
type of heat and plastic treatment and geometrical dimensions of elements, mechanical properties, such as strength,  
 On the basis of such input parameteres, which are the chemical composition, 
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Abstract

Purpose: This paper presents the application of artificial neural networks for mechanical properties prediction 

Design/methodology/approach:

impact resistance or hardness are predicted.
Findings: Results obtained in the given ranges of input parameters show very good ability of constructed neural 
networks to predict described mechanical properties for steels after heat treatment. The uniform distribution of 
descriptive vectors in all, training, validation and testing sets, indicate about the good ability of the networks to 
results generalisation.
Practical implications: Created tool makes possible the easy modelling of described properties and allows the 
better selection of both chemical composition and the processing parameters of investigated materials.  At the 
same time the obtainment of steels, which are qualitatively better, cheaper and more optimised under customers 
needs is made possible.
Originality/value: The prediction possibility of the material mechanical properties is valuable for manufacturers 
and constructors. It allows preserving the  customers quality requirements and brings also measurable financial 
advantages.
Keywords: Artificial intelligence methods; Computational material science and mechanics; Artificial neural 
networks; Mechanical properties

 

 
1. Introduction 

 
From the beginnings of the computer usage in material 

engineering, effective simulating methods for prediction of 
engineer materials usable parameters were searched. Computer 
simulations became more effective and they started to assist in 
experiments or manufacturing. The prediction possibility of the 
material mechanical properties is valuable for manufacturers and 

constructors. It allows preserving the customers’ quality 
requirements. Prediction of mechanical properties brings also 
measurable financial advantages, because expensive and time-
consuming investigations are reduced to the indispensable 
minimum. Necessaries to execute are only to the investigations 

That is why, since many years’ investigative centres make 
intensive investigations over mathematical models developing 

1.	�Introduction

of structural steels after heat treatment.

made for verification of computed results [1-2].



Research paper38

Journal of Achievements in Materials and Manufacturing Engineering

L.A. Dobrzański, R. Honysz 

Volume 32 Issue 1 January 2009

 

methodology. Such models should enable the qualification of 
mechanical properties such as strength, impact resistance or 
hardness for numerous engineer materials (with various chemical 

modelling of such properties will make possible the better 
selection both chemical composition and the parameters of the 
material processing. It makes possible at the same time the 
obtainment of steels, which are qualitatively better, cheaper and 

The prediction of steels mechanical parameters after 
normalisation process is not an easy process at all. The 
determination of the chemical composition influence is 
particularly difficult, especially in the case of rolled sheet metal 
plates [8]. Because of the fact that there is no physical models 
allowing to connect the influence of the chemical compositions 
and the parameters of the mechanical and heat treatment on 
properties of manufactured steels, existing models are mainly 
based on the statistical analysis and have limited range of use. 
They are the most often prepared to describe one single steel 
species manufactured in equal conditions [7,16-18]. 

Application of artificial neural networks is considerably 
simplifies the modelling methodology. There is no need to posses 
the function of input and output parameters in evident form. If 
only such a function exists it will be established through the 
network during the training process and it will be written down as 
weights individual neurons. However it is important that this 
function exists and has the regular and unique character. 

In most cases the failure of neural network creation is caused 
by the lack of the assignment function (output parameters are 

independent from input parameters) or the function is strong 

 
 

2. Investigated material 
 

investigations. They are used in manufacturing of steel 
constructions and devices and machines elements of the typical 
destination.  

Structural steels are the most often species produced in polish 
metallurgy. They are delivered to the customer as semi-
manufactured articles or ready articles in the form of long, round 
or squared bars, or (rarely) as sections, sheet metals and pipes.  

Structural steels delivered as semi-manufactured articles are 
manufactured as normalised, they reach customers after the 
normalising rolling or without any thermal processing (directly 
after the hot rolling).  

As ready products steels are delivered after heat treatment, 
manufactured according to conditions required by a customer or 
polish standards. 

and alloy steel species were examined. Examples of those species 
are showed in table 1. 

Examined material was delivered in a form of round and 

 
Table. 1.  
Examples of steels selected for examination.  

