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ABSTRACT

Purpose: of this paper is to investigate the transients of characteristics of vibrating beams obtained by the
exact and approximate methods and to answer to the question — if the method can be used to nominate the
characteristics of mechatronic systems.

Design/methodology/approach: was to nominate the relevance or irrelevance between the characteristics
obtained by considered methods — especially concerning the relevance of the natural frequencies-poles of
characteristics of mechanical part of mechatronic system. The main subject of the research is the continuous
vibrating beam.

Findings: this approach is fact, that approximate solutions fulfill all conditions for vibrating beams and some
conditions only, particularly for vibrating beams as the subsystems of mechatronic systems.

Research limitations/implications: is that linear continuous flexibly vibrating beam is considered.

Practical implications: of this study is the main point is the analysis and the examination of flexibly vibrating
discrete-continuous mechatronic systems which characteristics can be nominated with approximate methods only.
Originality/value: of this approach relies on the comparison of the compatibility of the characteristics of the
mechatronic and mechanical systems with demanded accuracy, nominated with approximate method.
Keywords: Analysis and modeling; Applied Mechanics; Exact and approximate methods; Continuous system,
Vibrating beam

Reference to this paper should be given in the following way:
A. Buchacz, Investigation of flexibly vibrating subsystem of mechatronic system, Journal of Achievements in
Materials and Manufacturing Engineering 34/1 (2009) 55-62.

(e.9.[1,2,7]). The continuous-discrete torsionally vibrating
mechatronic systems® were considered in [3]. The approximate
method of analysis called Galerkin’s method has been used to

1. Introduction

In the Gliwice research Centre the problems of analysis of
vibrating beam systems, discrete and discrete-continuous
mechanical systems by means the structural numbers methods
modelled by the graphs, hypergraphs' has been made in

! Other diverse problems have been modeled by different kind of
graphs next they were examined and analyzed in (e.g.[15]). The
problems of synthesis of selected class of continuous, discrete-

© Copyright by International OCSCO World Press. All rights reserved. 2009

obtain the frequency-modal characteristics. To comparison of
obtaining dynamical characteristics — dynamical flexibilities only
for mechanical subsystem torsionally vibrating bar, as a part of

continuous and discrete mechanical systems concerning the
frequency spectrum has been made

The problems concerned of piezoelectricity and electrostriction
were presented for example in [6, 8-14].
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complex mechatronic system, exact method and Galerkin’s
method were used [5]. In this paper frequency analysis and
frequency — modal analysis have been presented for the
mechanical part of mechatronic system, that means flexibly
vibrating beam. In this aim three methods - the exact one and two
approximate ones of analysis - have been used.

2. Vibration beam as the
subsystem of mechatronic
system

2.1. Natural frequency analysis

The beam - as the subsystem of mechatronic system® (Fig. 1)
- with the constant cross section, clamped on left end and free on
the right one with harmonic force excitation in form
P(t) = P,sin ot is considered.

Fig. 1. Flexibly vibrating mechatronic system

The equation of motion of the beam only (Fig. 1) takes form
Ely(x't),xxxx + pAy(th)n =0 1 (1)

where: y(x,t) - deflection at the time moment t of the lining beam
section within the distance x from the beginning of the system, E -
Young modulus, p - mass density of material of the beam, 1 -

polar inertia moment of the beam cross section, A — area of the
beam cross section.

The boundary conditions on the beam ends are following
y(ovt) =0, Y,x(ovt) =0, Y xx (O,t) =0, EIY,xxx (Ovt) = _P(t)v (2)

where: |- length of the beam.

