
Research paper176 © Copyright by International OCSCO World Press. All rights reserved. 2009

VOLUME 36

ISSUE 2

October

2009
of Achievements in Materials
and Manufacturing Engineering
of Achievements in Materials
and Manufacturing Engineering

Analysis of complex damped 
longitudinally vibrating systems  
in transportation

S. Żółkiewski * 
Division of Mechatronics and Designing of Technical Systems, Institute of 
Engineering Processes Automation and Integrated Manufacturing Systems, 
Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
* �Corresponding author: E-mail address: slawomir.zolkiewski@polsl.pl

Received 27.07.2009; published in revised form 01.10.2009

Analysis and modelling

Abstract
Purpose: of this thesis is dynamical analysis of complex systems in transportation. Analyzed systems are 
composed of rotatable rods. Transportation was defined as main motion of rods and the overall system.
Design/methodology/approach: The dynamical flexibility method is a leading methodology for dynamic analysis 
of considered systems. For solving equations of motion to dynamical flexibility the Galerkins method was used.
Findings: There were considered systems consisted of rods. Rods are rotated first round the origin of global 
reference frame simultaneously, the attached point and further ones round the end of the previous one. Charts 
of dynamic characteristics, in a form of dynamic flexibility as function of frequency and mathematical models 
were shown in this article.
Research limitations/implications: All multi-body systems components were simple linear homogeneous 
rods, the first one as the fixed rod and next ones treated as free-free rods. Transportation was limited to plane 
rotational motion round the Z axis of global reference frame. Future works would consider complex systems 
with geometrical and physical nonlinearity.
Practical implications: of presented analysis are derivation of multi-body rod systems of dynamic flexibility. 
Dynamic flexibility can be used in designing process. Presented mathematical models may be used for 
implementation in numerical applications and for automating some calculations in this type of systems.
Originality/value: In the mathematical model the damping forces were taken into consideration and the 
dynamic flexibility of complex systems was derived.
Keywords: Numerical techniques; Computational mechanics; Applied mechanics; Complex systems 

Reference to this paper should be given in the following way: 
S. Żółkiewski, Analysis of complex damped longitudinally vibrating systems in transportation, Journal of 
Achievements in Materials and Manufacturing Engineering 36/2 (2009) 176-183. 

 

 
1. Introduction 

 
Many technical problems are related to dynamic analysis of 

multi-body systems. This type of analysis considers a model of 
systems behaviour in changeable terms arising from mutual 

connection between individual subsystems. In this thesis this model 
was used to analyze interconnected rods in transportation. In the 
presented model, subsystems can move translational lengthwise and 
may undergo rotational displacements. Translational displacement 
is measured in the local reference frame and was assumed as 
longitudinal vibrations of analyzed system and rotational 

1.	�Introduction

 

displacement was assumed as main and transportation motion. 
Many articles e.g. [1-4, 13-14, 20] concern the dynamic analysis of 
rod and beam systems in transportation and to differentiate it from 
articles concerning stationary rods and beams [5- 12, 15-19, 21] is 
an extension of the dynamic analysis. There are some works e.g.  
[1, 4] that draw attention to analysis of simple one element systems 
both fixed ones and free-free ones in transportation and this thesis is 
based on these works. The dynamic flexibility method used in this 
thesis can be based on matrix techniques and presented as a part of 
overall notation of equations of motion with mutual coupling. 

The Galerkins method was chosen to solve equations of motion 
and search overall displacements, and after that dynamic flexibilities 
were derived by introducing to the dynamic flexibility definition.  
The dynamic behaviour of analyzed system was described by 
equations of motion and dynamic flexibilities. The meaning of 
dynamic analysis of multi-body is that each complex system 
formulation can be different and the superposition method is not 
valid, because it does not take mutual conjugations into consideration 
between subsystems and it does not take terms of continuity and 
inseparableness of displacements and forces into consideration.  

 
 

2. Analyzed system’s model 
 
In this section the model of complex system in transportation 

was described (Fig. 1). The system is compounded from 
homogenises rods that are rotated round the origin of global 
reference frame and the end of each other. Rotation of subsystems 
and plane motion of the overall system is treated as transportation 
motion. Rods are loaded by axial harmonic forces providing 
longitudinal system vibrations.  

In Figure 2 there is a presented model of the first subsystem 
of analyzed complex system. A system was described in global 
reference fixed frame where one is attached to the origin and local 
reference frame that is connected with rotation of the system. 

In Figure 3, it is a model of consecutive subsystems shown 
from the second one to n one. 

