożenie na nim dowolnej wykładziny podłogowej, zaś od spodu umożliwia bezpieczne przymocowanie do żeberek belek teowych odpowiednich płyt sufitowych, n.p. suchego tynku "Nidagips", jak to pokazano na rys. 22. Przestrzeń pomiędzy żelbetową płytą belek teowych a zamknięciem sufitowym wykorzystać można dla założenia izolacji termicznej i akustycznej, oraz dla przeprowadzenia przewodów instalacji elektrycznych i i.
- 3/ Ustrój nośny rozpatrywanego stropu, złożony z prefabrykowanych belek żelbetowych o przekroju teowym /poz.1 lub poz.2/ oraz stężony poprzecznie przy pomocy stalowych uchwytów /poz.3/ lub dybli /poz.4/ z zaprawy cementowej, wypełniającej odpowiednio sprofilowane szczeliny stykowe -bruzdy bocznych powierzchni płyt teowych belek, pracuje jako ciągła, zmonolitowana płyta stropowa nie wykazując t.zw. klawiszowania składowych belek, pod działaniem na strop nierównomiernie rozłożonego obciążenia. Potwierdziły to wyniki obciążeń próbnych, przekraczających 1 T na co drugiej belce badanych ustrojów.

4/ Zastosowane w podłużnych szczelinach stykowych złącza /poz.3 albo poz.4/ lub poprzeczne usztywnienie stropu gęstożebrowego przy pomocy prefabrykowanego żebra rozdzielczego /poz.5/, zapewniają współpracę wszystkich belek stropu, przy oddzielnym obciążeniu każdej z nich. Fakt ten pozwala na przeciążenie pojedynczych belek składowych stropu, w stosunku do ich nominalnej nośności -przy samodzielnej pracy- 0 :

74	%	wzgle	dnie	59	%	Z	zastos.	uchwy	vtów	stal.	poz.	3
----	---	-------	------	----	---	---	---------	-------	------	-------	------	---

67	%	-*	65	%	- ^H -	dybli	cement.	poz.4
65	%	an 17 au	50	%	H	żeb r a	rozdz.	poz.5
74	%		6 8	%		stężeń	poz. 4	i poz.5.

Powyższę procenty dopuszczalnych przeciążeń pojedynczych belek, przy nie obciążonych pozostałych belkach rozpatrywanego stropu, uzyskano na podstawie, wyników teoretycznych obliczeń wszystkich czterech badanych ustrojów rusztów stropowych, uznając za zapas nośności pojedynczej belki różnicę pomiędzy obciążeniem pełnym G, wyczerpującym jej nośność a siłą /G - X - Y/, jaką dana belka przenośi w układzie rusztowym stropu. Na tej zasadzie ustalono liczby % pierwszej kolumny z proporcji

/ 0,51 - Mc/: Mo,51'

gdzie M oznacza odczytaną z kolejnych tablic II, V, VIII i XI wartość momentu zginającego belki C w ruszcie, obciążonej bezpośrednio siłą zaś M oznacza wartość momentu zginającego belki samodzielnej, nie usztywnionej rusztowo, która to wartość podana jest pod odnośną tablicą.

Analogicznie, przy pomocy wymienionych zestawień tabelarycznych, ustala się liczby % drugiej kolumny, jako ilorazy

/f_{0,51} - f_c/: f_{0,51}.

Podane orientacyjne procenty dopuszczalnego przeciążenia, czy to z uwagi na momenty zginające /o ile M_{0,51} jest momentem dopuszczalnym dla danych belek stropu/, czy z uwagi na strzałki ugięcia /jeżeli _{0,51} uznana została dla danego stropu za dopuszczalną/, dotyczą tylko niniejszego konkretnego przykładu badanego stropu. Dla każdego typu rusztu stropowego i dla każdej jego rozpiętości można podobnie - na podstawie podanego w przedłożonej pracy rozwiązania - ustalić odpowiednie ozientacyjne procenty dopuszczalnych przeciążeń lokalnych stropu.

Oczywiście przy założeniu obciążeń Q na kilku belkach stropu, dopuszczalne przeciążenie lokalne ulegnie redukcji, a przy obciążeniu całej powierzchni stropu - wszystkich jego belek teowych siłami Q - dopuszczalny procentalokalnego.przeciążenia zmaleje do zera.