Alloy steels 

purposes [22] toughening [23] devices [24] toughening [25] 
Spring 

steels [26] nitrogenising [27] carburetting [28] 

E295 C22 P235T2 17CrNiMo6 52CrMoV4 31CrMo12 16MnCr5 
E335 C30 P255G1 24CrMo4 45SiCrV6-2 31CrMoV9 16CrMo4-4 
E360 C45R P265GH 30CrNiMo8 51CrV4 33CrAlMo7-10 17Cr3 

S235J2G3 C60E P355N 36CrNiMo4 54SiCr6 34CrAlNi7 18NiCr5-4 
S275JR 20Mn5 P355NL1 41Cr4 55Cr3 40NiCr6 20MnCr5 

S355K2G2 28Mn6 P360N 50CrMo4 60Cr3 41CrAlMo7 20NiCrMo2-2 
 

Table. 2.  
Ranges of chemical elements, temperatures, times, kinds of cooling mediums for heat treatment and geometrical parameters of exa

range size shape Chemical composition [%] Mechanical 
treatment 

[mm]  C Mn Si P S Cr Ni Mo W V Ti Cu Al  
min 30 0.09 0.25 0.16 0 0 0 0 0 0 0 0 0 0 
max 220 

- round 
- square 0.60 1.57 1.20 0.3 0.28 2.20 2.08 1.10 0.12 0.26 0.15 0.35 1.02 

- rolling 
- forging 

Normalising 
range Temperature 

[°C] 
Time 
[min] 

Cooling 
medium 

min 180 30 

max  
-air 

 

 

McCulloch and Pitts worked out the scheme of the neuron in 

Input signals xi coming from external receptors (for the input 
layer) or from the previous neurons layer (for hidden layers and 
exit layer) are attached to the network inputs. Every signal is 

i, which is interpreted as 
weight of the given neuron, ascribed to the neuron. This value has 

weight can stimulate the neuron to operate, when its sign is 

. The value of this function is the output signal of the 

The diagram representing the structure of single neuron is 

 

 
 

Fig. 1. The model of artificial neuron by [11,12] 
 

Equation 1 describes the mathematical model, where m is a 
number of input signals of a single neuron 

 

m

i
ii xwy

1
 (1) 

 
The fundamental difference between artificial neural networks 

and other analytical algorithms, which realise the data processing 
is the ability to generalise the knowledge for new given data, 
which were unknown earlier and which were not presented during 
the training process.  

In distinction from expert systems, which require the 
permanent access to whole assembly of knowledge on the subject 
about which they will decide, artificial neural networks requiring 
only single access to this data set in the process of training.  

Neural networks reveal the tolerance on discontinuities, 
accidental disorders or lacks of data in the descriptive vectors. 
This allows to use the networks for problems, that cannot be 
solved by any other algorithm or their implementation will not 
give any satisfactory results [10,12,15]. 

A creation of a model with utilisation of artificial neural 
networks is indicated where the precise physical and 
mathematical description of the considered phenomenon is not 
known and where input and output values in descriptive vectors 
are well determined. however its entries and exit are well 
qualified. An artificial neural network is able to learn how to 
recognise the analysed problem and quickly give the answer on 
the changing input parameters of the given problem [18, 19]. 

 
 

4. Modelling methodology 
 
For property simulation of constructional steels, the data set, 

consisting of over 14200 vectors was used. This data describes 
structural steels produced in the „Batory” foundry in Chorzów, 
Poland [20] after casting, mechanical and heat treatment. The 
intelligent processing of data was applied with the use of artificial 
neural networks for prediction of mechanical properties of steel 
materials. For every studied mechanical property the separate 
neural net was created.  

Predicted mechanical parameters were: [1-3,7,13,14,16] 
yield stress Re, 
strength stress Rm, 
relative elongation A5, 
relative contraction Z,  
impact resistance KV, 
Brinell hardness HB. 
Input values, which are used for parameter prediction are: 
chemical composition,  
type of mechanical treatment, 
heat treatment type and parameters (temperature, time and 
cooling medium), 
element shape and size. 
The ranges of chemical elements, temperatures, times, kinds 

of cooling mediums for hardening, tempering, and normalisation 
processes and geometrical parameters are presented in Table 1. 

The set of all descriptive vectors was divided into three 
subsets in the relation 2-1-1. The first set contains the half of all 
vectors and was used for the modification of the neuron weights 
(training set). One fourth of the vectors was used for valuation of 
prediction errors by training process (validation set). Remaining 
vectors were used for the independent determination of prediction 
correctness ,when the training process is finished.  

Networks were trained with use of the back propagation and 
conjugate gradient methods. [10,12,15] 

For the verification of networks usability for the aims of 
parameters prediction the following parameters of the quality 
valuation were used: 

average absolute error – difference between measured and 
predicted output values of the output variable, 
standard deviation ratio – a measure of the dispersion of the 
numbers from their expected (mean) value. It is the most 
common measure of statistical dispersion, measuring how 
widely  the values in a data set are spread, 
Pearson correlation – the standard Pearson-R correlation 
coefficient between measured and predicted output values of 
the output variable. 

2.	�Investigated material

Non-alloy steels 

Structural    non-alloy   and   alloy   steels   were   chosen   for 

mined steels. 