 
2.1. Description of the model 
 
 This subsection consists the way models are described. Model 
of the analyzed system was described by basic symbols: 
Y( ) – the dynamic flexibility in function of frequency of 
extorted force, 

  – mode of vibrations of a subsystem, 
a  – velocity of the wave propagation in the rod, 

,k
k

k

Ea   (1) 

  – frequency of vibrations, 
k – damping factor of k element,  

Ek  – the Young modulus of k element, 
k  – mass density of the k rod, 
k – angular velocity of the k rod, 
k – k element angle of rotation, 

xk  – position of analyzed section of k element. 
Ak  – cross-section of the k rod, 
lk  – length of the k rod, 
t – time, 
a vector of linear displacement of the k rod’s section along centre 
line of the bar in the local reference system: 

0 0 ,T
kuku  (2) 

a sample vector of linear displacement of the rod’s in the global 
reference system: 

0 ,T
X Yu uu  (3) 

a position vector of the k element: 

0 0 .T

kskS            (4) 
 

 
 

Fig. 1. The analyzed complex system 
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Fig. 2. The first subsystem attached to the origin of the global 
reference frame 
 

 
 

Fig. 3. Subsystem of the complex analyzed system 
 

Generalized coordinates and generalized velocities were 
assumed as projections of coordinates and velocities of individual 
rods in the global reference frame and there are assumed the 
following notation:  
 
 displacement for the X axis: 

 
,1212 Xkk rq  (5) 

 
 displacement for the Y axis: 

 
,22 kYk rq  (6) 

 velocity for the X axis: 
,1212 Xkk rq  (7) 

 velocity for the Y axis: 
.22 kYk rq  (8) 

 
where the mobility grade was expressed by a formula where the 
number of kinematic pairs (for example rotary ones, fifth class p5 
or fourth class p4) and number of moveable elements signed by z 
is obtained: 
 

.23 45 ppzn  (9) 
Mass of the n element is equal: 

 

,
1

0

kkl

nnnn dsAM  (10) 

 
where: nk ,...,1  
 
 

 

  
 

Fig. 4. The sample three-linked complex system (n=3) 

 

Orientation of the elements was provided by the rotation in 
the form of: 
 

100
0cossin
0sincos

1 kk

kk

kkQ  (11) 

 
and in the overall case: 
 

.
1

0
10

n

k
kkn QQ  (12) 

 
In Figure 4 there is presented the sample three-linked complex 

system. This system is equipollent to complex system, where 
mobility grade is equal n=3. 
 
 
2.2. Mathematical model 
 

Individual vectors for individual elements without damping 
are as follow: 

 
for the first rod: 

,11011 uSQr  (13) 
 

for k element: 

,0 kkkk uSQr  (14) 
 

for n element: 

.0 nnnn uSQr  (15) 
 

Now after differentiation is done we, obtain acceleration of k 
element: 
 

1 1 1

0
1 1

0
1 1 1

0 0
1 1 1

2 .

n n n

k k kX kY
k k k

n k

k m k k
k m

n k k

k m m k k
k m m

n k n

k m k k k
k m k

r r v v v

Q S u

Q S u

Q u Q u

 (16) 

 
The projection into the X axis of the global reference system: 

2 2
21 1 1
1 1 1 12 2

1

1 1
1 1 1 1 1 1 1

cos

2 sin

X X
X

Y X
Y

u E u l u
t x

u u l u
t t

 (17) 

 
The projection into the Y axis of the global reference system: 

 
2 2

21 1 1
1 1 1 12 2

1

1 1
1 1 1 1 1 1 1

sin

2 cos

Y Y
Y

X Y
X

u E u l u
t x

u u l u
t t

 (18) 

For k element the projection into the X axis of the global 
reference system: 
 

2 2
2

2 2
1

1

1

cos

2

sin

k
kX k kX

m k k kX
mk

k
kY kX

m k
m

k

k m k k kY
m

u E u l u
t x

u u
t t

l u

 (19) 

 
The projection into the Y axis of the global reference system 

of the k element: 
 

2 2
2

2 2
1

1

1

1

sin

2

cos

k
kY k kY

m k k kY
mk

k
kYX

m k
m

k

k m k k kX
m

u E u l u
t x

uu
t t

l u

 (20) 

 
For n element the projection into the X axis of the global 

reference system: 
 

2 2
2

2 2
1

1

1

cos

2

sin

n
nX n nX

m n n nX
mn

n
nY nX

m n
m

n

n m n n nY
m

u E u s u
t x

u u
t t

s u

(21) 

The projection into the Y axis of the global reference system 
of the n element: 
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reference system: 
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The projection into the Y axis of the global reference system 
of the n element: 

2.2.	�Mathematical model
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2 2
2

2 2
1

1

1

sin

2

cos

n
nY n nY

m n n nY
mn

n
nX nY

m n
m

n

n m n n nX
m

u E u s u
t x

u u
t t

s u

 (22) 

 
With equations (16-21) it is possible to derivate equations of 

motion for optional motility complex systems. 
 
