
© Copyright by International OCSCO World Press. All rights reserved. 2009

VOLUME 32

ISSUE 1

January

2009

Research paper 29

of Achievements in Materials
and Manufacturing Engineering
of Achievements in Materials
and Manufacturing Engineering

Longitudinal vibrations of mechanical 
systems with the transportation effect

A. Buchacz, S. Żółkiewski* 
Division of Mechatronics and Designing of Technical Systems,  
Institute of Engineering Processes Automation and Integrated Manufacturing System, 
Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
* �Corresponding author: E-mail address: slawomir.zolkiewski@polsl.pl

Received 11.09.2008; published in revised form 01.01.2009

Analysis and modelling

Abstract
Purpose: this thesis purpose is a new way of modelling systems working with high speeds of mechanisms. 
Systems are analyzed with taking into consideration the rotational movement and with criterions of using 
materials with high flexibility and high precision of work. The dynamical analysis was done with giving into 
consideration the interaction between working motion and local vibrations. During the motion a model is loaded 
by longitudinal forces.
Design/methodology/approach: equations of motion were derived by the Lagrange method, with generalized 
coordinates and generalized velocities assumed as orthogonal projections of individual quantities of the rod and 
manipulators to axes of the global reference frame.
Findings: the model of longitudinally vibrating systems in plane motion was derived, after that the model can 
be transformed to the dynamical flexibility of these systems. Derived equations are the beginning of analysis 
of complex systems, especially can be used in deducing of the substitute dynamical flexibility of multilinked 
systems in motion.
Research limitations/implications: mechanical systems vibrating longitudinally in terms of rotation were 
considered in this thesis. Successive problem of the dynamical analysis is the analysis of systems in spatial 
transportation and systems loaded by transversal forces.
Practical implications: effects of presented calculations can be applied into machines and mechanisms in 
transportation such as: high speed turbines, wind power plant, water-power plants, manipulators, aerodynamics 
issues, and in different rotors etc.
Originality/value: the contemporary analysis of beams and rods were made in a separate way, first working 
motion of the main system and next the local vibrations. A new way of modelling took into consideration the 
interaction between those two displacement. There was defined the transportation effect for models vibrating 
longitudinally in this paper.
Keywords: Applied mechanics; Longitudinal vibrations; Multibody systems; Transportation effect

 
 

 
1. Introduction 

 
Applications of the mechanical and mechatronic systems 

make known a tendency to optimization of parameters of work of 
machines and mechanisms. High performance of modern 
technical systems, mainly concerning maximal precision of work 

of mechanical systems and positioning of manipulators and robots 
and also high quality assurance and reliability, is the cause of 
optimization of models. Nowadays solutions assumed the 
discrepancy between main global motion and local amplitudes of 
vibrations. In this thesis we search we search the more precisely 
ways of modelling. Up to now very often is used the superposition 
method that is not as accurate as presented method because of not 

1.	�Introduction
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taking into consideration interactions between main motion and 
local motion as well. Considered models are the free rod vibrating 
longitudinally, the rod fixed in the origin of the global reference 
system and manipulators in transportation. Equations of motion 
include centrifugal forces and Coriolis forces connected with the 
transportation effect. Considered systems are into plane rotational 
motion. Acting force is a harmonic axial one with the amplitude 
of the force equals one, that is consistent to the definition of the 
dynamical flexibility. Force generates longitudinal vibrations. In 
literature, in many publications the problem of analyzing of 
systems moving with low speed or while they vibrate only locally 
is a well-known problem [7-15,18]. In our model we took into 
consideration issues have not considered up to now, such as the 
relations between local vibrations and main motion [1-6,16-18]. 
Transportation in this thesis is considered as main motion. 
Nowadays problems of controlling mechanical systems need to be 
considered much more adequate to actual phenomena than so far 
solutions. Up to now, final results had done by consider main 
motion and local vibrations separately. That simplification has 
essential sense because vibrations from flexibility of elements of 
the mechanical composition are much smaller than main 
dislocation of this composition. More efficient drives caused 
increased scope of velocities and accelerations. Nowadays terms 
of operation of machines are connected with constraint power 
output of drives needful for motion and using materials with 
lower mass density such as aluminums alloys, lower than mass 
density of materials using up to now. Those and many other 
arguments are a cause of searching new models of designing 
systems, that take into consideration the flexibility of 
mechanism’s elements.  
 