Own question (near homogeneous boundary conditions) for
beam is however following

XM (x) —k*X (x) =0, 3
X(0,t)=0,X'(0,t)=0, X "(1,t)=0, X "(I,t) =0. (4)

® The mechatronic system was considered in [4].
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The general solution of own functions has the form
X (x) = Asinkx + Bcoskx + Csinh kx + D cosh kx. (5)

After substitution of following derivatives of (5) into
boundary conditions (4) was received

X(0,t)=0,X'(0,t)=0, X "(1,t) =0, X "(I,t) = 0. (6)

Out of set (6) results, that

cosz:;l, z=KI. @)
cosh z

The solution of equation (7) the own values are

. ®)

Relationships between constants A, B, C, D are following

cosz, +coshz cosz, +coshz
W =At Co=-A, D =-A T (9)
sinz, —sinhz, sinz, —sinhz,
and therefore own functions have form
. Z,  c0sz,+coshz, z,
sin—x+—"——"cos—*X—
| sinz, —sinhz, I
X, =A cos7. +cosh ,n=123,... (10)
.7 z+ z z
—sinh—2 X ———"2——— " cosh-2 x
I sinz, —sinhz, |

2.2. The exact method
of determining of dynamical
flexibility

Deflection y(x,t) is the harmonic function because the
excitation is harmonic one, that means

y(x,t) = X(X)sinwt . (11)

Calculating suitable derivatives of (10) as well as substituting
into (2) the set of equations, after transformations, was obtained

B+D=0
A+C=0

— Asinkl — Bcoskl +Csinhkl + Dcosh kl =0 (12)
—AamH+BﬂnH+Ccth+D9mkh:;E

After transformations the set (10) is following

— (coskl +coshkl) —(sinkl +sinhkl) B —OP B
sinkl —sinhkl  —(coskl +coshkl)| |B| Elk03 N
=WA=F. (13)
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The main determinant of set of equations (13) equals

‘ ‘_—(coskl+coshkl) —(sinkl +sinhkl)|
| sinkl—sinhkl  —(coskl +coshkl)|
=2(1+cosklcoshkl) . 14)

To qualify constants A, B, C, D should count following
determinants

0 —(sinkl +sinhkl)

Wa=l=R _ (coski+ coshi)| ~
Elk

Py . .
sinkl +sinhKkl), 15
Elk3( ) (15)

—(coskl +coshkl) 0 P
_ _ 0
_ (sinkl +sinh ki) P, =5 (coskl +coshkl).  (16)

W, = -
Elk® k

On the base (12-16) the constants A, ... ,D are equal

W : .
A BUAE P03(5|nkl+smhkl) ' an
|W|  2EIk®(1+ coskl coshkl)
W,
B _p_IWel __ Rycoski +coshki) 1)

~ W] 2EIK*(L+ coskl coshkl)

Substituting expression (17) and (18) to (11) and taking into
account (10) deflection beam is

(sinkl + sinh kl)(sin kx + sinh kx)
2EIk®(1+ coskl coshkl)

y(X,t) = _|:

_ (coskl +coshkl)(sinkx +sinh kx)
" 2EIK3(L+coskl coshkl)

Pysinat . (19)

According to definition of dynamic flexibility, on the basis of
(18), it takes form

_ (sinkl +sinhkl)(sinkx+sinhkx) —(coskl +coshkl)(sinkx +sinhkx)

Y
2E1K*(1-+ coskl coshkl)

. (20)

The transient of expression (20) is shown in Fig. 2a and the
transient of absolute value of dynamic flexibility for x=I, that

means ay =|Y| is drawn in Fig. 2b.

2.3. The orthogonalization method

‘ Analysis and modelling

| I
where S,(t) = [ DX, 00dx, 7 = [ X2()dx=
Yoo 0

|

.2 cosz, +coshz zZ .7

=_|' Sin—tx+—"———"cos—2x+sinh—2Xx +
5 | sinz, —sinhz,

cosz, +coshz,
t—

sinz, —sinhz,
form (8).

