September 17, 1945

Hecompany The broden construction co. cleveland. ohio
The vast mojority of strip pickling equipment users can't be wrong!
\checkmark That's why in selecting modern, efficient salilites to meet the rigid requirements of peal pickling, production engineers, after through investigation, have shown a preFence for Wean Pickling Equipment.
Gparience has proven that the use of Wean Padling Equipment results in increased probuction with lower pickling costs per ton.

ANOTHER PRODUCT OF AETNA-STANDARD

There's a lot being said these days about the role of lowRoy, high-strength steels in the industrial picture. Designers of Fomotive and railway equipment, especially, are thinking in Trs of these versatile steels, and when they think of such steels, oy think of Bethlehem's Mayari R.
Let Mayari R make your postwar product lighter . . . stronger longer-lasting. You can specify Mayari R with confidence, for thas been long and thoroughly tested, and has given a good riount of itself, both in the uses of peacetime, and in the timmer arls of war.
Among the many things about Maryari R which have made Sinds for it, from the front office to the shop, there's one that's mecially worth emphasizing. Where Mayari R is used with rightsaving in mind, in many cases its additional cost is ichly repaid in extra advantages-in ease of fabrication, in Feased pay-load, in greater stamina and resistance to atmosNatic corrosion.
Herewith, at right, are briefly given the chief points about Fari R. For fuller information, write for the illustrated Mayari Calalog. Address the nearest Bethlehem district office, or BethStan Steel Company, Bethlehem, Pa. No obligation, of course.
| Mayari R advantages at a glance

Yield point: 50,000 p.s.i.-almose double that of mild carbon steel.

Corrosion resistance: five to six times that of mild carbon steel; two to four times that of copper-bearing steel.

Strength plus corrosion resistance making possible weight savings up to 40 per cent.

Remarkable resistance to impact even at sub-zero temperatures.

Highly ductile, easily fabricated under regular shop practices.

Readily welded by usual methods. Non air-hardening. No heat treatment needed.

*Rhymes with "fiery." The "R" indicates "Rust Resisting."

New AIMCHance

Soaking Pit Crane in A.ction

MULTIPLERANGETONGS

By means of an ingenious locking pin, the tongs can be adjusted, in less than a minute, to any one of four positions: Position (1) takes care of ingots up to $10^{\prime \prime}$ $\times 22^{\prime \prime}$; position (2) $-18^{\prime \prime} \times 40^{\prime \prime}$; position (3) - $36^{\prime \prime}$ $\times 52^{\prime \prime}$; and position (4) $-48^{\prime \prime} \times 60^{\prime \prime}$. Maximum and minimum range can be made to suit any requirements.

HOLLOW, RECTANGULAR TELESCOPIC STIFF LEG

Telescopic•Self-Lubricating* Revolving • Flexibly Connected • Adjustable Range Tongs with Variable Intensity Grip.

FULL VIEW OPERATION

Write to Alliance, world's largest builders of the world's largest cranes, for profitable data on this new advancement in soaking pit cranes.

Paging Mr. Haagstad

㽖 This week in the mail comes a letter from the National Desertion Bureau, an organizalion new to us but apparently a philanthropic society which does a very fine job of contacting missing members of fumilics.

It seems there is a genticman they foel can be reached through these pages and allhongh we do not claim in any way to be an amaterir detective, we're glad to pass alng this notice and hope that we, too, are being philanthropic:
"Information is being sought of Ravmond Itaagstad, who has been missing since May, 1015 . IIe is $B \mathrm{ft}$., 1 in. tall, weighs 190 pouncts. has meldish blonde hair, green eyes and was a sted salesman by occupation. Anyone aware of his localion is rempested in mrmmunicate with the Nalinnal Dusertion Bureau, 07 West 47 th st., New York 19."

Fish Story

(This story doesn't exacily point a moral that there should be truth in advertising but it does show how much can sometimes be done will so litle.

It seems that the proprictor of a certain New York restaurant didn't have much moncy for advertising purposes, so he bought the biggest fish bowl he could find, filled it with water, and put it in the windlow with this sign: "Filled with invisible goldfish from Patagonia."

It took ten policemen to keep the crowd moving.

Secret Solution

T We've bored about cveryone we've seen the last couple of weeks with that puzzle about the house numbers and no one has even come close to the right answer, just as we didn't until the editors took pity on us. So, we, really were impresserl when L. B. Shapleigh of Bethlehem's Cincinnati office and L. P. Hughes of the Four Wheel Drive Auto Co.'s purchasing department crashed through with the right answer. The editor who told us said that it all came to him in a vision one moming when he woke up with a terrific hangover, so 'we don't know just what to think of our two ardent readers.

Exposed At Last

国 It's been ten long and arduous years now that we've hidden our light under a bushel. Or to be more honest, that we've escaped many a scathing remark by being that "fellow Shrdlu".

Now, if you are a funny-page fan and follow the trials and tribulations of Bamaby and OMalley, you know that the cat is out of the bag, and that we, Shrcllu, are not just a figment of a linotyper's imagination, but a real, honest-to-God flesh and blood (well, anyway paper and ink) character.

Crockett Johnson brought us to life in the form of
an impish little printer's devil with a couple of vestigial homs protruding slightly from a very low forehead, a lovely long spiked tail, and an extremely dendpan expression. And then, with the unkindest cut of all, he Jebrels us Slirdlu, Imperfectionist. C. Harold Lource, Ingalls Iron Works, picks it right in from there and says he always figured we must lonk like the deril, hut now he notes we even lave his tail. And at long last he discovers that our true mission in the printing world is to misspell all the words. Fiven our gombl friend Fil Claar of Eastern Clay Products is amazed at the conse reseniliance.
We filly intend to have a fow private words with Mr. Johnson to see who is gning in she whom, and well keep you informed on the procrectings. In lie ment time. we are calling the boss's allemion to the fact lint necording to the funny paners we are sumposed to go to work when the day shifi quits and lave as the nimpt shift starts up. We frel that we can stand all of these mean wisecracks for an eight minute day, whit no overtime.

Greek To Us

[] Fist to prove that Crockeft Jolinenn may he ridit in calling us the guy who is responsilite for all omissimas typagranhical errors, pied lines, switcherl cuptions, and misspelled names, we were inst this wrok put on the pan by II. G. Taylor. Mechanical Feneincering Depta, Diamond Chain and Manufacturing Con. for mot knowing the plaral of "opus" in the September 3 issue. No. Taylor says:

This word may be all Greck on you but it is just plain Latin to many of us including the Quiz Kits. Or perhaps you don't enjoy atlending the plural of "opus"!
We'll have to admit that most of the phirais of "Opuls" that we've been talked into allouding by the litle woman have been Greek to us. The plural, of course, is "Opera".

Good News

- If you've been like we have this summer, a game of golf has been a very infrequent affair. It's not that outs game is any lousier than usual (it couldn't be), nor that we couldn't have sneaked out a few of those prettier afternonns. The whole problem has been an utter dearth of those little white round pellets which hook and slice so easily.
But now, good news from the production front says that by late fall the new synthetic balls will be on the market and in peak production by next spring.
The new jobs are said to give about 95 per cent as much distance as the prewar ball, which mears roughly that those long screaming drives of ours will now be lucky to get to the end of the tee.

HIS Warner \& Swasey No. 10 Precision Tapping and Threading Machine automatically ups 5.40 N.C. Class 3 threads in tool steel parts at the rate of 22 holes per minute -1100 in a 50 minute hour!
This work is handled by a special air-operated trolving fixture designed by Warner \& Swasey to speed production on a vital job at an East Coast Nital Arsenal. The operator's only part in the tapping cycle is to load and unload the pieces.
A solenoid air valve synchronized with the upper and lower limit switches of the machine tapping Hoke indexes the fixture after each operation. The

YOU CAN MACHINE IT BETTER, FASTER, FOR LESS . . . WITH A WARNER \& SWASEY
fixture can handle other jobs of a similar type by using additional dial feed plates.
Only the absolute depth control and the new, positive lead screw tapping principle found on Warner \& Swasey Precision Tapping and Threading Machines make possible this accurate, rapid-fire work in S.A.E. 52100 tool steel.
If you are interested in greater production, for lower tap costs and lower scrap losses in Class 3, 4, and 5 fits, ask your Warner \& Swasey representative abour this new principle. In many plants these new machines pay for themselves in tap life alone!

```
TORRET LATHES. SADDIEAND RAM TYPES O CHUCEINGANDEAR TOOIS
    PRECISION TAPPING AND THREADING MACEINES
```


You're in good company ... in Southern New Eugland

No matter where you go in industrial Southern New England, it won't be long before you come upon the plant of a well-known manufacturer.
For example, in this section of Connecticut, nation-ally-famous typewriters, locks, firearms, silverware, brushes, tools, safety razors, rugs, vacuum bottles, aviation engines and propellers, rubber goods, shaving cream, soap and skin lotion, as well as many other products, are manufactured.
Every one of these products has a name as familiar as your own. Many of them had their beginnings here. Others have come because of conditions favorable to manufacturing ... generations of skilled craftsmen; abundant power; fair taxes; industri-ally-minded banking; State and local government that grew up with industry and understands its problems.

But that is only part of the story.
Southern New England lies in the heart of the world's richest, most-highly concentrated market.
Within a radius of 500 miles live $58,000,000$ people to absorb not only Southern New England's consumers' goods but her producers' commodities -the tools and parts that go into other industries.
And because no part of Southern New England is more than 125 miles from tidewater and the
great ports leading to foreign markets, mal facturers locating here will be at the thresh of the huge overseas trade that will developd ing the great era of peacetime commerce ane
Southern New England offers better personal ing, too, for it abounds in charming residen communities with good schools, churches, lah hills and sandy beaches-all close by.
In planning your tomorrow, don't orerlo Southern New England-perfect for your D or expanding business ... and for your allaarou enjoyment of life.
An industrial booklet in full color, "Southe New England for Tomorrow's Industry", is 10 for the asking. Write to P. E. Benjamin, M ager of Industrial Development, The New Ha Railroad, 80 Federal Street, Boston 10, M

Tbis is one of a series of advertisements presentings the industrial advantages of Southern New England.

Serving SOUTHERN NEW ENGLAND with a of rail and bighway transportation that puts manufacturer "ON THE MAIN LINE".

What more is there to say?
Unqualified, the merits of steel have been proved in thousands of applications, from steam shovels to washing machines.
The net result is a market that is waiting impatiently for atticles made from steel-and they'll accept no substitute.

Logically, then, steel must be produced in quantities never before paralleled in the history of peacetime production.

Obvioasly, rolls will also be needed in proportion to this demand. It is Ohio Steel's intention to produce these rollsright and in a minimum of time.

Here's what you

Here's
 how

YOU SEE WHAT'S AVAILABLE without bogging down in tables, charts, diagrams. Accurately constructed- $1 / 2$ in. to 1 ft - models eliminate all guesswork in unit substation planning. And they're ideastimulating . . . hard to keep your hands off.

2YOU EXPERIMENT. Unit substation arrangements arc 255 bled quickly . . allowing easy comparison of alternate plans. Thi eight models permit you to see for yourself the great flexibility Allis-Chalmers unit sub equipment . . . determine the right sub ion for your plant. A field engineer from your nearby A.C district 0 will be glad to show the models. There's no obligation.

have to work with

When you use Allis-Chalmers scale models to help solve Unit Sub problems!

YOU DETERMINE what size cirait breakers will be needed when you use Allis-Chalmers' handy Unit Sub Slide Rule to dide secondary short circuit current dy, easily, accurately.

YOU VISUALIZE SOLUTIONS to your power distribution problems right on the top of your desk. At a glance, you see what space your proposed unit substation will occupy. You also see how it will look when actually installed in your plant.

YOU DOUBLE CHECK with A.C's Check List book which reduces every basic consideration in unit sub planning to its simplest possible form.

lead ersulp

 PRODED BY HOMDREDS OF GASE MISTORIES..

Here's One

Extensive melallurgical research is resulting in new manufacturing economies while turning out higher quality parts and products. The motor end frame is one of several typical jobs employing an alloy in preference to cast iron.
The aluminum alloy part presented an extreme chucking problem due to its $6.741^{\prime \prime}$ diameter and fragile $1 / 8$ " section. The selection of New Britain 88 's proved to be the solution. Twentytwo (22) well-placed tools in eight positions are required to completely machine the rough casting... a part every 11.8 seconds. The machines are running 574 R.P.M. and produce 305 motor end frames per hour.

FIRST POSITION

load in two-jaw hydraulically operated chucks.

SECOND POSITION

Face end of skirt from cross arm - Core Drill. .7775 diameter - Rough turn 6.738 diameter. Face end of hub.

THIRD POSITION

Core drill $11 / 8^{\prime \prime}$ diameter and $15 / 16^{\prime \prime}$ diameter. Rough turn 1.330 diameter.

FOURTH POSITION

Single point bore .7775 and $11 / 8^{\prime \prime}$ diameters. Rough turn 1.433 diameter.

FIFTH POSITION

Single point bore .7775 and $11 / \mathbf{M}^{\prime \prime}$ diameters and chamfer $11 / 8^{\prime \prime}$ diameter. Semi-finish turn 6.738 diameter.

SIXTH POSITION

Finish face side of skirt from cross arm. Rough recess both grooves.

SEVENTH POSITION

Finish recess both grooves.
EIGHTH POSITION
Ream .7775 diameter - Finish furn and chamfer.
This difficult machining of an aluminum alloy motor end frame is but one of many outstanding applications of New Britian automatics . . . bar and chucking machines that are establishing new records daily for accurate and economical production. To manufacture your peacetime qualify product at less cost . . . machine it on a New Britain multiple spindle automatic.

Finished Aluminum Alloy Motor End Frame machined to exacting tolerances.

Front View of a New Britain Model 88 used in finishing the motor end frame . . . Note accassibility through open end construction.

Rear View of a Madel 88 shows relationship of cross arms to toolslide Permilting more efficient toal layout and production.

The New Britain machine line indudes four, six and eight muliople spindle automatic bar machines up to $2 \mathrm{~K}^{\prime \prime}$ capadity. Also a wide range of fous, six and eight mulriple spindle auromatic chucking machines up to $12^{\prime \prime}$ capacity.

SINCLAIR has the

Answers to MILL Lubrication

Problems

FOR EXAMPLE:

- In cooperation with mill engineers and equipment manufacturers, Sinclair has developed specialized heavy duty lubricants which help solve today's equipment replacement and repair difficulties. Sinclair lubricants for iron and steel mills are designed
to prolong machine life by partial correction of mechanical conditions which impair operating efficiency and may lead to breakdown.
A complete guide to simplified mill lubrication is available to you. Write for it.

STMCAARR NNDUSTRIAL OHLS

At the request of many manufacturers and members of the trade, we have augmented our line of circle () fasteners with a complete assortment of cap sarews in all stock sizes, both bright and black satin finish. These new products, of Buffalo Bolf quality and uniformity from head to the final thread, are now available through your iobbers. Write for complete specifications and list of stock sizes and name of pobber in your territory.

(3) CIP SCREWS

- - Buffalo Bolt Company's new and improved product

ON BEING SEEN ... NOT HEARD

Once in awhile he could do it...If he tried real hard...If he could think kinda heavy about things around the room... Then he could-just sit...

Got awful tiresome tho'-sittin' not talkin'...He wondered now and then, if Mom wasn't askin' a lot...Each time before company came, she reminded: "Children should be SEEN NOT HEARD".

Yes, it was askin' a lot...Just the same as it would be for grown-ups... We can all be SEEN NOT HEARD-once in awhile.

Our quality, dependability and service can be seen... But we get so eager to talk to you about our Seamless Copper and Brass Tubing, that the woids must spill out... Let us tell you about our products-at your convenience ...Drop us a line for information...
To be SEEN AND HEARD will be to our mutual interests.

WOLVERINE TUBE DIVISION

Calumet \& Hecla Consoiidated Copper Calumet \& Hecla Consoindatea , MICHIGA
1411 CENTRAL AVE., DETROIT 9 ,

GHECK
THE DESIGN FEATURES tuIS New QQDHt draulic MAcinie rois Figh Pressure Díe

H.PM Automatic Cycle Control

4WM Hydro.Fower Operating System

The H-P-M All-Hydraulic Mold Clamp, guided by four strain rods, assures positive mold alignment. Die change-over is simple and fast. Both clamp stroke and pressure are adjustable. Positive overload protection is provided at all times. High speed closing and opening, with automatic slow-down prior to mold contact guarantees fast, shockless operation.

H-P-M Automatic Cycle Control permits maximum production. Manual effort has been minimized. Electric hand switches control mold clamp, hydraulic ejector and core pulls. A single Multiflex timer controls the automatic cyclo after metal has been ladled into "cold" chamber. A selector switch is provided for manual operation of the entire cycle, if desired.

The H-P-M HYDRO-POWER Operating System provides a direct and compact source of hydraulic power. No accumulator is required. Pumps valves and controls are all built by H-P-M for heavy duty oil-hydraulic service. Undivided responsibility to the user is guaranteed. Each pump is equipped with convenient volume and pressure controls. Only electric power and cooling water are required for operating this self contained machine.

Write today for your free copy of H-P-M Bulletin 4402 describing these revolutionary H-P-M All-Hydraulic high pressure die casting machines.

THE HYDRAULIC PRESS MFG. COMPANY Mount Gilead, Ohio, U. S. A.
Branch Offices in New York, Philadelphia, Cleveland, Detroit and Chicago. Representatives in principal cities.

All. -tydrachio... ditiqh Presmue
DIE-CASTING MACHIN:

POWER SAVING PRODUCTS

We have been making various types of cut gears and gear spoed reducers for many years . . . Our oxiensive prosont ciay facilikies for their manufiacture are the outcome of developing an organization that would capably handle our resuis̃ant expansion . . . These \{acilitios give us a capacity that readily handles industry's powor-saving requirements.

Our experience of over 58 years of manu.aciuring various types of gears and gear reduecrs is invaluable in the selection of the proper type of gear speed reducer for your power-saving transmission problems.
D.O. James Gear Sales-Engineers are located in key industrial centers.
D.O.JAMES MANUFACTURING CO.

1140 West Monroe Street

Chicago, lll.

Planetary Gear Speed Reducers

Spiral Bevel Gear Speed Reducers

Speed Reducers Gear Speed Reducers

Double Worm Gear

Motorized Planelary

Spiral Bevel Planetary Spiral Bevel Reducers
Gear Speed Red
Motorized Helical Gear Speed Reducers

ARMOR TO PLOWSHARES

It has already happened. ... One of the fine-grained N-A.X low-alloy steels - steels that have provided armor for tanks and landing craft, frames for all jeeps, and vital parts for scores of fighting vehicles - has been "beaten into plowshares" to produce priority equipment for agriculture.
The particular steel was N-A-X 9120, a carburizing grade. Its ready response to carburization and heat-treatment is utilized to produce a farm implement that is "tough to the core" and that has the required surface hardness to resist abrasion and wear,
The conversion of an N-A-X low-alloy steel from tools of war to tools of peace is not surprising . . . just prophetic. For the same wide range of desirable properties that made these fine-grained steels a great military material recommends their use in civilian products.

MRAT STEALS RROM

 GREAT LAKES
Stronger Fence Produced Faster with

Flash is shoun for sake of illustration. Under actual conditions this does not occur.

MALLORY WELDING DIES

M
ILES of wire fence are turned out each day by high-speed cross-wire welders that make a series of strong joints across the entire width of the fence, in one operation. This cross-wire welding has been speeded by the use of Mallory Resistance Welding Dies, and tests show that the welded joints are actually stronger than the wire itself!
Dies of Mallory 100 Metal, now standard equipment, provide many advantages over the bronze welding dies originally used. This Mallory alloy, with its high electrical and thermal conductivity, conducts heavy welding currents without overheating and rapidly dissipates heat from the welding surface of the dies-permitting faster welding. Dies retain their correct contour over long production runs, and "down time" for dressing or replacement is minimized because of the
excellent physical and mechanical properties of the Mallory alloy.
Savings in production time because of faster, better welding with Mallory Standard Resistance Welding Electrodes are commonplace throughout the metal fabricating in dustries. Whether you need spot welding tips and holders, seam welding wheels, or dies for flash, butt or projection welding, specify Mallory. Often a standard electrode will solve your problem. Consult us today.

Invaluable Information

-now available, Third Edition Mallory Resistance Welding Data Book, a comprehensive text on resistance welding practices. Sent gratis to resistance welding engineers, when requested on company letterhead. Available to students, libraries and schools at $\$ 2.50$ per copy, postage paid.
P. R. MALLORY \& CO., Inc.r INDIANAPOLIS 6, INDIANA

STRONGER, MORE ACCURATE THREADS At Samer Cost
BY THE LANDIS TOOL CENTERLESS THREAD GRINDER
LANDIS TOOL CENTERLESS YHREAD GRINDEP

Centerless ground threads, made possible for the first time by the new LANDIS TOOL Centerless Thread Grinder, have all the advantages of a ground finish such as accuracy, smooth surface, bright finish plus the special centerless advantages of high production at low cost of a wide variety of threaded parts.
Centerless ground threads are stronger and more accurate because you start from solid hardened stock. No final heat treatment is needed and chance of thread warpage and cracking is eliminated. All threads are smooth, clean and perfectly uniform when viewed through a magnifying glass or a comparator. The multiple groove formed wheel is equivalent to a series of accurately formed wheels that grind each thread.
Costs tumble because of speedier production, fewer rejects, less inspection. If you can use the accuracy and low cost of centerless ground threads, it will pay you to investigate the new LANDIS TOOL Centerless Thread Grinder.

ADVANTAGES

- Bright finish
- Freedom from burrs
- Perfect thread form
- Perfect lead control
- Perfect starting thread
- Smooth surface

LANDIS TOOL COMPANY
WAYNESBORO, PENNSYLVANIA

BY

WASHBURN

If you have never tried WASHBURN MUSIC WIRE you are in for a pleasant surprise. Make tests NOW for your present or future product. Write us the details of YOUR problem
'ASHBURN WIRE COMPANY, NEW YORK CITY WASTBUBN PRAN UNIFORM BILLETS - STRIP-RECTANGULAR, ROUND, FLAT RODS
SRRRED AND UNTEMPERED FLAT AND ROUND HIGH A ARBON WIRES

"No Joy-No Strength"

TIGH point in faith toward a losing technique was exhibited by "Herr Doktor" Ley . . .
-leader of Hitler's "Strength Through Joy" Youth Movement.
Sitting between two GI's who had frisked him of his cyanide vial, he unjoyfully maintained:
"Adolph Hitler was Germany's greatest man."
Which proves him to be a crumby leader ...
-for any smart business man could have recognized a losing technique long before it was time for cyanide . . .
-and would have taken recourse to a winning technique ...
-in which there is both strength and joy plus a chance to live.
Think of the joy men get when a winning technique gives them leadership and success -such as . . .

FLEET-WELDING

Competitive Strength. "Fleet-Welding" utilizes arc force to get higher travel speed and greater penetration with less deposited metal. For butt welds in $3 / 8^{\prime \prime}$ plate, speed is 350% higher; cost is 75% less than conventional method.

Physical Strength. Effect of "Fleet-Welding" penetration on speed and weld strength of fillets. Conventional technique gives ultimate load capacity of $27,000 \mathrm{lbs}$. per lin. inch whereas "Fleet-Welding" gives $32,000 \mathrm{lbs}$. per lin. inch.

Handy pocket manual, Bul. 444, gives "Fleet-Welding" procedures for all types of joints and welding positions. Free on request. Ask for it on your business letterhead.

THE LINCOLN ELECTRIC COMPANY - DEPT. L-1 - CLEVELAND 1, OHIO

Pmericás

*ing Surgical Instruments of Stainless Steel

A report on one manufacturer's methods of forging, heat-treating and finishing small STAINLESS STEEL parts

Iness STEEL which is to be into surgical instruments of if controlled qualities needs rare in heat treating. Inspeclikewise must follow more of poduction operations than is with ordinary "carbon" steels. : these precautions and a few Wes in procedures Stainless Is can go down the same proan line as ordinary steels. Elition of plating is a great adge to both the fabricator and ser. Such is the experience of Yel Bros. Corporation, Newark, 1, makers of the famous "La*" instruments.
Stannliss Steel itself, of , must be made with utmost 1he way it is made by Rustless and Steel Corporation. Any of uniformity in the steel can thouble along the fabricator's ation line by yielding irregular ase to standardized heat-treatand finishing procedures. In
the first lots of Staintess Steel to be fabricated and continuing whenever minor troubles occur or changes in procedures are made to improve results and reduce costs.

The first production operation in making artery forceps, for example, is slitting. Most surgical instruments are pointed; therefore, when flat bar stock raw material is used it is slit diagonally instead of being cut of square thus providing two pointed ends simultaneously. When round stock is used it is generally forged off the end of the bar.

The hot forging operation follows. Forging is done on small (500 to 800 lbs.) board drop hammers. The operator is able to raise the hammer to various heights and therefore to strike blows of varying forces. He can vary the number of hammer blows applied to each piece, being careful not to fold or wrinkle the metal. Generally he finishes each piece with three or four full blows;

Tibe lorging. 2. Trimmed. 3. Milled. 4, Assembled. 5. Jaws bent. 6. Finished.
4the proper grade for surgical Thea tustruments and similar pos s one which must consistproduce a hardness of Rock040 to 45 following a preof seat treatment. Important (is is given engineering service $9{ }^{282}$ is given by Rustless. This
tis periodic, beginning with
any greater number may permit the steel to cool too much and result in hardening. This particular grade of Stainless is drastically air hardening when cooled quickiy from above $1500^{\circ} \mathrm{F}$.
Trouble at the hammers is readily avoided if the correct heating method is used. Starnless Steels must be

heated to slightly higher forging temperatures than carbon steels and must be struck harder blows. The operator who is used to judging carbon steel temperatures "with his eye" may go wrong on Stainless temperatures. Schnefel finds it entirely satisfactory to use an optical pyromcter to check this several times every day while some other shops prefer a recording pyrometer. The material is heated to between $2100^{\circ} \mathrm{F}$. and $2200{ }^{\circ} \mathrm{F}$.

Controlled Soaking

A heating and soaking period of about five minutes is necessary, depending upon the stock size. And this also must be controlled. Too short a soak means poor forging, too long means excess scale which will be beaten into the surface of the metal by the hammer and cause indentations which increase the costs of polishing.
An average forging time cycle for each kind of instrument part is used to control the heating and soaking time. On one part, for example, it takes ten seconds for the operator to put a cold piece into the furnace, take a heated one out, do his forging, plunge the forged piece into a refractory material and pick up another cold piece. Since a fiveminute period contains 300 seconds, the keeping of 30 pieces in the furnace at all times and taking them out and replacing them in rotation will result in a five-minute heating and soaking period for each.

Slow Cooling

The pieces as lifted from the dies are at about 1600° F. They are buried immediately in the refractory material so they will cool slowly as otherwise they might strain crack. As a rule they are left to cool below $300^{\circ} \mathrm{F}$.
After being removed from the refractory material, the pieces are

The furnace witb the drop bammer at work.
pickled in full strength commercial muriatic acid, or the solutions recommended on Pages 40 and 41 in Rustless' booklet 'Heat Treatment of Stainless Steels," to remove the forging scale.
Annealing at Schnefel Bros. is in sealed 35 nickel, 15 chrome pots placed in a Hones atmospheric-type furnace. Four hours' time is used to bring the cold pots up to $1600{ }^{\circ} \mathrm{F}$. to 1650° F. The pots are held at that temperature for at least one hour. Cooling is by easy stages. With heat kept on the furnaccs the pots are allowed to cool not more than 200° in the first hour and 2000 more in the second hour, and cooling will be
slower than this if the parts had been harder than Rockwell 25C. But when the pots are down to $1200^{\circ} \mathrm{F}$., the heat is turned off and the pots are allowed to cool in the furnace for the remainder of the annealing period.

Rockweli Test

The parts are pickled asain to remove the light scale and then hardness tested. A hardness of Rockwell B90 Max. is aimed at as this is excellent for machining. To remove any remaining forging and annealing scale the parts are tumbled overnight.Tumbling imparts a rough polish. The parts a=e inspected again for any pits or faulty surfaces or other defects which might make further operations inadvisable. Nearly all pass inspection and are sent to the secondary operations departments.

Secondary operations include trimming in punch presses, cold pressing, drilling, rough grinding, shaping the blades, and some spot welding in the case of tweezers. There are no important deviations from the processes applied to carbon steels except that the forging flash may be removed from carbon steel parts by cold punching before annealing but in the case of Stairuess Steel the flash is removed after annealing. Milling of the Stainless STEEI is about 15% slower than that of carbon steel and the milling cutters have from 30% to 40% shorter lives. The operation gave trouble until a sulphur-base soluble cutting

One of the milling operations.

Trimming oū live fiasio.
oil recommended by Rustless Iro and Steel Corporation engineers W used.

Final Heat Trestment

After the secondary operation Schnefel gives the parts their fin heat treatments. They are neau to $1825^{\circ} \mathrm{F}$. in free rinsing salt, he for a 5 -minute soaking period ar quenched in low viscosity quenchir oil. Rockwell testing follows rinsing of the quenching oil in a kali cleanser and hot water. Tl parts now must show a unifor Rockwell hardness of $C 47$ to : They next are drawn at a temper ture of $550^{\circ} \mathrm{F}$. in recirculated a being held at this temperature f thirty minutes. Drawing greatly in proves the ductility of the part and brings them to the desire Rockwell C 40 to 45 . (Further hes treating data on this and othe grades of Stanness are containe in Rustless' "Feat Treatment Stainless Steels.")

Salt Bath

Schneíel Bros. have found it ne essary to be careful about the 5 a used in the baths. Some salts whil they have tried can produce bariu precipitates on the metal surfac and these will not wash off in wat A short pickling cycle is then a plied prior to grinding to remo the slight scale resulting from he treating.

The final operations such pointing, shaping, buffing, asse bling and final polishing are do by ssilled craftsmen.

It, is here that the rewards of c^{a} ful control in inspecting and be treating are found.

