Nr 81

Budownictwo z.9

1963

RUDOLF KOPPEL Katedra Budowy Mostów

W PŁYW SZTYWNOŚCI BELEK GŁÓWNYCH NA SPRĘŻENIE PŁYT POMOSTOWYCH

<u>Streszczenie</u>. Żelbetowe konstrukcje mostowe o dwóch belkach głównych i jedynie dwóch poprzecznicach końcewych należy z reguły sprężać podłużnie i poprzecznie. Przy określaniu wielkości sprężenia poprzecznego płyty jezdni konieczną rzeczą jest uwzględnienie sztywności belek głównych na skręcanie i zginanie poziome, które to czynniki wpływają na zmniejszenie efektywnego sprężenia płyty. Traktując płytę jezdni jako tarczę, wzmocnioną belkami krawędziowymi, wyznaczono efektywną siłę sprężającą w postaci szeregu nieskończonego. Rozważania zilustrowano przykładem liczbowym.

1. Wstep

We współczesnych konstrukcjach mostowych daje się zauważyć dążność do zmniejszania ilości dźwigarów głównych. Coraz częściej stosuje się belkowe mosty drogowe z dwoma dźwigarami głównymi, rozstawionymi w odległości 6 m i więcej. Jeśli ograniczymy ilość poprzecznic stężających do jedynie dwóch podporowych, to otrzymamy ustrój wyróżniający się prostotą formy i wykonewstwa a nawet i kosztem w porównaniu do innych bardziej skomplikowanych form (rys.1).

Rozdział poprzeczny obciążenia dokonuje się w tym wypadku jedynie poprzez płytę. Wielkości sił wewnętrznych, dla tego rodzaju konstrukcji, należy wyznaczyć koniecznie z uwzględnieniem przestrzennej pracy ustroju np. w sposób podany w [1], [2], [3]. Zakłada się przy tym monolityczność ustroju. Tak więc wystąpienie rys może spowodować zasadnicze zmiany w wielkości obliczonych sił wewnętrznych. Zagwarantowanie dostatecznej pewności na rysy jest więc naczelnym warunkiem dla tego rodzaju konstrukcji. Zachowanie tego warunku narzuca konieczność podłużnego i poprzecznego sprężenia konstrukcji. Wielkość siły sprężającej belki główne wyznaczyć należy z uwzględnieniem rzeczywistej szerokości współpracującej płyty (zmiennej na długości belki) sposobem podanym przez W.Schleeha [4].

Rys.1. Przekrój poprzeczny i podłużny mostu dwubelkowego

Celem niniejszego artykułu jest ocena wpływu sztywności belek głównych na efektywność sprężenia poprzecznego płyty. W wypadku obciążenia siłami pionowymi belki główne ulegną ugięciu pionowemu i skręceniu. Skręcenie wpływa zaś na wielkość momentów w płycie, powodując zmniejszenie momentów podporowych a zwiększenie momentów przęsłowych. Zauważmy, że sztywność belki głównej na skręcanie i zginanie w płaszczyźnie poziomej wpływa na efektywne sprężenie poprzeczne płyty jezdni, gdyż część siły sprężającej przechodzi w energię odkształcenia belki głównej. Oczywiście, nie bez wpływu pozostaną również poprzecznice podporowe, tore w danym przypadku posiadać winny możliwie dużą sztywność. Jeśli ograniczymy nasze rozważania jedynie do środkowej części przęsła, dostatecznie oddalonej od poprzecznic końcowych to wpływ ich może być, z dostateczną dokładnością pominięty. Dokładniejsze uwzględnienie wpływu poprzecznic wymaga obszerniejszej analizy i będzie podane w innej pracy

2. Schemat statyczny ustroju

Załóżmy, że rozpatrywany ustrój obciążony jest jedynie siłami sprężającymi centrycznie, poprzecznie płytę jezdni – V(x). Zagadnienie sprowadza się zatem do rozwiązania tarczy prostokątnej wzmocnionej belkami krawędziowymi. Dokonując odcięcia płyty od belek głównych i zakładając w płaszczyźnie przecięcia niewiadome siły normalne $S(x) = \mathcal{O}_{X^0}h$ i styczne $T(x) = \mathcal{V}_{yX^0}h$ otrzymamy schemet statyczny przedstawiony na rys.2.

Rys.2. Schemat statyczny

Siła S(x) jest siłą efektywnie sprężającą płytę jezdni i postaramy się wyznaczyć ją w zależności od siły naciągu kabli sprężających V(x) i parametrów geometrycznych ustroju. Niewiadome siły wewnętrzne poszukiwać będziemy w postaci szeregu Fouriera. Przyjmujemy zatem następujące rozwinięcia: dane obciążenie zewnętrzne (naciąg kabli)

$$\mathbf{V}(\mathbf{x}) = \sum_{n} \mathbf{V}_{n} \operatorname{sin} \alpha_{n} \mathbf{x} \qquad [t/m] \qquad (1)$$

niewiadome siły wewnętrzne

$$S(\mathbf{x}) = \sum_{n} S_{n} \sin \alpha_{n} \mathbf{x} \quad [t/m] \quad (2)$$

$$\mathbf{T}(\mathbf{x}) = \sum_{n} \mathbf{T}_{n} \cos \alpha_{n} \mathbf{x} \quad [t/m] \quad (3)$$

gdzie $\alpha_n = n\pi/L$

3. Warunki brzegowe

n = 1,2,3...