Steels for Steels for pressure Steels for Steels for Steels for Steel for general 

Mechanical properties of over 125 various structural non-alloy 

processing parameters. Ranges of chemical elements, temperatures,
duration   times,   kinds   of   cooling   mediums   for   normalisation
treatment and geometrical parameters of manufactured elements
are presented in table 2. 

composition and after heat and plastic treatment conducted with
various  parameters).  Suitable  tool,  which  allows  the  easy

more optimised under customers needs [3-7]. 

square rods. Steels were manufactured as normalised with various

980 480 

deformed by the noise, presented in descriptive vectors [9-12]. 



how widely the values in a data set are spread, 
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methodology. Such models should enable the qualification of 
mechanical properties such as strength, impact resistance or 
hardness for numerous engineer materials (with various chemical 
composition and after conducted mechanical and heat treatment 
with various parameters). Suitable tool, which allows the easy 
modelling of such properties will make possible the better 
selection both chemical composition and the parameters of the 
material processing. It makes possible at the same time the 
obtainment of steels, which are qualitatively better, cheaper and 
more optimised under customers needs [3,6,7]. 

The prediction of steels mechanical parameters after 
normalisation process is not an easy process at all. The 
determination of the chemical composition influence is 
particularly difficult, especially in the case of rolled sheet metal 
plates [8]. Because of the fact that there is no physical models 
allowing to connect the influence of the chemical compositions 
and the parameters of the mechanical and heat treatment on 
properties of manufactured steels, existing models are mainly 
based on the statistical analysis and have limited range of use. 
They are the most often prepared to describe one single steel 
species manufactured in equal conditions [7,16-18]. 

Application of artificial neural networks is considerably 
simplifies the modelling methodology. There is no need to posses 
the function of input and output parameters in evident form. If 
only such a function exists it will be established through the 
network during the training process and it will be written down as 
weights individual neurons. However it is important that this 
function exists and has the regular and unique character. 

In most cases the failure of neural network creation is caused 
by the lack of the assignment function (output parameters are 

independent from input parameters) or the function is strong 
deformed by the noise, presented in descriptive vectors [9,10,12]. 

 
 

2. Investigated material 
 

Structural carbon and alloy steels were chosen for 
investigations. They are used in manufacturing of steel 
constructions and devices and machines elements of the typical 
destination.  

Structural steels are the most often species produced in polish 
metallurgy. They are delivered to the customer as semi-
manufactured articles or ready articles in the form of long, round 
or squared bars, or (rarely) as sections, sheet metals and pipes.  

Structural steels delivered as semi-manufactured articles are 
manufactured as normalised, they reach customers after the 
normalising rolling or without any thermal processing (directly 
after the hot rolling).  

As ready products steels are delivered after heat treatment, 
manufactured according to conditions required by a customer or 
polish standards. 

Mechanical properties of over 125 various structural carbon 
and alloy steel species were examined. Examples of those species 
are showed in table 1. 

Examined material was delivered in a form of round and 
square. Steels were manufactured as hardened and tempered or 
normalised wish various processing parameters. Ranges of 
chemical elements, temperatures, times, kinds of cooling 
mediums for heat treatment and geometrical parameters are 
presented in table 2. 

 
Table. 1.  
Examples of steels selected for examination.  

Carbon steels Alloy steels 
steel to general 
purposes [22] 

Steels to 
toughening [23] 

Steels on pressure 
devices [24] 

Steels to 
toughening [25] 

Spring 
steels [26] 

Steels to 
nitrogenising [27] 

Steels to 
carburetting [28] 

E295 C22 P235T2 17CrNiMo6 52CrMoV4 31CrMo12 16MnCr5 
E335 C30 P255G1 24CrMo4 45SiCrV6-2 31CrMoV9 16CrMo4-4 
E360 C45R P265GH 30CrNiMo8 51CrV4 33CrAlMo7-10 17Cr3 

S235J2G3 C60E P355N 36CrNiMo4 54SiCr6 34CrAlNi7 18NiCr5-4 
S275JR 20Mn5 P355NL1 41Cr4 55Cr3 40NiCr6 20MnCr5 

S355K2G2 28Mn6 P360N 50CrMo4 60Cr3 41CrAlMo7 20NiCrMo2-2 
 

Table. 2.  
Ranges of chemical elements, temperatures, times, kinds of cooling mediums for heat treatment and geometrical parameters of exanimate steels . 

range size shape Chemical composition [%] Mechanical 
treatment 

[mm]  C Mn Si P S Cr Ni Mo W V Ti Cu Al  
min 30 0.09 0.25 0.16 0 0 0 0 0 0 0 0 0 0 
max 220 

- round 
- square 0.60 1.57 1.20 0.3 0.28 2.20 2.08 1.10 0.12 0.26 0.15 0.35 1.02 

- rolling 
- forging 

Hardening Tempering Normalising 
range Temperature 

[°C] 
Time 
[min] 

Cooling 
medium 

Temperature 
[°C] 

Time 
[min] 

Cooling 
medium 

Temperature 
[°C] 

Time 
[min] 

Cooling 
medium 

min 760 30 550 45 180 30 

max 980 360 

- oil 
- polymer 
- water 740 480 

- air 
- oil 
- water 800 480 

-air 

 

3. Artificial neural networks 
 

The name “artificial neural networks” describes the 
hardware or software simulators, which are realizing 
semiparallel data processing. They are built from many mutually 
joined neurons and they imitate the work of biological brain 
structures [15].  