2.3. Boundary conditions 
 

Boundary conditions of the first rod were assumed as follows: 

1

1 1 2

1 1 2 2
1 1 2 2

0, 0,

, 0, ,
( , ) ( , ) ,

u t

u l t u t
u l t u l tE A E A

x x

 (23) 

 
the last rod has boundary condition as follow: 

 

0
0

(0, ) 0,

( , ) 2 ( ) 1 ,

n
n n

l
j t j tn n

n n n n

u tE A
x

u l tE A F x l e dx e
x

(24) 

 
where the Dirac delta function was assumed as a distribution 
generalized function regarding a point of application of force. 
Force was assumed as harmonic one with unitary amplitude up to 
the dynamic flexibility definition. 

For integrity of complex system assurance the continuity 
conditions must be performed: 
 

1 1

1

1 1
1 1

1
1 1

0, , ,

, 0, ,
(0, ) ( , ) ,

( , ) (0, ) ,

k k k

k k k

k k k
k k k k

k k k
k k k k

u t u l t

u l t u t
u t u l tE A E A

x x
u l t u tE A E A

x x

 (25) 

 
2.4. Eigenfunctions  
 
 The boundary problem was solved and the eigenfunction of 
displacement and eigenfunction of time variables were shown. 
The eigenfunction of displacement of each element without the 
first one can be written: 

cos ,k k kX x x  (26) 

 
where: 
 

, 0, 1, 2, 3, ...
l

 (27) 

 
and the first element of eigenfunction is as follows: 
 

sin ,k k kX x x  (28) 

where: 
 

2 1
, 0, 1, 2, 3, ...

2l
 (29) 

 
 

3. Dynamic flexibility substitute 
 
 In this section the substitute dynamic flexibility of 
a complex system in transportation was presented.  
 
 
3.1. Searched displacement solution 
 
 Up to the Galerkin’s method the solution for each element 
without the first one was assumed as: 
 
For X axis: 

0

cos ,j t
kX kX ku A x e  (30) 

and for Y axis of the global reference frame: 

0
cos ,j t

kY kY ku A x e  (31) 

For the first element regard to X axis: 

1 1 1
0

sin ,j t
X Xu A x e  (32) 

and for the first element Y axis of the global reference frame: 

1 1 1
0

sin ,j t
Y Yu A x e  (33) 

now displacements are searched as a sum of eigenfunction of 
displacement and eigenfunction of time. 
 
 
3.2. Orthogonalisation 
 
 After orthogonalisation of equations of motion we can 
obtain equations for example for k element:  

3.1.	�Searched displacement solution

3.	�Dynamic flexibility 
substitute

2.4.	�Eigenfunctions
3.2.	�Orthogonalisation

2.3.	�Boundary conditions

 

2 2

2 2
0 0

2

1 0

1 0

0

1 0

cos( ) cos( )

cos cos( )

2 cos( )

cos( )

sin cos( )

l l
kX k kX

k k
k

lk

m k k kX k
m

lk
kY

m k
m

l
kX

k k

lk

k m k k kY k
m

u E ux dx x dx
t x

l u x dx

u x dx
t

u x dx
t

l u x dx

 (34) 

and for second axis: 
 

2 2

2 2
0 0

2

1 0

1 0

0

1 0

cos( ) cos( )

sin cos( )

2 cos( )

cos( )

cos cos( )

k k

k

k

k

k

l l
kY k kY

k k
k

lk

m k k kY k
m

lk
kX

m k
m

l
kY

k k

lk

k m k k kX k
m

u E ux dx x dx
t x

l u x dx

u x dx
t

u x dx
t

l u x dx

 (35) 

 
3.3. Dynamic flexibility 
 
 There are few known methods of derivation of substitute 
dynamical flexibility of complex systems, for example making 
reference to Pasek [21] this dynamic flexibility can be written as: 

2 2 1 2 2 2

1 2 ,a b b b c d
z

b a

Y Y Y Y Y YY
Y Y

 (36) 

where: 
zY   - substituting dynamic flexibility , 

i
aY  - dynamic flexibility i rod loaded in section x=0, derived in 

section x=0, 
i

bY  - dynamic flexibility i rod loaded in section x=l, derived in 
section x=l, 

i
cY  - dynamic flexibility i rod loaded in section x=l, derived in 

section x=0, 
i

dY  - dynamic flexibility i rod loaded in section x=0, derived in 
section x=l, i=1,2. 
 

We can also use a matrix method. Equation (37) presents 
sample derived partial dynamical flexibility of k element that can 
be used to substitute dynamic flexibility formula. 
 
