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Abstract
Purpose: of this paper is to compare the transients of characteristics obtained by the approximate method 
and exact one and to answer to the question – if the method can be used to nominate the characteristics of 
mechatronic systems.
Design/methodology/approach: was to nominate the relevance or irrelevance between the characteristics 
obtained by considered methods – especially concerning the relevance of the pole values of characteristics. The 
main subject of the research is the continuous torsionally vibrating bar considered as a mechanical subsystem 
of the mechatronic system.
Findings: this approach is fact, that approximate solutions fulfill all conditions for vibrating bars and some 
conditions only, particularly for flexibly vibrating beams.
Research limitations/implications: is that linear continuous torsionally vibrating bar is considered.
Practical implications: of this study is the main point is the analysis and the examination of torsionaly vibrating 
continuous mechatronic systems which characteristics can be nominated with similar methods only.
Originality/value: of this approach relies on the comparison of the compatibility of the characteristics of the 
mechatronic and mechanical systems with demanded accuracy, nominated with similar method.
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1. Introduction 

 
The problems (other diverse problems have been modeled by 

different kind of graphs next they were examined and analyzed in 
e.g. wider and Wszo ek [15] of modelling, synthesis and analysis 
of a continuous bar system and selected class of discrete 
mechanical systems concerning the frequency spectrum has been 
made in the Gliwice research Centre in e.g.(Buchacz, Dymarek 
and Dzitkowski,) [1,2,6]. In the paper (Buchacz) [3] the 
continuous-discrete mechatronic system, were considered. To 
obtain the frequency -modal characteristics the approximate 
method of analysis called Galerkin’s method has been used. In 

(Buchacz) [4] the exact method and Galerkin’s method were 
used to comparison of obtaining dynamical characteristics – 
dynamical flexibilities only for mechanical subsystem as a part 
of complex mechatronic system (the problems concerned of 
piezoelectricity and electrostriction were presented for example 
in: (Callahan and Baruh, Friend and Stutts, Heimann et al., 
Heyliger and Ramirez, Ji-Huan He, Lu et al., Soluch, Song et 
al,) [5,7,8,9,10,12,14,16]. In this paper frequency analysis and 
frequency – modal analysis have been presented for the 
mechanical part of mechatronic system. In this aim three 
methods of analysis have been used - the exact method and two 
approximate methods.  

1.	�Introduction
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2. Torsionally vibration shaft as the 
excitated continuous system 
 
 
2.1. The dynamical flexibility of the shaft - 
solution with the exact method  
 

The shaft with the constant cross section, clamped on left end 
and free on the right one is considered in Figure 1.  
 

 
 

Fig. 1. Torsionally vibration shaft with excitation 
 
The equation of motion of the shaft (Figure 1) takes form  
 

,xx ,ttc J
, (1) 

where: ),( tx - angle of torsion at the time moment t of the lining 
shaft section within the distance x from the beginning of the 

system, J the shaft inertia moment l
GIc 0

- torsional rigidity of 
the shaft, G - a transverse modulus - mass density of material 

of the shaft, 0I -polar inertia moment of the shaft cross section,  
l- length of the shaft.  
 
The boundary conditions on the shaft ends are following  
 

0

0 when 0
 

cos when ,x

x ,
c M t x l.

 (2) 

 Angle of torsion ),( tx  is the harmonic function because the 
excitation is harmonic one, that means  

txXtx cos)(, . (3) 
Substituting expression (3) to (1) is obtained   

2( ) ( ) 0"c X x J X x
. (4) 

Afterwards it searches the general solution of expression (4) in 
form 

( ) cos sinX x A x B x . (5) 
where: A and B are any real constants and  

c
Il

. (6) 
The solution (5) fulfills the boundary conditions (2) for: 

00 MA , B
c cos l

, (7) 
In the way the angle of torsion of the shaft takes form:  
 

0
sin( ) cos

cos
xx,t M t

c l . (8) 
On the base of (8) the dynamical characteristic - dynamical 

flexibility xlY  equals  
sin

cosxl
xY

c l . (9) 
To enable the further analysis of the gained process, the 

absolute value of dynamical flexibility (9) is considered on the 
right end of the shaft; that means dependence (9), when x=l. will 
be given as:  

l
c

Yll tg1

. (10) 
The transient of expression (10) is shown in Figure 2. In the 

next figures the transient will be signed by different line and 
colour.  
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Fig. 2. The plot of dynamical flexibility of torsionally vibration 
continuous system 
 
2.2. The dynamical flexibility of the considered 
system - solution with the approximate 
method 
 

It has to be considered that if the shaft is under the action of 
moment with continuous factorization threw the shaft length with 

the value ( )sinM x t  on the length unit – then the equation of 
motion of the element with length dx lining in the point x is:  