McCulloch and Pitts worked out the scheme of the neuron in 
1943 and it was created as a building imitation of the biological 
nervous cell [11,12]. 

Input signals xi coming from external receptors (for the input 
layer) or from the previous neurons layer (for hidden layers and 
exit layer) are attached to the network inputs. Every signal is 
multiplicated by numerical value wi, which is interpreted as 
weight of the given neuron, ascribed to the neuron. This value has 
the influence in creation of the output value. The value of the 
weight can stimulate the neuron to operate, when its sign is 
positive, or can also hold on the neuron inactive , when the sign is 
negative. The sum of entrance signals multiplied through 
appropriate weights is the argument of the neuron’s activation 
function . The value of this function is the output signal of the 
neuron y and is propagated to the neurons of the next layer or on 
the output of the network (for the neurons of the output layer). 

The diagram representing the structure of single neuron is 
presented in Figure 1.  

 

 
 

Fig. 1. The model of artificial neuron by [11,12] 
 

Equation 1 describes the mathematical model, where m is a 
number of input signals of a single neuron 

 

m

i
ii xwy

1
 (1) 

 
The fundamental difference between artificial neural networks 

is the ability to generalise the knowledge for new given data, 
which were unknown earlier and which were not presented during 
the training process.  

In distinction from expert systems, which require the 
permanent access to whole assembly of knowledge on the subject 
about which they will decide, artificial neural networks requiring 
only single access to this data set in the process of training.  

Neural networks reveal the tolerance on discontinuities, 
accidental disorders or lacks of data in the descriptive vectors. 
This allows to use the networks for problems, that cannot be 
solved by any other algorithm or their implementation will not 
give any satisfactory results [10,12,15]. 

A creation of a model with utilisation of artificial neural 
networks is indicated where the precise physical and 
mathematical description of the considered phenomenon is not 
known and where input and output values in descriptive vectors 

qualified. An artificial neural network is able to learn how to 
recognise the analysed problem and quickly give the answer on 
the changing input parameters of the given problem [18, 19]. 

 
 

4. Modelling methodology 
 

s used. This data describes 
structural steels produced in the „Batory” foundry in Chorzów, 
Poland [20] after casting, mechanical and heat treatment. The 
intelligent processing of data was applied with the use of artificial 
neural networks for prediction of mechanical properties of steel 
materials. For every studied mechanical property the separate 

Predicted mechanical parameters were: [1-3,7,13,14,16] 
yield stress Re, 

m, 
relative elongation A5, 

Brinell hardness HB. 
Input values, which are used for parameter prediction are: 
chemical composition,  

element shape and size. 
The ranges of chemical elements, temperatures, times, kinds 

The set of all descriptive vectors was divided into three 
subsets in the relation 2-1-1. The first set contains the half of all 
vectors and was used for the modification of the neuron weights 

prediction errors by training process (validation set). Remaining 
vectors were used for the independent determination of prediction 

Networks were trained with use of the back propagation and 
conjugate gradient methods. [10,12,15] 

For the verification of networks usability for the aims of 
parameters prediction the following parameters of the quality 
valuation were used: 

average absolute error – difference between measured and 
predicted output values of the output variable, 
standard deviation ratio – a measure of the dispersion of the 

Pearson correlation – the standard Pearson-R correlation 
coefficient between measured and predicted output values of 
the output variable. 

3.	�Artificial neural networks

4.	�Modelling methodology

relative area reduction Z,  

consisting of over 14212 vectors wa

are well determined, however its entries and exit are well 

tensile strength R  

impact strength KV, 

of cooling mediums for normalisation processes and geometrical
parameters are presented in Table 2.

neural network was created.  

normalisation parameters (temperature, time and  cooling
medium), 

and other analytical algorithms, which are realizing the data processing 

For  property  simulation  of  structural  steels,  the  data  set, 

type of mechanical treatment, 

(training set). One fourth of the vectors were used for valuation of 

correctness, when the training process is finished (testing set).  

predicted  values from their expected (mean) value. It is the
most common measure of statistical dispersion, measuring 
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The kind of the problem was determined as the standard, in 
which every vector is independent from another vector. The 
assignment of vectors to training, validation or testing set was 
random. The search for the optimal network was restricted to 
architectures such as [6,9,10,18]: 

linear networks 
radial basis function network (RBF) 
generalized regression neural network (GRNN) 
multi-layer perceptron (MLP) 
All computations were made by the use of Statistica Neural 

Network by Statsoft, the most technologically advanced and best 
performing neural networks application on the market. It offers 
numerous selections of network types and training algorithms and 
is useful not only for neural network experts. [21]. 