A: operator buffs a piece lars
its "feel" against the wheel, but 4 will tell him very little if he s not know czactly how his maial will beharc. ऊhaping and mating the instruments-a buffing I hand-grinding process - is ted somewhat by visual inspecbut mosily by the fool of the aisely tempered Stniniezs Siela. eall-impo=tant "setting up" option, getting the blades to mect whly right and with precisely the It amount of friction at the its, making sure that ratchets ch are to hold instrumerts at th pressures on artenies of the man body will hold just right but not stick, is a matter of knowexactly how the instrument Wid feel and of being sure that leels right it is right.

Nitric Acid Passivating

asivating, to remove the last Yo foreign material and fortithe natural passive surface f1m aras inaccessible to the bumng al is the last operation bciore a light buff. A solution of $13-$ nitric acid at $110^{\circ}-1200 \mathrm{~F}$. is
kere are tests which the instruts for the Government muist One of them is the "blue stone," ther the "boil." In the blue stone The parts are submerced for 6 mits at room temperature in a derd solution of copper s: s 3sulphuric acid and water. The 5 must show no plating-on of 4.) (Government Specificatio:

Boil Test

: the boil test the parts are xd with soap and water, dipped
in alcohol, dried in an oven or wiped dry, submerged in still water, brought to a boil, boiled for thirty minutes and then allowed to remain submerged for 24 hours. Not more than 2% of their surfaces (visual estimation) may then show any discoloration. These tests are standaid. Eut for the real tost, no stanclard can be la:d down. The real test is tize way the instruments feel

Sait baih barderning. Note nearness of quench Sanks.
in the hands of a surgeon or a nurse while working acainst split second's of time to save a human life in a hospital or on a battlefield. It is a real t-ibute to American manufacturers that a tremendous number of

Finishing on the wheel.

satisfactory instruments were made during the war when many, unlike Schnofel Bros., had had little or no previous e:rperience in the feld.
TVat crantly rixht, comple」ely depencianla "foこl" is p: it i:2to their splanci.d insünme:ats kJ the careful heat tecatzicnis, inspections, and wortmans:ip of Schnesel Bros. But bohind it is the equally carerul work of Ruatless Iron and Steel Corporation. It is a strange fact, but success in the operating room starts in the steel mill.

Rustless specializes in STAINLESS STEELS, and through long, concentrated study and experience has learned how best to forge, heat treat, machine, electropolish, and otherwise fabricate STAINLESS into products of enduring beauty, cleanliness and economy. All our knowledge is at your command. Our engineers will gladly work with your production men. The authoritative Rustless booklets are free. The one mentioned in this advertisement, "Heat Treatment of Stainless Steels", containing 56 pages and 9 Data sheets will be sent on application.

How to buy

SURPLUS MACHINE TOOLS

- and get value

Of course, we're talking about Acme-Gridley Multiple Spindle Automatics only-not trying to advise you on machines made by other manufacturers.

DON'T buy a used Acme-Gridley merely because it is offered to you at a cheap price.

DON'T buy a used machine without knowing its age, its capacity, and above all, its present condition.

DO buy a used machine if you are sure that purchase price-plus its cost for whatever reconditioning and retooling may be necessary -totals less than the price of a new machine of equal capacity and performance.

REMEMBER that you cannot expect newmodel production from a machine five years behind today's improvements.

There are a lot of Acme-Gridleys now on war work that will someday be out of a job. They were all top-notch producers when delivered, but some of them may have been overworked or under-cared for.

Our interest is to see that you get maximum value from any Acme-Gridley, whether you buy a used machine on the open market, or a new machine from us.

Please feel free to write us when in the market.

ACME-GRIDLEY BAR and CHUCKING AUTOMATICS mainlain accuracy of the highest spindle speeds and fastest feeds modern cutting tools can withstand.

A TYPICAL ACME-GRIDLEY COST-SAVING JOB

$21 / 4^{\prime \prime}$ diameter steel hub turned from bar stock on $25 / 8^{\prime \prime}$ Model RB 8-Spindle Bar Automatic.

15 operations- 15 tools at work simul-taneously-machine time, 28 seconds.

VAREHOUSES IN NINE KEY CITIES

Serve you

WE HAVE nine large warehouses* located in key manufacturing areas from which Riveries can be made quickly to any point. Jing war years these warehouses have done sood job of living up to their famous reputation last service. Today our stocks are larger *te is a wide variety of steel available for immeateshipment, including all standard grades and Ls of U.S.S Stainless Steel and a complete line Carbon Steel Products. When you need steel
in a hurry, phone, write or wire our nearest warehouse. We will continue to exert our best efforts in making deliveries to meet your requirements. Our service has helped many customers avoid serious delays in production. Your orders and inquiries receive prompt, careful attention.
*Our Boston warehouse has been taken over by the Navy for storage of vital supplies. But we maintain our Boston Sales Office to expedite service to our New England customers from all our other

NITED STATES STEEL SUPPLY COMPANY

[^0]Foot of Bessemer St. P. O. Box 479-Blgelow 3-5920 REctor 2-6560, BErgen 3-1614
PITISBURGH (12)
12B1 Readsdale St., N. S. CEdar 7780
ST. LOUIS (3) 21 st \& Gratiot Sts., P. O. Box 27 MAin 5235
TWIN CITY 2545 University Ave., St. Paul (4), Minn. NEstor 2821

Suyder "SPECIAL" HOLLOW MILLS TRUNNIONS on VARIOUS SIZED CONVERTER BLADES

This double-end, special-purpose machine was designed and built by Snyder to combine accuracy and fine finish with high production in hollow milling converter blades.

The operation is hollow milling one or two trunnions on these blades which vary in size and shape. Accuracy is held to .001" and finish is such that no further work is required after the milling operation.

The machine consists of two Snyder selfcontained hydraulic units and multiple heads and an electrically driven fixture trunnion with holding jaws, assembled on a welded steel base. Coolant tank is in rear of base.

Tool spindles are guided in the trunnion side members and are equipped with precision end stop adjustment to maintain depth and accuracy of cut. The trunnion is indexed by a Geneva index mechanism mounted on top of the trunnion assembly.

Parts are located in the jaws by means of side locating plates. A hydraulic cylinder for
each individual fixture automatically clamps the part while fixture indexes from loading to first working position. Each station has three fixtures holding three parts which are identically processed at the same time.

Semi-automatic work-cycle requires the operator to press a button after loading three pieces. Cycle consists of an index followed by tool work. Unloading is automatic.
Production is 575 pieces an hour at 80% efficiency. Various sized and shaped parts are accommodated by exchanging holding jaws and adjusting the side locating plates.
This is another typical example of the ability of the Snyder organization to create special-purpose machines which provide complete control over production time, accuracy, finish and production cost. If you have a production problem in the metal-cutting field, we invite your inquiries. Snyder Tool \& Engineering Company, 3400 E. Lafayette Avenue, Detroit 7, Michigan.

20 Years of Successful Cooperation with Leading Industries

A tent of aluminum is more than a possibility for the future. It has many new advantages, including durability, attractiveness and showmanship. You will be surprised at the many products you will see in which the light alloys-aluminum and mag-nesium-will be used to replace heavier metals or other types of construction. If you would like to discuss the many sales advantages and cost cutting features made possible by these new light alloys, the Bohn Engineering staff is at your service.

N an effort to meet the constantly increasing demand for VEGA production, facilities for this super-duty silica brick have been materially expanded. However, even today's greater output still falls short of the amount required to fill present demands promptly. As soon as conditions will permit, the production capacity will be further increased. We hope and believe it will not be too long now until orders can be placed with the expectation of actually getting VEGA within a reasonable time. Meanwhile we ask your continued patient indulgence in reference to the unavoidable delay in VEGA shipments.

If you have not already received your copy of this fact-filled booklet on VEGA, The SuperDuty Silica Brick, send for it today. Learn how VEGA was developed - and how its 60° to 100° higher refractoriness under load gives longer life in openhearth roofs, permits higher temperatures - and also increases tonnage output.

IMPORTANT NOTICI

Licensing Arrangeme

A definite contribution to longer furnace life and greater steel duction, VEGA brick should be made available as soon as pooss to the largest number of steel producers.

Harbison.Walker will therefore license other responsible produ of silica refractories to manufacture brick under VEGA patents.

Super-duty silica refractories, made under VEGA patents by 0 manufacturers, will carry this identifying symbol of plus qualit following the manufacturer's established brand name.

HARBISON-WALKER REFRACTORIES CO. AND SUBSIDIARIES

$W_{\text {Lun to so sou nea..... }}$

,
 SPEED CASE is an expensive steel̈?

PIERCE GOVERNOR CO., INC., ANDERSON, IND., REPORTS
\# Savings in production which more than equal the cost of their SPEED CASE Cold Drawn Bars...

Here's the Parts!

 Read the Facts!- Five different parts made from Speed Case Steel-sleeves, screws, shafts, weights, and pins VERSATILITY!
- Savings over X1020, X1314, etc. $=20$ to 40%.
- $\$ 2,000$ saved in 7 months Broaching cost.
- Treats easier and better than any other steel ever used. Stronger-lougher-longer wearing parts than ever before. Warpage rejections reduced 22 to 35%-speeded up production.
- Speed Case increased production on one part 100\%!
- They have STANDARDIZED on Speed Case $\times 1515$ for all machined and carburized parts.

This sort

 can be fabricated cheaply... and FAST*and thousands of other items too varied to describe

VERSATILE MODERN PRODUCTION TOOLS

READY-TO-NAIL MOULDINGS

Decorative or utility type metal mouldings with steel brads permanently artached, ready for continuous nailing, are made on a high production basis with the aid of automatic resistance welding employing a press type welder developed by The Federal Machine and Welder Company. The moulding is automatically indexed for proper spacing and the brads automatically cut and fed from wire reels. They go on in a hurry, and they never come off. The process is adaptable to many sizes of moulding and brads or nails.

"SELF-FASTENED" FABRICATIONS

Heavy duty metal tool and tackle boxes are made in the modern manner without the aid of any fasteners other than weld nuggets of the fabricated metal. One manufacturer has devised a lid-locking box in which not only is the box itself completely resistance welded, but hinges, handles and even the removable tray are made without fastenings. Using Federal spot welders with variable electrodes, this method can be made highly flexible ... profitable on small runs of a variety of sizes and styles of containers. Such welders, operated according to instructions, make fabrications that are well nigh indestructible... neat and modern in appearance.

USEFUL SPOT WELDER BOOK

Detailed descriptions of a complete line of rocker-arm type spot welders made by The Federal Machine and Welder Company, plus some interesting discussion of the type of work to which they are best suited, are included in a new book offered by this company. Designated as "Bulletin No. 4510 ", it contains helpful information on airoperated, motor-operated and foot-operated spot welders.
The new book gives a clear idea of what a rocker-arm spot welder is and what it can do. It combines data formerly available in a group of separate folders, and is designed to simplify the problem of selecting the type of spor welding equipment best suited to particular production set-ups. Free copies may be had on request.

202 DANA ST. WARREN, OHIO

WRIGHT CRANE:

 THINK what an overhead traveling crane, with a wright hoist and trolley, could do-when it comes to moving machinery around, or in and out, in that reconversion job that is just ahead. A wright traveling crane would really put your ceiling to work, and speed up not only reconversion but subsequent civilian goods production as well. The wright combination of crane and hoist would help bring your production costs down to competitive levels.WRIGHT material handling equipment (cranes, hoists and trolleys) is built in any desired capacity and to meet the most exacting specification. If your problem is special, ask local wRIGHT distributor (see metropolitan classified telephone directory) to call in a wRIGHT engineer. In the meantime, write for wright Specification Bulletin, or Catalog 12-D.

WRIGHT MANUFACTURING DIVISION AMERICAN CHAIN \& CABLE

$\overline{4}$

lse Pennsalt Cleaner EC-10 for:

Spray washing and rust inhibiting in one operation

Precleaning before alkaline cleaning and subsequent plating
Cleaning before painting Cleaning paintedsurfaces

Grease and oil removal from any metal surface

SPEIAL CHEMICALS DYISION PRODUCTS
Acid- Alkali-, and Solventproof Cements - Lead FluOberale Concentrales Hoobotic Acid * Acid, Nkoli and Solvent EmulStrippers = Pichers - Paint

PENNSALT CLEANER EC=10
 U. 5. FAT. NO. 23ヶA113
 . . A New Emulsion-Type Cleamer

A SINGLE OPERATION QUICKLY FREES METAL

 PARTS OF DIRT, OILS, GREASES, METAL CHIPSEmbodying a new principle, Penmsalt Cleaner EC-10 actually removes some types of soil which alkaline cleaners won't budge in the short time today's stepped up production demands. Smut deposits, together witk lubricants, tripoli, rouge and various metal finishing agents many times require lengthy, time-consuming cleaning operations.

These graduates show comparison of three solvent emulsio cleaners, diluted 1:50 with water. After standing forty-eig hours No. 1 (Pennsalt Cleaner EC-10) shows a thick den emulsion, while No. 2 and No. 3 show considerable seporatic This test demonstrates the high degree of stability of Penns Cleaner EC-10 in water emulsion.
A strip of polished aluminum contaminated with shop dirt fingerprints was dipped in क solution of Pennsalt Cleaner EC The picture show: the result after a portion of the strip been dipped in concentrated EC-10 for thirly seconds, cold water rinsed.

Send for FREE booklet

SPECIAL CHEMICALS DIVISION

SPECIAL CHEMICALS DIVISION
PENNSYLVANIA SALT MANUFACTURING COMPANY
Dept. 59, 1000 Widener Bulíaing, Philadelphia 7, Pa.
Kindly send me descriptive booklet on Pennsalt Cleaner EC-i0

ITILE
 a matter of opinion?

Replacement of friction-worn gears and parts is taking a tremendous tariff from industry every day in cost of parts, lost man hours, delayed production, etc.-because lubrication has remained a matter of opinion. Your initial investment is no greater if you avail yourself of the more than 35 years of specialized lubricator experience offered by Gits Engineers. This experience, acquired from dealing with actual field problems, deals scientifically with your problem and gives you the assurance of the right amount of lubricant at the right places at all times. Results can only be a very minimum of parts replacements and production delays-true economy. Gits offers you this specialized experience, plus the largest selection of oilers, from small oil hole covers and grease seals to intricate multiple oilers. Consult Gits on all your lubricating problems. If you do not have a copy of catalog No. 60-write for it!

Gits Bros. MFG. Co.
 1836 South Kilbourn Ave., Chicago 23, 111 .

- When planning on new equipment, whether railroad cars, industrial machinery or other applications involving steel plates, remember that Republic Plates-in carbon, alloy, high strength and stainless steel-are available to meet your exact specifications.
Because every step in their production is carefully and scientifically controlled by one closely knit organization, you are assured
of uniformly high quality in all Republic Plate Products.

Our engineers will be glad to discuss your requirements for structural, tank, boiler, marine, locomotive, truck or other applications at any time. Write to:

REPUBLIC STEEL CORPORATION
GENERAL OFFICES CLEVELAND 1, OHIO Export Department: Chrosler Building, New York 17. N. Y.

Thread-forming screws for spee

...IN ASSMMBHTES... A SMABT WAY TO MHAT PRODUCHION SCHMDUHES TOR YOUR POST-WAR PRODUGTS

An improvement $i n$ methods is the first answer to look for in solving the problem of steppedup demands of production, whether in war or peace times. War production would have been immeasurably slowed down had it not been that the thread-forming screw eliminated the aeed for tapping many millions of holes in material that had to be joined together in a hurry. Wherever a thread-forming screw could be used in the assembly or fabrication of war materiel, time was saved when time was most precious. Saving of time by American methods was one of the prime factors in winning this mar-an essential ingredient of quick pick-up of peacetime production.
lamson makes thread-forming and sheet metal screws in tremendous quantities. Three sandard types are produced for metal and plastic applications. Types " a ", " c " and " b " are made with slotted, Phillips or Clutch heads. Type "c" (thread-forming) screws have Amerian National Standard coarse thread.

Because of the need for more detailed information on thread-forming and sheet metal screws, a new Lamson folder showing dewiled lists, stock sizes and essential information is ready for you. Just use the coupon at the right to get your copy. Samples of Lamson
thread-forming and sheet metal screws will be sent you on request.
THE LAMSON \& SESSIONS COMPANY, General Offices: Cleveland 2, 0.
Plonts at Cleveland and Kent, Ohio; Chicago and Birmingham

"BOLTS, NUTS \& SCREWS"- 1944 REVISION. Cloth bound. Limited edition, 180 pages of rechnical, practical information. Sent prepaid for $\$ 1.00-c a s b$ or cbeck must atcompany your order.
"BOLTS ARE IMPORTANT!"-24-page booklet of currently useful informa. rion for buyers of headed and threaded products, and describing Lamson \& Sessions specialty fasteniogs which have wide industrial applications -now, and int the post-war period. Sent gratis.
"THE LAMSON BLUE BOOK"-is our standard Catalog of standard products excepting our Aircraft products. Sens gratis.
"SIMPLIFIED STOCK LIST"-Of bolts, nuts and screws, conforming to latest revisions of the Office of Price Administration, and of great value in showing you in what ratio quantities of various standard products are kept in stock for deliveries, by your jobbers and in our own (and other bolt manufacturers') warehouse stocks. Sens gratis.

Г-- HERE'S A COUPON FOR YOUR CONUENIENCE-

TEE LAMSON \& SESSIONS COMPANY - 1971 Wost 85th Street - Claveland 2, Ohlo Please send us Lamson Blue Book \square Bolts, Nuts and Serews ($\$ 1.00$) \square Bolts are Imporrant! \square Simplified Stock Sizes Send information on \square Cap Screws and Set Screws \square Cotters \square Bolts \square Machine Screws Lamson Lock Nuts $\square C P, H P, S P$ Nuts Lock-washer Screws \square Thrd. FormingScrews

Name of Individual
Tide or Kind of Work
Employed by (Name of Company)
Street Address
City and State No. 1957-Copyright 1985-The Lamson \& Sessiona Co.
from River Wafer * 15 times finer than $\frac{1}{32}$

Adams Poro-Screen Filters offer a practical answer to large-scale filtration of dirty river water for use in hydraulic equipment. Designed for continuous, automatic operation and requiring a minimum of attention, Adams Automatic Filters supply the required volume of clean water for your operations-water free of dirt and grit which damage bearings, rolls, valves and other equipment. Highly successful on wator cooling installations of open-hearth and heattreating furnaces.

Adams Automatic Filters provide low velocity filtration. Their multiple tube design has no moving clearances, is fully automatic. One tube is back washed at a time while filter is delivering full rated capacity. Adjustable control gives flexibility of back-washing-excessively dirty water more frequently, normal water less frequently. Built in four sizes from 300 spm . to 2000 gpm. Write for Bulletin 901.

* R. P. ADAMS COMPANY, INC. 75 Chicago street, buffalo, N. Y.

TIME AND MATERIALS IN PROTECTING SURFACES CORROSION AGAINST

UCILON is o new plastic base matarialapplied like paint-that is more resistant to more corrosive elements than any coating you've ever tried.

It resists all acids in commonly used concentrations. It resists all alkalies and salts at ordinary tempera-tures-as well as perroleum derivatives and natural oils. In addition, it is non-toxic, non-conductive. inhibitive to fungus.

Tests prove that even against the most destructive elements, Ucilon does a superb job of protecting surfaces. For equipment, walls, beams, duct work, tanks - wherever extra protection, extra service, exrra sales appeal is desired-you can specify Ucilon. It produces an attractive glossy finish-white, black or in colors.

Our free booklet gives details to help in the solution of your corrosion problems. It's yours for the asking.
UNITED CHROMIUM, INCORPORATED
51 East 42nd SI., Naw York 17, N.Y. - Detroit 7, Mich. Waterbury 90, Conn.

USE THE COUPON FOR YOUR COPY

UNITED CHROMIUM, INC.
51 East 42nd Street, New York 17, N. Y.
Send 12 page illustrated Ucilon Booklet-without cost or obligation.
Name \qquad
Company \qquad
Address \qquad

Here's how American Magnesium is building 40 -gallon Oil Tank's for P-47N Thunderboll fighters.

CPMAMVI/ \rightarrow MACNESTUM SHEET HASFORMABMLITM

It took a heap of squeezing, many humps and bollows to fit this 40 -gallon oil tank into a former 28 -gallon tank space. Magnesium sheet has the formability to do the job.
American Magnesium's more than twentylive years' experience in working with magnesium provides real know-how. Mazlo Magnesium sheet can be successfully formed cold, warm or hot, depending upon the design
of the part involved.
American Magnesium will gladly share the know-how gained through its many years of designing, manufacturing, and assembling magnesium parts. For this assistance we invite you to write Aluminum Company of America, Sales Agent for Mazlo Magnesium Products, 1721 Gulf Building, Pittsburgh 19, Pennsylvania.

AMERICAN MAGNESIUM CORPORATION

Thirst...

More gasoline and oil is pouring into the tanks of ships than ever before in maritime history. Fuel that is quenching the thirst of our transports and freighters.

Tough, husky hose is delivering it... hose that can stand rough handling at busy wharfsides, or take the buffeting encountered in a refueling rendezvous at sea. This kind of hose is different...fabricated of special synthetic rubber compounds, developed years ago by United States Rubber Company scientists - compounds that far excel natural rubber for handling petroleum products.

During the war these compounds have been int not only for the handling of oil, but for carrying air, steam, gases and chemicals.

As production for civilian consumption mounts, hose will be extended...in your own plant, for ins for high pressure hydraulic equipment or for carriv rosive materials.
The United States Rubber Company technical prepared to meet these needs with specially engi hose for particular purposes. Their experience and counsel will be at your command.

Serving Through Science

Some of us can stand just so much shock, and then w collapse. Some metals have the same failing. Bui UNIVAN - that tough Alloy Steel - is noted for it ability to withstand severe stresses and shock with notabl lack of fatigue.

If these characteristtcs are important to your product' performance, specify UNIVAN and take advantage o Union's long experience in producing intricate casting up to 60,000 pounds in carbon and alloy steels.

CHMCR

ou get plenty of power from easily-held, mooth-running CLECO GRINDERS

PROM "snagging" in the cleaning room to light linishing on forgings, dies, etc., you will find Wright model for every job in the extensive line dCleco Rotary Grinders. These grinders feature migged alloy steel rotors, heat treated and ground bexact size - insuring vibration free operation at dlspeeds. Governors efficiently control the speed,
whether idling or under varying loads, providing ample power at all times plus utmost economy in air consumption. Highest grade ball bearings are used throughout. An efficient lubrication system helps increase the life of the tools. Bulletin 80 describes Cleco Grinders in detail and includes a large blueprint of construction details. Ask for it!

TLLEvELAND PNEUMATIC TOOL COMPANY • 3781 East 77th St. • Cleveland 5, Ohio Eranch Offices in all Principal Cities

Livh Ginder, Madel 214

1

Hepe is the L.ST-512, one of the millions of tons of fighting ships in history's greatest battle fleet. This invasion carrier, salvaged after being crippled in action off Normandy, has BWH hose and other products among its equipment and will cruise mid-west waterways from Duluth to New Orleans during the months from June to September. It will stop at many different cities along the Great Lakes and the Ohio and Mississippi Rivers for public demonstrations of amphibious warfare.

In March of 1944 she joined a convoy bound for England and since that time has crossed the Atlantic twice, crossed the English Channel a score of times, and was beached on the Normandy coast on D-Day and was in the midst of heavy bombing and shelling-though never struck-landing a large number of American, British and Canadian troops in France.
We are proud to have had a part in helping to equip this and other ships that have enabled American assault troops to overcome our German enemies and to punch their way to the very threshold of Japan's homeland.

BUY WAR BORDS

Wying an old but important ${ }^{-}$operation in metals Gtion, newly developed Gas cquipment has advanced wast the process of metal pickling in an acid bath. Gas burner made of a highly acid resistant alloy is riged in the acid bath and through the use of rased air, Gas fuel-burning right in the liquid yoes three jobs at once. It heats, circulates and its the acid bath. The combustion unit can with2 temperature of $2900^{\circ} \mathrm{F}$. and a concentration of vic acid ranging up to 100%.
tow of compressed air clears the burner unit of and the Gas is then ignited. When the bath is

THE TREND IS $T 0$ GAS

heated to the desired temperature, the Gas automatically shuts off while the compressed air continues to agitate the acid. As the temperature goes down, the Gas is automatically reignited to maintain the pre-set temperature. The entire operation represents a degree of compactness and high efficiency that has long been wished for in this field.

Whatever treatment of metals commands your interest, you can be sure that modern Gas and modern Gas equipment will do a better job for you. The Industrial Engineer of your local Gas Company is available for consultation, and you incur no obligation.

AMERICAN GAS ASSOCIATION

industrial and commercial gas section 420 LEXINGTON AVENUE, NEW YORK 17, N. Y.

Only one thing really interests a steel manand that's uninterrupted performance at the lowest possible cost.

Because Westinghouse has grown up with the steel industry-almost as a full partner-steel men have learned to rely on Westinghouse products.

Take Micarta Roll Neck Bearings for instance. These bearings last 10 to 15 times longer-hold the gauge better-require fewer screw-down adjustments, fewer test bars. Micarta bearings take 20 to 25% less power, and save all the lubrication cost because they

CAN YOU SEE YOUR WIFE IN THIS PICTURE?

$\mathrm{P}^{\text {acks bending over the village stream }}$

Dwooden paddles thudding against wet clothes.
It's wash day in southern Europe!
You'd hardly expect to find your wife at a social gathering of this kind at the creek near Main Street! No, she'd rather let a machine handle your shitts and socks. And the machine does it-quicker, easier, better.
Washing machines weren't invented in this country. They were known in England as long ago as 1782. But, it remained for American manufacturers to produce them in numbers-to popularize them. In two short decades before the war, ther put electric washing machines in $13,000,000$ bomes-and reduced the cost by two-thirds!
Other nations have craftsmen; other nations bate materials. But it's your wife who gets the machine to end this drudgery-at a price you Gan't resist.

It has been Gisholt's privilege to work with many manufacturers of washing machines-providing the tools to machine many parts, and helping to devise more efficient machining methods. You'll find this true in almost every industry where the swift, accurate turning of metals is important to lower manufacturing costs.

GISHOLT MACHINE COMPANY

1217 East Washington Ave. - Madison 3, Wis.

Turret Lathes - Automatic Lathes - Balancing Machines - Special Machines

This LAARGE SIZE J-M INSULATING FIREBLOK Speeds InstallationCuts Bonding Costs

COUNT ON PLYMOUTH TO DO THE JOB!

A good example of Plymouth performance on a difficult industrial transportation job can be found at the Massillon, Ohio plant of The Griscom-Russell Company. Mr. Neil B. Miller, Superintendent, reports: "Our 35-ton Plymouth Gasoline Locomotive operates continuously 8 hours a day. Service is severe, as we haul from one to four cars per trip on company track having a maximum curvature of 75 degrees and grades up to 6%.
"We have found that Plymouth gives us greater
ease of handling cars along with less maintenance of both roadbed and the unit proper. We are, therefore, very well satisfied."
Without exception, Plymouth users have the same favorable report to make: more efficient operation at less cost. Whatever your industrial transportation problem may be, you'll find a satisfactory answer in the complete line of Plymouth gasoline, diesel mechanical and diesel electric locomotives. Write, without obligation, for complete details.

WICKES mooe mp. a atomantic

 mULTIPLE CRANKPIN TURNING LaTHE

Automatically Turns All Crankpins Simultaneously On Heavy Crankshafts

The Wickes Model MP-8 Heary Duty Single Spindle Automatic Multiple Crankpin Turning Lathe cheeks, furns and fillets all crankpins simultaneously on heary multiple throw crankshafts required for aircraft, marine and similar large engines. This lathe is of the very latest design and is extremely rugged making it suitable for the heaviest of roughing cuts. This same rigidity also makes the lathe capable of the very smoothest of finishing cuts with extreme accuracy in stroke, index, diameter and spacing of crankpins.

Inset shows tooling arranged for turning all erankpins on 6-throv aircraft crankshaft.

The control of the lathe is entirely automatic through electrical push button panel, it being neces. sary only for the operator to load crankshaft and depress electrical push button and machine goes through entire work cycle automatically and stops in unloading position. Write for complete information.

TAYLOR-WINFIELD Portable Spot Welders

(AIR ANDAIR-HYDRAULIC)

Which of these designs will help your production?

When a part is too bulky or too complicated to move to a resistance welding machine, take the welder to the part.

Taylor-Winfield makes a diversified line of portable spot welders, both air and air-hydraulic, many of which are illustrated here.

Because parts to be joined by resistance spot welding differ widely in size, shape, and weight, portable welders must be designed for specific work. Taylor. Winfield cuts the high cost of this procedure by standardizing on gun, transformer and accessory designs. With this unit principle of construction, many different combinations can be applied, without resorting to special designs.

Information on your requirements at your request.

Maylor-Winfied Corporation

WARREN:OHIO

Name
Company
Address

These are a few of the many avallable - Taylor-Winfleld gun assamblies.

City \qquad State

Two great vessels were added to the ClevelandCliffs Fleet during 1943. We now operate 25 boats with a total trip cargo capacitit of 239,700 tons.

GENERAL (7\%) ELECTRIC arroureces

A 12-PARTT TALKING

RACTICAL

for easy understanding, even by non-technical people
for easy instruction, using your own "hometalent" leaders
up-to-the-minute subject mafter, technically authentic

VT, an understanding of electronics as applied in industry can be built ight within your organization, using the ingenious new techniques of winstruction that have proved so successful for wartime training. Every mace of this 12 -part course has been put to test on groups of widely ment education levels. Educators have joined practical plant executives masing its combination of easy understanding and technical accuracy. sou follow the instruction manual, the sessions almost "conduct them(ss," so that no great experience in organizing or instructing people is ssary. Everything essential is furnished except a sound slidefilm projector $\mathrm{mm}, 331 / 2 \mathrm{rpm})$, screen, and a meeting place. Upon completion of the e, your people will have a well-rounded acquaintance with electronic acs, tubes, circuits, and applications.

ALL THESE WILL BENEFIT

ST ELECTRICIANS and maintenance
Al find the course understandable, even if tosiledge of electrical theory is limited.
ITT AND DESIGNING ENGINEERS) it stimulating in suggesting electronic ons io Improve products or processos.
FHEN selling electronic products will be Ilalipped to' talk lo their cuslomars.