 

2. Modelling of longitudinal vibrations of 
mechanical systems in transportation 
 

There is considered models of the free rod and the rod that is 
fixed in the origin of the global reference system and systems with 
higher then one mobility such as two-linked manipulators. Elements 
of  analyzing systems are the homogenous rods made from an 
elastic materials with a full cross-section on whole length. 
 
 
2.1. The model of longitudinally vibrating and 
rotating rod fixed in the origin  
 

The modeled rod is in rotational transportation. Motion of the 
rod is all round the origin of the global reference system. The rod 
is fixed in the center of rotation (Fig.1). Force acting on the 
system is the longitudinal one. Systems in motion were described 
by one component of the instantaneous angular velocity vector 
with respect to the axis of the global inertial frame XY. 
Considered systems vibrate with taking into consideration 
deformation in transportation. Rod is the homogenous elastic 
element with a full cross-section A that is constant on the whole 
length of the rod l. Material of the rod has the longitudinal 
modulus of elasticity (the Young modulus) E and mass density . 
The initial conditions are known: preliminary deflection of the rod 

and initial velocity of vibrations. Transverse deformation of the 
rod caused by longitudinal vibrations is not considered based on 
the principle of plane cross-sections up to [12]. The solution is 
done in the global reference system, independent from the rod. 

 
 

2.2. The vibrating longitudinally free rod in 
transportation – simplified model 
 

The homogeneous flexible free rod is considered in this 
subchapter. The rod has a symmetrical section. Deriving of the 
dynamical model of the free rod vibrating with longitudinal 
vibrations and taking into consideration the transportation (Fig. 2) 
is the paper’s objective.  
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Fig. 1. The model of the rotating rod loaded by a longitudinal 
force 
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Fig. 2. The vibrating rod in terms of plane motion and loaded by a 
harmonic axial force 

 

2.3. The longitudinally vibrating two-linked 
manipulator 
 

In this subsection the two-link vibrating manipulator is 
considered. The manipulator is composted from rods with cross 
sections suitably A1 as the section of first rod and A2 as the section 
of second rod which are constant on the whole length of rods 
appropriately for first rod l01 and in second rod l12 (Fig. 3). 
Material of first rod has Young’s modulus E1 and material of 
second one E2 and similarly mass densities 1 for first one and 2 
and for second one. Rods were imposed by a harmonic 
longitudinal force. The solution was determined in global 
independent reference system in terms of plane motion. 
 

y

E1, A1(x)

x

Y

X

E2, A2(x)

x

y

Q  S

Q  S

Fsin

 
Fig. 3. The two-linked manipulator loaded by a longitudinal force 
in transportation 
 
 
2.4. The model of the longitudinally vibrating 
three-linked manipulator 
 

The tree-linked vibrating manipulator is considered. Rods 
from this system have cross sections constant on the whole length 
of rods (Fig. 4). Manipulator was loaded by a harmonic 
longitudinal force.  

The mathematical model was determined in global 
independent reference system in terms of plane motion. Rods 
from this manipulator have cross sections suitably A1 as the 
section of first link and A2 as the section of second link and A3 as 
the section of third link which are constant on the whole length of 
rods appropriately for first link l01 and in second link l12 and in 
third one l23 like in Figure 4. 