 
 

5. Modelling results 
 
At the beginning only one multi-output network was trained 

for estimation of all parameters simultaneously, but the prediction 
quality was not satisfactory.  

In order to improve results, all vectors were divided on two 
sets: the first one containing all vectors, which describes steels 

That is why it was decided to create separate network for 
every parameter, whose value has to be predicted. The best results 
were obtained for the multi-layer perceptron architecture with one 
and two hidden layers. The types of the net for individual 

properties among with the numbers of used neurons and the 

For all trained networks the Pearson correlation coefficient 
has reached the value above 90% and comparatively low values of 

estimated properties. On special attention deserving two networks 
for yield stress (Re) and strength stress (Rm) prediction. 
Correlation coefficient values over 98% and standard deviation 
ratio lower then 0,2 indicates very good regression performance.  

For a graphical representation of networks quality 
comparative graphs among values predicted and measured of 

parameter the vectors distribution is comparable for all three 
subsets. It speaks for correctness of the prediction process. 
Significant differences in vectors distribution among groups 
would mark the possibility of excessive matching to training 
vectors, and the bad quality of the network. 

Trained neural networks made possible the analysis execution 
of the influence of the input parameters on predicted mechanical 
properties. In peculiarity the influence of alloying elements 
change on mechanical properties with no change of heat 
treatment. Then, the influence of heat treatment parameters 
change on mechanical properties with no modification to steel 
chemical composition was computed.  

To introduce the influence of chemical composition and 
processing parameters on estimated parameter surfaces graphs 
were prepared. It allows to show the analysis results in graphical 
style. Several of processed graphs are introduced as examples 
(Figs. 4-9). 

 
Table. 3. 

Training set Validation set Testing set 
Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 
Re 
Rm 
A5 
Z 

KV 
HB 

 

 
Table. 4. 

Training set Validation set Testing set 
Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 
 6.932 0.1978 0.9803 7.132 0.2005 0.9800 

Rm MLP 17:17-12-6:1 12.412 0.1871 0.9823 13.148 0.1938 0.9811 13.155 0.1855 0.9827 
A5 MLP 13:13-4-1:1 1.130 0.3064 0.9519 1.108 0.2993 0.9542 1.191 0.3116 0.9503 
Z MLP 15:15-9-1:1 1.343 0.2921 0.9563 1.385 0.3089 0.9519 1.474 0.3396 0.9410 

KV MLP 16:16-11-1:1 11.505 0.3344 0.9424 11.646 0.3664 0.9307 12.164 0.3849 0.9234 
HB MLP 8:8-5-1:1 4.884 0.2790 0.9604 4.730 0.2878 0.9579 5.841 0.3320 0.9441 

 

  

  

  
 
Fig. 2. comparative graph of a) yield stress Re, b) strength stress Rm, c) relative elongation A5, d) relative contraction Z, e) impact 
resistance KV, f) Brinell hardness HB, calculated with use of the neural net (testing set) and determined experimentally for steels after 
hardening and tempering processes 

5.	�Modelling results

Parameters of computed neural networks for steels after normalisation and forging processes

Parameters of computed neural networks for steels after normalisation and rolling processes

and  forged  steels  are  introduced 

after normalisation   and  forging  processes and the second -
containing  vectors  coming  from  normalised  and  rolled  steels.
Then,  another  two multi-output  networks  were  trained. Results
were better, but still not satisfactory.  

MLP 18:18-5-1:1 
MLP 18:18-4-1:1 
MLP 14:14-6-1:1 
MLP 16:16-10-1:1 
MLP 14:14-9-1:1 
MLP 11:11-5-1:1 

15.439 0.1911 0.9817        16.623 0.1918
17.077 0.1953 0.9807 15.139 0.1983
1.397 0.3451 0.9388 1.257 0.3822
1.984 0.2909 0.9567 1.926 0.3064

14.594 0.2884 0.9581 14.161 0.3100

 0.9814 18.146 0.1889 0.9820 
 0.9801 16.022 0.1940 0.9811 
 0.9242 1.324 0.3648 0.9313 
 0.9511 1.894 0.3021 0.9533 
 0.9553 14.624 0.3096 0.9513 
 0.9423 4.743 0.2965 0.9563 5.243 0.3209 0.9482 5.595 0.3367