5/ Z pośród trzech rodzajów złączy usztywniających strop, zastosowanych w przedmiotowych badaniach, najprostszymi w wykonawstwie i najskuteczniejszymi w działaniu okazały się dyble cementowe /poż.4/.

Odnośnie wykonawstwa i pracy zdyblowania nasuwają się następujące uwagi. Po ułożeniu belek stropowych na podpierających je ścianach, z doprowadzeniem górnej płaszczyzny wszystkich belek do wspólnego poziomu, należy boczne sprofilowana powierzchnie - bruzdy w płytach- belek teowych obficie zwilżyć wodą a następnie szczeliny stykowe; utworzone z przylegających do siebie bruzd, zapełnić zaprawą z cementu szybko sprawnego. Ponieważ w spoinach tych -dyblach- wystąpić mogą, przy najniekorzystniejszym obciążeniu tylko jednej belki stropowej siłą Q = 1 T, naprężenia ściskające jak i ścinające rzędu 1 kG/cm², istnieje możliwość dość wczesnego oddania tak usztywnionego stropu do użytku. Uchwyty stalowe /poz.3/ okazały się pod względem wytrzymałościowym również wystarczającymi, jednak ich zakładanie na przyległe do siehie płyty belek teowych jest nieco uciążliwsze, zaś po osadzeniu na zaprawie cementowej uchwyty te wystają ponad górną powierzchnię belek stropowych, stwarzając potrzebę zakładania na nich specjalnej warstwy wyrównawczej.

Bardzo wygodne w montażu i skuteczne w działaniu są żebra rozdzielcze /poz.5/, utworzone z prefabrykowanych beleczek usztywniających. Cłównym walorem tych usztywnień jest ich pełne działanie natychmiast po zmontowaniu "na sucho". Mogą one mieć szczególnie znaczenie dla prefabrykowanych stropów gęstożebrowych, obciążanych bezpośrednio po ułożeniu belek, jeszcze przed ich zdyblowaniem, t.zn. wypełnieniem spcin zaprawą cementową.

Nie wyjaśnioną jednak pozostaje jeszcze sprawa faktycznej sztywności giętnej tych żeber. Dalszymi badaniami modelowymi lub na elementach naturalnej wielkości, należałoby zweryfikować wyniki rozważań teoretycznych, oddzielnie dla każdego, wyłonionego wyżej ustroju konstrukcyjnego żebra usztywniającego.

6/ Konstrukcja prefabrykowanego stropu gęstożebrowego, związana nieprzesuwnie za pośrednictwem żelbetowych ław wieńczących ze ścianami nośnymi budynku, może spełnić rolę wiatrownicy - sztywnej tarczy stężającej poziomo budynek, pod warunkiem takiego wzajemnego połączenia przyległych do siebie belek teowych, które zapewniało by przeniesienie naprężeń głównych we wszystkich spoinach. Z obserwacji zachowania się połączeń belek teowych przy pomocy dybli cementowych /pez.4/, w czasie wyżej opisanych próbnych obciążeń stropu, można sądzić,że połączenia te sprostają także siłom występującym w poziomym tężniku wiatrowym, w warunkach podanych przykładowo w rozdziałe 9 niniejszej pracy. Niewątpliwie w ten czy inny sposób można zmonplitować strop gęstożebrowy w sztywną tarczę, zdolną do przeniesienia zadanych obciążeń poziomych.

- 114 -

Ponieważ problem wytrzymałości stosowanych połączeń belek stropowych między sobą oraz z belkami wieńczącymi ma dla tarczowej pracy stropu zasadnicze znaczenie, należy go, przed wydaniem wiążącej opinii, potraktować oddzielnie, w szerszym programie badań, obejmującym również stateczneść stropu -tarczy.

7/Reasumując powyższe stwierdza się, że konstrukcji prefabrykowanego stropu gęstożebrowego można w prosty sposób nadać taką sztywność przestrzenną, która wyklucza klawiszowanie i nadmierne ugięcia belek składowych oraz zapewnia spełnienie przez strop w budynku zadań poziomego tężnika.