Rods were made from materials with Young’s modulus E1, E2 
and E3 and mass densities 1 and 2 and 3. The manipulator was 

loaded by a harmonic longitudinal force. The trend of increasing 
the motility of the mechanism is optional and can be increased up 
to the motility depends only on technical requirements.  
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Fig. 4. The three-linked manipulator loaded by a longitudinal 
force in transportation 
 
 
 

3. Mathematical model 
 

In this section the mathematical models of the analyzed 
systems were presented. A vector of linear displacement of the 
rod’s section along center line of the bar (u) in the local reference 
system (Fig. 1) can be expressed as: 
 

0 0 .Tuu  (1) 
 
Body mass of the rod that is made from material with mass 
density  and a volume V and a cross-section A: 
 

0

,
s

V

M dV Ads  (2) 

 
where: 
 

.dV A dx  (3) 
 
Vibrations of the rod were analyzed in places along the axis x of 
the local reference system (s), so a position vector in that system 
is as follow: 
 

0 0 .TsS  (4) 
 
Vibrations of the rod in planar transportation is analyzed. 
Generalized coordinates and generalized velocities were assumed 
as orthogonal projections of coordinates (rX, rY) and velocities of 
the rod to axes of the global reference frame: 

2.	�Modelling of longitudinal 
vibrations of mechanical 
systems in transportation

2.1.	�The model of longitudinally 
vibrating and rotating rod fixed in 
the origin

2.2.	�The vibrating longitudinally free 
rod in transportation – simplified 
model
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taking into consideration interactions between main motion and 
local motion as well. Considered models are the free rod vibrating 
longitudinally, the rod fixed in the origin of the global reference 
system and manipulators in transportation. Equations of motion 
include centrifugal forces and Coriolis forces connected with the 
transportation effect. Considered systems are into plane rotational 
motion. Acting force is a harmonic axial one with the amplitude 
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considered much more adequate to actual phenomena than so far 
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Fig. 1. The model of the rotating rod loaded by a longitudinal 
force 
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Fig. 2. The vibrating rod in terms of plane motion and loaded by a 
harmonic axial force 
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Fig. 3. The two-linked manipulator loaded by a longitudinal force 
in transportation 
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Fig. 4. The three-linked manipulator loaded by a longitudinal 
force in transportation 
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systems were presented. A vector of linear displacement of the 
rod’s section along center line of the bar (u) in the local reference 
system (Fig. 1) can be expressed as: 
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the local reference system (s), so a position vector in that system 
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Vibrations of the rod in planar transportation is analyzed. 
Generalized coordinates and generalized velocities were assumed 
as orthogonal projections of coordinates (rX, rY) and velocities of 
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1 2, ,X Yq r q r  (5) 

1 2
1 2, .X X Y Y

dq dq
q r v q r v

dt dt
 (6) 

 
The generalized forces acting in the system were defined as 
internal forces in the rod as follows: 
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where the Q11 and Q21 are the components of the rotation matrix 
in the global reference system, sX, sY, are projections of s onto 
global reference axes and N is an axial force. 
 
A position vector of the vibrating points in the global reference 
system are presented as follow: 
 

.X Yr rX Yr r r i j Q S u  (8) 
 
A linear velocity of the vibrating points in the global reference 
system: 
 

.
X Yv vX Yr v v v i j

Q S u Q u
 (9) 

 
An acceleration of the vibrating points in the global reference 
system is calculated from relationship (9) with taking into 
consideration the Coriolis acceleration and the normal 
acceleration and the tangential acceleration, so the following 
equation is obtained: 
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The rotation matrix is used to described the orientation of the rod 
with respect to the global reference frame and the matrix from the 
rotation round the Z axis of the global reference system is as 
follow: 
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the rotation matrix of second link with respect to global reference 
system: 
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3.1. Kinetic energy of the rod 
 

Kinetic energy based on the Koenig’s law is defined as a 
function of generalized coordinates and generalized velocities and 
can be written in the form: 
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where i, j are individual versors in the global reference system. 
 