2
z . .
coshl“xj dx, z, - are roots of equation (7) in

In result of ortogonalization of equation movement beam in
form (1) it was received

|
El [Y,xxxxn - Y,xxxrl1 + YXxn - yxn:|:) +El J.Y(Xlt)xrgl\/)dx+
0
|
+ij Yo X,dx=0. (22)
0

Taking into consideration the boundary conditions (2) and the
conditions of case of own function (10), it was received was

PW) R

pAY:  pAY;

S, + S, =— sinot. (23)

The solution of equation (23) is following

)

S (t)=—
o) pAY: ®

= sinat, (24)
)

Deflection of beam is equal

P& X, () . Ny,
xt)=—-"L% ——12 _sinot= ) Y, sinot. 25
y(x.t) pA§yg(w§-w2) > (25)

On the basis (25) the dynamic flexibility is given as

v %09

N (26)
PAYE(@? -~ @f)

2.4. Galerkin’s method of calculation
of the dynamical flexibility of
the beam

of determining of dynamical flexibility

The deflection y(x,t) is a harmonic function, that it is
considered to be:

Y60 = 38,0, (), @

Investigation of flexibly vibrating subsystem of mechatronic system

It has to be considered that if the shaft is under the action of
moment with continuous factorization threw the beam length with
the value F(x)sinot on the length unit — then the equation of

motion of the element with length dx lining in the point x is:

Ely,xxxxdx + PAyndX =F (X)Sin(Dth . (27)
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Fig. 2. The plot of dynamical flexibility of flexibly vibrating continuous system (a), transient of absolute value of dynamical flexibility (b)
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To determine the dynamic flexibility the factors, which are
compatible to concentrate loading Fsinwt , which works in point z
have to be found. The loading can be considered as a limit of
concentrate loading threw the length- as follows:

E \Wwhen z-h<x<z,
F(x)=<h (28)

0 in other section,

and the equation of excitated vibrations of beam can described as

Ely.x + PAYy = Py Sin ot , (29)
where: P, :% .

The defelection of beam - the solution of (29) by means
Galerkin’s method is given in shape of

y(x,t) =iyn(x,t) =Z‘o: A]sin[(Zn—l)ﬁx}sinmt. (30)

Substituting the following derivative of expression (30) to (29) is
obtained

4
EIAH[(Zk—l)E} sin{(Zk—l)istian

2l 2l
+ pAA, 0° sin[(zk -1 %x}sin ot =P,sinot . (31)

After transformations, the amplitude value A, of the
vibrations takes form of

R

-
pA—EI[(Zn—l)%}

A, = (32)

Using the equation (32) and putting it to (30) the dynamical
flexibility equals

sin[(Zn—l)%x}

Y= (33)

-
PAD? - EI[(Zn—l)%}

It simply notices if in expression (26) to substitute own
function, so as in Galerkin’s method, it is received (33).

The absolute value of dynamical flexibility for the first
vibration mode at the end of the beam, i.e. when x=I takes the
following form

1

EE——
Aw® —EIl =
e (mj

al == (34)

Investigation of flexibly vibrating subsystem of mechatronic system
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The plot of expression (34) is shown in Fig. 3.
For the second vibration mode, i.e. when n=2, the dynamical
flexibility (34) takes the form of

1

0!\((2) = |Y”(2)| = ﬁ .
PA®? —El (—”j

(35)

2l
The plot of expression (35) is shown in Fig. 4.

For the third vibration mode, i.e. when n=3, the characteristic
(34) is given in shape

1

Aw? — El ST |
P 2

af =)= (36)

The plot of equation (36) is shown in Fig. 5.
In global case the dynamical flexibility at the end of the beam
gets shape of

sin{(Zn —1)% x}

Yo = infn) :i

n=1 n=1

;. (37)
pAw? — EI {(Zn —1)%}

For sum k=1,2,3 the plot of value of dynamical flexibility
defined by expression (37) is shown in Fig. 6.

3. Last remark

On the base of the obtained formulas, which were
determined by the exact method and approximate methods, it is
possible to make the analysis of the considered class vibrating
mechatronic systems. Moreover the analysis of mechatronic
systems were the mechanical parts are vibrating beams it possible
using only approximate methods.

In case of others of boundary conditions of mechanical parts
of mechatronic systems that means the beam it is necessary to
achieve offered researches in this paper. In future research works
the problems shall be discussed.
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