W powyższym rozdziale przyjęto, że siły wewnętrzne w płaszczyźnie przecięcia są skierowane przede wszystkim równolegle do płaszczyzny środkowej płyty jezdni, a składowe naprężenia i r jako wartości średnie na grubości h tarczy. Pomijając jeszcze opór płyty jezdni na zginanie sprowadzono problem do zagadnienia tarczy. W związku z pominięciem sztywności płyty na zginanie (oraz dla uproszczenia obliczeń) przyjmujemy, że płyta jezdni połączona jest z żebrem nie wzdłuż całej wysokości h (a więc nie monolitycznie), lecz wzdłuż linii styku k, leżącej na wysokości płaszczyzny środkowej pasa (połączonie przegubowe). Warunki nierozdzielności spełnimy jedynie dla tejże linii k. Wymagamy zatem aby wzdłuż linii k zachodziła zgodność odkształceń ć i przesunięć v, płyty i belki, czyli

dla
$$x = \pm b$$
 $\hat{e}_x = \bar{e}_x$ (4)
 $v_x = \bar{v}_x$ (5)

Ex, Vx odnoszą się do płyty

 $\bar{\mathcal{E}}_{\mathbf{x}}, \ \bar{\mathbf{v}}_{\mathbf{x}}$ odnoszą się do belki

Warunki (1) i (2) wystarczą do wyznaczenia niewiadomych sił S(x) i $T(x)_{\circ}$

Poprzecznice podporowe potraktujmy jako bardzo sztywne w płaszczyźnie pionowej a nieskończenie wiotkie w płaszczyźnie poziomej. Wskutek tego należy przyjąć, że:

a) belki główne są na działanie momentów skręcających sztywno utwierdzone w poprzecznicach;

b) skręcający moment utwierdzenia nie wywołuje znaczniejszych ugięć poprzecznicy;

 c) połączenie belki głównej z poprzecznicą jest "zawiasowe". Odnośnie brzegów płyty x = 0 i x = L przyjmujemy, że

d) podparcie na poprzecznicach jest przegubowe i nieprzesuwne w kierunku z i yg

e) naprężenie normalne $\sigma_{x}(x=0,1) = 0$ (zerowa sztywność poprzecznic na zginanie w płaszczyźnie poziomej).

Praktycznie założenia powyższe odnośnie poprzecznic końcowych nie będą dokładnie spełnione, jednak powstające wskutek tego zaburzenie stanu naprężenia będzie szybko malało tak, że można z dostateczną dokładnością przyjąć, że wpływ ten na partię środkową będzie już bez praktycznego znaczenia.

4. Wyznaczenie niewiadomych sił S(x) i T(x)

4.1. Wyznaczenie odkształceń płyty jezdni

Odkształcenie i przesunięcie punktów linii k płyty jezdni $(\mathcal{E}_x i v_x)$ od sił S(x) i T(x) obliczymy poprzez superpozycję. Ponieważ siły te leżą w płaszczyźnie środkowej płyty, przeto mamy do rozwiązania zagadnienie tarczy. Rozwiążemy je oddzielnie dla każdej siły przy pomocy funkcji naprężeń Airy'ego.

4.1.1. Tarcza obciażona siła T(x)

Rys.3. przedstawia wyciętą płytę jezdni, którą w dalszym ciągu traktować będziemy jako tarczę, z działającymi na nią jedynie siłami stycznymi T(x). Przyjmijmy, że siły brzegowe T(x) wywołują na brzegu tarczy y = b naprężenia $\sigma_{1x} i \sigma_{1y}$ i odkształcenia $c_{1x} i v_{1x}$.

Funkcję naprężeń F spełniającą równanie różniczkowe tarczy

 $\Delta \Delta F = 0$

przyjmujemy w postaci szeregu

$$F = \sum_{n} Y_{n} \sin \alpha_{n} x \tag{6}$$

gdzie

$$\alpha_{n} = 1/\alpha_{n}^{2} \left[(A_{1n} + \alpha_{n}yB_{1n}) e^{-\alpha_{n}y} + (C_{1n} + \alpha_{n}yD_{n}) e^{\alpha_{n}y} \right]$$
(7)