2 2

2 2d d ( )d sinJ x c x M x x t
t x  (11) 

The translocation ),( tx is a harmonic function, that it is 
considered to be:  

( )sinx,t X x t , (12) 
where X(x) depends only on x.  
Putting (12) to (11) the following equation is given: 

2
2

2 ( )XJ X c M x
x

. (13) 

Presuming that M(x) can be showed as a series of infinite own 

functions ( )n x , which are defined with the dependence  

2.1.	�The dynamical flexibility of the 
shaft - solution with the exact 
method

2.	�Torsionally vibration shaft 
as the excitated continuous 
system

2.2.	�The dynamical flexibility of the 
considered system - solution 
with the approximate method
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2 1
( ) sin

2n

n x
x

l , (14) 
that is: 
 

1

( ) ( )n n
n

M x P x
. (15) 

The equation (13) can be solved if:  
 

1

( )n n
n

X p x
. (16) 

Taking into consideration the fact that ( )n x fulfills the equation 

of motion of the shaft, when n , then:  
 

2
2

2 0n
n nc J

x , (17) 
and 

2
2

2
1

( )n n n
n

Xc J p x
x

. (18) 

Next putting the obtained expressions X, 

2

2
d X
dt and M(x) to (13) 

the equality is given:  
 

2 2
n n nJ p P

, (19) 

therefore, if nP factors of any excitation are known in (19), than 
the translocation of the shaft can be nominated.  
 

Taking into consideration that it is acceptable to use series [5], 
the factors can be estimated as follows (16). Multiplying the 

dependence (15) with ( )s x and integrating in the limits <0,l>, it 
is given:  
 

10 0

( ) ( ) ( ) ( )
l l

s n s
n

M x x dx x x dx
. (20) 

 
When now n s , then:  

0 0

0

( ) ( ) sin 2 1 sin 2 1
2 2

1 cos cos 1 0
2

l l

n s

l

x x dx n x s x dx
l l

n s x n s x dx .
l l

 (21) 
 
However if n s , then  

2

0 0

0

( ) ( ) sin 2 1
2

1 11 cos 2 1
2 2

l l

n s

l

x x dx s x dx
l

s x dx .
l

 (22) 

after putting to the equation (20) and after transforming the factor 
can be appointed:  
 

0

2 ( ) ( )
l

s sP M x x dx
l

. (23) 
 

In order to (23) the factors sP can be determined (in order to 
the general distortion factorization). To determine the dynamic 

flexibility xyY
- the factors which are compatible to concentrate 

loading 0sinM t - which works in point y have to be found. The 
loading can be considered as a limit of concentrate loading threw 
the length- as follows:  
 

when  
( )

0 in other section, 

M y h x y,
hM x

 (24) 
 
and therefore 

0

2 2lim ( ( )
y

s s sh
y h

MP x )dx M y
l h l

. (25) 
 
After putting the formula (25) into formula(19) equation (16) is 
given as:  
 

02 2
1

( ) ( )2 n n

nn

x yX M
Jl

. (26) 
 
On the base (26)  the dynamic flexibility of the shaft is:  
 

2 2
1

( ) ( )2 n n
xy

nn

x yY
Jl

. (27) 
 

In order to provide the flexibility results of equalization which 
has been determined by presented method with the dependence on 
the flexibility, which has been determined by exact method – still 
on the figures the module transients of these quantities were 
presented in form  
 

( )
2 2

1 1

( ) ( )2n n n
xy xy

nn n

x yY Y
Jl

. (28) 
 

The dynamical flexibility for the first vibration mode at the 
end of the shaft, i.e. when x=l and y=l takes the following form  
 

(1)
2

2

2 1

2

llY
Jl G

l . (29) 
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 The plot of expression (29) is shown in Figure3. In Figure 3 
and in other figures the transients of flexibility for exact solution 
(10) are signed by thin line.  
 

n=1

0.000000
0.000001
0.000002
0.000003
0.000004
0.000005
0.000006
0.000007
0.000008
0.000009
0.000010

10
0

16
00

31
00

46
00

60
00

75
00

90
00

10
50

0

12
00

0

13
50

0

15
00

0

16
40

0

17
90

0

19
40

0

20
90

0

22
40

0

23
90

0

25
40

0

26
80

0

28
30

0
  [rad/s]

fle
xi

bi
lit

y 
|Y

ll
| [

1/
N

m
]

15 19
0

36
5

54
0

71
5

87
5

10
50

12
25

14
00

15
75

17
50

19
25

21
00

22
75

24
45

26
10

27
85

29
60

31
35

33
10

34
85

36
60

38
35

40
10

41
65

43
40

45
20

frequency f [Hz]