Re MLP 17:17-9-3-1:1 6.433 0.1880 0.9826

Variable Network 
architecture 

Variable Network 
architecture 

parameters of the quality valuation for all three sets for normalised 
in the table 3. The parameters 

for steels after normalisation and rolling processes are in table 4. 

the standard deviation ratio. This is the very good representation of

testing set are shown on figures 2 and 3. For every estimated 
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The kind of the problem was determined as the standard, in 
which every vector is independent from another vector. The 
assignment of vectors to training, validation or testing set was 
random. The search for the optimal network was restricted to 
architectures such as [6,9,10,18]: 

linear networks 
radial basis function network (RBF) 
generalized regression neural network (GRNN) 
multi-layer perceptron (MLP) 
All computations were made by the use of Statistica Neural 

Network by Statsoft, the most technologically advanced and best 
performing neural networks application on the market. It offers 
numerous selections of network types and training algorithms and 
is useful not only for neural network experts. [21]. 

 
 

5. Modelling results 
 
At the beginning only one multi-output network was trained 

for estimation of all parameters simultaneously, but the prediction 
quality was not satisfactory.  

In order to improve results, all vectors were divided on two 
sets: the first one containing all vectors, which describes steels 
after hardening and tempering processes and the second -
containing vectors coming from normalised steels. Then, another 
two multi-output networks were trained. Results were better, but 
still not satisfactory.  

That is why it was decided to create separate network for 
every parameter, whose value has to be predicted. The best results 
were obtained for the multi-layer perceptron architecture with one 
and two hidden layers. The types of the net for individual 

properties among with the numbers of used neurons and the 
parameters of the quality valuation for all three sets for  hardened 
and tempered steels are introduced in the table 2. The parameters 
for steels after normalisation process are introduced in the table 3. 

For all trained networks the Pearson correlation coefficient 
has reached the value above 90% and comparatively low values of 
the standard deviation ratio. This very good representation of 
estimated properties. On special attention deserving two networks 
for yield stress (Re) and strength stress (Rm) prediction. 
Correlation coefficient values over 98% and standard deviation 
ratio lower then 0,2 indicates very good regression performance.  

For a graphical representation of networks quality 
comparative graphs among values predicted and measured of 
testing set are shown on pictures 2 and 3. For every estimated 
parameter the vectors distribution is comparable for all three 
subsets. It speaks for correctness of the prediction process. 
Significant differences in vectors distribution among groups 
would mark the possibility of excessive matching to training 
vectors, and the bad quality of the network. 

Trained neural networks made possible the analysis execution 
of the influence of the input parameters on predicted mechanical 
properties. In peculiarity the influence of alloying elements 
change on mechanical properties with no change of heat 
treatment. Then, the influence of heat treatment parameters 
change on mechanical properties with no modification to steel 
chemical composition was computed.  

To introduce the influence of chemical composition and 
processing parameters on estimated parameter surfaces graphs 
were prepared. It allows to show the analysis results in graphical 
style. Several of processed graphs are introduced as examples 
(Figs. 4-9). 

 
Table. 3. 
Parameters of computed neural networks for steels after hardening and tempering processes

Training set Validation set Testing set 

Variable Net architecture Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 
Re MLP 22:29-9-1:1 28.872 0.1991 0.9800 30.623 0.1999 0.9801 26.443 0.2011 0.9801 
Rm MLP 22:26-13-13:1 23.718 0.1969 0.9804 23.523 0.1983 0.9802 23.608 0.1996 0.9800 
A5 MLP 17:19-7-1:1 1.278 0.3636 0.9317 1.324 0.3477 0.9377 1.265 0.3674 0.9301 
Z MLP 22:26-13-10:1 1.572 0.3270 0.9452 1.677 0.3417 0.9401 1.704 0.3307 0.9442 

KV MLP 15:17-9-1:1 14.501 0.3613 0.9325 14.695 0.3831 0.9239 16.725 0.3571 0.9354 
HB MLP 15:19-8-1:1 8.297 0.2178 0.9760 8.461 0.2355 0.9721 9.425 0.2314 0.9730 

 

 
Table. 4. 
Parameters of computed neural networks for steels after normalisation processes

Training set Validation set Testing set 

Variable Net architecture Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correla-

tion 
Re MLP 17:17-9-5-1:1 6.433 0.1880 0.9826 6.932 0.1978 0.9803 7.132 0.2005 0.9800 
Rm MLP 17:17-12-6:1 12.412 0.1871 0.9823 13.148 0.1938 0.9811 13.155 0.1855 0.9827 
A5 MLP 13:13-4-1:1 1.130 0.3064 0.9519 1.108 0.2993 0.9542 1.191 0.3116 0.9503 
Z MLP 15:15-9-1:1 1.343 0.2921 0.9563 1.385 0.3089 0.9519 1.474 0.3396 0.9410 