EXECUTIVE MANAGEMENT and purchasing agents will be in a botter position to consider and apprave recammendations involving electronic equipment.

PRODUCTION MANAGERS and foremen will get a clearer concepl of the workings of equipment for which they are responsible.

HERE'S WHAT YOU GET

12 Slidefilms and Recorded

 Talks-ach about $1 / 2$ hour long300 Review Booklets-25 sels of 12 individual lessons, keyed to the sildeflms

1 Instrucfor's Manual -a 140-page book with hundreds of Illustrallons and detailod sleps for conducting the course

1 Carrying Case - attractive and strongly buill, if holds records, films, and manuals

The Price - for the complele "packaga" as above, $\$ 100$; extra manuals, $\$ 3$; extra sefs of 12 reviaw, baoklats, $\$ 2$

Orders - can be placed through any local G-E office, or use the coupon below. (Course may be refurned without charge if you are not fully salisfled.)
hRE THE 12 SUBJECTS OF INDIVIDUAL FILMS AND LESSON BOOKS
5. Fundamentals of-Electrictity, Part II
6. Electronic Relay Systems
7. Electronic Retifiter Equipmen!
8. Thy-mo-trol \Thyratron Motor Controll
9. Electronic Coniral of A-c Power
10. Electronic Frequency Changing
11. Photoelectric Systems
12. Electronics, Today and Tomorrow

GENERAL 3 , ELECTRIC

Buy all the BONDS you can- and keep all you buy

GENERAL ELECTRIC COMPANY

Apparotus Dept., Section L685-14
Schenectady 5, N. Y.
DEnclosed Is our order for.-.......complete IN. DUSTRIAL ELECTRONICS courses of $\$ 100$ each.
When could someone in our organization examine the complete kit?

Name.

Company
Address.

Select the right S/V Sova-Kote to

ISURE

 Aganst Rust!If YOU KNOW, the fine craftsR manship that you put into s metal parts can be seriously incted in transit. Rust and corsonare twin dangers that threatall shipments of metal parts. To help you meet this challenge, way-Vacuum has developed its mplete line of $11 \mathrm{~S} / \mathrm{V}$ SovaLies to cover every conceivable stprevention need. It's necesy to select the correct Sovatie to fit your specific requiremts. Here are a few factors to ruider:
The type of part to be shipped, :degree of precision; the methof shipment (whether it's to
be packaged or not); the time involved; the conditions to be met, heat, cold, handling, water, etc.; and finally, the appearance of the part when it reaches its destination.

Your Socony-Vacuum Representative is trained to help you consider these factors and select the right Sova-Kote. He's backed by our years of research and experience in this field. Get his expert advice and assistance.
SOCONY-VACUUM OIL CO., INC., Standard Oil of N. Y. Div. . White Star Div. . Lubrite Div. . Chicago Div. . White Eagle Div. . Wadhams Div. - Magnolia Petroleum Co. . General Petroleum Corp. of Calif.

CONY-VACUUM'S 5 Steps to Lower Production Costs:

USE TITANIUM FOR
 Stabilizing STAINLESS STEEL

AUSTENITIC stainless steel exposed in fabrication or service to temperatures between 900° and $1500^{\circ} \mathrm{F}$. must be stabilized to prevent intergranular corrosion embrittlement.
Titanium is the most economical of the several present methods of stabilizing stainless steel and the supply of titanium is unlimited.

For heat resistance, for tube piercing and for formability titanium stainless steel is the choice of experience.
If you are using stainless steel at high temperatures one of our technical staff will be glad to explain the advantages of titanium to you.

TITANIUM ALLOY MANUFACTURING CO.

Executive Offices: 111 Broadway, New York, N. Y.
General Offices and Works: Niagara Fall.s, N. Y.

THREADS THEM ALL!

Movement of cam lever on the "RAPIDUCTION" die-head sets chasers for any size pipe to be threaded. Micrometer adjustment of lever sets chasers for any depth of thread desired.
Threading speeds of Oster RAPIDUCTION" machines range from only 11.3 seconds on $17_{2}^{\prime \prime}$ pipe to only 3 minutes, 10 reconds on the big 12" pipe. those speeds are maintained on ${ }^{\text {a continuous production basis. }}$

Three Models
No. 6-A "RAPIDUCTION."
standard range $11 /$ "' $^{\prime \prime}$ to $6^{\prime \prime}$ pipe. Bolt range $1^{\prime \prime}$ to $4^{\prime \prime}$.
No. 8 "RAPIDUCTION." Standard range $21 / 2^{\prime \prime}$ to $8^{\prime \prime}$ pipe.
No. 12 "RAPIDUCTION." Standrid range $31 / 2^{\prime \prime}$ to $12^{\prime \prime}$ pipe.
If fou have large quantities of pipe to thread, Oster "RAPIDUCTION" machines will prove to be a profitable investment.

Oster "RAPIDUCTION" die-head adjusted to thread largest size of pipe within range of each machine.

Oster "RAPIDUCTION"' die-head adiusted to thread smallest size of pipe within range of each machine.

Your 7 humbuail is 40 time

 THICKE

MAGNIFIED 500 times, this photo-micrograph shows the fine grain structure of MIR-O-COL HardFacing. The heavy dark portion is the parent metali thin clear band, the bondi and the rest, the deposited alloy.

BECAUSE MIR-O-COL Hard-Facing alloys flow readily when correct welding heat is applied, penetration of the parent metal at the interface averages about .0007 of an inch. Dilution is minimized, as the photo-micrograph (above) shows. The consulting metallurgist who prepared this impartial study of MIR-O-COL No. 2 hard-facing, states that the ferritic grain structure of the hard-facing (light area above) consists of cementite and martensite . . . which combine to give MIR-O-COL alloys their hardness. This hardness, fused at the moment of impingement of either electric or acetylene torch, can form a protective layer of high-alloy metal over
wearing surfaces of your equipment. Scrapers, cutters, material-handling rollers and bucketsin fact, almost any type of apparatus or equipment subjected to constant wear from abrasion, erosion or corrosion-can be economicaily hardfaced. In almost every recorded instance, maintenance costs have dropped, production records gone up, and equipment capitalization minimized by using this dollar-saving MIR-O-COL Hard-Facing, applied easily to iron or steel. Learn more about hard-facing for profit. Write today for your FREE copy of "Weldors' Guide to Successful Hard-Facing." Address Department B-18.

STANDARDS and SPECLALS by the Millions ERRY CAP \& SET SCREN CO.

 THE FERON Road

 THE FERON Road
 MXXGOON HED SRRWS

"SHINYHEADS" Americe's Best looking Cop Scerew Made of high carbon steelAISI C 1038 - 5 hed hexagon Cor full inisws. Heads comheadcap machined top and bottom. Hexagon true, mirror cut, smooth and in stock.
finish. Carried in finish.

HANDARDS

 carried by LEADING istributors
SPECIALS

furnished to BLUE PRINT PECIFICATIONS

SET SCREWS Square head and headlesscupandoval point ened.
stock.
"SHINYTHREADS"
AIRCRAFT ENGINE STUDS Made of highest aircrafit quality alloy steel, finished and body sremely close thread with precision roll. tolerance, with precisight and
FILLISTER CAP SCREWS Heads completely machined rop and bottom. Mursed cham--less burrs. in stock.

_ WRITE FOR INFORMATION
Made of high carbon steelAISI C-1038. Furnished heat black satin finish due heads dieblack nent. Hexagon Point mamade, not mad; flat and chamchine rurned; frength 130,000 . fered. Tensile strength in stock. op and bottom. Milled slots. - less burrs. Flat and Carried feren mack.

MILLED STUDS All studs made steam-tight on rap end unless otherwise fat and tap ified, wered point. Nut
 chammeral point.
end on stock.
ried in

CONNECTING ROD BOLTS Made of alloy stel-heat "reated- hireads rotedy closs -finished to body tole rancesthread and body tole specified. body ground

IONES DRIVES FOR INDUSTRY

2 These illustrations show 2pplication of Jones drives to sotve a wide range of in. dustrial power transmission problems.

A For many years the W. A. Jones Foundry \& Machine Company has been called upon as a consultant, to help solve a great variety of difficult drives involving the use of speed reducers, gears and other transmission machinery. In many cases these installations have called for the development of special equipment, designed and built to suit the specific requirements of the project.

As a result of these years of experience, involving numerous special problems in the mechanical transmission of power, the Jones organization has collected a vast amount of technical data relating to work in various fields.

Specific bulletins and catalogs are available on the products listed below and a general 20 page bulletin "Jones Drives for Industry" presents a broad picture of Jones products, engineering services and manufacturing facilities.

W. A. JONES FOUNDRY \& MACHINE CO.

 4437 Roosevelt Road, Chicago 24, Illinois JUST ASK FOR BULLETIN NO. $80 \quad \Rightarrow$ APPLRACES

Another PESCO precision aircraft development now ready to work for industry

Pesco Equalizing Flow Divider

Pumps and control equipment for hydraulic systems, perfected by PESCO for wartime aviation, today open the way for many new and more efficient uses of Pressurized Power.

PESCO Equalizing Flow Dividers are among the equipment that now makes possible new Pressurized Power applications. These precision equalizers were perfected to synchronize the operation of wing flaps and landing gears. They divide a single hydraulic flow into two
or more outlet flows of equal or proportional volume. They feature a highly efficient geartype design with simplified construction. Pressure limits range up to 2000 p.s.i. in models that vary from 3.8 to 7.7 pounds in weight.

For industry, the PESCO Equalizers are ideally suited for any application where synchronous movement of two or more hydraulic cylinders is required.

Also, units can be furnished with a fixed ratio to provide proportional flows.

Write today for descriptive folder No. 10-1. PESCO PRODUCTS CO.,
(Division Borg-Wamer) 11610 Euclid Avenue, Clęveland 6, Ohio.

Wth of a series if Artzybasheff's impressions of the nianufacture of stecl wire products
Eintaryad roprodurtion Iree wn metursh

WIRE HELLFIRE

Coming from the mouth of a fiery furnace that looks not unlike a legendary dragon; hot, high carbon steel wire is being "patented"-heat treated under carefully controlled temperature conditions to remove the effect of cold drawing and to permit further processing.
This patenting method is one of several used by Wickwire Spencer to produce exceedingly strong, tough wire. Annealing and spheroidizing, which also remove the effects of cold drawing, are softening processes used for steel wire that must withstand severe forming operations.
These processes require skilled craftsmanship, for uniform wire is dependent not alone upon accurate drawing but upon careful attention to heat treating temperatures.

Learning how to handle wire is a skill Wickwire Spencer has been developing for the past 124 years. Our metallurgists are often called upon to develop special formulae for differing wire needs. This knowledge can help you in finding the answer to your wire problems. And our complete control of manufacture, from the making of the steel through processing of the wire, is carried out in our own plants to make certain that the wire is uniform in size, tensile and stiffness . . . and therefore easier on your wire working machines.

We can supply high or low carbon stcel wire; round or shaped; in a wide variety of sizes, tempers, grades and finishes. Let us khow your requirements.

Send your wire questions to

The dependable quality of Harrisburg products is traditionary in the railroad, automotive, oil and other industrics. There are two distinct contributions to this recognized standard of excellence.

1. All products are manufactured completels within the Harrisburg plants where supervision and inspection can be positively controlled from pig to finished product.
2. Progressive research by our own specialists is continually checked by engineering institutes of the highest standing.
Harrisburg Steel Corporation is the largest manufacturer of Seamless Steel Cylinders for high pressure, compressed gases. The plate-made proccess provides cylinder walls so uniform in thickness that strengths are equalized, hence more dependable in meeting severe service. This knowledge has been applied to the seamless steel processing of the $\mathrm{CO}_{\text {: }}$ Liquefiers, Pipe Couplings, Pump Liners and Deep Drawn Products. Quality in volume production is the result.

(H)

HARRISBURG STEEL CORPORATION

HARRISBURG, PENNSYLYANIA
against

Dust takes no time out for its damaging attack on production equipment. Every hour-every minute, dust strikes at your pocketbook.

Dust control, however, can be effected easily, at a cost that makes it a wise investment. Effective control depends upon two main conditions: First: hood design at the dust source is of vital importance. Proper air volume and velocity are necessary to gather the dust into a correct piping system. Second, efficiency of dust collector operation must be considered such as horsepower consumed by pressure loss through the collector, and the increase in pressure loss during operation. Likewise, maintenance cost must be considered.

Through simplified and efficient design, Dustubes have set new high standards for controlling dust. Tests on past installations have shown a collecting efficiency of more than 98% by weight, and Dustubes are extremely inexpensive and easy to operate and maintain.

An American engineer can apply the many advantages of Dustube Collectors for an efficient, practical answer to your dust problem. Write for further information.

AMERICAN foundry equipment co.

509 S. BYRKIT ST.

HIGH EFFICIENCY Extremely fino dusts, particularly those within the low micron size range are trapped with nearly 100% efficiency by weight.

EASY DISPOSAL Trapped dust shaken from tubes is discharged from storage hopper through a specially designed outlet volve.

graphitar parts prove their efficiency in
 (CARBON-GRAPHITE)

The use of Graphitar in automotive engineeri is becoming wide-spread as more and more e gineers learn of the unique qualities of this u usual carbon-graphite material. For examp Graphitar seals are used in many automoti fluid couplings, torque converters and hydrav transmissions because they efficiently retain oil even under $60 \mathrm{lb} . / \mathrm{sq}$. in pressure at 350 and $500 \mathrm{ft} . / \mathrm{min}$. speed. Mechanically stror self-lubricating, chemically inert, and highly sistant to heat-Graphitar parts reduce chan of mechanical failure in pleasure cars, tru

Graphitar seals do not gall or leak and relain hot oil under pressure in fluid couplings, torque converters, and hydraulic transmissions.

Graphitar liquid pump seals are drop tight against water, anti-frese, hydro carbons etc.

graphitar parts fill needs in
 (CARBON-GRAPHITE)

scores of industries

Graphitar, with a chemical analysis of more than 97% carbon, has an industrial versatility which has proven its worth in innumerable applications. Chemically inert, Graphitar is widely used in equipment handling hydrochloric acid, potassium dichromate, sodium hypochlorite, and other corrosive solutions. Graphitar will not melt or fuse at any temperature, hence it is an ideal bearing material for bakery ovens, kiln cars, and steam dryers. Graphitar has proven exceptionally successful for steam turbine sealing rings, pump blades, conveyor bearings, cylinder liners, water meter discs, and scores of other vital installations. Light-weight, yet mechanically strong, Graphitar can be ground to almost any shape and to tolerances as close as $.0005^{\prime \prime}$ in small sizes. Because of these and other outstanding characteristics, Graphitar may solve some engineering or mechanical problem confronting you. Write today for new 44 page illustrated catalog.

THE UNITED STATES GRAPHITE COMPANY - SAGINAW, MICHI

lan You See This ERROR in Your Business?

Host likely, you have run across tors of a similar nature-a hurried ance, the pencil mistaking the posiaf the 8 and 3. Errors that mean lossly checking and re-checking to dhe cause later on-a job that wis in time and money.
iet such errors are needless-can Wily be eliminated by the use of the Yotforms. Forms that allow one peratone time to write all the needed files-forms with fresh interleaved Fons that assure instant readabil-- forms such as those Uarco
brings to the business world.
Creating better forms is Uarco's business-scientifically designing forms that keep business procedure moving smoothly-prefabricating paper and carbons into forms that mean time and money saved.
Have a Uarco representative call on you today. It will cost you nothing and may well result in cutting the number of errors in your business records. Or for detailed informationwrite us today.

United Autographic Register Company Chicago, Cleveland, Oakland - Offices in All Principal Cities

SCALES

FAIRBANKS, MORSE \& CO. CHICAGO 5, MLINOIS

EDITORIAL STAFF
E. L. Shaner Editor-in-C'hief
E. C. Kneutzueng Editur
x. M. Mooney Inwin H. Such Sturs Editor Enginecring Editor
IJ. D. Knox
Guy Hunband Alont Editor Machine Tool Editor

Don S. Canot Art Editor

ASSOCIATE EDITORS

G. H. Manlove, W. J. Campaell 7. Himball, F. H. Buggs, D. 13. Wilkin Vance bell
han York: B. K. Pmee, L. E. Bnowne Pittsburgh: J. C. Sullivan

- E. F. Ross Detroit: A. H. Allen Washington: L. M. Lamas
London: Vincent Delport

ASSISTANT EDITORS

J. Fingulin, Dolones K. Blaita, helle Bell, Virginia B. Hatias
EDITORIAL CORRESPONDENTS

1 W. Kincer ingham, Ala. ter ת. Reiss kagslowis, O . ac Mutciens Louis, Mo.
L. C. Feldmanin Buffalo, N. Y. Sameife S. Camb Cincinnati, 0. F. S. Tomin Toronto, Ont.

Maurice beam
453 Bel Aire Drive, La Canada,
Los Angeles, Calif.
Robent Bottomff
Hs Bush St., San Francisco, Calif.
R. C. Hirl
tof Marion St., Seattle, Wash.

BUSINESS STAFF

G. O. Hays

Business Manager
C. Jajnke
C. H. Bailey *ing Manager Advertising Scrvice
Fig, E. W. Kneutznemg, K. A. Zollnen ruburgh, S. II. Jasper, B. C. SNell
Leggo, L. C. Pelott, V. W. Volk
bld, D. C. Kiefen, H. G. Rowzand
Los Angeles, F. J. Fullen
RESEARCH and PROMOTION
J. W. Zunen, Manager L. Hartrond, Assistant Manager Helen Metzner, Circulation

PRODUCTION DEPARTMENT
A. V. Anderson, Manager

MAIN OFFICE

Building, Cleveland 13, Ohio

BRANCH OFFICES

14 17 16 East 43rd St. 11 520 North Michigan Ave. th 19 2800 Koppers Building 6560 Cass Ave. zom 4 956 National Fress Bldg.湢 4 . . 130 N. New Hampshire Ave.

2 Caxton St., Westminster, S.W. 1
by Tme Penton Publishing Co., Penton Trund 13, Olio, T.. 1.. Suaser, President 2C. G. Hays, Vice President and General C Chatide, Vice President; F. G. SteineTizasurer and Secretary; E. L. Werver, Linsurer.
hbtit Bureau of Circulations: Associated 'apers, Inc., and National Publishers'

Crity Monday. Subscription in the United Hathions, Canada, Mexico, Cuba, Central Herica, one year $\$ 6$; two years 310 ; all En, one year \$12. Sinple copies (current 5 antered as second class materer at the Corige cand, under the Act of March 3, 1045 by the Penton Publishing Co.

NEWS

Steelworkers Launch Campaign for 25-cent Hourly Wage Increase 87
OPA Considering Steel Industry's Request for Price Increase 89
Multiple Basing Points Estalhlished for Stainless Steels 90
Coverage of Price Adjustment for Individual Firms Extended 91
Industry Making Rnpid Progress in Slifting to Peacelime Production 92
New Regulation Aims To Speed Up Disposal of Surplus War Plants 93
Fabricators of Steel Products on West Coast Optimistic for the Future 94
Germans Successful but Late in Taking Factories Underground 106
TECHNICAL
Flash Butt-Welding Heavy Metal Sections 116
Huge 1200 kva machine handles shafts of from 1 to 6 in . in ainmeter Machine Feed Conversion Chart for Quick Reference 119
Converts inches of feed per minute to amount to feed per tonth
Machine Tool Buillers Study Customer Expectations 120
Transition to peacctime business portends importan 122
Nazi policies found detrimental to progress in all but few plants Magnetic Coolant Separators for Machine Tools 130
Automatic continuous-flow units quickly remove metal particles
Tangent Bending-A New Method of Metal Fabrication 125
Tooling for difficult forming operation 132
Effectiveness of three systems of interrupted quenching covered
Spiegeleisen-Its History, Uses and Purposes
Alloy finds wide application in basic and open-hearth shops Effect of Polishing Steel on Electroplated Coatings 143
Variations in surface finishing mode aller protective values
FEATURES
As the Editor Views the News 83
Mirrors of Motordom 103
Present, Past and Pending 95
Windows of Washington 96
Activities 114
Men of Industry 99 The Business Trend 192
Obituaries 101 Construction and Enterprise 210
MARKETS
Steel Orders, Output Fast Approaching Wartime Level 195
Market Prices and Composites 198
Index to advertisers 226
NEXT WEEK...

Carburizing and Nitriding in Muffle-Type Furnaces

Silver Brazing Steel Parts for High Strength

German Tool and Special Steels Industry
Agglomeration of Fine Taconite Concentrates
Check List of Methods of Stress Determination

Constrastion Co. 56 Kingsury, London, W. C. 2, England

MOR GOLL BERTIGS PLAS NON NITA
 a iners of romilia kills ENGINEERS AND BULDERS OF CER MAGINIES REGENERATIVE FURNACE GOITROL

HE EDITOR VIEWS THE NEWS

September 17， 1945

Lifting Our Sights

In analyzing President Truman＇s message to Congress，in scanning Secretary Wal－ lace＇s＂Sixty Million Jobs＂and in listening to those who presume to speak for labor，one gets the impression that much of the official and most of the pseudo－official thinking about the nation＇s internal postwar problems is faulty as to timing and emphasis．

For instance，the President＇s message explains what should be done to facilitate the shift from a wartime to a peacetime basis．His emphasis upon social security，mini－ mum wages and retaining certain wartime controls，coupled with his warning not to reduce the tax burden too sharply，indicates he is concerned almost exclusively with the problems of 1945 and 1946.

In Mr．Wallace＇s book，he contends that in order to assure the common man a better life we must produce－somehow and regardless－a national output of goods and services valued at $\$ 200$ billion a year，providing $60,000,000$ jobs，by 1950 ．The secretary is concerned with manipulating affairs so that by 1950 the nation will have attained the goal he has set．

As for labor leaders，they cry to high heaven that unemployment will climb to fantastic heights in the next six to nine months．Obviously they are not looking ahead beyond the ensuing year．

The one thing in common in all three views is the absence of concern over what will happen five or more years from now．Almost all economists agree that the tran－ sition period will be followed by four or five years of business prosperity．The pent－ up demand now existing at home and the pressure for reconstruction abroad almost automatically guarantee this period of activity at high levels．

But what will happen when this accumulated demand has been satisfied？Will the normal volume of purchases be sufficient to sustain production activities continu－ ously on a high plane？Will this nation be able to stimulate consumption to the point where it can remain in a reasonably satisfactory balance with our known great capacity to produce？Are we prepared to make adjustments to allow for the effects of tre－－ mendous technological progress？

These and many similar questions，in our opinion，should be of even greater con－ cern than the questions pertaining to the problems of the immediate future．Unless we can find good answers far in advance of the time when production catches up with accumulated demand，we run a grave risk of experiencing a serious depression．

It is not too early to be lifting our sights to the long－range view．

POR BETTER BALANCE：It is safe to sume that the production of American industry duning the war exceeded the expectations of prac－ teally every ．qualified expert．Mass production， mupled with many other factors，enabled the na－ boins workshops to accomplish much more than any－ re could have anticipated．
With this proof of our great productive poten－ Wilites so fresh in our minds，should we not realize 4t during the early years of peace ahead we are Hely to produce more goods than we now think
possible？Already some industrialists are revising their figures on expected output upwards．In De－ troit some automobile manufacturing executives now thoroughly believe that＂in three or four years at the outside，automobile production capacity will have far outstripped demand and builders will be begging for new business，that is，for new business to justify a $6,000,000$－car year output．＂

It will not be long before we will hear similar statements from the manufacturers of washing ma－ chines，electrical refrigerators and other mass pro－
duced equipment. We are a nation in which ability to produce has outstripped progress in almost every other field of activity.

Isn't it time for us to concentrate more attention upon markets, consumption, selling and distribution? We must, if we are to have the balance necessary for a sound economy.
-p. 103

NATIONAL LIABILITY: Many indus-

trialists will be surprised at the report of C. F. Newpher and R. II. Smith on the condition in which they found the German fastener industry. Their painstaking investigation shows clearly that in the manufacture of bolts, nuts, rivets and screws, Germany is 30 years behind the times.

No methods were found in use to determine machineability. No evidence was found that spheroidizing had been employed, Age hardening of coldheading wire had not been recognized. No recessed head screws were in use. Seams were prevalent in wire received by the industry. Induction heating had not bcen used in heating bolt blanks.

This seems almost incredible when one considers how efficient Germany is in many other respects. This evidence of the backwardness of an important industry in Germany, coupled with the sad picture in the coal and textile industries in England, suggests that henceforth every nation will realize more clearly that a sick industry is a national liability.
-p. 122

NEW IDEAS BREWING: Machine Tool

Editor Guy llubbard finds evidence that many machine tool builders are rebuilding their engineering and selling departments "literally from the ground up." He believes that as a result of this tendency, the postwar period will witness more salesmen possessing an engineering background and more engineers who are salesminded

Also, in the reorganization of engineering departments, machine designers, tool engineers and electrical engineers may rank on a more equal basis than heretofore. Likewise patternmakers, foundrymen, welding experts and metallurgists are likely to be much more conspicuous in engineering.

New ideas in sales and service may be developed. Some builders see in improved commercial air transport possibilities of spreading the activities of ace sales and service men over larger areas and also of shipping repair parts from the home plant by air instead of attempting to carry complete stocks at various points throughout the country.

These indications of the search for newer and better methods spell progress.
-p. 120

POSTWAR POSTSCRIPTS: The seeretaries of War and Navy have established an ArmyNavy Joint Specifications Board as a permanent activity (p.96) to succeed the wartime Joint ArmyNavy Committee on Specifications. This latter body, organized in 1942, made marked progress in unifying specifications. The new board will review and keep up-to-date existing joint specifications and formulate new ones. This is an important undertaking and one which industry will endorse heartily Electric power output is beginning to decline moderately (p. 192) and may drop more sharply in the next month or two. The private power companies did a wonderful job of meeting the wartime demand. Power shortages were almost unheard of and the companies provided the extra facilities required with little assistance from outsiders American servicemen entering Tokyo found that in some areas almost every house had a lathe, drill press or other machine for doing war work (p. 109), indicating that the enemy had tried a crude system of "backyard factory" subcontracting . . . Germany, equally hard pressed to move war plants out of reach of Allied bombs, had a more elaborate scheme. It constructed large airplane plants and even oil refineries underground (p. 106) and it was estimated that just before V-E Day 30 per cent of the nation's most essential war production was underground A new method of metal fabrication is commanding attention. Called tangent bending (p. 124), it is a cross between press forming and straight bending in which the metal llows during the bending operation and its shape is controlled by a die . . . A number of new basing points for stainless steel (p .90) have been announced OPA has granted a 10 per cent increase in the selling price of certain gray iron castings (p. 89), which helps to correct an inconsistency that had plagued many gray iron foundrymen Some questions which arose in industrial circles when United States Steel Corp. acquired Gunnison Homes, Inc. in 1944 are answered in the current announcement by Cunnison (p. 95) that it will build a $\$ 1$ million plant at Newt Albany, Ind., capable of turning out 1650 prefabricated houses per year on a single shift basis \ldots. . Roy A. Hunt, president of the Aluminum Co. of America, states that the steel industry's peacetime consumption of aluminum (p. 95) may be about 10 times greater than it was before the war.

EDITOR-NN-CHIEF

Cateful handling and storing insures perfect condition of Allegheny Stainless from Ryerson stacks.

Ryerson slainless service Ineludes Allegheny Stainless tuking and pipe ready for prompt shipment.

Duetility determinations of stainless sheets are made on the Erichsen machine in a Ryerson laboratary.

Allegheny Stainless Will Serve You Best?

Ryerson Offers Diversified Stocks, Technical Assistance, Prompt Shipment

25 types of Allegheny Stainless . . . a wide range of sizes in sheets, plates, bars, tubing, pipe, etc. . . . are ready at Ryerson for your present production and postwar planning.

To help determine the best types for your use and how best to fabricate or apply them, technical help is available on small orders as well as large. Ryerson has stocked Allegheny Stainless exclusively since 1925 as the finest of stainless steels. The rich experience gained since that time is at your disposal.

11 conveniently-located Ryerson plants bring this complete service on Allegheny Stainless as close as your telephone. Contact the plant nearest you.
Joseph T. Ryerson \& Son, Inc., Steel-Service Plants: Chicago, Milwaukee, Detroit, St. Louis, Cincinnati, Cleveland, Pittsburgh, Philadelphia, Buffalo, New York, Boston.

Write for the Ryersen Stock List describing 25 tyoes of Allegheny Stainless and other steals in stock.

12 years and the share of the steelmaking dollar going to labor has increased steadily.
Steelworkers' average hourly earnings have advanced from 62.8 cents in 1 you to 127.2 in June of this year, as shown in the following table:

1934	62.8	1940	85.0
1935	65.5	1941	9.59
1936	66.8	1942	105.6
1937	81.8	1 y +3	113.5
1938	83.0	1944	121.9
1939	84.2	1945	(June).. 127.2

The last general wage increase granted the steelworkers was in July, 1942, when a raise of $51 / 2$ cents an hour brought about the Little Steel wage formula. In December, 1943, the union asked for an increase of 17 cents an hour and numerous other concessions. The National War Labor Board recommended against the 17-cent hourly increase but allowed enough fringe concessions to afford the steelworkers an actual increase of about 8 cents an hour. These fringe concessions included premium piy for second and third shifts, liberalized vacations, and a maximum of 5 cents an hour to eliminate "inequities."

In making the present wage demands the union cites the loss of take-home pay that is resulting from shortening of the work-week and the increase in the cost of living since the war sturted. Philip Murray, president of the United Steelworkers, said: "Because of the cut in take-home pay due to cuts in hours, the elimination of overtime, and other factors, I contend that living standirds of the people have become so badly depressed that there is ample warrant for industry to grant a 25 -cent an hour increase. We propose to document this claim with data on the profit position of the basic steel industry."

Union officials pointed out the demand for the $\$ 2$ a day increase will af-
fect not only the basic steel industry but a large number of fabricators and others who have contracts with the union. The union claims to represent a total of 800,000 workers, plus about 200,000 more now in the armed services.

Negotiations with the basic steel companies will be carried on by top union officials while the demands on the fabricating and other companies will be handled by district union officials, after the issue has been settled with the primary producers.