Z uwagi na symetrię kształtu i obciążenia uwzględniamy warunki

$$\sigma_{x(y=+b)} = \sigma_{x(y=-b)}$$
$$\sigma_{y(y=+b)} = \sigma_{y(y=-b)}$$

które pozwalają wyznaczyć dwie stałe funkcje naprężeń

$$C_{1n} = A_{1n}$$

 $D_{1n} = B_{1n}$

Uwzględniając powyższe stałe, możemy funkcję naprężeń przedstawić w postaci

$$F = \sum_{n=1}^{\infty} \frac{2}{\alpha_n^2} \left(A_{1n} \cosh \alpha_n y - \alpha_n y B_{1n} \sinh \alpha_n y \right) \sin \alpha_n x \qquad (8)$$

która jest symetryczna względem zmiennej y. Wprowadzając układ współrzędnych bezwymiarowych $\xi = \frac{x}{L}$ $\eta = \frac{y}{L}$ możemy funkcję naprężeń (8) przedstawić następująco

$$F = 2 \sum_{n} \left(\frac{L}{n\pi}\right)^{2} \left[A_{1n} \cosh n\pi\eta - n\pi\eta B_{1n} \sinh n\pi\eta \right] \sin n\pi\xi(9)$$

W oparciu o (9) otrzymamy

$$G_{1x} = \frac{\partial^2 F}{\partial y^2} = 2 \sum_n \left[(A_{1n} - 2B_{1n}) \cosh n\pi\eta - n\pi\eta B_{1n} \sinh n\pi\eta \sin n\pi\xi \right]$$
(10)

$$\mathcal{O}_{1y} = \frac{0^{\prime} \mathcal{P}}{0 x^2} = -2 \sum_{n} \left[A_{1n} \cosh n \pi \eta - n \pi \eta B_{1n} \sinh n \pi \eta \right] \sin n \pi \xi$$
(11)

$$\tau_{1yx} = -\frac{\partial^2 F}{\partial x \partial y} = -2 \sum_n \left[(A_{1n} B_{1n}) \sinh n\pi \eta - n\pi \eta B_{1n} \cosh n\pi \eta \right] \cos n\pi \xi$$
(12)

W celu wyznaczenia stałych A_{1n} i B_{1n}, wykorzystamy warunki brzegowe dla y=b wzgl. $\eta = \frac{b}{L} = \beta$

$$\mathcal{F}_{\tau}(\xi,\beta) = 0 \tag{13}$$

$$\tau_{1yx}(\xi,\beta) = \frac{T(x)}{h}$$
(14)

Uwzględniając (11) i (13) oraz (12) i (14) otrzymamy następujący układ równań

$$2\Lambda_{1n} \cosh n\pi\beta - 2n\pi\beta \sinh n\pi\beta$$
 o $B_{1n} = 0$

- $2A_{1n} \sinh n\pi\beta + B_{1n} 2(\sinh n\pi\beta + n\pi\beta \cosh n\pi\beta) = \frac{T_n}{h}$

po rozwiązaniu którego otrzymamy:

$$A_{1n} = \frac{T_n}{2h} \mathcal{H}_{1n}$$
$$B_{1n} = \frac{T_n}{2h} \mathcal{Q}_{1n}$$

gdzie

$$\mathbf{Y}_{\mathrm{In}} = \frac{2n\pi\beta\sinh n\pi\beta}{2n\pi\beta + \sinh(2n\pi\beta)}$$
(15)

$$g_{\ln} = \frac{2 \cosh n \pi \beta}{2n\pi\beta + \sinh(2n\pi\beta)}$$
(16)

Po wyznaczeniu stałych można już obliczyć odkształcenia $\epsilon_1 i v_1 na brzegu y=b (\eta=\beta). Zależność (10) i (11) przyj$ mie postac:

$$\sigma_{1x} = \sum_{n} \frac{T_n}{h} \left[(\varkappa_{1n} - 2\varphi_{1n}) \cosh n\pi\eta - n\pi\eta \varphi_{1n} \sinh n\pi\eta \right] \sin n\pi\xi$$
(16)
$$\sigma_{1y} = -\sum_{n} \frac{T_n}{h} \left[\varkappa_{1n} \cosh n\pi\eta - n\pi\eta \varphi_{1n} \sinh n\pi\eta \right] \sin n\pi\xi$$
(17)

$$E\epsilon_{1x} = \sigma_{1x}(\xi,\beta) - \mu\sigma_{1y}(\xi,\beta) =$$

 $= \frac{1}{h} \sum_{n} T_{n} \left\{ \left[(1+\mu) \varkappa_{1n} - 2\varphi_{1n} \right] \cosh n\pi\beta - (1+\mu) n\pi\beta T_{n} \sinh n\pi\beta \sin n\pi\beta \right\} \sin n\pi\beta = 0$

$$= \frac{1}{h} \sum_{n} T_{n} \omega_{n} \sin(n\pi\xi)$$
(18)