 
 
Fig. 3. The plot of dynamical characteristic for the first mode 
vibration 
 
 

For the second vibration mode, i.e. when n=2, the dynamical 
flexibility (28) takes the form of  
 

(2)
2

2

2 1
3
2

llY
Jl G

l . (30) 
 

The plot of expression (30) is shown in Figure 4. 
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Fig. 4. The plot of dynamical characteristic for the second mode 
vibration 

 
 
For the third vibration mode, i.e. when n=3, the characteristic 

(29) is given in shape  
 

(3)
2

2

2 1
5
2

llY
Jl G

l . (31) 

The plot of equation (31) is shown in Figure 5.  
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Fig. 5. The plot of dynamical characteristic for the third mode 
vibration 

 
 
In global case the dynamical flexibility at the end of the shaft 

gets shape of   
 

2

2
1 2

sin (2 1)
22

(2 1)
2

xl
n

n
Y

Jl G n
l

. (32) 
 

The plot of sum of n=1, 2, 3 for expression (32) is shown in 
Figure 6.  
 

n=1, 2, 3

0.000000
0.000001
0.000002
0.000003
0.000004
0.000005
0.000006
0.000007
0.000008
0.000009
0.000010

10
0

16
00

31
00

46
00

60
00

75
00

90
00

10
50

0

12
00

0

13
50

0

15
00

0

16
40

0

17
90

0

19
40

0

20
90

0

22
40

0

23
90

0

25
40

0

26
80

0

28
30

0

  [rad/s]

fle
xi

bi
lit

y 
|Y

ll
| [

1/
Nm

]

15 19
0

36
5

54
0

71
5

87
5

10
50

12
25

14
00

15
75

17
50

19
25

21
00

22
75

24
45

26
10

27
85

29
60

31
35

33
10

34
85

36
60

38
35

40
10

41
65

43
40

45
20

frequency f [Hz]

 
 

Fig. 6. The plot of the sum for n=1, 2, 3 mode vibration 
 
 
 
2.3. The dynamical flexibility of the 
mechanical system - solution with the 
Galerkin’s method 
 

As it known [2-4] in Galerkin’s method, the final solution is 
searched within the sum of own functions which will respond to 
the variables of the time and dislocation, which are strictly 
accepted and fulfill the boundary conditions, that means  

2.3.	�The dynamical flexibility of the 
mechanical system - solution 
with the Galerkin’s method
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(0 ) 0 (0) ( ) 0

( ) ( ),x x l

,t , X T t ,
c M , c X ' l T t M .

. (33) 
 

where: tMM cos0 .  
 

The angle of torsion - the solution of (1) is given in shape of  
 

1 1

( ) ( ) sin (2 1) cos
2k k

k k

x,t x,t A k x t
l

. (34) 
 

The solution of the differential equation (1) comes to fulfilling 
the appropriate derivatives of (34)  
 

2

2

2

sin (2 1) sin
2

sin (2 1) cos
2

(2 1) sin (2 1) cos
2 2

(2 1) sin (2 1) cos
2 2

k ,t

k ,tt

k ,x k

k ,xx k

A k x t
l

A k x t ,
l

A k k x t ,
l l

A k k x t.
l l  (35) 

 
Substituting the expression (34) to (1) is obtained 
 

.coscos
2

)12(sin

cos
2

)12(sin
2

)12(

0
2

2

tMtx
l

kJA

tx
l

k
l

kAc

k

k

 (36) 
 

After transformations, the amplitude value kA  of the vibrations 
takes form of  
 

2
2 (2 1)

2

o
k

MA
J c n

l  (37) 
 
Using the equation (36) and putting it to (34) the dynamical 
flexibility equals  
 

1
2

21

)(

2
)12(

2
)12(sin

kk

k
xl

l
kcJ

x
l

k
YY

xl

 (38) 
 

For sum k=1,2,3 the plot of expression (37) is shown in 
Figure 7.  

Comparing the plots in Figure 6 and 7 is shown that the poles 
of flexibilities have the same values. 
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Fig. 7. The plot of expression (&&) for  n=1, 2, 3 mode vibration 

 
 

3. Last remark 
 

On the base of the obtained formulas and plots, which were 
determined by the exact method and approximate methods, it is 
possible to make the analysis of the considered class vibrating 
mechanical and mechatronic systems using only approximate 
methods. In case of others of boundary conditions of mechanical 
or mechatronic systems and others kinds of their vibrations it is 
necessary to achieve offered researches in this paper. The 
problems shall be discussed in future research works.  
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