Contracts between the union and the comp nies contain "open-end" provisions whereby they can be reopened on short notice for wage negotiations. Mr. Murray stated he expected the negotiations to be expedited by the fact that only one issue, that of wages, is involved.

While the steelworkers' demands currently are the focal point in the wage situstion, considerable unrest is appearing in other sectors of industry. Automobile workers were among the first to make known their demands by asking for a 30 per cent increase in hourly rates, and these demands have been made on principal producers. Little progress has been made on thece dem 'nds with the major builders, although Studebaker Corp. has granted a 12 -cent hourly increase.

More Than 100,000 Idle In Scattered Strikes

Despite widespread concern over the number of people made idle by war contract cancellations, more than 100,000 workers were idle through voluntary strikes throughout the country last week.

Between 25,000 and 40,000 were idle in the Detroit district during the week.

A strike at the Kelsey-Hayes Wheel involving 4500 p. rsons was reflected employment at Ford Motor Co. wh as high as 22,000 were made idle when company was unable to obtain p from Kelsey-IIayes. A strike at Hud involved 6000 and another at Mur Budy Corp. abuut 3000 . Twelve th sand white collar workers at Westingho Electric Corp.'s various plants staging a strike in a bouus dispute.

Steel Mills Undermanned Despite War Plant Layoff:

In the face of mounting claims unemployment compensaition, thous of well paid jobs are guing begging many plants struggling to pruvide terials for reconversion are handicap by a serious labor shurtage.

Although War Manpower Commis figures show $2,100,000$ persons were off from war plants in August, plants generally are undermanned.

Carnegie-Illinois Steel Corp. re its Chicazo plants are experiencing t worst labor shortage since Pearl Hat and that 3500 wo:kers are needed bring the South Chicago and C plants to the desired level of operatio
Republic Steel Corp., Clevelind, carrying on a vigorous recruiting gram in an effort to employ an ac tional 5700 men. The company's quirements include 640 men at Cd land, 1200 at Youngutown, 600 at i ren, O., 800 at Buffalo, 275 at Chic 800 at Birmingham and Gadsden, and smaller numbers at other mills.

Youngstown district steel mills seeking at least 3300 men. Youngst Sheet \& Tube Co. needs 700; Carne Illinois wants 500 ; and Sharon S Corp. needs 100 .

Officials of the Gray Iron Founders' Society met with John W. Snyder, OWMR, to bring to his attention the problems of manpower and price ceilings which, the group maintains, is impeding industrial reconversion by restricting production of gray iron castings. Picture, taken on steps of White House, show, left to right: William Haber, director, Manpower Liaison and Co-
ordination Division, OWMR; H. S. Washburn, Flaintille ing Co., Plainville, Conn.; E. C. Hoenicke, Eaton Mfg. Detroit; C. R. Culling, Carondelet Foundry Co.; St. Loui L. Edinger, Barnett Foundry \& Machine Co., Irvingtom, John W. Snyder; W. L. Seelbach, Forest City Foundries

Cleveland; E. L. Roth, Motor Castings Co., Milwauk

Steel Price Increase Under Study

Office of Price Administration reported considering recent industry request for $\$ 7$ per ton advance. Delay seen pending outcome of new wage demands of workers

OFFICE of Price Administration execuis continue to study the recent request the General Steel Products Advisory manittee for an acruss-the-board inase of $\$ 7$ a ton on all steel products, 4 have not yet made a pulicy decision sto what prucedure to follow in measur3 the need for a steel price increase.
OPA's general reconversion formula freel, Scpt. i3, p. 88), they feel, does dexactly fit the steel industry. They also did that past cost studies furnish no We to future eurnings of the industry muse of the difficulty of forecasting a facturs as product mix and operatrates.
fecent recommendation for a price in3te made the OPA by the Steel Invy Advisury Committee was based on continued risiag costs in the indy, as well as shrinking profit margin manpanying the ending of the war and sculting of of lucrative war business. i many months past steelmakers have ted that without the profitable war -age they would have operated at a $\$$ since prices on the gencral run of Wh steel products was too low to cover :Auction costs.
lats what action OPA will take on steel is is uncertain. Ilowever, in view of Tenewed demarorls of United Steelders of America for sharply increased
it is thought definite action on prices i be delayed until the nutcome of mage negotiations is known.
Thile the report is unconfirmed, promis of pig iron are said to be giving iderahle thought to their price posia formal request to OPA for an inre would not be surprising, it is said.

te Increase Allowed

 Gray Iron Castingshumum prices for gray iron cast-
Which are frozen at base-period 3 may be increased 10 per cent 4 provisins of amendment 10 to raum price regulation 244, issued Treak by the Office of Price Adminis-
Is action was deemed necessary to out the maladjustment in ceiling To which had been brought about by Hparity between the base-period sand the so-called "formula" prices. 'Ancrease in gray iron castings costs Q the base-period prices were estab5 had reached a point where proson of many castings by producers 8 base-perind prices for them is striously discouraged while prosa of the same or other castings at
the higher formula prices is being stimulated.

Costs have risen from 15 to 20 per cent since 1941, or more than the iudustry's average profit on sales of 8 per cent in 1941 wh. n most base-perind prices were set. The cost increase has been accounted for largely by increases in labor custs which now represent about one-half total costs. Labor costs have been increased as a result of a 40 p.r cent increase in straight-time hourly earnings since Jan. 1, 1941, and auginented by a 4 per cent increase reflecting overtine.
The price problem is significant from the standpoint of reconversion because many castines which are now returning to production for use in reconversion proclucts were sold during the base-period and thus have base-period prices. OPA believes that the general level of castings prices will not be increased by the granting of the increase but rather thait there will be a net reduction in prices paid
to buyers because the castings will be more generally made by companies which have the necessary experience and equipment to do the particular job. The amendment is designed mainly to diminish pattern migration.

Adjustable Pricing Allowed On Ferrous Forgings

Producers of ferrous forgings, screw machines and stampings have been authorized by the Office of Price Administration to bill their customers on an adjustable pricing basis, pending a revision of maximum prices to meet reconversion needs. Increases over former ceilings that may be quited, however, are limited to 8 per cent.
All sules made on an adju-tiable pricing basis must be adjusted later to reflect actual new ceiling prices when the current review of ceilings is completed and the amount of price increases to be authorized is determined.
An upward adjuttment in prices for these products appears necessary, OPA said, because of increases in labor and material costs which cannot be absorhed in the narrow margin of profit which these industries had in effect on their civilian production.

Present, Past and Pending

- EXPORT CONTROLS REIAXED DUT RETAINED ON STEEL

Wasiuncton-Export controls have been relaxed, including the freeing of licensing of about 80 per cent of those commudities formerly requiring it, Foreign Economic Administration announced last week. Steel mill products, fuels and lead, tin, brass and bronze manufactures are among commodities still requiring export licenses.

\square ODT TO REMOVE BAN ON CONVENTIONS OCT. I

Washington-Ban on conventions, group meetings and trade shows will be removed Oct. 1, Office of Defense Transportation announced last week.

- IMPROVED AIRCRAFT CONTROL CABLES DEVEIOPED

Cleveland-American Steel \& Wire Co. has develuped improved aircraft control cables made of high nickel manganese alloy having the same coefficient of expansion as duralumin, of which frames of must planes are constructed.

- ANDREWS LEASE ON GOVERNMENT PLANT CANCELED

Newport, Ky.-Charles H. Stamm, president, Andrews Steel Co., last week announced that the company's lease on the government-owned shell steel plant at Newport had been canceled by the Reconstruction Finance Corp., effective Oct. 1.

a REFRESHER COURSE OFFERED RETURNED VETERANS

Cleveland-Returning veterans who entered the service from the metals industries are being offered an extensive program of free refresher courses by the American Society for Metals. Objective is to bring individuals up-to-date on all new developments and processes that have taken place during the war.

- METAL TOYS TO BE SCARCE THIS CHRISTMAS

New York-Although metal restrictions have been removed, less than 8 per cent of the toys available this Christmas will be of metal, according to James L. Fri, managing director, Toy Manufacturers of the United States, reporting on a nation-wide survey of manufacturers and store buyers just completed.

LEAD PRODUCTION IN JULY SMALLEST IN YEAR

Washincton-Lead production from domestic mines was 29,756 short tons in July, a decrease of 1771 tons from the June output and smallest production since July, 1944, according to the Bureau of Mines.

12 years and the share of the steelmaking dollar going to labor has increased steadily.

Steelworkers' average hourly earnings have advanced from 62.8 cents in 1 you 4 to 127.2 in June of this year, as shown in the following table:

1934	62.8	1940	85.0
1935	85.5	1941	9.9
1936	66.8	1942	105.6
1937	81.8	$12+3$	113.5
1938	83.0	1944	121.9
1939	84.2	1945	(June).. 127.2

The last general wage increase granted the steelworkers was in July, 1942, when a raise of $51 / 2$ cents an hour brought about the Little Steel wage formula. In December, 1943, the union asked for an increase of 17 cents an hour and numerous other concessions. The National War Labor Board recommended against the 17-cent hourly increase but allowed enough fringe concessions to afford the steelworkers an actual increase of about 8 cents an hour. These fringe concessions included premium piy for second and third shifts, liberalized vacations, and a maximum of 5 cents an hour to eliminate "inequities."

In making the present wage demands the union cites the loss of take-home pay that is resulting from shortening of the work-week and the increase in the cost of living since the war started. Philip Murray, president of the United Steclworkers, said: "Because of the cut in take-home pay due to cuts in hours, the elimination of overtime, and other factors, I contend that living standards of the people have become so badly depressed that there is ample warrant for industry to grant a 25 -cent an hour increase. We propose to document this claim with data on the profit position of the basic steel industry."

Union officials pointed out the demand for the $\$ 2$ a day increase will af-
fect not only the basic steel industry but a large number of fabricators and others who have contracts with the union. The union claims to represent a total of 800,000 workers, plus about 200,000 more now in the armed services.
Negotiations with the basic steel companies will be carried on by top union officials while the demands on the fabricating and other companies will be handled by district union officials, after the issue has been settled with the primary producers.

Contracts between the union and the comp nies contain "open-end" provisions whereby they can be reopened on short notice for wage negotiations. Mr. Murray stated be expected the negotiations to be expedited by the fact that only one issue, that of wages, is involved.

While the steelworkers' demands currently are the focal point in the wage situation, considerable unrest is appearing in other sectors of industry. Automolaile workers were among the first to make known their demands by asking for a 30 per cent increase in hourly rates, and these demands have been made on principal producers. Little progress has been made on thece dem nds with the major builders, although Studebaker Corp. has granted a 12 -cent hourly increase.

More Than 100,000 Idle In Scattered Strikes

Despite widespread concern over the number of penple made idle by war contract cancellations, more than 100,000 workers were idle through voluntary strikes throughout the country last week.
Between 25,000 and 40,000 were idle in the Detroit district during the week.

A strike at the Kelsey-Hayes Wheel Co. involving 4500 p. rsuns was reflected in employment at Ford Motor Co. where as high as 22,000 were made idle when the company was unable to obtain parts from Kelsey-ILayes. A strike at Hudson involved 6000 and another at Murray Budy Corp. abusut 3000 . Twelve thousand white collar workers at Westinghouse Electric Corp.'s various plants were staging a strike in a bonus dispute.

Steel Mills Undermanned Despite War Plant Layoffs

In the face of mounting claims for unemployment compensa:ion, thousnuds of well paid jobs are going begging and many plants struggling to provide materials for reconversion are handicapped by a serious labor shortage.

Although War Manpower Commission figures show $2,100,000$ persons were laid off from war plants in August, steel plants generally are undermanned.

Carnegie-Illinois Steel Corp. reports its Chicazo plants are experiencing their worst labor shortage since Pearl Harbor and that 3500 workers are needed to bring the South Chicago and Cary plants to the desired level of operations.

Republic Steel Corp., Cleveland, is carrying on a vigorous recruiting program in an effort to employ an addlitional 5700 men. The company's requirements include 640 men at Cleveland, 1200 at Youngstown, 600 at Warren, O., 800 at Buffalo, 275 at Chicago, 800 at Birmingham and Gadsden, Ala, and smaller numbers at other mills.
Youngstown district steel mills are seeking at least 3300 men. Youngstown Sheet \& Tube Co. needs 700; CarnegieIllinois wants 500 ; and Sharon Sted Corp. needs 100.

Officials of the Gray Iron Founders' Society met with John W. Snyder, OWMR, to bring to his attention the problems of manpower and price ceilings which, the group maintains, is impeding industrial reconversion by restricting production of gray iron castings. Picture, taken on steps of White House, show, left to right: William Haber, director, Manpower Liaison and Co-
ordination Division, OWMR; H. S. Washburn, Plainville Casting Co., Plainville, Conn.; E. C. Hoenicke, Eaton Mfg, Co., Detroit; C. R. Culling, Carondelet Foundry Co., St. Louis; H. L. Edinger, Barnett Foundry \& Machine Co., Irvington, N. J, John W. Snyder; W. L. Seelbach, Forest City Foundries Con Cleveland; E. L. Roth, Motor Castings Co., Milwaukee

fieel Price Increase Under Study

Office of Price Administration reported considering recent industry request for $\$ 7$ per ton advance. Delay seen pending outcome of new wage demands of workers

OFFICE of Price Administration execuies continue to study the recent request the General Steel Products Advisory mmittee for an across-the-board inlase of $\$ 7$ a ton on all steel products, have not yet made a policy decision to what procedure to follow in measurthe need for a steel price increase. OPA's general reconversion formula Srel, Sept. 3, p. 88), they feel, does uexactly fit the steel industry. They also of that past cost studies furnish no tide to future earnings of the industry mause of the difficulty of forecasting xh lacturs as product mix and operat3 metes.
Recent recommendation for a price inase made the OPA by the Steel Insty Advisury Committee was based mantinued rising costs in the inxty, as well as shrinking profit margin mompanying the encling of the war and ecutting of of lucrative war business. I many montlis past steelmakers have sisted that without the profitable war nage they would have nperated at a $\$$ since prices on the gencrul run of athon steel products was too low to cover Iaduction costs.
lnt what action OPA will take on steel ies is uncertain. However, in view of * renewed demands of United Steclthers of America for sharply increased It is thought definite action on prices 1 be delayed until the nutcome of - Wage negotiations is known.
lihile the report is unconfirmed, pro4s of pig iron are said to be giving widemble thought to their price posi4. A formal request to OPA for an inse would not be supprising, it is said.
ice Increase Allowed i Gray Iron Castings
Harimum prices for gray iron cast3 which are frozen at base-period may be increased 10 per cent - 4 provisions of amendment 10 to anumm price regulation 244, issued seed by the Office of Price Adminis*
its action was deemed necessary to or the maladjustment in ceiling which had been brought about by diparity between the base-period thand the so-called "formula" prices. increase in gray iron castings costs. dithe base-period prices were estabfor or reached a point where probase of many castings by producers serise-period prices for them is 2 seriously discouraged while prowo of the same or other castings at
the higher formula prices is being stimulated.

Costs have risen from 15 to 20 per cent since $19+1$, or more than the indusiry's average profit on sales of 8 per cent in 1941 wh. n most base-period prices were set. The cost increase has been accounted for largely by increases in labor custs which now represent about one-hillf total consts. Labor costs have been increased as a result of a 40 por cent increase in straight-time hourly earnings since Jan. 1, 1941, and auginented by a 4 per cent increase reflecting overtime.

The price problem is significant from the standpoint of reconversion beciuse many castines which are now relurning to production for use in reconversion pruducts were sold during the base-period and thus have base-period prices. OPA believes that the general level of castings prices will not be increased by the granting of the increase but ratler thiat there will be a net reduction in prices paid
to buyers because the castings will be more generally made by companies which have the necessary experience and equipment to do the particular job. The amendment is desighed mainly to diminish pattern migration.

Adjustable Pricing Allowed On Ferrous Forgings

Producers of ferrous forgings, screw machines and stampings have been authorized by the Office of Price Administration to bill their customers on an adjustable pricing basis, pending a revision of maximum prices to meet reconversion needs. Increases over former ceilings that may be quoted, however, are limited to 8 per cent.
All sales made on an aldint table pricing basis must be adjusted later to reflect actual new ceiling prices when the current review of ceilings is completed and the amount of price increases to be authorized is determined.
An upward adjutment in prices for these products appears necessiry, OPA said, because of increases in labor and material costs which cannot be absorhed in the narrow margin of profit which these industries had in effect on their civilian production.

Present, Past and Pending

- EXPORT CONTROLS RELAXED BUT RETAINED ON STEEL

Wasinncion-Export controls have been reliaxed, including the freeing of licensing of about 80 per cent of those commudities formerly requiring it, Foreign Economic Administration announced last week. Steel mill products, fuels and lead, tin, brass and bronze manufactures are among commodities still requiring export licenses.

- ODT TO REMOVE BAN ON CONYENTIONS OCT. 1

Washington-Ban on conventions, group meetings and trade shows will be removed Oct. 1, Office of Defense Transportation announced last week.

- IMPROVED AIRCRAFT CONTROL CABLES DEVELOPED

Cleveland-American Steel \& Wire Co. has developed improved aircraft control cables made of high nickel manganese alloy having the same coeflicient of expansion as duralumin, of which frames of most planes are constructed.

- ANDREWS LEASE ON GOVERNMENT PLANT CANCELED

Newport, Ky.-Charles H. Stamm, president, Andrews Steel Co., last week announced that the company's lease on the government-owned shell steel plant at Newport had been canceled by the Reconstruction Finance Corp., effective Oct. 1.

a REFRESHER COURSE OFFERED RETURNED VETERANS

Cleveland-Retuming veterans who entered the service from the metals industries are being offered an extensive program of free refresher courses by the American Society for Metals. Objective is to bring individuals up-to-date on all new developments and processes that have taken place during the war.

- METAL TOYS TO DE SCARCE THIS CHRISTMAS

NEw York-Although metal restrictions have been removed, less than 8 per cent of the toys available this Christmas will be of metal, according to James L. Fri, managing director, Toy Manufacturers of the United States, reporting on a nation-wide survey of manufacturers and store buyers just completed.

LEAD PRODUCTION IN JULY SMALLEST IN YEAR

Washington-Lead production from domestic mines was 29,756 short tons in July, a decrease of 1771 tons from the June output and smallest production since July, 1944, according to the Bureau of Mines.

Multiple Basing Points Established

Consumers in many areas will get substantial saving in freight charges. Cleveland and Chicago named basing points by U. S. Steel subsidiaries for products made in those areas

SUBSTANTIAL savings in freight charges for stainless consumers in many areas will result from a multiple basing point system established by a number of stainless producers.

Formerly all stainless was priced on a Pittsburgh base, regardless of where it was produced. Recently three United States Steel Corp. subsidiaries formally announced the establishment of bases at points of production. Several other producers likewise have set up bases at their producing mills. Other stainless producers who have not yet announced new bases are expected to meet the competition of those that have.

Carnegie-Illinois Steel Corp. has designated Chicago a basing point for stainless steel ingots, blooms, billets, slabs, hat and crld-finished bars, shapes, hot-rolled strip, sheet and forging billets of sizes and fi ishes produced in compary mills there. Company's former Pittsburgh basing point structure on stainless steel ingots, blooms, billets, slabs, hot and cold-finished bars, plates, sheets and forging billets remains unchanged.

American Steel \& Wire Co. has made Cleveland a basing point for stainless cold-drawn wire, cold-rolled flat wire, cold-finished bars and cold-rolled strip.

National Tube Co. Names Chicago

National Tube Co. has established a basing point at Chicago to apply to its price schedule M , covering stainless steel seamless tubing for mechanical and pressure purposes for the range and sizes produced at Chicago. Pittsburgh will continue to be a basing point for similar products.
All changes for these three companies were made effective Sept, 7 and are subiect to Office of Price Administration ceilings.

Sharon Steel Corp. has established basing points at Youngstown (because Sharon is in the Youngstown switching district) on stainless steel ingots, blooms, billets, slabs and hot and cold-rolled strip.
Allegheny Ludlum Steel Corp. has set un a basing point at Dunkirk. N. Y. for forging billets, hot and cold-finished bars and cold-drawn.wire, and at Watervliet, N. Y., on hot and cold-finished bars.

Midvale Co . has set up a basing point

NO LONGER SECRET: This combat unit, hitherto on the secret list, is a $155 . \mathrm{mm}$ howitzer motor carriage $\mathrm{M}-41$ which was just getting into production at Massey-Harris Co., Racine, Wis., when the end of hostilities halted the project. The gun is mounted on the chassis of a light $\overline{\mathrm{M}}-24$ tank. The vehicie is powered by dual Cadillac V-8 engines, and carries a five-man crew
at Philadelphia for ingots, blooms, billets, slabs, and hot and cold-finished bars.
Last June Carpenter Steel Co. set up a basing point at Reading, Pa., on stainless ingots, blooms, billets, slabs, forging billets, hot and cold-finished bars, hot and cold-rolled strip, cold-drawn wire and cold-rolled flat wire.

The Steel \& Tube Division of Timken Roller Bearing Co. announced it has established Canton, O., as a new basing point for stainless steel ingots, blooms, billets, slabs, hot-rolled bars, cold-finished bars and forging billets. All tool steel products of the Timken Steel \& Tube Division were also placed on the Canton, O., basing point. Recently Timken announced that carbon, alloy and stainless steel pressure tubing and stainless steel mechanical tubing would be sold on a Canton basing point.

Another producer, the American Rolling Mill Co., announced it has established Middletown, O., as a basing point for the various grades and sizes of stainless steel sheets and plates made at its Middletown plant.

Crucible Steel Co. of America has established new basing points on stainless steel at Syracuse, N. Y., and at Newark, N. J., effective Sept. 17. Syracuse base is applicable to billets, hot-rolled bars,
cold-finished bars, hot-rolled rods and cold-finished wire within the ranges manufactured by the company. The Newark base has been established to cover products manufactured by Crucible at its Atha, Spaulding and Jennings works. The products on this base include billets, hot-rolled and coll-finshed bars, hot-rolled rods, cold-finished wire and cold-rolled strip. Products quated on a Pittsburgh base by Crucible comprise stainless steel blooms, billets, hotrolled bars, cold-finished or polishod sheets and cold-finished strip milhiu the range of sizes manufactured in its Pittsburgh area plants.

Rustless Iron \& Steel Corp., Baltimore, announced it has established Baltimore as a basing point on its profucts. effective Sept. 12. Main products in clude stainless ingots, hot-rolled and cold-finished bars, cold-finished wire anc cold-rolled flat wire.

Previously a consumer anywhere the country paid the Pittsburgh bas price plus rail freight charges fro Pittsburgh to the point of delivery. Thi applied even if the consumers bous steel produced next door and delives involved no rail charmes.

With the establishment of basin points at producing mills, buyers

Chicago and Cleveland, for example, will be saved rail charges from Pittsburgh.
Freight charges from Pittsburgh to Chicago are $\$ 7.40$ a ton and from Pittsbugh to Cleveland, $\$ 4$ a ton.

Steel Corp. Shipments Show Drop in August

Finishod steel chipments by the United Shates Steel Corp. in August totaled 1,332,183 net tons, a decrease of 276, 814 tons from the $1.608,934$ tons shipped In July and 411.305 tons less than in hugust, 1944. For eight months ended Lug. 31 shipments totaled $13,066,133$ lens, agains! $14,130,864$ tons in the commable period last year.

August Steel Production lowest Since June, 1940

Steel production in August fell to the West point in 62 months, according to a Eport released last week by the Amerian Iron \& Steel Inslitute.
Total output of incots and castings in drgust was $5,712,770$ tons, compared oith 6,987,0c8 tons in July, and 7,498,${ }^{3} 3$ tons in August, 1944.
August production was the lowest 43 Ince June, 1940 when output was 5,657 ,43 tons. However, actual tonnage prosed in August exceeded output in all the two months of 1929. the best peacese steel production year on record.

Coverage of Price Adjustment For Individual Firms Extended

Abstract

New supplementary order 133 provides for individual price adjustments of specified items for manufacturers who face production at a loss under existing ceiling prices. List of eligible items ranges from raw materials to consumer items

SUPPLEMENTING a general announcement of a new order, No. 133, effective Sept. 15, for i..dividual price adjustments of specified items for manufacuurers who can show they face production at a loss under existing ceiling prices, the Office of Price Administration last week said no adjustment will now be made under this action that could be made under supplementary orders 118 and 119 (Steel, July 30, p. 60), the reconversion individual adjustment orders.

The list of eligible items, contained in an appendix to the action, contains a wide variety of goods, from raw i..dustrial materials to consumer items.

Supplementary order 133 applies to numerous orders, among them the general midinum price regutation and the followi..g price schedules: No. 2, Aluminum scrap and secondary aluminum; 3 , zinc scrap and secondary slab zinc; 6 , iron and steel products; 8 , pure nickel scrap, monel metal scrap, stai.iless steel scrap; $10, \mathrm{pg}$ iron; 12, brass mill scrap; 15, copper; 17, tin; 41, steel castings and railroad specialties; 69, primary lead; 70, lead scrap and secondary lead; 71, cadmium; 77, beehive oven coke; 81 , slab zinc; 93, mercury; 124 , rolled zinc products; 138 , ferromanganese and mangarese alloys and metal; 147, bolts, nuts, screws and rivets; 159, fabricated concrete reinforcing bars; 188, manufacturers' maximum prices for specified building materials and consumer goods: 198, silver; 199, lead bullet rod; 202, brass and bronze alloy ingot and shot; 214, high alloy castirgs; 235, manganese steel castings and manganese steel castings products; 241, malleable iron castings; 244, gray iron castings; 302,

STEEL INGOT PRODUCTION STATISTICS

magnesium scrap and remelt magnesium it gut; 609, platinum group metals and their products; 314, maguesium and magnesium alloy ingot; 377, die castings; 405, ferrusilicon and silicon metal; 407, ferrochromium and chromium metal; 416, basic refractories products; 489, tungsten, molybdenum, vanadium, cobalt and certain other alloys and metals; 497, antimony; and 575, chromium chemicals.
An applicant for relief must be a manufacturer of one or more of the products listed in the apperdix and in addition he must be able to show that both the following conditions exist:
(1) In the last three or more months, his business operations as a whole have been conducted at a loss, or will be so immediately, as a result of recent changes in the industrial picture, and
(2) the existing or prospective loss is for some basic or persisting cause, and is not due to: (a) Seasonal, non-recurring or temporary factors affecting operation; (b) a reduction in volume of production below the normal economic capacity of the plant; (c) the payment of unlawful wages or excessive salaries or of similar unjustified prices for materials; (d) the payment of voluntary wage increases under the executive order of Aug. 18, 1945; (e) current overhead costs that are abnormally high relative to sales volume, except where these costs can be shown to be unavoidable; (f) transactions with affiliated corporations or businesses that are different from transactions resulting from arm's length bargaining, or from customary transactions with such businesses; (g) the setting aside of funds for war reserves or other contingencies. Increases may be in the form of uniform percentage increases for all products eligible (that is, those included in the appendix), or the increases may be unequally distributed among the eligible products, raising some prices more than others, OPA said.

If all the products manufactured by an applicant are eligible products, then the applicant may expect to receive an adjustment up to the amount necessary to compensate him for the loss he has established in his application, OPA said. However, if a manufacturer produces both eligible and ineligible products, and if his overall loss on both types of products is, say, five per cent of sales, then OPA will in general grant a five per cent increase on eligible products only, the agency explained.

Industry's Transition Pace Rapid

Encouraging progress reported in shiffting facilities to production of peacetime goods. Raw materials supply improving

INDUSTRIAL reconversion is moving into high gear. Transition from a warcontrolled and war-supported economy is proving less dilficult than had been expected in many quarters, though a great many obstacles to an open road remain to be cleared away.

For instance, labor is showing signs of kicking over the traces. This can retard reconversion greatly. Then, government economic policy is not clear, in fact is so foggy in some directions it is highly disturling to equanimity in business circles. President Truman has made his pustwar recommendations to Congress in an 18,000 -word message but it will be some time before action can be expected on a number of highly controversial measures which the President has propounded. Also the matter of high production costs and frozen price ceilings under continued strict government control make it difficult for business to move ahead with a great degree of confidence in its ability to carry on profitably.

These are only a few of the factors which cloud the outlook. There are more, some of them of major import, and there are some yet to appear. Nevertheless, things are shaping up sufficiently well to encourage the view that many lines of production will be over the reconversion hump by yearend.

Since V-J Day more than $\$ 35$ billion in war contracts have been canceled. Munitions procluction has been cut back 60 per cent. A start has been made toward clearing some $\$ 14$ billion worth of government-owned machinery and equipment from thousands of privately owned plants. Reconversion Director John W. Snyder in his report to Congress said that since Aug. 15 the War Production Board has canceled 229 orders which had pre-empted materials and that only those controls are being kept which will be required to assure orderly and equitable distribution of available supplies and prevent inflationary bidding.

President Truman discusses pending legislative matters with leaders of Congress as that group resumed its scssion to consider reconversion problems. Left to right: Speaker of the House Sam Rayburn; the President; Senate Majority Leader Alben Barkley; and Sen. Kenneth McKellar, president pro tem of the Senate. NEA photo

At the same time the government is beginning to move aggressively toward the disposal of surplus war goods and plants.

With few exceptions raw materials are in improving supply for civilian goods production. Most steel products can be had fairly promptly and the steelmakers are booking business in large volume. Steel ingot operations have staged a remarkable upturn since the sharp slump in production which followed immediately the end of the war with Japan.

Ingot Rate Recovering

Currently ingot operations are placed around 80 per cent of capacity, a rise of almost 7 points in the past week. This is considerably under the level which prevailed prior to V-J Day, but 80 per cent operations on present capacity of over 95 million ingot tons is something to marvel at when it is considered current output when rated against prewar capacity of 81 million tons is equivalent to a prewar uperating rate of 93 per cent.