η

gdzie

$$\omega_{1n} = \left[(1+\mu)\varkappa_{1n} - 2\varrho_{1n} \right] \cosh n\pi\beta - (1+\mu)n\pi\beta \varrho_{1n} \sinh n\pi\beta$$
(19)

$$E v_{1_{X}} = L \int_{0}^{1} (\sigma_{y} - \mu \sigma_{x}) d\eta =$$

$$= -\frac{1}{h} \sum_{n} (\frac{L}{n\pi}) T_{n} \left\{ \left[(1 + \mu) \varkappa_{1,n} + (1 - \mu) \varrho_{1n} \right] \sinh n\pi\beta - (20) - (1 + \mu) n\pi\beta \varrho_{1n} \cosh n\pi\beta \right\} \sin(n\pi\xi) =$$

$$(20)$$

$$= -\frac{1}{h}\sum_{n} T_{n} \psi_{1n} \sin(n\pi\xi)$$

gdzie

$$\psi_{1n} = (1+\mu)(\frac{L}{n\pi}) \left\{ \left[\varkappa_{1n} + \frac{1-\mu}{1+\mu} \varphi_{1n} \right] \sinh n\pi\beta - n\pi\beta \, \varphi_{1n} \cosh n\pi\beta \right\}$$
(21)

Schemat obciążenia tarczy przedstawia rys.4. Z uwagi na symetrię funkcja naprężeń ma postać analogiczną do (9). Możemy zatem napisać

Rys.4

$$F=2\sum_{n} \left(\frac{L}{n\pi}\right)^{2} \left[A_{2n} \cosh n\pi\eta - n\pi\eta B_{2n} \sinh n\pi\eta\right] \sin n\pi\xi$$

Uwzględniając warunki brze
gowe

$$\sigma_{y}(\xi,\beta) = -\frac{S(x)}{h} =$$
$$= -\frac{1}{h} \sum_{n=0}^{\infty} \sin n\pi\xi$$
$$\tau_{yx}(\xi,\beta) = 0$$

otrzymamy po uwzględnieniu (11) i (12) następujący układ równań

$$A_{2n}$$
 2cosh $n\pi\beta - B_{2n}$ $2n\pi\beta$ sinh $n\pi\beta = \frac{1}{h}S_n$

 A_{2n} 2sinh $n\pi\beta - B_{2n}$ 2(sinh $n\pi\beta + n\pi\beta \cosh n\pi\beta$) = 0

z którego otrzymamy:

$$A_{2n} = \frac{S_n^2 (\sinh n\pi\beta + n\pi\beta \cosh n\pi\beta)}{2h (2 n\pi\beta + \sinh 2 n\pi\beta)} = \frac{1}{2} \frac{S_n}{h} \mathcal{X}_{2n}$$

$$B_{2n} = \frac{S_n 2 \sinh n\pi\beta}{2h (2n\pi\beta + \sinh 2n\pi\beta)} = \frac{1}{2} \frac{S_n}{h} \phi_{2n}$$

gdzie

$$\mathcal{H}_{2n} = \frac{2(\sinh n\pi\beta + n\pi\beta \cosh n\pi\beta)}{2n\pi\beta + \sinh 2n\pi\beta}$$
(22)

$$q_{2n} = \frac{2 \sinh n\pi\beta}{2n\pi\beta + \sinh 2n\pi\beta}$$
(23)

Odkształcenia ϵ_{2x} i v_{2x} będą miały postać analogiczną do (18) i (20) a zatom

$$\sigma_{2x} = \sum_{n}^{S} \frac{n}{h} \left[(\chi_{2n} - 2q_{2n}) \cosh n\pi \eta - n\pi \eta q_{2n} \sinh n\pi \eta \right] \sin n\pi \xi \quad (24)$$

$$\sigma_{2y} = -\sum_{n}^{S} \frac{n}{h} \left[(\chi_{2n} \cosh n\pi \eta - n\pi \eta q_{2n} \sinh n\pi \eta) \sin n\pi \xi \quad (25) \right]$$

$$E \epsilon_{2x} = \sigma_{2x}(\xi,\beta) - \mu \sigma_{2y}(\xi,\beta) = (26)$$

 $= \frac{1}{h} \sum_{n} S_{n} \left\{ \left[(1+\mu) \varkappa_{2n} - 2 \varrho_{2n} \right] \cosh n\pi\beta - (1+\mu) n\pi\beta \varrho_{2n} \sinh n\pi\beta \right\} \sin n\pi\xi = \frac{1}{h} \sum_{n} S_{n} \quad \omega_{2n} \sin n\pi\xi$

34

gdzie

$$\omega_{2n} = \left[(1+\mu) \varkappa_{2n} - 2 \varrho_{2n} \right] \cosh n\pi\beta - (1+\mu) n\pi\beta \varrho_{2n} \sinh n\pi\beta$$
(27)

$$Ev_{2} = -\frac{1}{h} \sum_{n} (\frac{L}{n\tau}) S_{n} \left\{ \left[(1+\mu) \varkappa_{2n} + (1-\mu) \varphi_{2n} \right] \sinh n\pi\beta - (1+\mu)n\pi\beta \varphi_{2n} \cosh n\pi\beta \right\} \sin n\pi\xi = (28)$$
$$= -\frac{1}{h} \sum_{n} S_{n} \psi_{2n} \sin(n\pi\xi)$$

gdzie

$$\psi_{2n} = (1+\mu) \left(\frac{L}{n\pi} \right) \left\{ \left[\varkappa_{2n} + \frac{1-\mu}{1+\mu} \varphi_{2n} \right] \sinh n\pi\beta - n\pi\beta \varphi_{2n} \cosh n\pi\beta \right\}$$
(29)

