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Abstract
Purpose: of this paper is to investigate the transients of characteristics of vibrating beams obtained by the 
exact and approximate methods and to answer to the question – if the method can be used to nominate the 
characteristics of mechatronic systems.
Design/methodology/approach: was to nominate the relevance or irrelevance between the characteristics 
obtained by considered methods – especially concerning the relevance of the natural frequencies-poles of 
characteristics of mechanical part of mechatronic system. The main subject of the research is the continuous 
vibrating beam.
Findings: this approach is fact, that approximate solutions fulfill all conditions for vibrating beams and some 
conditions only, particularly for vibrating beams as the subsystems of mechatronic systems.
Research limitations/implications: is that linear continuous flexibly vibrating beam is considered.
Practical implications: of this study is the main point is the analysis and the examination of flexibly vibrating 
discrete-continuous mechatronic systems which characteristics can be nominated with approximate methods only.
Originality/value: of this approach relies on the comparison of the compatibility of the characteristics of the 
mechatronic and mechanical systems with demanded accuracy, nominated with approximate method.
Keywords: Analysis and modeling; Applied Mechanics; Exact and approximate methods; Continuous system, 
Vibrating beam

Reference to this paper should be given in the following way: 
A. Buchacz, Investigation of flexibly vibrating subsystem of mechatronic system, Journal of Achievements in 
Materials and Manufacturing Engineering 34/1 (2009) 55-62. 

 

 
1. Introduction 

 
In the Gliwice research Centre the problems of analysis of 

vibrating beam systems, discrete and discrete-continuous 
mechanical systems by means the structural numbers methods 
modelled by the graphs, hypergraphs1 has been made in 

                                                           
1 Other diverse problems have been modeled by different kind of 

graphs next they were examined and analyzed in (e.g.[15]). The 
problems of synthesis of selected class of continuous, discrete- 

(e.g.[1,2,7]). The continuous-discrete torsionally vibrating 
mechatronic systems2 were considered in [3]. The approximate 
method of analysis called Galerkin’s method has been used to 
obtain the frequency-modal characteristics. To comparison of 
obtaining dynamical characteristics – dynamical flexibilities only 
for mechanical subsystem torsionally vibrating bar, as a part of 
                                                                                                 

continuous and discrete mechanical systems concerning the 
frequency spectrum has been made  

2 The problems concerned of piezoelectricity and electrostriction 
were presented for example in [6, 8-14].  
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complex mechatronic system, exact method and Galerkin’s 
method were used [5]. In this paper frequency analysis and 
frequency – modal analysis have been presented for the 
mechanical part of mechatronic system, that means flexibly 
vibrating beam. In this aim three methods - the exact one and two 
approximate ones of analysis - have been used. 
 
 

2. Vibration beam as the subsystem of 
mechatronic system  
 
2.1. Natural frequency analysis  
 

The beam - as the subsystem of mechatronic system3 (Fig. 1) 
- with the constant cross section, clamped on left end and free on 
the right one with harmonic force excitation in form 

0( ) sinP t P t is considered.  
 

 
 

Fig. 1. Flexibly vibrating mechatronic system 
 
The equation of motion of the beam only (Fig. 1) takes form  

 
, ,( , ) ( , ) 0xxxx ttEIy x t Ay x t , (1) 

 
where: ( , )y x t - deflection at the time moment t of the lining beam 
section within the distance x from the beginning of the system, E - 
Young modulus, - mass density of material of the beam, I -
polar inertia moment of the beam cross section, A – area of the 
beam cross section.  
 

The boundary conditions on the beam ends are following  
 

),(),0(,0),0(,0),0(,0),0( ,,, tPtEIytytyty xxxxxx  (2) 
 
where: l- length of the beam.  
 

Own question (near homogeneous boundary conditions) for 
beam is however following  
 

(IV) 4( ) ( ) 0,X x k X x  (3) 

.0),(,0),(,0),0(,0),0( ''''' tlXtlXtXtX  (4) 

                                                           
3 The mechatronic system was considered in [4].  

 The general solution of own functions has the form  
 

( ) sin cos sinh cosh .X x A kx B kx C kx D kx  (5) 
 
 After substitution of following derivatives of (5) into 
boundary conditions (4) was received  
 

.0),(,0),(,0),0(,0),0( ''''' tlXtlXtXtX  (6) 
 
 Out of set (6) results, that  
 

1cos ,
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z
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 .z kl   (7) 

 
 The solution of equation (7) the own values are  
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 Relationships between constants A, B, C, D are following  
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and therefore own functions have form  
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2.2. The exact method of determining 
of dynamical flexibility 
 

Deflection ( , )y x t  is the harmonic function because the 
excitation is harmonic one, that means  
 

( , ) ( )siny x t X x t . (11) 
 
 Calculating suitable derivatives of (10) as well as substituting 
into (2) the set of equations, after transformations, was obtained  
 

3
0sinhcoshsincos
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0
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 (12) 

 
 After transformations the set (10) is following  
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 The main determinant of set of equations (13) equals 
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To qualify constants A, B, C, D should count following 
determinants  
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 On the base (12-16) the constants A, … ,D are equal  
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 Substituting expression (17) and (18) to (11) and taking into 
account (10) deflection beam is   
 

3
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kl kl kx kxy x t
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tP
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According to definition of dynamic flexibility, on the basis of 
(18), it takes form  
 

3

(sin sinh )(sin sinh ) (cos cosh )(sin sinh )
2 (1 cos cosh )

kl kl kx kx kl kl kx kxY
EIk kl kl

. (20) 

 
 The transient of expression (20) is shown in Fig. 2a and the 
transient of absolute value of dynamic flexibility for x=l, that 
means YY  is drawn in Fig. 2b.  
 