When the Controlled Materials Plan passes out Sept. 30 virtually all business will be on an unrated basis. Three priority ratings will be continued in effect but they will apply only on a relatively small volume of business. The AAA rating will be continued for critical projects. Also there will be an MM rating for military procurement, and a CC rating to be used as a civilian gonds production bottleneck breaker. This latter rating will be used very sparingly, only when resort to other means for eliminating chokepoints is impossible.
Reconversion progress is reported gen-
erally throughout the country. Experience in the indjvidual industries varies but on the whole noteworthy gains are being scored. In the dumestic washing machine industry, for example, manufacturers now expect to tum out 25,000 more washers in the present quarter than had been previously planned. The previous forecast, made earty in August, had been for production of 50 ,000 machines, or 10 per cent of the prewar production rate. The 75,000 washers now expected in the quarter represent 15 per cent of the prewar rate. In the October-November-Decenber period, it is expected the peacetime production rate of 500,000 machines a quarter may be reached.
Because of the desirability of getting into production as quickly as possible early models will be much like the types produced in the immediate prewar period. For a three-year period, May 15 , 1942, to June 7, 1945, manufacture of domestic washing machines, ironers and driers, was prohibited. During this time the industry converted 100 per cent to the production of war material.
Shortly after the victory in Europe the production limitation was liberalized and WPB assistance given the industry is starting to reconvert. This assistance was of two kinds. First, priorities were granted to individual manufacturers to obtain tools, equipment and construction materials needed to reconvert. At present about 25 per cent of the new construction approved by WPB has been completed, and approximately 50 per cent of the bottleneck tools and equipment have been installed. Additional assistance granted consisted of the setting
side of a pool of critical materials from wlich allucations were made to manufacturers to produce specified quantities of washers in third quarter of this year. This set-aside of materials was achieved trough the adoption of a program for production of washers of which the counto was in great need. The effect of tis program has been to give individual manufacturers in the industry an early ift on the reconversion road.
Twenty-nine manufacturers had rereived au'horization to produce specifed quantilies of washers and priorities wsistance in obtaining materials before the surfender of Japan. On Aug. 20 the limitaltion order, L-6, affecting production of domestic washers, was abolsted. Production is now controlled only by the rate at which the individual plants on swing into full-scale operation.
As sufficient labor is available in the idustry the major problem now confonted comcerns the speedy acguisition f materials, such as sheet steel, gray ton and malleable iron castings, zinc die masings, motors, wringers and quick aning prolective coatings. By the end the year it is believed the indu try ㅔㅐ be nperating at its full peacetime re, and loy neat spring may be producag at a rate above prewar level.

lend-Lease Repayments In Bauxite Recommended

Recommendation that the United States al its lend-lease debtors to repay part their obligation in bauxite was made at week by a Senate subcommittee on vall business surplus war property loded by Sen. Tom Stewart (Dem., enn,
The committee also recommended the reconstruction Finance Corp. continue \therefore operation of government-owned alumam plants "until private enterprise deThines which plants, if any, it will te over and that the remaining plants be med over to the Bureau of Mines for eration, expansion, or maintenance, xording to the best interests of national
zense." Rense."
High-grade bauxite ores in this country limitd, the committee pointed out, the Frunce, French, British and Dutch Nlaya, the Netherlands and British Use have substantial deposits.
use of government-owned stockpiles bauxite at Hurricane Creek, Ark., ould be made to supply American zhinum producers until they can Tange for their own supplies, committee whluers said. They suggested that ming prices can be reduced so as to 4 an operating profit of not more - 5 per cent.

The committee also recommended that Esiseas battle scrap should not be tardoned but should be "returned to United States to whatever extent hering and transportation costs will *aromically justify."

New Regulation Aims To Speed Up Disposal of Surplus War Plants

Abstract

Preferential treatment withheld from contractors in possession of plants but is accorded veterans and small business. Pricing policy is described by Surplus Property Board as flexible and designed to encourage quick disposal and utilization

SPEEDY integration of surplus industrial plants into the peacetime civilian economy is the aim of regulation No. 10 relating to the disposal of industrial property, issued last week by the Surplus Property Board.

No preference is provided for contractors in possession who have been operating the plants for the government during the war.

Speed in disposal is emphasized by the policy contained within the regulation. Veterans and small business are given preferential treatment. The regulation gives effect to the policy of SPB that industrial facilities, particularly mediumsized and small plants, be sold or leased to local or small firms, "preferably those owned or controlled by veterans."

As previously announced by SPB, the Reconstruction Finance Corp. is directed to accept offers from responsible local groups with adequate working capital and other necessary qualifications and to extend liberal credit terms over a period of years, in preference to a cash offer from a firm or group that would tend to concentrate economic power.

Designed for Quick Disposal

The pricing policy is flexible, designed to encourage quick disposal and utilization. The selling price shall be arrived at by negotiation and shall be determined by actual proposals received and by a consideration of the use of the property most desirable in the light of the objectives of the Surplus Property Act. In appropriate cases sales by sealed bid are permitted. Transfers of industrial property to government agencies, in accordance with the Surplus Property Act, are to be made at "fair value." To carry out this provision, the board also issued a special order No. 19, which gives the formula for determining the so-called fair value. This is defined as the price that a well-informed typical buyer would pay if he were purchasing the property for a profit-making purpose. In estimating the fair value, only such rights in land, building, and equipment that would be of use to such a buyer shall be considered. In sales to other than government agencies, the "fair value" need not necessarily be obtained, however.

In the case of facilities in which the government owns only a part of the plant or equipment, the possibility of convert-
ing the government-owned share into a unit capable of independent operation must be studied. the feasibility of subdividing plants for multiple tenancy or joint use by mure than one small business will also be considered.

Further aid is given to small business and to veterans by grunting to the Smaller War Plants Corp. the power to purchase plants under its prisity for resale or lease. First piority is grauted to all govemment agencics and second to state and local govermments.
No plant costing mure than $\$ 500,000$ and classified as alumi:nm, magnesium, synthetic rubber, chemical, aviation gasoline, iron and steel, aircraft, or shipyard can be sold or leased without approval by SPB. The sale of plants costing more than $\$ 1,000,000$ must be submitted to the Department of Justice for clearance.

Regulation No. 10 sets up certain safeguards against buying by speculators. Each purchaser must certify that he is acquiring property for his own use and not for resale or lease. No plant or part of a plant, excepting the governmentowned portion therenf, can be dismantled or moved without first giving 30 days' notice to the government of the state and municipality in which the property is physically located. This is intended to protect local communities against the loss of employment from removal of war-acquired industry.

To be disposed of under this regulation of SPB are industrial plants representing $20-25$ per cent of the country's industrial facilities, or roughly one-third more than the country's productive capacity before the war.
In certain categories, the government holdings represent the dominant part of entire industries. Synthetic rubber plants, for instance, represent 98 per cent of that industry's capacity. The government also owns 90 per cent of aircraft, 90 per cent of magnesium, and 55 per cent of aluminum productive capacity.

CMP Control of Sales by Warehouses To End Sept. 30

Steel, copper and aluminum warehouses and distributors have been informed by the War Production Board that Controlled Materials Plan regulation No. 4, which governs their sales, will be revoked autnmatically by the expiration of CMP on Sept. 30.

Fabricators of Steel Products on Coast Optimistic for the Future

Abstract

Manufacturers, shiffing from war to peacetime production rapidly, see bright outlook. Many planning expansion of normal activities with reconversion problem one largely of adjustment of customer lists

WHATEVER the final decision on the steel producing plants at Geneva and Fontana, West Coast fabricators of steel products are optimis'ic for the future.
All district fabricators appear to be making the shift from war to peace rapidly. For must of them it is a readjustment of customers rather than reconversion of preducts.
Several companies, normally manufacturers of general lines of heavy steel products, were engaged in shipbuilding during the war. At present they either have completed or are fini hing ship contrac:s but meanwhile they have shifted at least a part of their operations to ship repair and ship conversion. This work has minimized the reconversion shock greatly and it will continue to bolster these companies' fortunes for some time to come.

For example, Co..solidated Steel Corp. definitely plans to make ship conversion a permanent department of its business. Consolidated still is working on new shp contracts. This company plans to be a bigger factor in the peacetime shipbuilding industry. Currently it is building $150-\mathrm{ft}$ steel boats for tuna fishins, and is looking for larger-type coastal vessel contracts.

However, ship work will be only one phase of Consolidated's postwan program. It foresees acquisition of a bigger share of the market for structural preducts, for bridges, factory and office buildings. A promising field is in new installations for the oil industry.

Many Projects in Experimental Stage

Several of Consolidated's postwar projects still are in the experimental stage. Among these is a new type refrigerator car, on which it is working now. It is testing models of alloy steel and aluminum. Another project is an experimental hydraulic pump jack for oil wells.

Consolidated Steel's volume in 1944 was $\$ 379$ million compared with $\$ 12$,500,000 in 1940. Currently it has an order backlog of $\$ 59$ million.

Western Pipe \& Steel Co. is another West Coast fabricator which definitely plans to carry over its wartime shipbuilding business into peacetime. The firm soon will finish its new vessel contracts, and currently is engaged primarily in ship conversion and ship repair in that department. It has not disclosed final plans, but has in-
dicated it intends to stay in the ship business.

Even before the war ended Western Pipe had made rapid progress in moving toward its prewar manufacturing lines. These include oil well and refinery equipment, piping, tankage, structural steel and general indu trial me:al work. It was actively engaged in many of these lines during the war, producing them for essential purposes.

Western Pipe has plants at South San Francisco, Los Angeles, Fresno and Cinft, in California, and in Phoenix, A:iz., in addition to the shipyards on San Framciseo Bay and at San Pedro near Los Angeles.

Anv her western company with broad expansion plans and a bright prospect is Rheem Mfg. Co. It anticip.tes a volume of about $\$ 40$ million in the first full peacetime year which would compare with about $\$ 74$ million in 1944 when a large part of its business was in war lines.

Rheem sees increased peacetime demand for steel shipping containers, one of its basic products.
The company's Appliance Division is plamning to broaden its field with new devices such as water heaters, wall heaters, furnaces, tanks and boilers. It also is planning a nationwide market for its domestic and industrial coal stokers.

By the end of this year Nheem expec's to be operating 12 plants located as follows: Richmond, South Gate and

Stockton in California; Portland, Oreg.; Salt Lake City, Utah; Houston, Tex.; New Orleans; Birmiugham; Sparrows Pcint, Md.; Bayonne, N. J.; and two plants in Chicaso.

These three fabricators are far from a complete list of similar manufacturers oa the West Coast, of course. But in one way or another they are typical of what such companies are planning and expecting for postwar.

Meanwhile, U. S. Steel Corp. and Bethlehem Steel Co., well established in the Pacific Coast field, are looking forward to an increasing volume of business.
U. S. Steel plans a $\$ 25$ million strip mill at i:s Columbia S'eel Co. plant at P.ttsburg, Calif. It is believed that there is better than an evea chance the corporation also will construct a tube mill, to supply the oil fields, at its Columbia plant at To:rar.ce, near Les Angeles.
Bethlehem has been rumored to be considering expan ion of its fabricating facilities on the West Coast, but no definite announceme:it las been made as yet.
For the most part, steel fabricators are troubled by only one big wory-bringing down the cost of we:tern steel. They think there will be a readjustment evertually, but realize it may not come soon.

Spring and Bumper Firm To Expand Peacetime Output

United States Spring \& Bumper Co. last week announced a $\$ 1,250,000$ program, including construction of three class A steel buildi.ugs, machinery installations and o!her activities for expanded peacetime production in the Los Angeles area.
A company official said that despite cancellations of some war contracts the concern will rush production of springs and bumpers for new cars and will be enabled to maintain employment at virtually wartime levels.

Metalworking Plants Reconverting Rapidly To Peacetime Products in Los Angeles Area

LOS ANGELES

CHECK-UP of represertative manufacturers in Los Angeles last week indicated civilian production well underway in the great majority of plants. In the metal trades, company officials indicated the following activities as marking current changeover from war to peace:

Euclid Machine Works, Santa Monica, subcontractor for rocket development, reconverted to automobile rebuilding and repair.

Simpson Steel Co., war production concentrated in merchant ship deck fittings, now turning out farm machinery

Timm Aircraft Corp., now producing
vacuum cleaners and other articles.
Weber Showease \& Fixture Corp, deep freeze units and allied goods.
Norris Stamping \& Mfg. Co., stanpings in variety, including bottle tops, holders, kitchenware.
Kinney Aluminum Co., permanent mold castings of aluminum-ware for cooking. A. \& V. Stove \& Mfg. Co., comucrcial griddles and hot plates.
Adel Precision Co., spoons, Hy swaters, cake turners, film viewers and other articles.

Serv-All Mfg. Co., garden tools.
Warner Mfg. Co., cigarette lighters.
F. \& W. Foundry, radiator grilles.

Huminum Use by iteel Industry feen Increased

Aluminum company head says use of light metal by steelmakers may increase as much as 10 times prewar average

THE STEEL industry will become one the principal consumers of aluminum the postwar world, perhaps expanding consump:ion as much as ten times its ruar average, Roy A. Hunt, president, minum Co. of America, asserted in a do address in Pittsburgh last week.
He said it is possible that within the thive years, the United States market a whole will be consuming 1250 flion pounds of aluminum a year, e times the prewar average. Should s prove true, the aluminum industry mppe, as against the prewar level of Wot 33,000 .
Steel and aluminum will often battle ithe same piece of business in the atre as they have in the past, said 4. Hunt, but both metals make markets seach other. The steel industry will \$ aluminum as a deoxidizing agent. production of steel, as a coating for sheets of steel, and as a covering steel shest to produce plymetals.
Field research by independent econods indicates that the iron and steel lostry might expand its yearly consump: of aluminum tenfold over prewar," 5. Funt declared. "Likewise, the use of minum mears increased use of steel. - dectrical transmission, for instance, cauminnm cable has a steel core and Jpported on structural steel towers." The aluminium industry's principal rethersion problem is to find enough For of the metal to employ a substantial dive of the nation's expanded prodive capacity, Mr. Hunt stated. But indistry has four reasons for facing problem with optimism. Because of a priess for aluminum, greater consr knowledge, new and high-strength 39, and ircreased manufacturing fahes. the indrustry ferls it can more than ${ }^{4}$ its own in peacetime competition.

tefabricated Homes To Be ult on Production Line

 Mans for construction of a million ard plant at New Albany, Ind., for raduction of prefabricated homes on a adjction line brefabicated homes on a dreek by Gunnison Homes Inc. In ting the immouncement, Foster Gunni-son, president of this United States Steel Corp. subsidiary, said the plant would have a capacity of 1650 houses per year when operating on an eight-hour day. It is estimated the plant will be capable of producing 3200 units on a doubleturn basis.

Mr. Gunnison's announcement marked the first disclosure of the postwar plans of his company since it became a part of United States Steel on July 1, 1944. It is expected the new plint will be completed by the middle of 1946. In the meantime, Gunnison Homes Inc. will continue to operate its present p'ant at New Albany, Ind.

Butler Co. Acquires Steel Prefabrication Patents

Merging of two important prefabricated steel building concerns has taken place with the acquisition by Butler Mfg. Co., Kansas City, Mo., of all patents and manufacturing rights of Steel Building Division of Globe-Wernicke Co., Cincinnati.

Butler will combine several of the features patented by Globe-Wernicke with its own desiznns for "Boulevard Buildings," widely used prior to the war for filling stations, drive-in establishments, and deluxe roadside restaurants. The Globe-Wernicke double steel panel, for instance, is reversible for adaptation of a porcelain exterior or wallboard in-
terior and can be used in flooring or roof decks.

Butler is now tooling up for quantity production by year's end.

RFC Offers for Sale Eight More Industrial Plants

Reconstruction Finance Corp, is offering for sale eight industrial plants that have terminated their war production jobs. These include the Alan Wood Steel Co. plant at Kingwood, N. J., tarat occupies a site of about 878 acres containing two ore deposits for production of lump ore and magnetic iron concentrates. There are 27 plant buildings and 67 dwellings. The crushing plant contains £0,517 square feet of floor arca and the concentration plant, 27,456 square feet. The equipment includes mining locomotives, cars, and miscellareons machinery.
The other plants offered for sale are: Revere Copper \& Brass Co. plant at Baltimore; Huward Aircraft Corp. plant (16 main and 12 smaller buildings) at St. Charles, III.; Studebaker Corp. plant at Fort Wayne, Ind.; Corsolidated Vultee Corp. plant (13 main buildings) at Mami Springs, Fla.; American Broach \& Machine Co. plant (ircluding production equipment used in metal machining and forming operations) at Ann Arbor, Mich.; Republic Aviation Corp. plant (26 buildings and two hangars) at Evansville, Ind.; and Oilgear Co. plant at Milwaukee.

TRANSITION TOPICS

WAGES- Outcome of steelmakers' demand for $\$ 2$ per day wage increase to offset drop in take-home pay resulting from loss of overtime and shorter work-week, may pattern postwar national wage policy. See page 87.
STCEL PRICES-Office of Price Administration stıdying request of steelmakers for nigner prices. Decision seen delayed pending outcome of new wage negotiations. See page 89.
STAINLESS STEEL- Establishment of numerous new basing points for pricing stainless steel products marks first major steel market development of postwar period. See page 90.
SURPLUS GOODS-. New regulation of Surplus Property Board aims at speedy disposal of government-owned war plants. No preference provided for contractors operating plants, but veterans and small business will be accorded preferential treatment. See page 93.
RADAR-Tail warning radar device that served as "rear vision mirror" for fighter pilots said to have great postwar value. See page 110.
FABRICATION-Cemert used in manufacturing rotor blades for helicopters seen as having further use in peacetime manufacturing of aircraft which ascend and descend vertically. See page 112.
MACHINE TOOLS_Study of expectations of customers provides machine tool builders with "tip sheet" on developments most keenly desired. See page 119.
TANGENT BENDING-New method of metal fabrication shows great promise in diflicult forming operations. Machine will simplify tooling problems. See page 124.

Permanent Joint Specifications Board Established by Army, Navy

Will review existing specifications, formulate new ones with view of avoiding overlapping and confusion. Replaces joint committee set up in 1942. Extensive programs to co-ordinate requirements already initiated

AN ARAY-NAVY Joint Specifications Board has been established by the secretaries of War and Navy as a pernianent activity to succeed the wartime Joint Army-Navy Committee on Specifications. The latter budy was organized in 1942 when each technical service and bureau, and frequenty each procuring activity, wrute its own specifications.
Result was a great deal of unwarranted diversity in sprecfications which complicated procuremult, production and inventory prublems. For example, the Army had one set of idenififiction numbers for radio tubes, and the Navy had another. Each Army service and Navy bureau wrute its own wire specifications. The government ordered binoculars under five separate specifications. On the other hand, there were many items for which the Army and Navy bureaus had written no specificalions at all; for example, it was customary to purchase 16 mm photographic equipment as it was available for civilians.

In the three years of its existence, the Joint Army-Navy Committee on Specifications has made considerable progress in evolving juint specifications for radio tubes and other electronic components, phutogriphic equipment, gun forgings, ammunition components, military explosives, airfield accessories such as steel landing mats, military textiles, plastics, certuin chemicals, meat cans, and for containers for shipping military supplies overscas into areas with varying climatic conditions.

The new Army-Navy Joint Specifications Board is charged not only with the duty of reviewing these existing joint specifications continuously, to keep them alive and up-to-date, but with the formulation of many additional joint specifications. Already extensive programs have been initiated to co-ordinate requirements for advance base equipment, fuels and lubricants, clothing and textiles, and shipbonard items. Ultimately, joint specifications will be formulated for metals, buth ferrous and nonferrous.

Navy Sets Up War Contract
 Termination Timetable

The Navy last week annnunced a timetable for setlling most of its terminated war contracts by New Year's Day.
II. Struve Hensel, assistant secretary of the Nary, said the Navy wants to clear up the bulk of contract negotiations promptly, not only to facilitate plant clearance and reconversion to civilian production, but also to speed the return to civilian life of Naval Reserve contract termination personnel.
Mr. Hensel pointed out that contract settlement must be initiated by the contractor. Of the 50,000 contracts terminated since V-J Day, it is estimated that 15,000 will involve claims against the government for termination costs.
"If the contractors will file their claims by Oct. 15 ," the assistant secretary said, "the Navy will undertake
to have them reviewed by inspectors of material and forwarded to the contracting officers by Nov. 15. The goal of contracting officers for final settlement is set as 30 days after they receive the claims.
"This will make enormous demands upon contract termination activities, but we believe our goal can be met ifand this is a big 'if'-the Navy's contractors file their claims quickly. Therefore we ask them and urge them to exert their maximum efforts toward this end.
"The Navy is prepared to handle a rush of termination claims. Orders have gone out to the staff of over 6500 termination personnel to do everything within their power to meet the timetable of settlement and thus to speed up the clearance of plants and reconversion,
"Procedures are in effect to make liberal partial payments in advance of settlement within 30 days after the contractor applies. Material inspectors and inventory disposal experts are ready to help contractors with termination problems."

In co-operation with the Army, the Navy has sponsored training programs for contractors to prepare them for the problems of settlement. Contractors who are unfamiliar with settlement procedures should communicate immediately with their government contracting agency, or with one of the $20 \mathrm{re}^{-}$ gional Termination Co-ordination Committees.

Census Bureau To Make More Current Surveys

In planning its statistical service to United States business and industry in the peacetime period, the Bureau of the Census will bear in mind a lesson it learned during the war. That is that current surveys are of more immediate help to business planners than historical studies.

During the war the bureau conducted

JOURNEY'S END: Twenty-six once proud Great Lakes ships built around the turn of the twentieth century are moored at Erie, Pa., awaiting the junkman's cutting torch. At one time, they formed the backbone of the

Great Lakes shipping fleet. They were consigned to the scrap heap when the U. S. Maritime Commission built 16 huge carriers to speed deliveries of war materials from the mines to the hearths. NEA photo

The CONE AUTOMATIG MACHINE COMPANX

14GOOD THINGS AHEAD

Wis reported thhat
Amathematical method for exactly didermining the shapes of cams has ven worked out by two university molessors. Carver \& Quinn, Cornell Whiv.
Itready with CON E for tomarrow
Reverse-cycle heating is in actual 2e. In principle it consists in taking leat from the outside air (even the widest air has some heat in it) and wncentrating it for use indoors. Pren better results may be had by wing the heat in ground water from deep artesian wells. Where electricty is cheap, it seems to be a partical method as the only cost is the operation of the pump. Science Digest.
reiready with CONE for tomorrow
Plastic records used in a new dectronic dictation machine are (amed to be so thin and flexible wat they may be folded and mailed. found Scriber Corp.
letready with C ON E for tomorrow
A new method of spraying airplane "dope" uses heat instead of winner to liquefy the material. Meroin-Williams.
Getready with CONE fur tomorrow
One city is Investigating the possiWity of an 8-mile subway in which masengers would be carried by an podess conveyor belt. Detroil.

BltreadywihCONE fortomorrow

Water, nearly equivalent to disaled water in purity, may now be noduced by passing through filters sade of synthetic resins. After consued use, the filters may be resared by fushing. Resinous Products hemical Co., Philadelphia.

letready with CONE for tomorrow

Une of our airlines plans to inpot its planes by X-ray at 750 murr intervals in order to reveal hid-覑 weakness or failure. A portable love machine will be used and 4 to idays will be required to take the 1322 shots believed to be necessary. 4ir Transport.

One factory, serving 18,000 meals per day, believes that the day of the lunch pail is over. Sperry Gyroscope.

get ready with GONE fortomorrow

One of the largest printing press manufacturers announces a postwar press to produce newspapers with 4 colors on all pages. R. Hoe \& Co., Inc.
get ready with CONE for tomorrow
High-nickel alloy tubes can now be made in sizes up to 11 in . diameter by extrusion. International Nickel.
get ready with CONE fortomorrans
A new high speed motion picture camera takes 8,000 pictures per second. When projected at normal speed, the result is a slowdown of 500 to 1. Bell Telephone Laboratories.

Chemists expect that fish may become more important as a source of industrial chemicals than as food. Already substances have been isolated that appear to be useful in paints, inks, lacquers, plastics, photographic papers, adhesives and medicines. Business Week.
getready with CONE fortomarrow
A Cuban inventor has received a patent for the production of alcohol by continuous flow. Patent 2,371,208.
getready with CONE fortomorrow
A method is reported for making synthetically optical crystals far larger than any produced by nature. Polaroid Corporation.
getready with CONE fortomorros
Permission has been granted to build a station for color television experiments. Zenith Radio.

Let ready with CONE for tomorrow
A lange manufacturer of railroad cars expects that 27,000 of the country's 30,000 railway passenger cars will have to be replaced after the war. Pullman-Standard.

Greater ACCURACY

The history of modern production is a story of greater accuracy in less time. The coming of peace will emphasize this trend. Owners of 6 -spindle Conomaties, that produce parts like these in seconds, will be ready for the new competition.

AUTOMATIC MAGHINE CD., ING. * WINDSOR, YERMONT, U.S. A.
many of these spot surveys at the request of the War Production Board, and the results of those surveys were of great assistance to the WPB in controlling war production. In particular, the bureau conducted monthly surveys revealing the quantities of scarce materials, particularly the metals, wood and paper and natural rubber, in the many different inventories that comprised the national stockpile. Much of this information was secret at the start, but all of it since has been printed in the bureau's "Facts for Industry" series.
Statistical information compiled in these surveys-usually made at monthly or quarterly intervals-has provided a measure of expansion of war plants, general industrial expansion, expansion of war housing, production of construction machinery, fans, blowers and exhausters, steel, gray iron and malleable castings, steel forgings, machine tools and metalworking equipment including foundry equipment, etc. The Facts for Industry series also revealed production, shipments and inventory of many products, particularly made from steel and other metals.
When Jupan surrendered, Census Bureau officials were loath to discontinue this wartime statistical work too suddenly and decided to proceed with all these surveys as scheduled-at least for a period of 90 days. In the meantime, the bureau has undertaken a check with numerous companies in the industries concemed with these surveys; it is seeking to determine whether the results of these surveys will have sufficient peacetime importance to warrant permanent continuation of the work.

SEC Report of Corporate

 Balance Sheet Data IssuedA survey of corporate balance sheet data for 1939-1943, inclusive, has been released by the Securities \& Exchange Commission, Philadelphia.

The five-year survey covers 118 industry groups with total assets of approximately $\$ 62$ billion in 1943. Parts 1 and 2 of the survey contain data on 1120 companies in 76 manufacturing industry groups. Total assets of those 1120 companies in 1943 amounted to approximately $\$ 53$ billion, estimated to be more than half the assets of all manufacturing enterprises in the United States.

Of the 36 industry groups covered in Part 2, oil refining reported the largest total assets in 1943. They amounted to $\$ 9,782,563,000$. Showing the second largest total assets in 1943 were steel producers with blast furnace facilities, with 14 companies reporting in each of the years covered. Total assets rose from \$4,$235,334,000$ in 1939 to $\$ 5,187,894,000$ in 1943. The automobile industry group reported the third largest total assets in 1943, with 10 companies reporting in each of the five years. Total assets of that group in 1943 were $\$ 3,155,851,000$.

RFC Terminates Lease Agreements with Alcoa for Alumina and Reduction Plants

RECONSTRUCTION Finance Corp. bas terminated its lease agreement with the Aluminum Co. of America, effective Oct. 31, with respect to the aluminum reduction plants and related facilities at Jones Mills, Ark.; Los Angeles; Massena, N. Y.; Spokane; Troutdale, Oreg. and the alumina plants at Hurricane Creek, Ark.; and Baton Rouge, La.

This action, it was stated, was taken on the recommendation of the Surplus Property Board. Under the lease, Aicoa would have been in control of the plants until various clates late in 1947 and throughuat 1948. It would, therefore, have been impossible to make immedrate arrangement for the sale or lease of the plants to others so long os the lease was in effect. The lease was terminated for the purpose of freeing the plants from the Alcoa agreement so that they could be disposed of in a manner which would create competition in the aluminum industry. The government agencies concerned have taken this course in an effort to conform to the recent decision of the United States Circuit Court of Appeals for the Second Circuit and to provide additional sources of supply of this material so essential to the national security.

The notice of termination sent to Alcoa offered to make an arrangement whereby Alcoa would be permitted to continue to operate any or all of the plants for one year, commencing Sept. 1, 1945, upon the terms and conditions of the existing lease, except that the arrangement could be terminated on 60 days' written notice of either party. This offer was made in

GEORGE ATCHESON JR.
Appointed political advisor to Gen. Douglas MacArthur in the administrafion of defeated Japan. Mr. Afcheson is a career diplomat with 35 years' experience in the Far East. He is reported to be the next American minister to Thailand. NEA photo
the hope that in the interests of maintaining employment it would be possible to arrange for the operation of the plants by Alcoa on a temporary basis. Alcoa has informed representatives of the RFC that it is not interested in making an arrangement of any kind for the temporary operation of these plants.

SWPC Plans To Open
 Alaskan Branch Office

To help develop Alaska in the interest of the nation-economically and from a military point of view, the Smaller War Plants Corp. will establish a district office in that territory.

While Alaska is one-fifth as large as the United States proper its population is only 80,000 , less than St. Joseph, Mo., says Maury Maverick, chairman and general manager of SWPC, and its development should be undertaken on a large scale as soon as possible. While there are hazards involved, such as transportation, these can be reduced.
"People in Fairbanks, for instance, says Mr. Maverick, "which is very cold in winter, live in as much comfort as do people in Minnesota, for the reason that the city is organized, has heat and light, and is like any other American city. Many areas can be made livable the year round. These lands now furnisin reasonable support-as good as or better than in the United States proper. The southeastern area has a temperate climate without extremes of either heat or coid, although there is a high rainfall. There are some regions with a greater range of temperature, but they do not have as cold weather as do some of our northern states."
After studying Alaska for a year and a half, the SWPC is convinced that there is a real need in the territory now for little business loans, technical advice and other SWPC services.
Applications already have been received for small business assistance in Alaska, says Mr. Maverick, and there is real merit in many of the proposals. For instance, applications haye been received from several seacoast towns for aid in expanding or establishing bost building and repair shops. At present, local fishermen do not have adequate local facilities and frequently must send all the way to Seattle or Prince Rupert to get their boats repaired. Tanning of salmon skins holds potentialities for a new industry in Alaska, says Mr. Maver ick; salmon skin, properly treated, can be used for making shoes, belts, handbags and other items. Every Alaskai town needs cold storage and food proc essing plants.