4.2. Wyznaczenie odkształceń belki

n

Na rys.5 przedstawiono przekrój poprzeczny odciętej belki z działającymi na nią siłami V(x), S(x) i T(x). Zgodnie z założeniem (4) i (5) wyznaczyć należy odkształcenia $\overline{\varepsilon}_x$ i ∇_x zachodzące wzdłuż linii k. W dalszym ciągu rozpatrzymy

- 1

x

tylko przekrój prostokątny (rys.5). Uwzględnienie przekroju niesymetrycznego (rys.6) nie przedstawia zasadniczej trudności. W tym wypadku należy siły V,S i T rozłożyć na kierunki równoległe do głównych osi bezwładności I i II, obliczyć odkształcenia zachodzące w kierunku I i II oraz rzutować je na kierunki x względnie y. Należy jeszcze pamiętać, że dla przekroju niesymetrycznego skręcanie zachodzić będzie wokół środka ścinania S "rys.6).

4.2.1. Wpływ skręcania

Jednostkowy moment skręcający

$$m(\xi,\beta) = r \sum_{n} (S_n V_n) \sin n\pi\xi$$

Pomijając wpływ deplanacji przekroju, wyznaczymy kąt skręcenia z zależności

$$GJ_{S} \frac{d^{2}\bar{\varphi}}{d\xi^{2}} = L^{2} m(\xi,\beta)$$

Uwzględniając, że dla $\xi = 0$; l; $\bar{\varphi} = 0$, otrzymany:

$$\bar{\varphi} = -\frac{r}{GJ_{S}} \sum_{n} \left(\frac{L}{n\pi}\right)^{2} (S_{n} - V_{n}) \sin n\pi\xi \qquad (29)$$

Przemieszczenie poziome linii k będzie zatem równe

 $\overline{\mathbf{v}}_{\mathbf{x}} = -\mathbf{r}\cdot\overline{\varphi}$

lub uwzględniając (29)

$$\overline{\mathbf{v}}_{s} = \frac{r^{2}}{\overline{GJ}_{s}} \sum_{n} (\frac{\mathbf{L}}{n\pi})^{2} (\mathbf{S}_{n} - \mathbf{V}_{n}) \sin n\pi\xi \qquad (30)$$

4.2.2. Wpływ sił T(x)

Wskutek działania sił T(x) belka ulegnie ugięciu w płaszczyźnie poziomej i pionowej (rys.7). Poza tym siły T(x)powodują powstanie w przekroju x siły normalnej

$$X = \int_{0}^{x} T(x) dx = L \sum_{n} \int_{0}^{5} T_{n} \cos n\pi \xi d\xi = \sum_{n} \left(\frac{L}{n\pi}\right) T_{n} \sin n\pi \xi \quad (31)$$

Rys.7

Wywołane siłami T(x) momenty zginające wynoszą:

$$M_{z} = -Xb_{o} \qquad M_{v} = -Xr \qquad (32a,b)$$

Uwzględniając (32a) i (31) otrzymamy po dwukrotnym scałkowaniu przybliżonego równania różniczkowego osi odkształconej belki szukane przesunięcie poziome

$$\overline{\mathbf{v}}_{1\mathbf{x}} = -\frac{\mathbf{b}_{0}}{\mathbf{E}J_{H}} \sum_{n} (\frac{\mathbf{L}}{\mathbf{n}\mathbf{x}})^{3} \mathbf{T}_{n} \sin n\pi \xi \qquad (33)$$

Wydłużenie włókna k przedstawia się natomiast (przy pomini ciu przeweżenia poprzecznego) następująco:

$$\mathbb{E} \ \overline{c}_{1x} = \ \overline{o}_{1x} = \frac{X}{F} - \frac{M_z \ b_o}{J_H} - \frac{M_z \ w}{\overline{o}_v} = (\frac{1}{F} + \frac{b_o^2}{\overline{o}_H} + \frac{r^2}{J_v})X$$

37

Po uwzględnieniu (31) otrzymamy:

$$\mathbb{E}\bar{\varepsilon}_{1_{\mathbf{X}}} = \left(\frac{1}{F} + \frac{b_0^2}{J_H} + \frac{r^2}{J_v}\right) \sum_n \left(\frac{L}{n\pi}\right) T_n \sin n\pi\xi \qquad (34)$$

4.2.3. Wpływ sił V(x) i S(x)

Moment zginający belkę w płaszczyźnie poziomej, wywołany siłami V(x) i S(x), jest równy (rys.5)

$$M(\xi) = \sum_{n} (\frac{L}{n\pi})^{2} (v_{n} - S_{n}) \sin n\pi \xi$$
(35)