 
3.2. Equations of motion of the rod 
 

The equations of motion of the rod were derived by using the 
classical methods and were presented as projections of individual 
values into axes of the global reference frame. The X axis of the 
global reference system projection is: 
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The Y axis of the global reference system projection is: 
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This system of equations can be put to use to derivation of the 

dynamical flexibility. 
 

 

3.3. Forms of vibrations of the fixed rod 
 

There are presented first three forms of vibrations for the rod 
fixed in the origin of the global reference frame (Fig. 5). The 
forms are consistent with a eigenfunction of displacement.  
 

 
 
Fig. 5. The juxtaposition of first three forms of vibrations for the 
rod fixed in the origin of the global reference system 
 
 

First form of vibrations was marked by a red line with only 
one node in place where the rod is fixed, the second one by a 
green line with two nodes and the third one by a blue line with 
three nodes. 
 
 
3.4. Forms of vibration of the free rod 
 

There are presented three forms of vibrations (Fig. 6) for the 
free rod loaded by harmonic longitudinal force. The figure does 
not contain first form for zero free vibration frequency that is 
a straight line. 
 

 
 
Fig. 6. The juxtaposition of three forms of vibrations for the free 
rod  
 

First form of vibrations was marked by a red line with only 
one node in the middle of the rod, the second form of vibrations 

by a green line with two nodes and the third form of vibrations by 
a blue line with three nodes. 
 
 
 
3.5. Equations of motion of the two-linked 
manipulator 
 

The system of equations (16) presents the mathematical 
model of the manipulator in form of the equations of motion, 
there are equations bounded with first rod and second rod. 
Equations are projected into axes of the global reference system 
and are not coupled each other. The X axis of the global reference 
system projection is as follow: 
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The projection into the Y axis of the global reference system: 
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3.6. Equations of motion of the three-linked 
manipulator 
 

The mathematical model of the three-linked manipulator in 
form of the equations of motion is presented as system of 
equations. The equations are not coupled each other and first 
equation into X and Y projection is appropriate to first link and 
analogically the rest. The projection into the X axis of the global 
reference system: 

3.1.	�Kinetic energy of the rod

3.2.	�Equations of motion of the rod
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The equations of motion of system vibrating longitudinally in 
transportation were presented in this thesis. Movements of systems 
are two-dimensional motions. The derived model is the starting 
point of further more complicated dynamical analysis of those type 
systems and it can be put to use for the derivation of dynamical 
flexibility of manipulator. The following thesis’s objectives will be 
the stability analysis and the derivation of attenuation-frequency 
characteristics.  

The rotation matrix was used to determine of orientation of the 
system in space. The main rotation matrix was the product of the 
component rotation matrices with respect to individual axes of the 
global reference frame. The obtained model has the easy way of 

algorithmization, so it can be used to creating the numerical 
computer application. 

The interactions between local displacements and transportation 
were emphasized. Occurrences of unbalanced forces lashed with 
transportation in the mathematical model were took into 
consideration. The Coriolis’ force and the centrifugal force were 
took into account. The forces components were projected into the 
appropriate axes of the global reference system. The mathematical 
calculations of numerical examples were done assumed that the 
material of rods was the aluminum alloy and the length of the beam 
equals one meter. Equations of motion were derived by the 
classical methods such as the Lagrange equations or d’Alembert’s 
method.  

The longitudinally vibrating systems in terms of two-
dimensional motion after derived the mathematical model in form 
of equations of motion can be put to use to derivation of the 
dynamical flexibility. We can also use those equations to 
deducing of the substitute dynamical flexibility of multi-body 
systems. Results of calculations after adopted and modified to 
appropriate models can be put to use into machines and 
mechanisms in transportation such as high speed turbines, rotors, 
wind power plant, manipulators and in aerodynamics issues, etc. 
Future problems of dynamical analysis such moving systems are 
the analysis of systems in non-planar transportation and systems 
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