MEN of INDUSTRY

WILLIAM M. ALLEN

Wiiliam M. Allen, Seattle, attorney director of the Boeing Aircraft Co., tutle, for the past 14 years, has been ded president of that company.
Trank J. Emerick, formerly of Deth has been appointed resident repralative, Bethlehem Steel Co., Bethem, Pa., and will have headquarters St. Paul. He succeeds Arthur Lehr resigned to become vice president in urge of sales, St. Paul Engineering \& 12 Co

Peer Nielsen has been appointed vice Fident and general superintendent, at Co. Inc., 'Oakland, Calif., in age of operations at the company's plant at Fontana, Calif. Frank dman remains as general superinxent in charge of new construction. - Nielsen until recently was general midtendent of the government-owned plant at Geneva, Utah. Mr. Nielis an engineering graduate of Lehigh ersity. Bethlehem, Pa., and has held tions of responsibility with subsidis of U. S. Steel Corp. for the past Bears,

Parge L. Miller, formerly sales manz: Michigan Steel Tube Products Co., oilt has been named vice president tharge of sales. F. W. Sexauer, etly assistant sales manager is now manager. R, O. Berg is vice presiis charge of research and engineer:1. C. Thrasher, vice prosident in "ge of operations: Harry J. Longeway, Hotoller and office manager; and E. Mobart, secretary-treasurer.
T. Ehlers, formerly sales manager,
been appointed plant manager, Structural Steel Co., Chicago.

———

A. Mehler, assistant general mana of sales, Sharon Steel Corp., Sharon,
has heen appointed district manager
Hess New York territory with head-
ters in New York. T. M. MacBain
feta transferred from the Cleveland

GEORGE E. McGUIRE

C. S. HEGEL
territory to the New England district and will be located in Connecticut.

George E. McGuire has been appointed director of foreign sales, Carborundum Co., Niagara Falls, N. Y. He has been sales manager of the export department for the past nine years. Mr. McGuire joined the company in 1911 as a member of the New York district sales office.

William C. van Cleaf has been appointed director of industrial relations, Allis-Chalmers Mfg. Co., Milwaukee, succeeding Lee H. Hill. Mr. van Cleaf is a veteran Allis-Chalmers employee, joining the company in 1912 as an electrical apprentice. He has served as general supervisor of apprentice training, employment manager and later assistant to Mr. Hill.

-0-

Raymond H. Gaver has been appointed chief engineer and Jonas D. Bigelow, development engineer of the newly established Railway Equipment Division, American Welding \& Mfg. Co., Warren, O. Mr. Gaver, who will head the division, has been with the company since 1944.

$$
-0-
$$

Robert P. Russell of the methods engineering department, Oldsmobile Division, General Motors Corp. at Janesville, Wis., has been transferred to similar work at that division's plant in Lansing, Mich.

Max J. L. Schulte has resigned as vice president, secretary-treasurer and general manager, Rawlplug Co. Inc., New York, after 21 years' association with that organization.

- 0

F. W. Elya has been appointed district manager of the newly created northeastern district, Abrasive Division, Norton Ca., Worcester, Mas6. Mr. Elya's headquarters will be in Worcester and the territory includes: Massachusetts Rhode Island, Vermont, New Hampshire,

Maine and northern New York state. R. J. Forkey succeeds Mr. Elya as abrasives engineer serving the western New York area and Robert Cushman succeeds Mr. Forkey in the Syracuse. N. Y. territory.

-0-

C. S. Hegel recently was appointed manager in Chicago, special steels department, Joseph T. Ryerson \& Son Inc., Chicago. Mr. Hegel joined the Ryerson Chicago special steels department in 1928 and in 1932 was transferred to Milwaukee as a special steel representative.

$$
-0-
$$

Henry K. Patjens has been elected president, Economy Arch Co., St. Louis. He formerly had been associated with the engineering department, Baldwin Locomotive Works, Eddystone, Pa., where for 17 years he served as a design and analytical engineer. In 1937 Mr . Patjens was transferred to the sales department as a sales engineer serving in Chicago and St. Louis.

Harold D. Hornbeck has been appointed sales promotion manager, Nash Motors Division, Nash-Kelvinator Corp., Detroit, succeeding N. F. Lawler who now is advertising manager.

Donald Williams has been appointed general sales manager, and Donald K. Ballman, assistant general sales manager, Dow Chemical Co., Midland, Mich. Mr. Williams has been assistant general sales manager since 1933, and Mr. Ballman has been manager of the Technical Service and Development Division which he organized in 1943.
E. M. Cotter, formerly a merchandising manager with Crosley Corp., Cincinnati, has been appointed general sales manager, Norman Young Appliance Co., Dallas, Tex.

$$
-0-
$$

P. D. Fahnestock has been named director of information, Committee for Economic Development, succeeding

Anthony Hyde. who now is in charge of public relations, Office of War Molsilization and Recomversion, Washington. Mr. Fahnestock has been serving as acting director of information for the past four months.

William R. Ellis and Mahlon G. Milliken have been elected vice presidents, Hercules Powder Co., Wilmington, Del. Mr. Ellis formerly was general manager, explosives department and Mr. Milliken, general manager, cellulose products department. Philip B. Stull, together with Mr. Ellis and Mr. Milliken, was elected to membership on the executive committee Succeeding Mr. Milliken, John J. B. Fulenwider has b. en named general manager of the cellulase products department and J. B. Johnson succeeds Mr. Ellis as general manager of the explosives department.

Maurice C. Libert has heen appointed manager of the San Francisco ulfice, New Departure Division, General Motors Corp. Mr. Libert for 17 years was sales engineer in that division's Detroit oflice.

Wilbur F. Camplell is resigning as assistant to the president, Pioneer Engineering \& MIf. Co., Detroit, to re-enter private law practice.
-0-
II. A. Stevenson, who served is a licutenant colonel with the Army Service Forces, has been retired to inactive duty and has returned as distributor in the Michigan territory for Boker Industrial Truck Division, Baker-Raulang Co., Cleveland.

$$
-0-
$$

Paul II. Puffer, former general sales mannger, Norge Division, Borg-Warner Corp.. Clicago, has become president, Cizeo-Dipt Co., North Tonawanda, N. Y.

Joseph T. Sullivan has heen appninted technical sales representative for northern Massachusetts, Maine, Vermont and New Hamphire, MacDermid Inc., Now Haven, Conn. Mr. Sullivan was gradu-
ated from Yale University in 1934 and in 1935 he joined the New Ilaven Cluck Co, as assistant chemist, later beiner made chicf chemist in charge of all metal finishing departments.

James Douglas has resigned as deputy vice chairman for metals and minerals, War Production Board, Washiangton. He formerly was director of the Zinc Division. Mr. Douglas will be alfiliated with the Phelp-Dodge Corp., New Yurk.

- 0 -

Christian Prctz, assistant to the vice president, Studeliaker Corp., Soulh Bend, Ind., hats resigned after $3 ?$ years with that comp:ay, and has become associated wih the Durham Mfg. Co., Muncie, Iud., as vice president.

-0-

Gaston F. duBcis, vice president and member of the exccutive committee, Monsanto Chemical Co., St. Louis, retired Sept. 1. He will continue as a director and also will serve as a consultant. He joined the company in 1904, and was awarded the Perkin medal in 1943 by the American section, Society of Chemical Industry, for his outstanding work in applied chemistry.

Lewis A. Belding has been named president, ILirlan \& IInilingsworth Corp. Wilmington, Del. llis previous connections included Ilenry J. Kaiser Co., General American Transpo:tation Corp., and American Car \& Foundry Co., New York.

$-0-$

Walter II. Bodle has been appointed assistant to the merchandise sales manager, Square D Co., wilh headquarters in Detroit. Ernest R. Walton has succeeded Mr. Budle as manager of the company's assembly plant at Seattle.

William E. IToard, former assistant to the sales manager, Western Gear Works, Seattle, has been appointed area sales manager, San Francisco, for that company and its associate, Pacific Cear \& Tool Works. Mr. Heard joined the com-
J. T. SULLIVAN

W. E. HOARD
pany in 1942, previnusly having completed a post-graduate course in works management given by Westinghouse Electric Corp., Pittsburgh.

Arthur II. Moran has been appointed price executive, Machinery Price Brauch, Office of Price Administration, succeddingWalter Shocmiker who has resigned to become assuci.ticed wihh Dravo-Duyle Co., Piltsburgh, distributor of construction machinery.
W. E. Dueringer has been named assistant sales manazer and II. E. Weaver, proposition deporriment matager, Bailey Meter Co., Cleveland.

- 0

V. D. IIanna, secretary-treasurer, Wolverine Tube Co., Delmat, has been elected vice president of the Detroit Control, Controllers lustituie of America.
C. C. Wollacger has resigned as vice president in chatrge of sales, Nilcor Sted Co., Milwankee, and has organzed the Wulliteger Co., Milwaukee, to distribute interior meta] trim for buildings and other metal specialties.
II. C. MeCaslin, former chicf engineer of Willys-Oterland Motors, has jnined Graham-Paige Motors Corp, Detruit, as chief engineer. He will direct engineering on the new Frazer automobile.

$$
-0-
$$

Robert A. Morris has been appointed advertising manaiger, Acme Steel Co., Chicaün. Mr. Moris has been with the War Production Buarrh, Wiashiagton, for the past lliree goars and recently resigned as depuly directur, Containers Division.

Francis M. Iloben, manager, x-ray department, Westinghouse Lilectric Corp.'s government office, Warhington, and Edwin L. Itarder, central stalion engineer, industry engineering department of the company's East Pilt laryin works, have been awarded the Order of Merit.

$$
-0-
$$

Allan L. McKay has been elected prosident, Kauk:anna Machine Corpa, Kaukauna, Wis. Ile is continuing in the capacity of gencral manarer, which position he has locid since Jone, 194, when he was elected wice preskent. lie succeeds Ralpl. J. Kr:ut, who resiencd to devote all of his time as president and general manager of the Guthings \&e Lewis Machine Tool Co., Fond du Lac, Wis.

Aubrey M. Callis has heen appointed sales manager of the Whiiting, Ind. and Detroit plants, Federal Metal Division, American Smelting \& Refining Co. New York. Mr. Callis will have his headquarters at Whiting. He formerly was assistant general manager of the

A. D. SHANKLAND
the is engineer of tests, Bethlehem, Pa., ant, Bethlehem Steel Co., os noted in STEEL, Aug. 27 issue, p. 88.
xilic Coast department with headarlers at Los Angeles and has been sciated with the Federated Metills Fision since 1928. Frank H. Eichar a been named to succeea Mr. Callis at \times Angeles.

Paul H. Fox has been appointed divim manager for Washington, Oregon, yoning, Montana and Idaho, AlumiDivision, Reynolds Metals Co., hisville, Ky. Mr. Fox joined the mpany in 1941 as scheduling super-

WILLIAM T. ADAMS
Who recently was named generol purchasing agent,Republic Steel Corp., Cleveland, STEEL, Sept. 3 issue, p. 104.
visor in the company's Listerhill, Ala., rod and structural mill.

Harry G. Howell has been appointed vice president in charge of production, Tube Tuns Inc., Louisville, Ky. Mr. Howell had been associated with General Motors Corp., Detroit, for 22 years.

Sidney D. Kirkpatrick, editor, Chemical \& Metallurgical Engineering, New York, has been awarded the chemical industry medal for 1945 by the American

R. 1. VAN CLEVE

Who is general purchasing agent, CarnegieIllinois Steel Corp., Pittsburgh, as noted in STEEL, Sepf. 3 issue, p. 104.

Section, Society of Chemical Industry, Brooklyn, N. Y. Mr. Kirkpatrick will receive the medal, which is awarded annually, in November.

Alexanilar M. Wridht has been appointed assistant gencral mangaer and Floyd C. Custafson, sales manager, Chandler-Evans Corp., West Iartford, Conn. Mr. Wright has been manager of the corporation's Dayton, O. plant since its construction in 1942. Mr. Gustalson joined the company in 1938.

DBITUARIES

Charles N. Hickok, 66, executive of - M. A. LIanna Co., Cleveland, and actor of many affiliated mining comries, died Sept. 11 at his home in that F. In 1900 Mr. Hickok became conated with Latrobe Steel \& Coupler 8 Chicago, and in 1903 went to DayA 0 , as manager of railrond sales, Mon Malleable Iron Co. He became seciated with the Hanna company in seland in 1905.

-

Wther T. Seyler, 62, retired purchasengineer, Consolidated Steel Corp. d, Los A:geles, died recently at his se in that city.

> -0-

Lou R. Conger, 70, general traffic cuazer, Mileor Stcel Corp., Milwauin until his relirement in 1939, died sotlly at his home in Grand Haven, d. Mr. Conger had been with the Nany 25 years.
4. H, Meimbach, 63, former presiof, Heimbach Incinerator MIfg. Co., Paul, died recently at Allentown,

[^1]O., died Sept. 3 in that city. Mr. Pawsey had been associated with the company since July, 1919.
-0-

William J. Ralston, 75, first chief engineer of the Cuyahoga works, American Steel \& Wire Co., Cleveland, and a veteran of 30 years with that company, died Scpt. 9 in that city. Mr. Ralston retired 10 years ago.

- O -

Edgar A. Eckhouse, chairman, Central Brass Mfg. Co., Cleveland, died Sept. 11 at his home in that ci!y. Mr. Eckhouse, former president of the company, resigned from active business a few years ago because of ill health.

William J. II. Miller, 56, for the past 10 years siles manager, Safety Valve Division, Manning, Maxwell \& Moore Inc., Bitidgeport, Conn., died Sept. 8 in that city.

- 0 -

Malcolm Fleming, 60, who resigned July 1 as vice president and district manager, Hickman, Williams \& Co., Cincimnati branch, died recently in that city.
-0-

Edward S. Evans, 66, president, Evans Produc's Co., Detroit, died in that city Sept. 6. In earlier years he was presi-
dent of the Lockheed Co., and is credited with installing the first retractable landing gear on an airplane.

- 0 -

Leonard Rucgg, 55, owner, National Brass Works, Lus Angeles, died recently in that city.
$-\mathrm{O}-$
Peter J. Weigel, 89, connected with Bulfalo iron foundries 32 years, died recently in that city. IIe was secretary of the W. P. Taylor Co. until his retirement in 1930.

Grant B. McLaughlin, 66, president, Yates-McLaughlin Inc, Buffalo, coal firm, died recently in that city.

$$
-0-
$$

William Hill, 8., former president, Collins Co., Collinsville, Conn., died recently on Little Diamond Island near Portland, Me.

Barclay Perry, district sales manager in Richmond, Va., for the Metal Specialty Co., Cincinnati, died recently in Richmond.

$$
0-
$$

William Dunham Martin, 69, formerly assistant manager, at Kenosha, Wis., American Brass Co., Waterbury, Conn., dicd recently at his home in Kenosha. He retired from that position in 1931.

Abstract

Human reconversion lags behind plant changeover as delaying tactor in quantity production of new passenger cars. Labor inclined to take it easy. Auto output expected to outstrip deferred demand within three or four years

DETROIT

 HUMAN reconversion continues to Jank the actual physical reconverof plants as the stumbling block the road to resumption of civilian duction, whether it be steel or autowiles, and this applies not only to i men who run the machines and xmbly lines but also on up the line zugh supervisory forces, buyers, low-up staffs and even some addistrative personnel. It has not been mible yet to shake off the weariness is short tempers resulting from long moths of overtime war production.Plant labor is inclined to take it easy T the time being, preferring to take ations and finance them with unpployment compensation or to stay off a job in protest against thinner pay xelopes occasioned by elimination of atime pay and other war bonuses. al rolling mills are returning to 15 m weeks in place of the former 18 120 -turn wecks, and at the same time : confronted with much longer prosing time in finishing the sheets, \rightarrow and wire required for automotive asts as against plates and other heavy tions which could be whipped out in at order for war contracts. This ans more help required in the mills ${ }^{513}$ reductions in tonnage bonuses. despite extensive layoffs in war ats, few recruits can be found to take *e waiting jobs.

Auto Steel Shipments Low

Heanwhile, automotive buyers are Ping on the heat for shipments of rolled sheets and strip, wire and ning bars, but about all they are Ang is an assortment of promises dalibis, little steel. Suppliers of steel writ it may be well into the fourth ater before automotive steel shipas of any consequence can be aduled. Theoretically at least, they still operating under CMP directand will continue to be until Sept. yet this is a weak excuse with the shal steel operating rate at 75 per 2 The true explanation goes back to power.
Alumotive purchasing departments Id stand a little reconversion themHes. Too many of them continue to whe wartime pattern of threats pressure where there is actually (anl for such tactics. If you take a As section of the suppliers of, say, a Po different products required by lor plants, including such diverse ass as steel, upholstery, glass, rubber, fings bearings, whatnot, each one
will tell you that, as far as purchasing agents in the car plants are concerned, the suppliers' failure to ship is the sole reason why automobile assemblies are not under way today. This is of course absurd, but it is typical buyers' technique and is not without its persuasive effect.

More and more it is being realized that the job of dismantling a huge war production machine and regearing it to the 1941 production pattern is one of the biggest jobs industry around here has tackled, even more complex perhaps than the conversion to war production in 1942 when the path was somewhat smoothed by a fervor of patriotic and cooperative effort. Yet the job will be done and the current expressions of impatience are typically American and no occasion for any great concern on the part of anyone.
They certainly do not justify the dour predictions being spread on the public's bread by a number of the metropolitan automobile clubs, including those in Buffalo, Cleveland and Chicago. Gist of these forecasts, which apparently emanated from the same original source,
is that the average car buyer may be unable to purchase a new automobile before 1951. Supporting charts compare alleged production against alleged demand annually from 1945 through 1951. Production forecasts are for 215 , 000 this year, $2,000,000$ next year, $4,-$ 500,000 in 1947, $5,000,000$ in 1948 and $6,000,000$ annually thereafter. These guesses are felt to be far off from what the record will eventually show. For example, it is confidently expected in many quarters passenger car production during the coming year may hit 5,000 ,000.

As far as the demand factors are concerned, the forecast seems to push them far out of conceivable range. Next year, for example, the prognosticators chart a demand for $6,000,000$ cars from "essential" users and $12,000,000$ more from the general public. That is a total demand for $18,000,000$ new cars, and there are less than $30,000,000$ on the road now. These new car demands are projected on up into the stratosphere until by 1951 it reached about 20,000 ,000 , and by then production will have caught up so that everyone who wants to buy can do so.

Two principal reasons explain the fallacy of these forecasts. First, they were prepared before the Japanese surrender, which changed the complexion of the automotive production outlook completely, and second the estimates

READY FOR PRODUCTION: Volume production of 1946-model Oldsmobiles at Lansing, Mich., is nearer, now that a new assembly line has been completed at the Oldsmobile plant and the first of the 1946 engines produced by progressive assembly methods has been built. Examining the motor and another one following it are: Left to right, R. A. Fishel, motor plant superintendent; E. J. Martin, general foreman; John Dykstra, manufacturing manager; and D. E. Ralston, general sales manager
on numbers of cars which will be junked each year are based on a histurical pattern which does not apply at all when the supply of new cars has been shut off or is limited.

There is plenty of support for the belief around Detroit hait in three to four years at the outside, autumobile production calacity will have far outstripmed demand and huiders will be begritug fur new husinces. that is, for new lmsiness to justily a $6,000,000$-car year ortput.

Dissolution of the Automolive Council for llar Piodaction will be formalized Oct. I, and the organization of 654 manufochoring eompamiss will revert to something line its original stalus under the name of the Autumolile Manufacturers Asscriation. The commeil was organized on Dec. 31, 1941 , after coopurative imbusiry "defonse" efforts during the summer of $19-10$ had proved so effective. Actual genesis of the council idea ceeured at an industay meeting in a vacaled grocery stone in the New Conter Bailding, Detroit, on Oct. 25 10-10, when plans were drawn up for co-nperalive cliorts in the production of bominer parts fur the a reralt inelustry.

The virtue of the wirtime co-operative method was its llexib.l.ty. When a need aruse, or frequently, when someone sensed an :upmenaching need, a committee of experts on the subject was formed, drawing on the talents of various companies in the council, and a program of action, not dehate, initiated. If the problem was mastered, the committee was allowed to latpe into a standlby capicity. Proxluction committees, information conmiltees, salvage committees, manpower commin'ees atad dozens of otlers wore constituted for special tasks.

A formal corrmony to simalize the dissolution of the ACivp will be scheduled sometime after Oet. 1, "as soon as the members cin find sufficient time in Heir crowded working schedules to perinit them to assemble," according to the cumail prevident. Alvan Macauley. As to the achital internal structure and staff, there will likely be: small change beyond a realigmment of membership. Present activilies appear as essential in
peacetime as in wartime, although the co-operative effout now probably will be concentrated within the motor car companies, excepting Ford, to the exclusion of parts suppliers and tool and die companies.

A $\$ 300$ million sale of new automotive parts, covering everything from cotter pins to engine blocks, transmissions and axles, and including parts for practically every make and lype standard car and truck built in this commtry from 1939 to the present, is being held by the sumplus property office of the Department of Commerce's Ablomotive Division. A new sales procedure, instituted last week. provides for sale of all parts on a standard price list hasis instead of on a bid basis. Trade discounts apply at all levels of distribustion, full freight costs are allowed anywhere in the U. S., no depusit is required, minimum net ortler is $\$.500$. Prospective buyers mist obtain quialification blanks by appleing in writing to the division's regional offices in Bositom, New York, Philadelphia, Cincinmati, Chicago, Atlanta, Forl Wiorth, Kansas City, Denver, Sun Francisco or Sealle.

Only Six Months' Supply

The total of $\$ 300$ million in surplus parts sounds like a formiclable supply and one wonders why goverment procurement agencies shonld have fommd it necessary to buy parts for every make of car and truck bailt since 1939, as a part of the war effort. On the other hand, the total is less than six months wholesale valuation of replacement parts sales in 1941.

Studebaker made cursory announcement of introduction of its 1946 Champion model over the week-encl. Four body styles will be produced this year, and it is hoped to make a complete sampling of dealers by Oct. 15. Principal new features include a new racliator grille extending virtually full width across fenders and radiator, more rurged bumpers and guards, and the inclusion of former deluxe appointments as standard equipment. Springs have been redesigned with tapered-end leaves and full-length oil-impregnated inserts to re-

This is the first 1946 Studehaker Champion which now is in its early production. Fur body types will be made
duce interleaf friction.
Nash has announced its 1946 version of the 600 model will incorpurate parallel arm-type front wheel suspension, similar to the design used on large model, to replace the former "kneeaction" type.

A lint of the explanation for this suspension clange is larnasiat loy an aricicle in the curron issue of fortune which explains that the grod name of the 60 model was "untouched by an engineering bug, now corrected, in its front whed springing." Further, Nash is repurted readying plans for a lignt truck, statiun wagon and comvertible budies to instuil on the 600 chansis.

Nash engine and assombly plants in Kenusha, ll is., are leing cxpmed to the tune of $\$ t$ millum, whine a lond merry go-romud 16-station Ixaly assembly cons veyor is plamied to supplement the presedr two at the Milwankec berdy phatas as part of a 5 E1/4 m . Il.ont expar.sim there next year. These mits have capacily of 25 budies an hour.

According to Fortume's estimate, Nasl
 steel a year if it attains its prevetud gras of $3(50), 000$ cars anmmatly. And it is the intention lo plate th.s hasiness with : single mill, bugets hering much interested in the "price pussibil.ties of this put tern."

Slick addition to the Ford line is model known as the Spurlimanis con vertible, using a stalion wagm type o wood body momind on a convertibl coupe chassis. Duors, rear tuarlers and deck comprise wood pancls and a woun framing bolted to a back stcel frame claimed'to provide a stronger trpe 0 construction thin the usnal all-wood de sign used in station wagoms.

Chrysler's Plymun!h Disision expect to be assemblaing passenger cars at it Evansville, lod., plame at the rate 0 around 400 a day bifore the end of the year, lhe same rate as that pre vailing before the war. Oilice assembly facilities at Delruit and Lus Angele likewise will he operated at the pervat pace, accorting to comprany officiels.
Ceneral Mutors' voluntary wartime profits limitation pulicy, instiated is 19H2, rewulted in holding the amoun of profits earned for every dollar of sales to approximately one-half of what it was in 19-1. The limitition was maintained in a period when more than twice as much husincess was dune average payrolls were $2 \frac{1}{2}$ times as large almost twice as many people were em ployed and more monney wass investe in the business. Prufits during the wa averaged 4.7 cents per sales dollar, which 3.2 cents wre paili to stoch holders and 1.5 cents retained for moder nization and plant expmansiun. Recogn tion of this prufit limitation policy the government resulacd in thiree sur cessive years of approval without chang in renegotiation prucecdings.

Ohece these Pectures $\sqrt{1 C N E R S}$ Variable Delivery PISTON TYPE PUMPS

Germans Successful, but Late, ii

Abstract

Even oil refineries operated under the earth, safe from Allied bombings. Thirty to 40 per cent of most essential war production transferred to buried plants late in war. Nazis planned to build subterranean blast furnaces and steel plants

By GEORGE R. REISS

Editorial Correspondent, STEEL

THE NAZIS tried a neat wartime industrial innovation-burying important factories and industrial plants to escape strategic air bombing-and nearly got away with it.

They clawed frantically into solid rock to hollow out enormous mountains for factories, they built "bombproof" shelters of concrete and steel and earth over others, in an effort to escape annihilation from the air.

Luckily for us, the Nazis hit on this scheme just a little bit too late and overestimated the power of their own air power to hold off the Allied bombers, to give them time to complete the job.
Given more time to go underground industrially-V-E Day and V-J Day could easily still be far off; the job of achieving victory could have cost many more thousands of Allied lives, many more months and possibly years of precious time, and many more billions of dollars.
It is estimated 30 to 40 per cent of

Germany's most essential war production went underground before V-E Day. These included some of the oil refineries which were the No. 1 ait larget of Europe, some jet aircraft as sembly factories, and those manufactur ing the V-1 and V-2 flying bombs which nearly knocked out London and wers considered, by military experts, as the greatest weapon to come out of Worid War II until the atomic bomb camo along.

A lot more factories could have gotten underground had the Allies been

Partly completed Heinkel 162 s, single jet planes with a speed up to 650 miles an hour, are lined up in fuselage and assembly room of an underground factory which United Slates forces found in a salt mine near Engels, Germany. A large elcvator lifted the planes 300 meters to the surface. NEA photo

aking Factories Underground

Woff only a few days or a few weeks rger; and it is a pretty well admitted it in Europe-although you'll still 3 an occasional doubting Thomas or Thethat strategic air bombing is what dy did the trick of smashing Geray out of the war by strangling her fustrially, by knocking out her facies, smashing the railroads and other xs of communication, thus leaving iter planes on the ground without xiline or oil, her armies in the fields fout gasoline or supplies.
The development of the underground, zbproof factory affected the strategy World War II; it also presents some te new and interesting problems for
any great war of the future. What would be the effects of this new-fangled atomic bomb on these bomb-proof underground factories? Well, it's never been tried and it's anyone's guess.

On a recent air tour of defeated Germany which took me into many of the areas which provided most of the Nazis industrial strength, I visited three of these fantastic subterranean factories, two in a hollowed-out mountain, the other under a bomb-proof shelter.

One was an industrial installation which experts said couldn't be put underground successfully-an oil refinery, the biggest in all Europe, with a capacity of 357,142 barrels of crude oil
per month-it's probably the world's only refinery virtually invulnerable to air attack and, to the experts chagrin, it is operating successfully. Now it is supplying much of the gasoline, lubricating oil, diesel oil, fuel oil and other refinery products being used by the American occupational forces in Europe; and it's using crude being obtained from newlydeveloped oil fields.

The other two plants were intended as assembly plants for jet fighter planes, those fantastic lying machines which, if they would have become available in large numbers, probably would have played havoc with the American bombers and their fighter escorts.

You'll find two of these factoriesthe refinery and an assembly plant-in a hollowed-out mountain near the tiny and picturesque village of Ebensee, Austria, in the heart of the Tyrolean Alps, a world of fantastic and breath-taking scenery.

That Ebensee refinery was another one of those "slave labor" projects only the fantastic Nazis, with their warped minds, could have cooked up; it started in August, 1943, when 8000 slave labor-ers-those wretched and unfortunate Russians, Poles, Czechs, Italians, French and Hollanders impressed into labor gangs from conquered countries-began delving into the great rock chambers. They worked under German bosses and engineers, with a tough gang of Gestapo guards to force them on.

The slave workers lived under prison conditions, crowded into some filthy, unheated, frame barracks beside the mountain. A high barbed wire fence surrounded the whole lay-out. They slept on sacks of straw on the floor; meals consisted chiefly of black bread, potato or turnip soup, occasionally a bit of sausage. And the mortality rate among the slaves was incredibly highbut that made little difference to the Gestapo guards. They forced the slaves to burn the dead bodies, imported more slaves.
The plant was originally intended as an ME-262 assembly plant, but the Nazis, desperate for gasoline as a result of the air attacks on refineries, decided to switch it when the chamber was nearly finished; they brought in Dr. Fritz Staiger, a leading German re-

> Underground V-2 factory, upper left, at Kleinbodungen was housing refugees when captured by Americans. Note camouflaged roof and tunnel entrance. Lower left, machine room in salt mine plant near Schonebeck on the Elbe, where parts for airplane fuselages were made. NEA photos
finery engineer, put him in chargeand he sull is in charge, now ditecling the plant for the Americans.

It was intended at first to build 12 separate relinery units in the mulutain; the first was completed Feb. 10, the second a few diys la.cr, and two others were completed since then-and the Nazis never got around to the ocheis.

When you step inte the refinery, you enter through a well-camoullaged lale, the entrance; a "fake" houee built high on the mountain side serves as cammuflage for the refinery's exhmust stacks.
Inside a few dim electric lights-and some dim nuners' tamps carried by Gernan guides-reveal an enormous main chamber, 35 feet wide and 102 feet high; it's crowded with huge oil stitls, roaring boilers and oil sturage tauksuntil there's hairdly roum to move. It's hot outduors, but cuol in:ide, in spile of the roaring boilers; and there's a constant drip of cool water from the his, h ceilings, to make walking a dirty and precarious job.

Dr. Saiger led the way back into the chamber, through narrow passigeways; the chamber extends back 700 feet into the mosutain. Ail of the chamber had been blasted out of solid rock by workmen driven at top speed by the Gestapo guards.