 

4. Conclusions 
 

Analysis of dynamic behaviour of the multi-body rod system was 
done in this thesis. Equations of motion of analyzed system were 
presented.  

Dynamic flexibility substitute of the complex system 
compounded from rods in transportation was derived in this thesis. In 
the mathematical, model damping forces and Coriolis forces and 
centrifugal forces were taken into consideration. Rotational motion of 
the system and subsystems was treated in this thesis as transportation. 
Transportation was limited to plane motion.  

There were presented sample dynamic characteristics (Fig. 5 and 
Fig. 6) in form of dynamic flexibility as function of frequency and 
mathematical models in this article. Derived mathematical model can 
be put to use to support designing process and to stabilize the 
analysis.  

Characteristics were generated by Modyfit application 
(Modelling of dynamic flexible systems in transportation). 

 

2 co s co s

2 222 2 2 2 2
22 2 2 2 2 2 2- - - -4 2 - - 4

1 1 1 1 1

l xk kYk

k k k k k
A l a am k k m m k m k mk kk k k m m m m m

2

0

2 2 2 2 2
22 2 2 2 2 2 2 2 2 2- - 1- - - -4 2 - - 4

1 1 1 1 1

k k k k k
a a am m k k m m k m k mk k k

m m m m m m

2
2

1

2 22 2 2 2 2
22 2 2 2 2 2 2 2 2 2- - - -4 2 - - 4 - -

1 1 1 1 1

k

k

k

k k k k k
a a am k k m m k m mk k k

m m m m m

1
2 2

2

1

k
k m

m

 (37) 
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now displacements are searched as a sum of eigenfunction of 
displacement and eigenfunction of time. 
 
 
3.2. Orthogonalisation 
 
 After orthogonalisation of equations of motion we can 
obtain equations for example for k element:  

 

2 2

2 2
0 0

2

1 0

1 0

0

1 0

cos( ) cos( )

cos cos( )

2 cos( )

cos( )

sin cos( )

l l
kX k kX

k k
k

lk

m k k kX k
m

lk
kY

m k
m

l
kX

k k

lk

k m k k kY k
m

u E ux dx x dx
t x

l u x dx

u x dx
t

u x dx
t

l u x dx

 (34) 

and for second axis: 
 

2 2

2 2
0 0

2

1 0

1 0

0

1 0

cos( ) cos( )

sin cos( )

2 cos( )

cos( )

cos cos( )

k k

k

k

k

k

l l
kY k kY

k k
k

lk

m k k kY k
m

lk
kX

m k
m

l
kY

k k

lk

k m k k kX k
m

u E ux dx x dx
t x

l u x dx

u x dx
t

u x dx
t

l u x dx

 (35) 

 
3.3. Dynamic flexibility 
 
 There are few known methods of derivation of substitute 
dynamical flexibility of complex systems, for example making 
reference to Pasek [21] this dynamic flexibility can be written as: 

2 2 1 2 2 2

1 2 ,a b b b c d
z

b a

Y Y Y Y Y YY
Y Y

 (36) 

where: 
zY   - substituting dynamic flexibility , 

i
aY  - dynamic flexibility i rod loaded in section x=0, derived in 

section x=0, 
i

bY  - dynamic flexibility i rod loaded in section x=l, derived in 
section x=l, 

i
cY  - dynamic flexibility i rod loaded in section x=l, derived in 

section x=0, 
i

dY  - dynamic flexibility i rod loaded in section x=0, derived in 
section x=l, i=1,2. 
 

We can also use a matrix method. Equation (37) presents 
sample derived partial dynamical flexibility of k element that can 
be used to substitute dynamic flexibility formula. 
 
 

4. Conclusions 
 

Analysis of dynamic behaviour of the multi-body rod system was 
done in this thesis. Equations of motion of analyzed system were 
presented.  

Dynamic flexibility substitute of the complex system 
compounded from rods in transportation was derived in this thesis. In 
the mathematical, model damping forces and Coriolis forces and 
centrifugal forces were taken into consideration. Rotational motion of 
the system and subsystems was treated in this thesis as transportation. 
Transportation was limited to plane motion.  

There were presented sample dynamic characteristics (Fig. 5 and 
Fig. 6) in form of dynamic flexibility as function of frequency and 
mathematical models in this article. Derived mathematical model can 
be put to use to support designing process and to stabilize the 
analysis.  

Characteristics were generated by Modyfit application 
(Modelling of dynamic flexible systems in transportation). 
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4.	�Conclusions

3.3.	�Dynamic flexibility
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Fig. 5. Sample characteristic of absolute of substitute dynamic flexibility of the two-linked system 

 

 
 

Fig. 6. Sample characteristic of absolute of substitute dynamic flexibility of the two-linked rotating system with damping 
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