KV MLP 16:16-11-1:1 11.505 0.3344 0.9424 11.646 0.3664 0.9307 12.164 0.3849 0.9234 
HB MLP 8:8-5-1:1 4.884 0.2790 0.9604 4.730 0.2878 0.9579 5.841 0.3320 0.9441 

 

  

  

  
 

e m 5, Fig. 2. C   omparative graph of a) yield stress R ,  c)  relative  elongation  A,  b) tensile strength R

after normalisation and forging processes 
strength KV, f) Brinell hardness HB, calculated with use of the neural network  s (testing set) and determined experimentally for steels
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Fig. 4. Influence of hardening and tempering temperatures on 
yield stress. (shape: round, diameter: 115mm, 0.42%C, 0.76%Mn, 
0.26%Si, 0.005%P, 0.009%S, 1.01%Cr, 0.17%Ni, 0.17%Mo, 
0%W, 0.006%V, 0%Ti, 0.16%Cu, 0%Al) 
 

 
 

Fig. 5. Influence of carbon and manganese concentration on 
strength stress,(shape: round, diameter: 45mm, normalising 
parameters: 550°C/240min/air, 0.31%C, 0.89%Mn, 0.32%Si, 
0.016%P, 0.005%S, 1.17%Cr, 1.05%Ni, 0.02%Mo, 0%W, 
0.001%V, 0%Ti, 0.05%Al) 

 
 

Fig. 6. Influence of sulphur and phosphorus concentration on relative 
elongation A5, (shape: square, size:160mm, hardening parameters: 
860°C/150min/water, tempering parameters: 150°C/180min/air, 
0.36%C, 0.56%Mn, 1.58%Cr, 1.15%Ni, 0.22%Si, 0.97%Cr, 
0.94%Ni, 0.17%Mo, 0.11%Cu) 
 

 
 

Fig. 7. Influence of nickel and chromium concentration on Brinell 
hardness, (Normalisation parameters: 760°C/240min/air, 0.21%C, 
0.021%S, 0.02%Mo, 0.03%Ti),  

Fig. 3...  C   omparative graph of a) yield stress R d) relative area reduction Z, e) impact e m 5, ,  c)  relative  elongation  A

after normalisation and rolling processes 

,  b) tensile strength R
strength KV, f) Brinell hardness HB, calculated with use of the neural network  s (testing set) and determined experimentally for steels
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Fig. 3. comparative graph of a) yield stress Re, b) strength stress Rm, c) relative elongation A5, d) relative contraction Z, e) impact 
resistance KV, f) Brinell hardness HB, calculated  with use of the neural net (testing set) and determined experimentally for steels after 
normalisation process 

 

 
 

yield stress. (shape: round, diam

 

 
 

Fig. 5. Influence of carbon and manganese concentration on 
strength stress,(shape: round, diameter: 45mm, normalising 

 
 

Fig. 6. Influence of sulphur and phosphorus concentration on relative 
5

 

 
 Fig. 7. Influence of nickel and chromium concentration on Brinell 

Fig. 4. Influence of normalisation   temperature   and   time   on 
eter: 135mm, 0.21%C, 0.74%Mn, 

0.34%Si, 0.003%P, 0.002%S,   0.88%Cr, 0.34%Ni, 0.27%Mo, 
elongation A ,(shape: square, size:220mm, normalisation parameters: 

0.12%Cu, 0,024%Al, rolling). 

parameters:  550°C/240min/air,  0.32%Si,  0.016%P,  0.005%S,
1.17%Cr, 1.05%Ni, 0.02%Mo, 0.001%V, 0.05%Al, forging). 

980°C/180min/air, 0.13%C, 0.46%Mn, 0.22%Si, 0.34%Cr, 0.14%Ni, 
0.52Mo, 0.23%V, 0.14%Cu, forging).

hardness, (normalisation parameters: 760°C/240min/air, 0.21%C, 
0.56%Mn, 0.009%P, 0.021%S, 0.02%Mo, 0.03%Ti, 0.0035 Al,
rolling).
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Fig. 8. Influence of tungsten and vanadium concentration on 

 

 
 

An example of neural nets, which are used to predict yield 
stress is presented on figure 10a. It is a four layer perceptron with 
17 input values, 11 neurons in first hidden layer, 3 neurons in 
second hidden layer and one output value. Figure 10b shows the 
neural network used to predict impact resistance. It is a three-
layer perceptron with 16 input values, 11 neurons in one hidden 
layer and one output value. 
 
a) 

 

b)

 
Fig. 10. Architectures of neural net used to predict mechanical 

 
 

6. Conclusions 
 

This paper introduces the property modelling methodology of 

were determined through the use of  

Results obtained from the given ranges of input data show the 

properties of normalised steels. The Pearson correlation 
coefficient over 90% and low deviation ratio inform about the 
correct execution of the training and obtained small differences in the 
relation between computed and experimentally measured values. The 
uniform distribution of vectors in every set indicates about the 
good ability of the networks to results generalisation.  

neural networks usage as the simulating tool possible for the 
application in the area of material engineering for the prediction of 
mechanical properties. Applied with success for normalised 

different steel grades or even for the different types of engineer 
materials. 