Back ouldours in the sunlight where pipelines from the underground storage tanks load the peculiar litlle European railroad tank carrs, Dr. Staiger explained that a main problem of the operation had been in gelling sulficient crude vil to keep operatii.g at full capacily; Germany was short of crude and short of transpporlation.
"But," Dr. Staiger was told, "we were informed that an vil refincry couldint operate succes. filly underground."

Dr. Staiger laughed.

"Some penple say a steel plant can't be put underground either," he commentech, "luut the Nizi engineers didn"t believe that, cilher."
It appears that the Nazis had even planned eventually to locate blact furnaces and steel pliants underground, keeping the maw materials storage yards and rail vards outdoors.
The Elensee ME-262 plant was yet unfluishicd, merely a big hollowed-out chamber, when the war ended. But the Nazis had intended to cram it with machinery and other equipment, affording a safe indoor factory of great dimensions.
The other underground plant we visited also was unfinished, but it was intended as "the Willow Run" of Germany, a bigger plint than virtually any you'll find in the United States outside of those enormous war-time factories such as the Willow Run plant, the ConsolitatedVultee factory at Fort Worth, Tex., or the Douglas Aircraft Corp. assembly plant at Tulsa, Okla.
This one was at Muhldorf, a tiny and obscure Bavarian villaze about 40 miles
east of Municl, and its idea was enlirely different. In buildng this factory, the Nazis had merely taken an old gravel pit, put in tooters, piled up a huse heap of gravel, then covered the whole mass w.th a 10 -luet-thick layer of steelrei..forced concrete.

Then they sccoped out the gravel from beneah-and they had a five areltedroof building, 1360 feet long, 260 reet wide, and 80 feet high at the center line. Room lor admi.isistrative offices was located in the footers.
They hada't golten that far yet, but they had plamed to coner the rour with a thick layer of earth, setting in pine trees to blend with the hage pine forest surrounding the grancl pit-and then let the Allicd air furces bring on their bombs. The plant would have provided 1200 foot assem! ly lines.
Allied air officers, nccompanying us on the tour, said exen the bigtest bluckbusters used by the British Royal Air

GERMAN STEEL INDUSTRY

How badly damaged was the German iron and slecl industry by American and British bombing? Next weck, STEFL's editorial representative, Gcorge R. Reiss, will diseuss this sulpiect in the third of a series of articles on the condition of European indusiry as viewed by him on a 20,000 -mile tour whish he recently completed.
Just to arouse your curiosity, Mr. Reiss starts out his third article by stating: "Defeated Germany's big stect mills could easily grab a hefty chunk of the world's postwar steel business-if the victorious Allies permit it." The first of Mr. Reiss' articles appeared in STEEL, Sept: 10, page 88.

Force would have been unable to penetrate that thick reinfurced roof.

In building the Mulldorf factory, the Nazis had used thousands of Jewish laborers, those Germans who had been thruwn into concentration camps for no other offense than that they were Jews; these were given thin striped suils, woodensoled shoes, barely enough to eat, and then they were driven to death. Allied intelligence reports indicated 2700 Jews died at work on this plant.

The miracle of these factories is that the Nazis were able to get any worthwhile production from their unwilling, unskilled, huugry and sick slaves.

Socres of underground facturiessome under construction, olhers in various stages of operation-were found by the Allies scattered throughout Germany and the occupied country; some were in the monntains, others in underground tunnels and even in caves. Many were well equipped. In some plants
up to 5000 workers were engaged with the finest of machines and touls-stme of them coming frum the United Stalts, Frimce, Bi itan and ullur nathoms-in narking various types of war malerills. One was even producing ap to lou $\mathrm{V}-1$ bumbs a day when the Lorman..s hasstily abant doned it beture adsancing Allied furces.
These undergromend tactories, from the Nazi poimb of view, had two main values. The fisst and grealest was that the un. derground lactury was out of reach of the stralegic air bunber.
The second main value, to the Nazis, of these uidergranud lictories wis an enormous saving of manpower and therefore of preduction when they no longer had to shut up factoriess and send workers to air rand shecilers when air ruids were tlireatened.
Because they had no way of knowing where the raids were to st:ike-ind the U. S. Strategic Air Furces and Rayal Air Forces made the mosst of this-they had to send workers to air riad shelters and black out at wight thruighlunt Cermany.

Army intelligence rep.rists and studices shove that somue facturies losit up to 25 or 30 per cent of their production becance of time spent by workers in air raid shelters or absemuceism resulling from the workers being injured in their homes, gecting insulficient slrep as a result of air raids, or being unable to find trin portation 10 or trun work as a result of air-raid destruction of communities.

However, a some note in the value of by underground factories is injected by Miaj. Alex:ander P. de Seversky, the noted American aireraft devigner. builder, pilot and air strategy expert. Maij. de Seversky recently toured Germany and okher European countries to make a bembdamage evalnatiom and air strategy study for the U. S. Army Air Forces. 1 inter-viewed him in lume near the end of his trip.
De Seversky feels that the big Nziz
istake wasn't in failiug to go mistake wasn't in failing to go underground sooner to escape the Allled bombs, but in failure to recognize the te value of air power and building a better balanced air furce sooner.
"Air power could have done the job cheaper-much clearper-in protecting German industrial production," he contended. "Your underground factory really isn't worth much-not uniess you can make your entire underground factory self-contained, so you can produce virtually all your parts and assemblies in the same factury, can bouse your workers underground, too. For even the underground factory is vulnerable to air attack. It's got to have comp munication lines-railroads, power lines, highways-and these can be attacked from the air; if it's merely an assembly plant, its supplies of parts coming from factories producing the components can be cut off hy air attack-and possibly
event even some of those factories making the components can be destroyed."

Many Jap Homes Made War Goods

EVIDENCES of a crude system of subcontracting, or farming Hol war prodaction, was found by Americans entering Tukyo. sone areas, almost every house had a machine for prolwing war materials. These "backyard factories" are beliewed hive heen spread out over large sections of Japan when upprfortresses started pounding the country's large war Innts.
How much these home workshops contributed to the Nip-

ponese war effort is diffoult to judge. Iowever, there is rn evidence that a subontracting system anywhere near as e!ficient as that organized in this country was attained in Japin.

1hnote at unper loft shems a lathe which survived the fury of Allied fire bombs which wrecked the house sheltering it.

At upper right, a drill press is the only recognizable ob;ect amid the dibris of this workers' shack which formerly served as a lome workshop.

Lower plooto shows a milling machine amid the rubble of another wrecked house, found by advance parties of Americans entering Tokyo. NEA phutos.

WING TIPS
Tail warning radar device that served as "rear vision mirror" for fighter pilots said to have great postwar value. Airborne radar devices for Army Air Forces use streamed steadily from two laboratories of Air Technical Service Command

FUNCTIONING as "eyes in the back of a pilot's head," a tail warning radar device protected Army Air Force fighter pilots from surprise enemy attacks from the rear, it has been announced by Headquarters, Air Technical Service Command, Wright Field, 0.

This tail warning device, developed by the Aircıaft Radio Laboratories, Wright Field, and the Radio Corp. of America, New York, through modifications of the radar altimeter, was installed in AAF aircraft as early as May, 1944, less than one year after development was undertaken, according to Col. George F. Metcalf, chief of the Radar Laboratory, who conceived the idea that the altimeter could be used for such a purpose. Under his direction, equipment was installed on the roof of the laboratory building. Its ability to "pick up" airplanes flying overhead was proof of the feasibility of the project.

Serving as a "rear vision mirror" to the pilot, the tail warning set transmits a cone of radar pulses from the rear of the aircraft in which it is installed. When another aircraft enters this cone, the reflected radar pulse causes a warning bell to ring and a light to flash on in the cockpit, he explained.

With the installation of both forward and. rear scanning antennas and other minor switching modifications, the equipment has now been adapted for forwarding ranging and obstacle detection, an application which will have great postwar value, Colonel Metcalf said.
Key activity in the engineering of radar equipment for use in the AAF's world-wide operations is the Radio and Radar Subdivision of the ATSC at Wright Field.
Under technical supervision of the Radio and Radar Subdivision, of which Col. Hobart R. Yeager, command pilot and veteran in the field of radio and radar, is chief are the Aircraft Radio Laboratories at Wright Field and the Watson Laboratories, Eatontown, N. J.

Playing a unique role in research, development, engineering, testing, contracting and installation activities, these two groups of laboratories have been responsible for guiding the direction of radar research in government, university and commercial laboratories, adapting theoretical research results to the solution of engineering problems, engineering the quantity production of millions of dollars of radar equipment and fitting the complicated devices into AAF aircraft and
various vehicles as workable systems.
Out of the Aircraft Radio Laboratories, of which Col. Wayne G. Eaton, former longtime civilian employee there, is now acting chief, have come a steady stream of airborne radar devices for every conceivable AAF use. Chiefly concerned in the development was the Radar Laboratory, of which Colonel Metcalf is chief.
In addition to the tail warning device airborne radar equipment of major significance made available to the AAF thrcugh the efforts of ATSC included:

Search equipment which contributed largely to the defeat of the German submarine.

Bombing devices permitting bombardment raids over enemy territory regardless of weather or visibility conditions.

Light-weight, portable beacons used as navigating systems to guide paratroopers and gliders in the invasions of Sicily and Normandy.

Precision navigation equipment used for exact location of drop zones, strategic targets and long range navigation over water and poorly marked land areas.

Altimeters providing accurate readings indicating altitude above the terrain over which the aircraft is flying.

Airborne interception devices used by night fighters to locate and intercept enemy night raiders.

Devices to facilitate rescue of air crews downed at sea or in dense jungles.
Airborne gun sighting and gun laying devices providing automatic control and firing of airborne machine guns and cannon.
Devices used for the low altitude bombing of shipping in the Paofic theater.
System tie-ins with optical bombsights, permitting synchronous operation of radar bombing sets and optical bombsights.

Although a Signal Corps installation until the transfer to the AAF in October, 1944, the Aircraft Radio Laboritories have always been located at Wright Field, with the primary mission of developing radio and radar equipment for the AAF. The Watson Laboratories, on the other hand, were established in February, 1945, as a result of a transfer of responsibilities for certain ground based radio and radar equipment from the Signal Corps to the AAF.

Col. Oscar C. Maier, commanding officer of the Watson Laboratories, and many of his key military and civilian engineers have been associated with the engineering of ground radio and radar equipment for use by the AAF for a number of years. These laboratories, and their predecessor, the Signal Corps Laboratories near Ft. Monmouth, N. J., from which the responsibilities were transferred, have made available to the AAF the following types of radar equipment:

Long range, early warning equipment

for the detection, from the ground, of enemy aircraft, indicating range, height, and azimuth.

Ground control interception devices plotling the course of enemy aircraft and the directing of dufensive operations, either ground based or friendly aircraft already in flizht.

Ground control approach installations enabling gromed crews to inform pilots of their location wilh respect to overcast runways and to guide them to safe landings.

Equipment to clearly mark front lines and enemy largets enabling the AAF to concentrate its striking force in the suppurt of ground troops.

"Magic Glue" Helps Make Helicopter Rotor Blades

Cement procluced by the Cycle-Weld Division of Clirybler Corp., Delroit, is being used in mamfacturing rotor blades I. r helicopters used by the Anny Air Forces.

The new method of fabrication was adopted when extensive research and tests showed that the blades were stronger when Cycle-IVelded than they had been when spot-welded. Company engineers foresee further use of the "magic glue" in the peacetime manufacture of the aircraft which ascends and descends vericially and operates without the usual motor, wing and fuselage construction found in conventional airplanes.

The four blades, which whirl horizontally above the body of the helicopter, are made of metal, wood and canvas. Inside each of the blades is an alloy steel spar-a tube-like brace running from the hub of the rotor, located on the top side of the body, to the tips of the four blades. To the steel spars, assemblers fit wooden rilss of various sizes and lengths, over which is placed plywond anad canvas to form a tapering, finished lhade.

The ribs are anchared into place on metal collars which fit snugly around the spar at designated points. Until

Cycle-Weld cement was aclopted to further resist heary Inads placed on the blades in flight, the collars had been spot-welded to the spars.

A specially designed locating fixture is used to spot the leel collars aromed the spars. The cement is applied to the spar and to fanges at the base of the collars. Bunand metal clips, tielitemed by screww, holde the collars to the spirs under pressure while heat is applied. The combination of heat a ad prossure hmuls the glue on the mating surface, it is pointed out.

ATSC Seeks To Reduce Airplane Fire Hazards

Consolidation of the Procurement anil Readiustment Divisions, Air Techniml Service Command, under-lhe sindle nalue of Procuremont Division with Brits, Gen. Edwin Wr. Rawliness as clief, was announerd by Maj. Gen. Wugh J. Kinerr, commanding general, ATSC, Wright Field, 0.

"Deck-Edge" Elevators Being Installed on Navy's Aircraft Carriers

A UNIQUE "deck-edge" elevator that whisks airplanes up the outside of an aircraft carrier to the flight deck helped Lhe U. S. Nasy hurl carrier-based bumbers and fighters against Japan.

Because of its success, the elevator is being installed on the Navy's new flet of Midway class supercarriers, according to Ellis L. Spray, vice president in charge of the elevator and airconditioning divisions of the Westingbouse Electric Corp., Piltshurgh, who pointed out that the elevators have secretly been in battle service for two and one-half years on the 27,000-ton Essex class fleet in every major task force operation in the Pacific.

Thirty-four feet wide and 60 feet long, the 50 -ton platform is hung "outboard" at the edge of the light deck, opposite the carrier's superstructure. The platform is lifted and lowered by steel cables, $11 / \mathrm{in}$. in diameter, which pass over a series of direction-changing and lev-erage-multiplying sheaves, one of which is shown in the accompanying photograph. This sheave is one of a series which translate horizontal engine thrust into high-speed vertical lift. The sheave's roller bearing alone weighs nearly a ton.

The deck-edge elevator speeds battle action aboard the carriers because it enables plane-handling crews to keep the central llight deck cleared of incoming planes as fast as they land. During take-offs it permits faster delivery of planes from the hangar deck and prevents planes awaiting take-off from "bunching up" arnund the elevator openings, as they did when only the bow and stern deck elevators were available.

IET ONE CALL DO IT ALL curcen sole reeor way... get Industrial on the wire

Yook cre assured of same-day attention to all your Stainless needs when you telephone first to Industrial . . . where America's largest, most diversified warehouse stock of Stainless Steels is instantly available.

If it's S:ainless, Industrial has it . . . with the emphasis on prompt service. What's more, you pay no premium over mill prices, regardless of quantity.

Expert chemical, metallurgical, and engineering counsel is yours for the asking, too . . . if you have a Stainless selection or fabrication problem. Request help if you need it . . . and send for your free copy of the Industrial cetclog. Industri=l Siee!s, Inc., 250 Bent Street, Ccmbridge 41, Mass.
\$LMCO CI-J2

SURFACE HARDENING PROCESS adds life to stainless pants

If you make or use Stainless parts, investigate the Stainless Surface Hardening Company's efficient new process. Cives up to 1100 Brinell surface hardnass. Combines the corrosion resistance of Stainless with the abrasion resistance of a nitrided surface.
Wrile Stainless Surface Hardening Co., 255 Bent Street, Cambridge 41, Mass. Subsidiary of Industrial Steels, Inc.

Olin Industries Organize Brass Mill Division

New division designated as Western Brass Mills. Headquarters will be located at East Alton, III.

OLIN Industries Inc., has consolidated all of its brass mill business into an integrated division designated as Western Brass Mills, it was announced last week at the corporatiou's headquarters at East Alton, III.

Production facilities serving the division are the brass mills at East Alton and New Haven, Conn., operated in connection with two other divisions of Olin Industries. These are the IVestern Cartridge Co. Division at East Alton and the Winchester Repeating Arms Co. Division at New Haven.

Marshall W. Acker, former general manager of East Alton brass mill operations, has been appointed director of the new division. He will be assisted by a complete technical and sales organization with headquarters at East Alton, resident technical and sales staffs at New Haven and a network of branch offices in the principal manufacturing centers of the country.

Western Cartridge Co. became a brass producer during the first world war to supply its needs for the manufacture of small arms ammunition and entered the commercial brass business on Nov. 18, 1918.

The Western Cartridge group acquired its second brass mill in 1931 with purchase of the Winchester Repeating Arms Co. of New Haven. The New Haven mill, in operation since 1883, had confined its production largely to cartridge metal for Winchester's own requirements. Following acquisition by Western, facilities were expanded. With the outbreak of World War II, facilities at the New Haven mill were increased again, this time to include improved processes and equipment developed by Western at East Alton.

Detroit Engineers and Ceramic Society to Meet

Story of the development of porcelain enamel from a medium of artistic expression to a modern engineering material will be related to Dr. Robert A. Weaver, president of Ferro Enamel Corp., Cleveland, at a joint meeting of the Engineering Snciety of Detroit and the American Ceramic Society. The meeting will be held Sept. 25 at 8 p.m., at the Horace H. Rackham Educational Memorial, Detroit.

WAR WORK ENDS: Production right-of-way is given now to locomotives at the Schenectady, N. Y., plant of American Locomotive Co. since war requirements for tanks and tank destroyers have been curtailed. Pictured is the last of the M-36 tank destroyers, and a new 1000-horsepower diesel-electric unit

BRIEFS

Paragraph mentions of developments of inferest and significance within the metalworking industry

Philco Corp., Philadelphia, has started construction of a modern plant costing over $\$ 1$ million, featuring long continuous radio production lines. The new facility will adjoin the company's present Philadelphia plants.

-0 -

Eastern Enamelers Club will meet for for the first time since travel restrictions went into effect, Sept. 22 at the Ritz Carlton in Philadelphia, with H. B. Brown, promotion manager of Philco Corp., as chief speaker.

Formica Insulation Co., Cincinnati, is preparing to turn out laminated plastics materials for decorative uses.

Edward G. Budd Mfg. Co., Philadelphia, has already under way a two-year reconversion and expansion program costing $\$ 16$ million. The program will affect the Detroit and Philadelphia plants.

-0-

E. I. du Pont de Nemours \& Co., is exercising option to purchase a site of about 400 acres at Washington, near Parkersburg, W. Va., to provide plant space for projected expansion in the plastics field.

$$
0-
$$

Pullman-Standard Car Mfg. Co., Chicago, has purchased from the Bureau of

Ships, Navy Department, for $\$ 927,472$ the ship assembly building which was erected at Pullman's south side car works plant.

$$
-0-
$$

Ace Mfg. Co., Philadelphia, has purchased Delloy Metals, Philadelphia, manufacturer of cutting tools. The latter firm will be operated as Delloy Metal Corp.

$$
-0
$$

General Electric Co., Schenectady, N. Y., has established warehouse stocks of more than $\$ 1$ million worth of marine replacement parts in New York and San Francisco.

United States Rubber Co., New York, has developed a plastic foam stiven times lighter than cork. Peacetime uses will include insulation as well as buoyancy applications.

$$
-0-
$$

Vascoloy-Ramet Corp., North Chicago, Ill., has installed a Detroit branch office at 512 Hook Bldg.
Phelps Dodge Copper Products Corp, New York, is erecting a $\$ 4.5$ million rod, wire and cable plant at Ft. Wayne, Ind., to serve as a separate division.
Cooper Alloy Foundry Co., Hillside, N. J., has established a subdivision in Newark. N. J., devoted exclusively to
frecision casting of small intricate parts, be known as Precise Castings Corp.

Burdett Oxygen Co., Cleveland, has pened a Cincinnati warehouse at 316 West Seventh Street.
Heppenstall Co., Pittsburgh, is inesting $\$ 170,000$ in a new research Whoratory to be located at Hatfield and朝 Streets, near the company's general fices and opposite its plant.

- 0

Latrobe Electric Steel Co., Latrobe, 1. has opened a new sales office in the Be Bldg., 10 High Street, Boston. bert S. Rose is new district sales mager of the territory, comprising ustem Massachusetts, Rhode Island, lev Hampshire and Maine.
Pipe \& Tube Products Inc., Jersey iny, N. J., and Reading, Pa., moved its secutive and sales offices from Jersey iyy to the Empire State Bldg., New York, Sept. 15.

- 0 -

Edward Valve \& Mfg. Co. Inc., East himago, Ind., has appointed Leatheros \& Mertz, Detroit, as its representate for all of Michigan, excluding the Fiper peninsula.
Honroe Auto Equipment Co., Monme, Mich., Railway Division, opened t new Chicago office, 3001 Willough$\$$ Tower Bldg., Sept. 15 , with an open ause for railway officials and engiRes.

$$
-0-
$$

Square D Co., Detroit, is taking steps double the size of its Milwaukee lant, devoted to manufacture of indus71 electric motor controls and other tectrical equipment used by industry.
Whiting Corp., Harvey, Ill., has comteted arrangements with the British If Iron Research Association for the diusive rights to manufacture and oket balanced blast tuyeres for cupolas ipreviously supplied by the McWane it Iron Pipe Co. of Birmingham.

Refrigeration Equipment Manufactur-

\$ Association has called a special meet${ }_{3} 0 \mathrm{ct}$. 15,16 and 17 at Hot Springs, A, for the purpose of discussing with Tremment officials ways and means - obbaining materials quickly. REMA I resume its annual all-industry reforation and air conditioning show in qleveland's Municipal Auditorium Oct.
3Hover Mov. 1.

xrap Institute To Meet Sh. Lovis in January

 Institute of Scrap Iron \& Steel Inc., Yasington, is planning to hold its 18thSoal
convention

10, in St. Louis, assuming ODT by that time will have further modified or abandoned its restriction on conventions.

Plans so far name the Jefferson Hotel as convention headquarters. The program will emphasize the preparation of scrap, particularly those problems arising from the enforced absorption of government surpluses and alloy scrap

Termination of Army-Navy "E" Award is Announced

Termination of the Army-Navy "E" award program, by which the Army and Navy Departments recognized outstanding contributions to the war effort by industrial plants, was announced last week by Under Secretary of War Robert P. Patterson and Assistant Secretary of Navy H. Struve Hensel. Awards decided upon for August will be presented, but no further additions to the " E " list will be made.
The Army-Navy " E " award came into existence in July of 1942 when the Navy "E," the Army "A," and the Army-Navy Munitions Board Star were merged. Since that time, it is estimated, the award has been granted to approximately five per cent of the nation's war plants.
Most recent awards include:
Chain Beit Co., Milwaukee.
Handy \& Harman, New York.
Albert Wright, Oakland, Calif.
Greenlee Bros. \& Co., Rockford, 111.
Ellwood Co., Ellwood City, Pa.
United States Steel Corp., American Bridge Co., Gary, Ind., plant.
Glidden Co., Hammond, Ind.
Square D Co., Milwaukee plant.

Mclouth Corp. Now Produces Stainless Steel

Abstract

Output is limited but installation of new facilities will enable Detroit firm to expand production

STAINLESS steel sheet and strip is now in production at McLouth Steel Corp., Detroit. Although tonnage is limited with present facilities, an entirely new and separate division for the manufacture of stainless is now under construction.

A new building $75 \times 412 \mathrm{ft}$ is being erected on property purchased adjoining the present plant site. It will house two new cold rolling mills with auxiliary electrical motors and controls and finishing and production equipment. In another new building additional facilities and equipment provide a continuous annealing and pickling line for processing stainless steel.

Purchase orders were placed for the new mills and equipment early this year and their delivery and installation will be completed before the end of the year. Full production will be attained for a wide range of gages and types of stainless steel to meet rapidly increasing demands.

EXPANSION PROGRAM: Largest unit in the $\$ 2,440,000$ expansion program of Rustless Iron \& Steel Corp., Baltimore, is this new $\$ 1,370,000$ rod mill in the opening stages of construction. It will be a 28 -bay building, 560 feet long

> Huge 1200 kra machine designed to join shafts to jet engine turbine wheels in 135 seconds can handle shafts ranging from 1 to 6 in . in diameter, 12 to 72 in . in length and wheels from 5 to 40 in . in diameter

MTIAT is probably the largest and al spectacular flash welder ever built ojust heen connjleted for the Generial axtic Co. and a duplicate machine now under construction for the Westingause Electric Corp. A third machine Ion order for the Pratt \& W'hitncy Air24 Co
The machine is a hedraulically opervertical flabh-butt welder designed The Taylur-llinfield Corp. for join\& solid steel shafts to the turbine adel whecls of jet propulsion engines. 3 size is inclicated by the fact that is raled at 1900 kra at 50 pur cent dy cycle, 2300 v primary, 60 cycles das a maximum upselting capacity 850,000 It at 1000 psi hydramlic messure. It is equipped to take shafts faging from 1 in. to 6 in . in diamea in length from 12 to 72 in . and edet wheels from 5 to 40 in . in diame 4.

The developmental work on Hash eding wheel assemblies fur jet engines is done hy the Ceneral Electric Co. ang a Taylor-Whinfield s00 kva welder dmany of the design fertures of this atical machine are the result of such bok.
While designed for the jet engine joh, ts beliesed that the machines can be adily adapted for joining similar pieces T other purposes. The development Lso serves to dissipate further any conaplion that flash-butt welaling is consed to falbrication of relatively small ed thin sections.
In considering a flash welder for the Pengive juth, it was decided to design vertical machine of the hydraulic tes tipe since it would make possible Ty dose work alignment and allow a ximum of die deflection at the time Mpset. While hurizontal machines of -conventional type are well adipted tmany types of work, it usually is difoft to keep stressies in a straight line. Course, with the verical welder, the edem of handling heary work pieces and out of the machine immediately se but, upnn cirefully analyzing the 3hlem, the designers came to the conzron that loading the bucket wheel 24 the welder by means of a loading mage was many times more efficient ton loading it into a horizontal welder. Designers of the machine also found necessary to cope with the problem

Fil. 3 - Schematic diagram of the tyirrulic system shows (1) the wir of duplex pumps, (2) upset alinder mechanism, (3) upper dompling cylinders and (4) lower clamping cylinders

of joining two steels of widely differing analysis, the shaft and bucket wheel. In addition, hardness value of the shaft must be retained at a high level. In actual practice, rockwell C hardness at the weld drops only about 10 points.

Fig. 1 shows the first welder as assembled in the Taylor-Wiuficld plant at Warren, O., prior to shipment th the General Flectric Co. at Syracuse, N. Y. The simple schematic diagram, Fir. 2, shows that the machine mainly comprises two vertical side frames (A) of cast steel, at each end bolted to and separated by
cast steel brackets (B). A hydraulic cylinder with a bore of 3.5 in . drises the upset slide (C) with a presure of 850 ,000 th at 1.000 psi line pressure. Cylinder and piston are niachined to a close fit so that piston rings are umnecessary. A slight leakage offsets friction.
Both brackets are positioned by keys, the upper one boing insulated clectrically from the side frames. The upset slide, on which is monated the platen bearing the bucket wheel to he welded, is gnided by two attached slicle brackets (C) which move vertically in hardened and ground

steel slide bearings in the side frames. Travel of the hydraulic piston is limited by the adjustable bucking nut (D) on the lower end of the piston rod. A slide position indicator (E), consisting of a large calibrated dial and pointer, is mounted on the right hand side frame and provides a magnified visual indication of the upset slide's position and travel.

A pair of identical clamping arms (\mathbf{F}) serve to conduct welding current to the bucket wheel and, at the same time, hold it firmly on the platen. These clamping arms are actuated by hydraulic cylinders (G) attached to each of the slide guide brackets and extending outside the frame. The bucket wheel is positioned by a locator ring on the platen but the welding load is carried by the upset slide's integral backup screw, which may be adjusted to butt firmly against the bottom of the bucket wheel.
Mounted on and keyed to the lower face of the stationary (upper) bracket is a hydraulic toggle-operated horizontal clamping fixture (II) for clamping and

Fig. 5-This simple diagram shows how the welding cycles are controlled by four G-E 2400 v electronic contactors, each of which is equipped with two Type 238-B ignitron tubes. Power is supplied by an 883 kea transformer
supplying welding current to the shaft to be welded to the bucket wheel. This fixture comprises two similar halves, with the left-hand section operating against a stop, positioning the work on center, and the right-hand section providing the actual clamping pressure.

Warning lights, located at the control station (I) and operated by microswitches on the right-hand half of the clamping fixture, indicate whether or not the clamps are in the correct position. The clamps will take insert dies accommodating shafts ranging up to 6 in . in diameter, and provide a maximum of $100,000 \mathrm{lb}$ clamping presssure.

Interlocking hydraulic controls are provided to eliminate the possibility of unclamping the upper fixture too far

Fig. 4 - This rear view of the welder taken on Taylor-Winfield's assembly floor shows the hydraulic system at the left and the loading
fixture at the right
at the completion of the weld, when the lower fixture and slide are in the upset position. The upper dies first open approximately 1 in ., then after the lower fixture and slide have been lowered a sufficient amount, they automatically open the full $31 / 2$ in, each side to provide a total loading clearance of 7 in . The upper clamps are adjustable laterally, and the lower platen longitudinally, to insure accurate alignment of the work.

The upsetting force transmitted to the shaft being welded is absorbed by the upper backup screw, which butts against the upper end of the shaft. This backup screw projects through the cutout stationary bracket and is carried by the backup bracket, which in turn is mounted on the two threaded backup bars projecting from the top of the welder. The backup bars are provided with the scales (J) for alignment of the backup bracket, and are surrounded by a railing for safety of operators in making adjustments. Top of the machine may be reached by means of a ladder mounted on the rear of the left hand side frame.

Controlled hydraulic pressure is supplied by the pumping and control unit mounted on the hydraulic reservoir to the right of the welder. This may be seen by referring to Fig. 4, and various functions are shown schematically in Fig. 3. Two Vickers Duplex pumps driven by two $440 \mathrm{v}, 3$ phase, 60 cycle, 25 hp GE motors provide a combined output of 96 gallons per minute at 1000 psi to the clamping cylinders as well as the large upsetting cylinder. Cuno motordriven rotary oil filters are located in the suction lines of each pump. Two cooling coils mounted in the reservoin keep the oil at proper operating temperature.
A novel and highly successful departure from established welder design is the pneumatic accumulator mounted on top of the pumping unit (" K ", Fig. 2 and Fig. 4.) This accumulator, comprising 18 drawn steel bottles of nitrogen precharged to a pressure of 750 psi , provides a very large flow of oil at high
(Please turn to Page 150)

Machine Feed Conversion Chart

This chart was originated by E. J. Klika, industrial engineer, Bedford, O., for quickly converting "inches of feed per minute" into "amount of feed per tooth" and vice versa. Read feed per minute at left-follow to spindle rpm at right-down to number of teeth in lower half of table-and read feed per tooth in left column.