Literatura cytowana w tekście

1.	Bielajew M.M.	-	Warszawa 1954
2.	Budzianowski Z.		Biegun sprężysty jako reduktor równań sprężystości. Wrocław 1955
3.	Homberg 9.	-	Kreuzwerke, Statik der Frägerroste und Platten Berlin /Gottingen/ Heidelberg 1951
4.	N i T U-123-55	-	Normy i techniczeskije usłowia projek- tirowania betonnych i żelezobetonnych konstrukcji. Gosstroizdat 1955
5.	Nowacki W.	-	Mechanika budowli t.II. Warszawa 1960
6.	PN-56/B-03260	-	Konstrukcje żelbetowe, Obliczenia statyczne i projektowanie. Warszawa 1956
7.	PN/B-03280	-	Projekt.Konstrukcje żelbetowe prefabry- kowane, Obliczenia statyczne i projek- towanie. Warszawa 1959
8.	Pytowski W.	-	Obliczenia statyczne prętów o zmmiennej sztywności, metoda A.Winokura. Warszawa 1960
9.	Strassner A.	-	Neuere Methoden zur Statik der Rahmentragwerke und der elastischen Bogenträger. Berlin /Göttingen/ Heidelberg 1951

12
SPIS TREŚCI

	Ser.
1. Wstęp	3
2. Cel i zakres pracy	5
3. Charakterystyka konstrukcyjna badanych elementów i ustrojów stropu	7
3.1. Ustrój I stropu	7
3.2. Ustrój II stropu	11
3.3. Ustrój III stropu	13
3.4. Ustrój IV stropu	15
4. Schematy statyczne rozpatrywanych stropów	15
4.1. Schemat ustroju I	15
4.2. Schemat ustroju II	17
4.3. Schemat ustroju III	17
4.4. Schemat ustroju IV	17
4.5. Uwagi wspólne	21
5. Sztywności składowych prętów żelbetowych rusztów stro- powych	21
5.1. Belka teowa poz.1 z kołowymi wykrojami w ścianie -	00
Żebrze	22
5.2. Belka teowa poz.2 z scianką typu ramy vierendeela	20
5.3. Zebro rozdzielcze złozone z beleczek poz.5	30
5.3.1. Zebro a) złożone nieszczelnie	34
5.3.2. Zebro b) złożone szczelnie	30
5.3.3. Zebro c) monolitowane	42
5.3.4. Zebro rozdzielcze e)	44
5.3.5. %ebro rozdzielcze I)	46
5.3.6. Konkluzja	46
6. Rozwiązania ogólne przyjętych ustrojów statycznych rusztu stropowego	47
6.1. Ustrój I rusztu stropowego	48
6.2. Ustrój II rusztu stropowego	53
5.2.1. Układ symetryczny	53
6.2.2. Układ antysymetryczny	58
6.3. Ustrój III rusztu stropowego	62
6.3.1. Układ symetryczny	62
6.3.2. Układ antysymetryczny	63

	STL
6.4. Ustrój IV rusztu stropowego	65
6.4.1. Układ symetryczny	65
6.4.2. Układ antysymetryczny	66
7. Liczbowe rozwiązania przyjętych ustrojów statycznych	
rusztu stropowego	66
7.1. Ustroj I stropu	66
7.2. Ustrój II stropu	68
7.2.1. Układ symetryczny	68
7.2.2. Układ antysymetryczny	69
7.2.3. Obciążenie pojedynczych belek	72
7.3. Ustrój III stropu	72
7.3.1. Układ symetryczny	72
7.3.2. Układ antysymetryczny	75
7.3.3. Obciążenie pojedynczych belek	75
7.4. Ustrój IV stropu	75
7.4.1. Układ symetryczny	75
7.4.2. Układ antysymetryczny	79
7.4.3. Obciążenie pojedynczych belek	79
8. Badania w naturze	79
8.1. Stanowisko badawcze i urządzenia pomiarowe	80
8.2. Próbne obciążenia rozpatrywanych ustrojów stropu	81
8.3. Analiza wyników obciążeń próbnych	99
8.3.1. Ustrój I	101
8.3.2. Ustrój 0/II	102
8.3.3. Ustrój III/IV	103
8.3.4. Ogólna ocena wyników przeprowadzonych badań	104
9. Praca statyczna prefabrykowanego stropu gęstożebrowego	
jako poziomego tęźnika wiatrowego	105
U. WHIOSKI	110
Literatura cytowana w tekście	115