Po dwukrotnym scałkowaniu równania różniczkowego linii ugięcia, otrzymamy we współrzędnych bezwymiarowych przesunięcie poziome

$$\overline{v}_{2x} = -\frac{1}{EJ_H} \sum_n (\frac{L}{n\pi})^4 (v_n - S_n) \sin n\pi\xi \qquad (36)$$

Wydłużenie włókna k przedstawimy zaś przy pomocy (35) następująco:

$$E\overline{c}_{2\mathbf{x}} = \frac{\mathbf{M}(\xi)}{\mathbf{J}_{\mathrm{H}}} \mathbf{b}_{\mathrm{o}} = \frac{\mathbf{b}_{\mathrm{o}}}{\mathbf{J}_{\mathrm{H}}} \sum_{n} (\frac{\mathbf{L}}{n\pi})^{2} (\mathbf{v}_{\mathrm{n}} - \mathbf{S}_{\mathrm{n}}) \sin n\pi\xi \qquad (37)$$

4.3. Obliczenie siz S(x) i T(x)

W celu obliczenia niewiadomych sił przekrojowych superponujemy wyżej obliczone odkształcenia i żądamy spełnienia warunków zgodności odkształceń (4) i (5), wzdłuż linii k. Zapiszemy to nastepujaco:

$$\begin{cases} \epsilon_{x} = \epsilon_{1x} + \epsilon_{2x} = \overline{\epsilon}_{x} = \overline{\epsilon}_{1x} + \overline{\epsilon}_{2x} \\ v_{x} = v_{1} + v_{2} = \overline{v}_{x} = \overline{v}_{s} + \overline{v}_{1x} + \overline{v}_{2x} \end{cases}$$
(38)

Po wstawieniu w powyższe warunki (38) poprzednio obliczo-ne odkształcenia składowe (18), (26), (34), (37) oraz (20), (28), (30), (33), (36) otrzymamy po uporządkowaniu następujacy układ równań:

$$T_{n} \left\{ \frac{\omega_{1n}}{h} - \lambda_{n} \left(\frac{1}{F} * \frac{b_{0}^{2}}{J_{h}} * \frac{r^{2}}{J_{v}} \right) \right\} + S_{n} \left\{ \frac{\omega_{2n}}{h} * \lambda_{n}^{2} \frac{b_{0}}{J_{H}} \right\} - \lambda_{n}^{2} \frac{b_{0}}{J_{H}} V_{n}$$

$$= \left\{ \frac{\psi_{1n}}{h} - \lambda_{H}^{3} \frac{b_{0}}{J_{H}} \right\} + S_{n} \left\{ \frac{\psi_{2n}}{h} + \lambda_{n}^{2} \left(\frac{\lambda_{n}^{2}}{J_{H}} + \frac{r^{2}}{GJ_{s}} \right) \right\} = \left[\lambda_{n}^{2} \frac{\lambda_{n}^{2}}{J_{H}} + \frac{r^{2}}{GJ_{s}} \right] V_{n}$$

$$= \left\{ \frac{\psi_{2n}}{h} - \lambda_{H}^{2} \frac{\lambda_{n}^{2}}{J_{H}} \right\} + S_{n} \left\{ \frac{\psi_{2n}}{h} + \lambda_{n}^{2} \left(\frac{\lambda_{n}^{2}}{J_{H}} + \frac{r^{2}}{GJ_{s}} \right) \right\} = \left[\lambda_{n}^{2} \frac{\lambda_{n}^{2}}{J_{H}} + \frac{r^{2}}{GJ_{s}} \right] V_{n}$$

$$= \left\{ \frac{\psi_{2n}}{J_{s}} + \frac{\lambda_{n}^{2}}{J_{s}} + \frac{r^{2}}{GJ_{s}} \right\} = \left[\lambda_{n}^{2} \frac{\lambda_{n}^{2}}{J_{H}} + \frac{r^{2}}{GJ_{s}} \right] V_{n}$$

$$= \left\{ \frac{\psi_{2n}}{J_{s}} + \frac{r^{2}}{GJ_{s}} + \frac{r^{2}}{GJ_{s}} \right\}$$

$$= \left\{ \frac{\psi_{2n}}{J_{s}} + \frac{r^{2}}{GJ_{s}} + \frac{r^{2}}{GJ_{s}} + \frac{r^{2}}{GJ_{s}} \right\}$$

$$= \left\{ \frac{\psi_{2n}}{J_{s}} + \frac{r^{2}}{GJ_{s}} +$$

T

 $\lambda_n = \frac{1}{\alpha_n} = \frac{L}{n\pi}$

Układ (39) rozwiązać należy kolejno dla każdego n = 1,2, 3000 k, przy czym k określa ilość wyrazów szeregu uwzględnionych w rozwinięciu (1) dla obciążenia.