2.3. The orthogonalization method 
of determining of dynamical flexibility  
 

The deflection y(x,t) is a harmonic function, that it is 
considered to be:  
 

1
( , ) ( ) ( ),n n

n
y x t S t X x  (21) 

where 2
0
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, nz - are roots of equation (7) in 

form (8). 
 
In result of ortogonalization of equation movement beam in 

form (1) it was received 
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Taking into consideration the boundary conditions (2) and the 

conditions of case of own function (10), it was received was 
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The solution of equation (23) is following  
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Deflection of beam is equal  
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On the basis (25) the dynamic flexibility is given as  
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2.4. Galerkin’s method of calculation of the 
dynamical flexibility of the beam 
 

It has to be considered that if the shaft is under the action of 
moment with continuous factorization threw the beam length with 
the value ( )sinF x t  on the length unit – then the equation of 
motion of the element with length dx lining in the point x is: 
 

, , ( )sinxxxx ttEIy dx Ay dx F x tdx . (27) 

2.1.	�Natural frequency analysis

2.	�Vibration beam as the 
subsystem of mechatronic 
system

2.2.	�The exact method 
of determining of dynamical 
flexibility

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


57

Analysis and modelling

Investigation of flexibly vibrating subsystem of mechatronic system 

complex mechatronic system, exact method and Galerkin’s 
method were used [5]. In this paper frequency analysis and 
frequency – modal analysis have been presented for the 
mechanical part of mechatronic system, that means flexibly 
vibrating beam. In this aim three methods - the exact one and two 
approximate ones of analysis - have been used. 
 
 

2. Vibration beam as the subsystem of 
mechatronic system  
 
2.1. Natural frequency analysis  
 

The beam - as the subsystem of mechatronic system3 (Fig. 1) 
- with the constant cross section, clamped on left end and free on 
the right one with harmonic force excitation in form 

0( ) sinP t P t is considered.  
 

 
 

Fig. 1. Flexibly vibrating mechatronic system 
 
The equation of motion of the beam only (Fig. 1) takes form  
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where: ( , )y x t - deflection at the time moment t of the lining beam 
section within the distance x from the beginning of the system, E - 
Young modulus, - mass density of material of the beam, I -
polar inertia moment of the beam cross section, A – area of the 
beam cross section.  
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According to definition of dynamic flexibility, on the basis of 
(18), it takes form  
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2.4. Galerkin’s method of calculation of the 
dynamical flexibility of the beam 
 

It has to be considered that if the shaft is under the action of 
moment with continuous factorization threw the beam length with 
the value ( )sinF x t  on the length unit – then the equation of 
motion of the element with length dx lining in the point x is: 
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a)  

 
b) 

 
 
Fig. 2. The plot of dynamical flexibility of flexibly vibrating continuous system (a), transient of absolute value of dynamical flexibility (b) 

 

To determine the dynamic flexibility the factors, which are 
compatible to concentrate loading sinF t , which works in point z 
have to be found. The loading can be considered as a limit of 
concentrate loading threw the length- as follows: 
 

when  
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and the equation of excitated vibrations of beam can described as  
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where: 
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The defelection of beam - the solution of (29) by means 

Galerkin’s method is given in shape of  
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Substituting the following derivative of expression (30) to (29) is 
obtained  
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After transformations, the amplitude value nA  of the 

vibrations takes form of  
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Using the equation (32) and putting it to (30) the dynamical 

flexibility equals  
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It simply notices if in expression (26) to substitute own 

function, so as in Galerkin’s method, it is received (33).  
The absolute value of dynamical flexibility for the first 

vibration mode at the end of the beam, i.e. when x=l takes the 
following form  
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l
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The plot of expression (34) is shown in Fig. 3.  
For the second vibration mode, i.e. when n=2, the dynamical 

flexibility (34) takes the form of  
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The plot of expression (35) is shown in Fig. 4. 
For the third vibration mode, i.e. when n=3, the characteristic 

(34) is given in shape  
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The plot of equation (36) is shown in Fig. 5. 
In global case the dynamical flexibility at the end of the beam 

gets shape of  
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For sum k=1,2,3 the plot of value of dynamical flexibility 

defined by expression (37) is shown in Fig. 6.  
 
 

3. Last remark 
 

On the base of the obtained formulas, which were 
determined by the exact method and approximate methods, it is 
possible to make the analysis of the considered class vibrating 
mechatronic systems. Moreover the analysis of mechatronic 
systems were the mechanical parts are vibrating beams it possible 
using only approximate methods.  

In case of others of boundary conditions of mechanical parts 
of mechatronic systems that means the beam it is necessary to 
achieve offered researches in this paper. In future research works 
the problems shall be discussed.  
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Fig. 2. The plot of dynamical flexibility of flexibly vibrating continuous system (a), transient of absolute value of dynamical flexibility (b) 
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Fig. 3. The plot of absolute value of dynamical flexibility for the first mode vibration 
 

 
 

Fig. 4. The plot of absolute value of dynamical flexibility for the second mode vibration 
 

 

 
 

Fig. 5. The plot of absolute value of dynamical flexibility for the third mode vibration 
 

 
 

Fig. 6. The plot of absolute value of dynamical flexibility of the sum for n=1, 2, 3 mode vibration 
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Fig. 3. The plot of absolute value of dynamical flexibility for the first mode vibration 
 

 
 

Fig. 4. The plot of absolute value of dynamical flexibility for the second mode vibration 
 

 

 
 

Fig. 5. The plot of absolute value of dynamical flexibility for the third mode vibration 
 

 
 

Fig. 6. The plot of absolute value of dynamical flexibility of the sum for n=1, 2, 3 mode vibration 
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