The virtual samples of normalised steels, created with the use 
of described networks will be an immense aid in the Materials 
Science Virtual Laboratory for constructors and also for students, 
whose will experience this group of engineers materials [4,5]. 

6.	�Conclusions
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Fig. 9. Influence  of   normalisation   temperature  and  time  on

relative     area     reduction    Z,  (shape:round.     diameter:35mm, 
normalisation parameters: 860°C/120min/air,  0.33%C,  0.91%Mn, 
0.33%Si,   0.017%P,   0.009%S,   0.1%Cr,   0.06%Ni,   0.02%Mo,

parameters a) yield stress, four-layer perceptron 17:17-9-3-1:1, 
b) impact resistance , three-layer perceptron 16:16-11-1:1. 

structural steels after normalisation process. Parameters, which 
 artificial neural networks, are

yield stress, tensile strength, relative elongation, relative area reduction,
impact strength and Brinell hardness. The input values for prediction

0%Ti,  0.12%Cu, 0.02%Al, rolling) 

impact resistance KV, (shape:square, size:160mm, 0.15%C, 0.56%Mn,
0.21%Si,  0.45%Cr,  0.08Ni,  0.52%Mo,  0.001%Ti,  0.027%Al,
forging). 

process were chemical  composition, type and parameters of heat and
plastic treatment and element shape and size. 

Peculiarity, on special attention deserves small differences among 
training and testing sets. A large divergence among these sets in the
practice makes the network useless. 

Received results also have confirmed the correctness of the artificial 

structural steels it gives the chance on the effective application for   

very good ability of artificial neural networks to predict mechanical
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Fig. 8. Influence of tungsten and vanadium concentration on 
relative contraction Z, (shape: round, diameter: 40mm, hardening 
parameters: 880°C/30min/oil, tempering parameters: 
230°C/30min/air, 0.44%C, 0.6%Mn, 0.24%Si, 0.01%P, 0%S, 
0.92%Cr, 1.37%Ni, 0.23%Mo, 0%Ti, 0.19%Cu, 0.05%Al) 
 

 
 

Fig. 9. Influence of tempering temperature and time on impact 
resistance KV, ,(shape: square, size:195mm, hardening 
parameters: 860°C/180min/water, 0.35%C, 0.56%Mn, 1.58%Cr, 
1.15%Ni, 0.22%Mo, 0%W, 0.001%V, 0.11%Cu, 0.035%Al) 

An example of neural nets, which are used to predict yield 
stress is presented on figure 10a. It is a four layer perceptron with 
17 input values, 11 neurons in first hidden layer, 3 neurons in 
second hidden layer and one output value. Figure 10b shows the 
neural network used to predict impact resistance. It is a three-
layer perceptron with 16 input values, 11 neurons in one hidden 
layer and one output value. 
 
a) 

 

b)

 
Fig. 10. Architectures of neural net used to predict mechanical 
parameters a) yield stress, four-layer perceptron 17-9-3-1, 
b) impact resistance , three-layer perceptron 16-11-1 
 
 

6. Conclusions 
 

This paper introduces the property modelling methodology of 
constructional steels after normalisation process. Such parameters 
were determined through the use of artificial neural networks, how 
yield stress, strength stress, relative elongation, relative contraction, 
impact resistance and Brinell hardness. The input values for 
prediction process were chemical composition, type and parameters 
of mechanical and heat treatment and element shape and size. 

Results obtained from the given ranges of input data show the 
very good ability of the nets to predict described mechanical 
properties of normalised steels. The Pearson correlation 
coefficient over 90% and low deviation ratio inform about the 
correct execution of the training and obtained small differences in the 
relation between computed and experimentally measured values. The 
uniform distribution of vectors in every set indicates about the 
good ability of the networks to results generalisation.  

Peculiarity deserves small differences among training and 
testing sets. A large divergence among these sets in the practice 
makes the network useless. 

Received results also have confirmed the rightness of the artificial 
neural networks usage as the simulating tool possible for the 
application in the area of material engineering for the prediction of 
mechanical properties. Applied with success for normalised 
constructional steels it gives the chance on the effective use for 
different steel grades or even for the different types of engineer 
materials. 

The virtual samples of normalised steels, created with the use 
of described networks will be an immense aid in the Materials 
Science Virtual Laboratory for constructors and also for students, 
whose will experience this group of engineers materials [4,5]. 
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