Ogólnie z (39) otrzymamy niewiadome współczynniki rozwinięcia (2) i (3) w postacis

$$S_n = \frac{1}{1 + K_n} V_n = k_n V_n$$
 (40)

$$\frac{gdzie}{I_{s}\left[\frac{\lambda_{n}}{h}(\omega_{2n}b_{0}\lambda_{n}^{2}+\omega_{1n}\lambda_{n}^{3}-v_{2n}b_{0}^{2})\right]+J_{s}J_{H}\left\{\frac{\omega_{2n}v_{2n}}{h^{2}}\left[\frac{\omega_{1n}}{w_{2n}}\frac{v_{1n}}{v_{2n}}\frac{\lambda_{n}h}{w_{2n}}\left(\frac{1}{F}\frac{r^{2}}{J_{r}}\right)\right\}}{J_{H}\left\{\frac{E}{G}\lambda_{r}^{2}r^{2}\left[\frac{\omega_{1n}}{t}-\lambda_{n}\left(\frac{1}{F}\frac{r^{2}}{J_{r}}\right)\right]\right\}+J_{s}\left\{\frac{\lambda_{n}}{h}\left[\omega_{1n}\lambda_{n}^{2}-v_{1n}b_{0}-\lambda_{n}^{3}h\left(\frac{1}{F}\frac{r^{2}}{J_{r}}\right)\right]+J_{s}v_{n}^{2}}$$

lub

$$K_{n} = \frac{J_{s} \left\{ V_{n} \right\} + J_{s} J_{H} \left\{ N_{n} \right\}}{\left\{ n \right\} + J_{s} \left\{ R_{n} \right\} + \left\{ U_{n} \right\}}$$
(41)

gdzie

$$M_{n} = \frac{\Lambda_{n}}{h} \left(\psi_{2n} b_{0}^{2} - \omega_{1n} \lambda_{n}^{3} - \omega_{2n} b_{0} \lambda_{b}^{2} \right) \quad (42)$$

$$N_{n} = \frac{\omega_{2n} \psi_{2n}}{h^{2}} \left[\left(\frac{1}{F} \div \frac{r^{2}}{J_{v}}\right) \frac{h\lambda_{n}}{\omega_{2n}} + \frac{\psi_{1n}}{\psi_{2n}} - \frac{\omega_{1n}}{\omega_{2n}} \right] \quad (43)$$

$$P_{n} = \frac{E}{G} \lambda_{n}^{2} r^{2} \left[\left(\frac{1}{F} + \frac{r^{2}}{J_{v}} \right) \lambda_{n} - \frac{\omega_{1n}}{h} \right]$$
(44)

$$R_{n} = \frac{\lambda_{n}^{2}}{h} \left[\left(\frac{1}{F} + \frac{r^{2}}{J_{v}} \right) \lambda_{n}^{3} h + b_{o} \psi_{1n} - \lambda_{n}^{2} \omega_{1n} \right]$$
(45)

$$U_{n} = \frac{E}{G} b_{0}^{2} \lambda_{n}^{3} r^{2}$$
(46)

$$T_n = \frac{I_n}{1 + K_n} V_n = I_n S_n$$
(47)

gdzie

$$\mathbf{I}_{\mathbf{n}} = \frac{\frac{\lambda_{\mathbf{n}}^{2}}{\mathbf{h}} \left\{ \left[\frac{\mathbf{E} \mathbf{r}^{2}}{\mathbf{G} \mathbf{J}_{\mathbf{s}}} \div \frac{\lambda_{\mathbf{n}}^{2}}{\mathbf{J}_{\mathbf{H}}} \right] - \frac{\mathbf{b}_{o} \psi_{2\mathbf{n}}}{\mathbf{J}_{\mathbf{H}}} \right\}}{\mathbf{J}_{\mathbf{H}} \left\{ \mathbf{P}_{\mathbf{n}} \right\} \div \mathbf{J}_{\mathbf{s}} \left\{ \mathbf{R}_{\mathbf{n}} \right\} \div \left\{ \mathbf{U}_{\mathbf{n}} \right\}}$$
(48)

Z zależności (40) wynika, że kolejne współczymniki S_n rozwinięcia (2) są mniejsze od odpowiednich współczymników V_n , zatem efektywna siła sprężająca płytę jezdni S(x)jest oczywiście mniejsza od rzeczywistej siły sprężającej, czyli siły naciągu kabli. Gdy sztywność J_ przyjmiemy jako równą zeru, to jak wynika ze wzoru (40) $S_n = V_n$. Im większa zaś będzie sztywność pozioma belki lub sztywność skręcania, tym mniej efektywnie sprężona będzie płyta.

W konkretnym przypadku projektowania tego rodzaju konstrukcji mostowej należy zatem uwzględnić powyższy fakt i zwiększyć odpowiednio siłę naciągu kabli sprężających.

5. Przykład

Dla zobrazowania wielkości omówionych wyżej wpływów rozpatrzmy konstrukcję przedstawioną na rys.8. Do obliczeń przyjęto zastępczy przekrój poprzeczny jak na rys.8t. (Wporniki z uwagi na małą wielkość zostały pominięte).

Rys.8. a) Przekrój poprzeczny mostu, b) Zastępczy przekrój poprzeczny przyjęty do obliczeń

Dane: Rozpiętość mostu L = 25.00 m

a)

b)

$F = 1,20 m^2$	J _H =	0,036 m	ł
$J_v = 0_{y40} m^4$	E =	3,5.106	T/m ²
$J_{\rm S} = 0,117 \text{ m}^4$	G =	1,5.106	T/m ²

Przyjmijmy dla naszych rozważań, że siła sprężająca V jest równomiernie rozłożona na długości przesła i równa jedności. Poszukowaną siłę efektywnie sprężającą otrzymamy z (2), (40). Uwzględniając w rozwinięciu (2) pięć pierwszych wyrazów szeregu, obliczono kolejno współczynniki S_n dla $\mu = 0.167$ oraz $\mu = 0$ i zestawiono w poniższej tablicy.

	K _n		mnożnik	
n	$\mu = 0,167$	<u>и= 0</u>	v _n	
1	0,725	0,725	V ₁	
2	0,699	0,689	V2	$S_n = K_n$
3	0,676	0,672	v ₃	
4	0,649	0,647	v ₄	
5	0,620	0,609	v ₅	

V_n

Jak widać z tablicy, pierwszy składnik szeregu V(x) uległ zmniejszeniu o ok. 28%, zaś dalsze są odpowiednio coraz bardziej pochłaniane na rzecz energii odkształownia belki głównej.

Zadane obciążenie jednostkowe V(x) = 1 przedstawić możemy w postaci szeregu

$$V(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \sin \frac{n\pi x}{L} \quad (n = 1,3,5,...)$$

Uwzględniając jedynie pierwsze trzy składniki powyższego szeregu, otrzymamy dla x = +

$$S_{1} = 0,725 \quad \frac{4}{\pi} \sin \frac{\pi}{2} = 0,725 \times 1,274 = 40,925 \text{ t/m}$$

$$S_{3} = 0,676 \quad \frac{4}{3\pi} \sin \frac{3\pi}{2} = -0,676 \times 0,425 = -0,287 \text{ t/m}$$

$$S_{5} = 0,620 \quad \frac{4}{5\pi} \sin \frac{5\pi}{2} = 0,620 \times 0,255 = 40,158 \text{ t/m}$$

Siła efektywnie sprężająca S jest zatem dla x = 1/2 w przybliżeniu równa

$$S \cong 0,925 = 0,287 + 0,158 = 0,796 t/m$$

co w porównaniu z odpowiednim przybliżeniem siły sprężającej V stanowi

$$k = \frac{3}{V} 100 = \frac{0.796}{1,104} 100 = 72,2\%$$

LITERATURA

- [1] Koller, O. Stinflussfelder für die Hauptträgerschnittkräfte zweistegiger Plattenbalkensysteme. Bautechnik -Archiv 1955/10.
- [2] Bechert, H.: Einflussflächen zweistegiger Plattenbalken. Beton und Stahlbetonbau 1957/1 str.17-21.
- [3] Jäger, K.: Drillungssteife zweistegige Plattenbalkenbrücken. Österreichische Bauzeitschrift 9 (1954) str.30.
- [4] Schleeh, W.: Die Mitwirkung der Gurtscheibe beim vorgespannten Plattenbalken. Beton und Stahlbetonbau 1957/5, str.112.
- [5] Sommerfeld, W. Beitrag zur Theorie der Plattenbalkenbrücken. Diss. T.H. Berlin 1960.
- [6] Girkmann, Kos Dźwigary powierzchniowe, Narszawa 1957.
- [7] Члицкий, Б.Е.: Пространственные расчеты балочных мостов. Москва 1962.

EINFLUSS DER HAUPTTRÄGERSTEIFIGKEIT AUF DIE QUERVORSPANNUNG DER FAHRBAHNPLATTE

Zusammenfassung

Zweistegige Plattenbalkenbrücken mit nur zwei Endquerträgern sollte man stets nur als längs- und quervorgespannte Systeme ausführen. Die effektive Quervorspannkraft der Fahrbahnplatte wird bei Berücksichtigung der Drill- und Quersteifigkeit der Hauptträger ermittelt. Die Fahrbahnplatte wird dabei als Scheibe mit verstärkten Rändern betrachtet und die effektive Vorspannkraft in Fourierreihe dargestellt. Ein Zahlenbeispiel illustiert die Untersuchungen.

ВЛИЯНИЕ ЖЕСТКОСТИ ГЛАВНЫХ БАЛОК НА ПРЕДВАРИТЕЛНОЕ НАПРЯЖЕНИЕ ПЛИТИ ПРОЕЗЖЕЙ ЧАСТИ БЕТОННИХ МОСТОВ

Содержание

З статие разсматриваются влияние жесткости балок железобетонного моста о двох главных балках на интенсывность эфективного предварителного напряжения плиты проезжей части.

Полученные резултаты представлается в виде рядов фуре и илиструется численным примером.