RECOKMENDED FEED PER TOOTH

Fig. 1 (above)-What might be called minor refinements will in mary cases exert major influence from now or in swaying purchases of new machine tools. "Built-in liglting" is a good example. Steel's report on customers' preferences brings out the fact that 66.8 per cent of them favor it. Practical example shown is boring m:ll in the stop of Frederick Colman \& Sons Inc. Photo by Palner

WHEN I gave up attending country fairs and began to attend machine tool shows 30 years ago, I sensed something in common between horse racing as practiced in Vermont and the competition which exists in the American machine tool industry. Note that my reference is to horse racing, not to horse trading.

As those old and experienced ownerdrivers maneuvered down the track to the post, they were doing two thines at once. One was to bring their sulkies to the post wheel-to-wheel so that the starter would shout the word, "Col" The other was to size up their competition. Quick conclusions were drawn in those few seconds of the minning start. Much of the strategy after the start was based on these conclusions.

The period immediately preceding the start of a machine tool show invariably has been a period of equally lively curiosity on the part of the participants as to the "entries" made by rival participants. Speaking at the dinner following the preview of the most recent Na tional Machine Tool Exhibition-that in the fall of 1935-Ralph E. Flanders (now on leave from the industry to serve as president of the Federal Reserve Bank of Boston) sized the situation up in this manner: "Our exhibitors seemed to be spending guite a lot of time today in the booths of other exhibitors-shall we say, selling machine tools to each otherp"

This fall numerous unscheduled events

have been touched off unexpectedly and in many cases prematurely-shall we say, by the explosion of the atomic bomb? One of these is what bids fair to be about the liveliest and most interesting competitive race in the entire history of the machine tool industry. The grand prizes in this big race consist of generous shares in what, up until the middle of August, was that purely speculative thing of the future which was called "postwar business." Many
people were thinking about it, some were talking about it, but, under the rules of war, no one was allowed to do much of anything about it.
Now, all of a sudden, this prize is before us as i tangible thing called "peacetime business." Now, alnost ovemight, the machine tool builders-along with industry in general-find themselves swept into the grand Peacetime Conversion Race, in which literally they al(Please turn to Page 156)

Tool Builders

study
 ITheir
 Cusfomers...

Fig. 2 (left)-Of the 2358 noluction metaluo orking dolls reporting 10 Sreel, 58.8 per cend plan to iastall sore "specicilly buill madines." Projected ocer 11,100 companics, this means hasy days alicad for sales mgineers, machine tool deigners and tool engineers, slose cflorls must be comblinuted as never before. Srecial machincs will ranure 4) the way from slightly saificd bench Irills to huge tomser machitics of amaz-如complexil!!. A typical extople is this 4 -spiadle ketlonl wilh roll-nner firture Ior efficient Stellite boring of Hupre culliuler IJlorks. Photo ourtesy Ilaynes Steilite Co. fif. 3 (right)-Trend tovard machines which rclicue 3tators of mentill as well apiusical effort is reflected STlel's survey. For exlanie, relurns show that, tile 6.9 per cent of plants Wh have die sinking mathes, 7.9 per celit of all the Whts in:tend to buy them. the sume token, 4.2 per vhave tracer controlled Hing muchines, white 4.9 \% cent intend to buy Fe of Oly through greater F of machines having built in skill und intellisimen as tynfied by this rece-controlled die milling mitp of the Frederick Colran \& Son slup, can the wation be met. Groernnent photo by Palmer

TERMAN FASTEMER
 industry
 linity Years Shind Times

Abstract

Report of American investigators, C. F. Newpher of National Screw \& Mfg. Co. and R. H. Smith of Lamson \& Sessions Co., indicates Nazi policy detrimental to progress in machines and techniques. Plentiful supply of cheap labor encouraged laissez-faire attitude. A few plants very progressive

GERMAN fasteners industry, generally speaking, is many years behind that of either England or the United States. Behind this is the fact labor had been plentiful and cheap, making it unnecessary to devise automatic or mechanical means to rapidly or accurately produce its products.

Also it appears that, during the period of preparation for war and during the war years, the whole of the German goverament's policy was to regard bolts, nuts, screws, and rivets as unimportant articles. Upon the word of people in the industry, the High Command in Germany obviously failed to appreciate the necessity for fasteners, as they continued to draft skilled labor, technicians, and engineering talent, either for army service or to supply other manufacturing plants. Inefficiency resulted both because remaining employes were compelled to work as long as 84 hours per week and because skilled labor drawn off was replaced by "slave" labor which produced material defective or of poor quality.

It was not until 1944 that scarcity of bolts and nuts had become so serious that action was taken to rectify previous errors, but too late.

Allied bombing not only disrupted production at original sites, but so interfered with dispersal of equipment that shipments were held up, permitting machinery to get into bad condition.

Scarcity of alloys early hit the Germax bolt industry and substitute materials were made mandatory, finally re.
sulting in steels of high manganese as the sole alloy employed.

Standard of steels for use in the German bolt and nut industry was established, using manganese as the principal alloying element. Complete range of authorized steels is shown in accompanying table, together with heat treating and physical specifications.

Steel of Poor Quality

Almost universal complaint was heard from Germans in this industry about quality of the steel supplied. Full of seams, it was not suited to cold-heading, making it difficult to produce an acceptable product. The presence of seams was so pronounced that one factory heated connecting rod bolts to a cherry red in order to roll threads properly, resulting in a decarburized thread of poor structure.

Corrosion protection also had been neglected, probably with the thought that in airplane's life was limited anyway and, therefore, there was no need to prutect fasteners by cadmium or zinc plating in the case of aircraft bolts. Parkerizing or bonderizing were found in a few instances, but they were in the rinority.

All in all, the industry presents a sorry picture, with no vestige of high production methods in vogue in the United States and few places comparable with those of England. Methods that passed out 30 or more years ago are still in use, -particularly on some hot-forged bolts.

Most significant was the fact the
numerous questions asked by members of the delegation concerning developments already attained in United States or being worked on over here were met with blank stares. German plants showed no evidence of any developments along lines of deep freezing tools, double extruding, and controlled bolt tension. Summarized, this somewhat negative record goes as follows:
-No methods were found in use to determine machineability.

- No evidence was found that spheroidizing had been used.
-Age hardening of cold-heading wire had not been recognized.
- Cold drawing lubricants were commonly lime, but some copper-coated wire was found where attempt had been made to improve heading quality on difficult jobs. A phosphatic acid treatment given work which started to rust after a bombing episode, by accident, placed bonderizing advantages within grasp of one firm which used the treated wire in cold heading with excellent results.
-Maximum diameter cold headed was normally $5 \%-\mathrm{in}$. (in only one case, $3 / 4$ in.) and normal coil weighed about 80 lb.
-Seams were prevalent in wire received by the industry.
-Induction heating had not been used in heating bolt blanks.
-Cold heading tools were largely of 0.90 -carbon steel; no tungsten carbide was in use.
-No recessed head screws such as Phillips, Frearson or Clutch, were in use.
-Elastic stop nuts were used freely in airplane design, but a similar nutinvolving a tapered split nut-although very popular, was a very expensive, difficult design.
For this survey, the delegation vistted a score of plants whose overall organization, facilities, and production procedures were studied in detail, the remainder being so small in size or else so widely dispersed that they could be disregarded. The industry was concentrated largely at Dusseldorf and Hagen, with a few plants near Hamburg.
The following firms are among the most important:
Bauer \& Schaurte: Company's total peak production of aircraft bolts was in June, 1944, when they produced 6.7 million units. Considerable tonnage war in production due to the lowering in quality of wire. In its entire plant are 63 cold heading machines. Neanty 12, 000 tons of raw material was used in 1944 to produce 220 million threaded parts. Total employment was 3050
Bauer \& Schaurte's thread grinding machinery plant produced a large number of thread grinding machines, but, between July and October, 1944, production of new machinery was suspended to concentrate on maintenance existing machines in use elsewhere. Machines built were delivered in largc numbers, over 500 being used in various
wolt plants. Dr. Brendel, who was in darge while Dr. Schaurte was interned, lowed various customers to persuade in to change the machine in such a ay that it became a bastard.
Baucr \& Schaurte's dispersal plant at Hunchen-Gladbach is exclusively compoied of 8 headers, 8 trimmers, and 7 tread rollers. Working on two shifts, \pm produced 8 million bolts per month a diameters from $1 / 4$ to $3 / 8-\mathrm{in}$. No bolts rere pointed, but all were heat treated :ere.
Gage plant of Bauer \& Schaurte, the irgest producers of thread gages in Cemany, was dispersed so widely after were bombing of Hamburg that none f it is in operation or ready to work. troduct was known as Aggra, and protoction reached as high as 5000 per zonth, equal to 60-70 per cent of nasnal output.
Hupperman Co.: Wupperman Co. at lygen operated a spoke and nipple-mak$\because 3$ plant very out of date and badly app. Total employment was about 1200 ensons, most of whom were engaged in xoduction of chains of the type usually wociated with conveyors. Obstructive fitude of Mr. Wupperman prevented e gathering of more information.
Dusseldorfer - Eisenhuttengeselschaft: Nthough possessing nothing unusual in 3 plant, this organization has one of best layouts seen in Germany. Furases operated for the hot forging presses housed in a building separated me latter by a brick wall; each mace has a hole through the wall, and blanks are thrown down a tube to forging machines, thus keeping the see as cool as possible. Forger Tous bolts onto conveyor which takes em to trimming machine and, in case of G spikes, they then are reheated and t thread rolled. Owing to shortage of A furnaces were converted to coke. Nom \& Gewinde Teile, A. G.: This ariginally was named Hobus by the io Bauer \& Schaurte men who estabed it. Plant was dispersed from netz to an intermediate location, from nith part of it went to Marburg, tere it still remains and has not been *o by this delegation, the remainder wing to Schwartzenbek. Plant conmainly of 40 automatics, mostly 1) Idex und Skoda manufacture; 14隹解s or turret lathes; 36 high speed Des, mostly made by Ludwig Loewe Berlin, and the balance made by ugdeburger Machinfabrik; 18 centergrinders; 20 Pee-Wee roll threaders; 0 onread milling machines and 40 to srall second operation lathes; 20 machines; 2 double-chain feed F slotting machines; and 2 heading thines. Most studs were produced turning. Monthly production of Was approximately 2 million, of to ove-balf million, special parts in all (turaed) 300,000 per month, and Paial long studs 20,000 per month. Tlity of products was very high and *) For aircraft engine manufacture.

[^2]

Fig. 1-This doulle wing tangent bender was designed to perform the difficull metal forming operutions shown in other illustrations

Fig. 2-Ilcre is an example of work formed on the tangent bender. On the left is a perspective cicw of a preformed shicet. Next to it is the finished product, and Latore these two views is an edge vicw of the preformed sheet before bending operution
Fig. 3-Schematic diagram of the tangent bending operation. In these diagrams a phain sheet is shmwn being formed into a refrigerator shicll. Dies can be cal to fit any preformed sheet outline in this operation

TANGENT bending is a new method fuetal fabrication. It's a hybrid methta cruss between press forming and might bending in which the metal ans during the bending operation and shape is controlled by a die. As in a case of many hybrids, the resulting cration is not like cither of the parent xations, and can be used for many ipposes unsuited to either. Tangent bencling, and the tangent bena, started before the war and a few rhines were used production-wise on met metal faldrication before limitation fers stopucd production of civilian ads. Thi, production, however, proved a economy of the beuder and its ra possihilities over a wide range bending, as first conceived by its entor, Lee Green, now of Designers Industry, Clencland.
Develupment work on the unit has mondertaken arid carried out hy ouhers-1We.lls Corp., Tituswille, Par, from the early eaperience the com-- has ernlued a series of new henders akh will not mily hend shoet onetal, at will aks form alnowst any metal duat Frum thin strip throunh fairly ay plate. hars, tubes and structural dess as well.

The principle of operation is simple, but nut easily described. Heasy pressure is exerted on the metal during the bending operation, while the shape of the metal is controlled through the use of dies. This encourages the flow of metal, and pruvides for clase dimensional tolerathee on the finished bend. This means, for example, that sheets may be edge bent without wrinksing or tearing. Tubes can be bent without flattening or wrinkling on the inside radius. A T-section can be bent internally wihhout buckling or deformation of the vertical member, and bent extermally without cracking or tearing the vertical member.

There are three basic parts in the bender. The male die, the frmale die, which is monnted on a rocker plate; and the bending wing, which moves the rocker plate and applies the power. In operation the bending wing performs an are aromed the male die, carrying with it the recker plate and female die. The rocker plate is free to move across thait purtion of the work piece being bent, which produces an "ironing" action. This slippige, or ironing action, aids in the flow of metal and prevents tearing during the operation which would result if there were no "give" between the dies.

The term "tangent bencling" arises from the fact that during this uperation, the female die is constantly tangential to the male die and the sliding pressure is applied in this same tangential direction. This provides a constiant and even pressure on the work piece at all times during the operation.

The mast obvious and immediate use for this forming me:hud is in the manufacture of metal cabinets fur such items as refrigerators and ranges. It makes possihle the rounded corners and edges demanded by today's designers without the need for hand finishing operations on these rounded surfices. Fig. 8 shows, for example, the steps in bending a refriterator shell from prefurnsed sheet sections.

The bending operation is by n means limited to sheet fithrication. Succesvful bends have heen made in bars, tulies and structural sections, as shown in Fig. 4. Size rance is almost unlimited. Sutall sheet metal specialities, such as camera and instrument cases, can be handled just as easily as conild a raiłrnad car section. The only difference would be in the size and design of the bender,

Fig. 5 - Shown here is a sectional view of the exparding die for the double-wing bender which automatically compensates for variations in thicknesses of sheets

Fig. 7 - "A" shows formed sheet positioned for bending in a singlewing machine; " B "-first tangent bend has been made and the sheet is ready for repositioning for the second bend; "C"-final bend has been made in forming typical refrigerator shell

and the amount of power required. The initial models, built before the war, were air operated, but the compressibility of the air caused a "bucking" action in some cases where heavy bending was necessary. Present models have been switched to hydraulic power in order to provide an even flow of pressure throughout the bending cycle.

There are several standard models of tangent benders in four general classessingle wing, double wing, stretch wing and duplex benders-but in many instances a machine may be engineered for the particular job required of it. Variations are almost infinite, particularly for the dies. Duplex types permit forming of rectangular sections-boxes with only one seam-which are removed through the side of the machine. Size range is virtually unlimited, and any type of ductile metal in any gage thickness, width or length up to the limits of the particular bender involved can be processed as desired.

The machines are of welded steel construction. They are electric hydraulic drive throughout with fingertip electric controls to actuate pilot operated solenoid valves on the larger models. Operating speed ranges from 1200 complete cycles per hour on the smaller and faster units down to as few cycles as production requirements dictate. The top speeds are established at rates that are faster than it is possible to feed the machine. The bending wings have a maximum
swing of 109 degrees, which controls the maximum degree of bend obtainable in one stroke. Maximum radius of bends obtainable is 6 in . on the double wing machine. When making two bends simultaneously, the distance between centers of the bends can vary from a minimum of 17 in . to a maximum of $313 / 4 \mathrm{in}$.

The pressure rolls, rocker plate and the bending die, although moving independent of each other, are geared together in order to maintain perfect alignment. The gearing does not act as a driving mechanism, since all motion is applied tangentially by the bending wing. Constant alignment of all moving parts, however prevents dies from slipping in relationship to each other while the bending action takes place.

The high die supports, a heavy bed and rugged desiga throughout make practical the use of automatic expanding dies. The female, or moving die is solid, while the male die is compmed of sections kept separated by rubhes cushion wedges and sleel springs. As pressure is applied to the die lly the bending operation, the springs and enshions compress. This floating die principle takes care of commercial variations in gage thickness of sheet metal being bent thereby eliminating the expensive gaging of the sheets as received, separating them according to exact thickness and shimming the dies to suit each different lot.

Because the use of tangent bending is new, and as a mitter of fact has not been in use for production work over a great variety of applications, the designing of metal articles to take advantage of tangent bending is a new art and one which

Fig. 4-These shapes have been successfully bent on the tangent bender, both as formed sheet and as structural shapes, bars and tubes

Fig. 6-Relationship between dimensions has been developed for some of the more common bends. This typical upset bend data table shows the latitude available on straight bending. With the use of notches, radii may be made smaller and flanges wider than those shown here

is still very much in the experimental stage. Certain dimensional relationships have been discovered which make for the easiest processing of the metal.

Shown in the accompanying table is design data for the most common type of intermal or upset tamsent homd. The relationship of radii, metal thickness and

Air-Conditioned Busses For City Transportation

A significant development in intracity transportation is a fully air-conditioned trolley coach, now under construction and soon to be delivered to the Georgia Power Cu. for experimental use in Atlanta.

The air-conditioning equipment, designed and install:d by Carrier Corp., Syracuse, N. Y., has a cooling and dehumidifying capacity equal to that used on latest railway cars, and twice that required for inter-city busses. This large capacity is neecssitated by the high concentration of passenger load and frequent opening and closing of donrs.

System consists of two air-conditioning units and one compressor. The compressor is driven by a motor receiving current from the trolley system. Two separate air-cooled condensers are used, each provided with Ean and motor. Cooling capacity control is automatic. Fans of the air conditioning units can be used to provide ventilation without use of refrigeration machinery,

Mounted over the roof of the coach, air conditioning units are held by steel framing which carries the load to side walls or prosts. Cork pads isolate unit from frame, and there is no direct contact with the roof at any one point.

Compressor-motor assembly is mounted on a rigid structural steel frime, welded, and attached to the coach under framing members through vibration eliminators. Air enters a louvered opening at the motor end and escapes along the sides and at the compressor end. This air flow is set up by forward motion of the conch.

Ducts passing down both sides of the coach at the ceiling distribute the air through perforations at the rate of SUO cu ft per min, while fans circulate a total of 2200 cu ft Urough the coach.

New Pump Will Work Submerged in Fuel

Utilizing an explosion-proof motor, a fuel honster pump in several models for external mounting on tank or internal installation for operation sulmerged in fuel, is a development of Pesco Praducts Co., Cleveland. The only moving element of the pump is an impeller-rotor, with tapered impeller blades on one side and little cupped blades on the other side. These "cups", rotating within an elliptical housing, comprise a vacuum arrangement which sucks out the vapor and eliminates it through a discharge outlet, thus insuring that only solid fuel enters the fuel line.

Advantages claimed for the pump are:

Fig. 8 - For exceptionally wido flunges of the type shown here, the notch may be lecuted so that any welding or fimishing relpuired is confined to the jlat surjaces
flange widths, for example, is important if a gend job is to he whtimed. This dues not neecessiarily represient the linith of the bencler's cap:bilities, haweser, Much wider flanges hise been bent successfully throught the use of mutelies, which still leanes o..Iy: flat surfices for joining and no finishint: required on the curved surfaces.

While the dusble wing benders nperate more rapidy miking two liends at a time, the singles s:ill have their adrantages. It is poss.hbe to use the single wing bender as a brithe and nake eillutr sharp comer heads or bends with a considerable rudins, the comer being cantrolled hy the die. The leneth of the work piece is immathrial, and distance between bends or amm!er of bends per given lengll of piece can lie varied more easily thatn in the dminle wing bender. This is paticularly alhambagemens mation ing a line of cabiniets of varyiug sizes, for example, where the distince between the corner bemes is frepuenly chinged. Larger and smaller cabinets cum be made from-the same die set-up protiding the width between the flamges, the coner radins, flange size and metal thickness are che same. It is only necessary to reset the adjustalile gases which are generally used to pusition the work for bending.

Positive vapor-control in rapid climb to high altitutes, stabilized delivery of bubble-Free fucl, sell-p-iming under extreme conditions, alisity to pump the fuel tank dry, and varicty of installation adaptations.

Portable X-Ray Reaches Inaccesible Areas

A portable X-ray has been intradured recently to examine internal strncture of welds, rivets ancl other vital points of stress in confined spaces such as airplane wings, Tuel tanks, etc.

This X-ray unit, eleveloped by the North American Phillipss Co., is clamped or held against the section under examination and a standard X-ray film is placed on the opposite side of the area and the exposure made. iligh loading anode tubes, with various targets, are available. Ratings range from 10 to 20 milliamperes at potentials up to 50 depending on the target material.

The main generator may be mounted on a dolly for movement to certair stations where electrical and water con nections are available. Among the con
trols provided with this pilot light to indicate when the tube energized, and an outlet to permit use of an exposure timer.

Extra output from your tools will cut unit costs. With this 3 -step job analysis program you can actually predetermine tool performance on each job. For more output per month and lower production costs, put this 3-step plan to work now.

Your Real Key To

- More Output From Tools

b) knowing in advance what performance to expect from your bols you can reduce idle machine ind press time. And the Carpenter blched Set Method gives you a ray to do just that. It's a sure-fire hay to get tools that need fewer erindings and replacements. bis 167 -page Manual points the ray to the tool steel properties you ced-greater wear resistance, :ore loughness, etc. With its 80 nge Tool Index and Steel Selecor you can quickly find the best arting place when you have a tool to make. For easier tool sel selection and better results on ifob, send for this Carpenter Lanual. Just drop us a note on mir company letterhead.

The Carpenter Steel Company
30 W. Bern Sf., Reading, Penna.

5 Lick Hardening Trouble 2. At The Start

Proper heat treatment is the second step to better tools that cut costs. To get the heat treating results you want, use the "Matched Tool Steel Manual". It contains the most complete heat treating information available in printed form. And as a special help to your heat treaters, we have prepared a handy slide chart that condenses the basic heat treating information and puts it in easy-to-use form. Drop us a line and let us know how many Carpenter heat treating slide charts you will reed.

3 Keep Records Of
 Tool Output Per Grind

Follow each tool set-up on the job. Check the reasons for any premature failure or too frequent regrinding. You'll soon spot new ways to make your tools save production time-and money. And when you want personal help with a tooling problem call on your nearby Carpenter representative. He really knows tool steel and can help you reduce costs all along the line.

Magnetic COOLANT
 SEPARATORS

Metal and abrasive particles carried by

 coolants are quickly removed by this automatic continuous-flow unit, eliminating danger of damage to precisionfinished surfacesREMOVAL of metal and abrasive particles, or swarf and sludge as they are called, from coolant used on honing machines, cylindrical, internal, surface, crankshaft, thread and other wet grinders is essential to the production of precision finished surfaces, especially in final or tinish honing and grinding operations. Various types of filters and cleaners for this work have been devised, one of the most recent being the magnetic-automatic coolant separator developed by Barnes Drill Co., Rockford, Ill.

This separator employs a drum carrying a series of permanent magnets which are faced with a nonmagnetic sheet, as shown
in Fig. 1. The drum rotates and the spent coolant from the machine flows over it in a direction counter to that of rotation. The magnets attract and hold all magnetized swarf, including most of the suspended abrasive which the swarf strains out. This sludge is continuously and automatically scraped off on the opposite side of the drum and discharged into a receptacle ready to be carried away, while cleaned coolant is retumed to the reservoir of the machine for recirculation.

Built in three sizes, handling 10,20
and 40 gal of coolant per minute, respe tively, the separators are compact unit powered by $1 / 4-$ hp flange-mounted moto and lloor mounted at the rear of the mi chines they are serving. Other mountir systems may be used in special install tions. They may function intermittent or continuously and cause no temperatu rise in the coolant. An intermediate-sig separator mounted on honing machine shown in Fig. 2. The upper pan at rig is simply to handle drainage from lateral (Flease turn to Page 163)

TURNING A MESTA SPECIAL ALLOY STEEL STRUCTURAL MILL ROLL

MESTA ROLLS

 USED IN PRODUCTION OF 4 INCH CHANNELS.

Modern Practice

Effectiveness of three systems of interrupted quenching in obtaining higher physicals with minimum dimensional changes, distortion, warpage and residual strains as well as scale-free surfaces is shown in the third article in this heat treating series. Cycle annealing is an additional topic of great inferest

By ARNOLD P. SEASHOLTZ
Mefallurgical Engineer
E. F. Houghton \& Co
Philadelphia

Time
FEW steels can offer full value engineers today unless given suitab thermal treatment. These treatmen include softening for deep drawing good machinability, producing hi tensile propertles with good fatigue impact values, or high bardness so th the steel thus treated may be used working other steels.
Specifically, the objectives are as f Iows: (1) Higher desired physicals; minimum of dimensional changes, d tortion or warpage; (3) minimum of sidual strains to increase fatigue and impact value; (4) a heat treatii technique that produces parts free scale, surface decarburization or burization; and (5) parts that can finish-machined and then heat treat for high physicals, meanwhile holdi the parts to close dimensional toleranc

Steel is not the big bull in the woo which shows no signs of abuse. Inste it is temperamental. If not treat correctly, it may reflect this lack care in the form of cracks which " cause it to break down under sevt service. But if it is properly treat it can be an able servant of industry.

Before we are able to determine proper heat treating procedure to obt the most desirable properties for a particular steel, the heating cycle, $c 0$ ing cycle, and the element of time one or more temperatures must be tak into consideration.
"Heating cycle" includes not only raising of the temperature but the si at high temperature. This first step martempering and austemperiog, deed in any true quench, is to h the material to some temperature eith in or above the critical or transform tion range in order to transform alp into gamma iron and put the steel the austenitic condition. Carbon a other alloying elements will thus dissolved in a solid solution of gamma iron, to form homogeneo austenite, given time and temperath enough. This solution of elements m be either complete or partial, depen ing on the time-temperature cycle. Cor plete diffusion into a truly homogeneo austenite is a time consuming proce

During this heating cycle there
Fig. 13 - Cooling curces at sirface and center of a steel cyblader quenched in water, oil, hat solt and air
Fig. 14 - Diagram of four impor tant quenching methods

age and differences in austenitic grain size. However, the rate of heating is not as important as obtaining a unilorm austenizing temperature, and determining and holding the proper maximum temperature for the proper period of time

High Temperature Soak

Time requirements for diffusion th obtain homogeneous austenite var somewhat, depending upon the chem ical composition. Elements diffuse a different rates. Many alloy steels art "sluggish" and require a longer soak ing time at the austenizing temperature often the temperature may be raised to accelerate diffusion without unduc coarsening of the grain.
Actual heating temperature should b somewhat above $A_{3,3}$ the upper critica temperature, to assure homogeneou austenite. When heated too long afte complete solution occurs, an increase i the austenitic grain may result. Som steels coarsen much more rapidly thai others. A higher temperature that necessary has the same coarsening ef fect, although with fine-grain steel (which are really steels that start t coarsen at relatively high temperatures this is less dangerous than too low temperature. Complete austenizing ma not be desirable in hyper-eutectoid steels but the pearlite should always be trans formed into austenite as homogeneous a possible. Uniform austenite places the steel in proper condition to respond t cooling. It is now ready to quench.
To understand what occurs wher steel is cooled and the effect of dif ferent cooling rates, it is necessary th know the time reguired for decom position of austenite at various tem peratures, and what the reculting micro constituents will be. This was sum marized by discussion of construction and use of the S-curve in the firs article of this series. (See Steel, Sept. 3 1945, p. 120).
Carpenter and Robertson's. work in England, contained in their two volumes entitled "Metals", has shown that austenite undoubtedly transforms to martensite as the temperature drops inrough a range which is characteristic for mos of the commercial carbon and alloy hea treated structural steels. When the steel is quenched by exceeding the critica cooling rate - that is to say, at such a
fineral oil at $70^{\circ} \mathrm{F}$.
Molten salt at $400^{\circ} \mathrm{F}$.
Molten salt at $500^{\circ} \mathrm{F}$.

Per Second
100 to $145^{\circ} \mathrm{F}$
$115^{\circ} \mathrm{F}$
$95^{\circ} \mathrm{F}$

Fig. 15 - Beginning and comple. tion of transformation for SAE 4340. S-curves (in light lines for 4340) are on basis of instantaneous cooling to a certain temperature and holiling constant

Fig. 16-Micrograph 1000X showing cracks in part carburized and water quenched
definite dimensional and micro-structural changes taking place at the so-called critical temperature. As steel is heated, a steady thermal expansion takes place as the temperature increases until the critical is reached, whereupon a contraction in volume accompanies the heat-absorbing transformation as the metal passes through the critical range. Differences in the speed at which temperature rises or austenizing temperature is reached - as between thick and thin sections of parts of variable cross-section - cause distortion, warp-
TABLE III
HARDNESS LIMITS AND COMMERCLAL MAXIMA N SIZE FOR AUSTEMPERED PARTS

Type of Steel	C	Mn	Cr	Ni	Mo	C Scale	in Artal
Carbon	0.95 to 1.05	0.30 to 0.50				57 to 60	0.148 ta 0.187
Carbon (high Mn)	0.95 to 1.05	0.60 to 0.90				57 to 60 55 55	0.156
Ca.bon	0.80 to 0.90	0.30 to 0.50		.		5.5 to 58	0.218
Carbon (high Mn)	0.80 zo 0.90	0.60 to 090				52 to 55	0187
Carbon	0.60 to 0.50	0.60 to 0.90				52 to 53 to 50	0.281
Carbon (high Mn)	0.60 to 0.70	0.90 to 1.20				53 to 58	0625
Carbon (very high Mn)	0.60 to 0.70	1.60 to 2.00				53 to 56	0898
Alloy ($\mathrm{C}-\mathrm{Co}$)	0.65 to 0.75	0.75 to 0.95 0.40 to 0.60				57 to 60	
Alloy (C-Cr) ${ }_{\text {Aloy }}$ (S.A.E. 4150)	$\begin{gathered} 1.00 \\ 0.45 \text { to } 0.55 \end{gathered}$	0.40 to 0.60 0.60 to 0.90	$\begin{aligned} & 0.40 \text { to } 0.60 \\ & 0.80 \text { to } 1.10 \end{aligned}$		$\begin{gathered} 0.25 \\ 0.15 \text { to } 0 \underline{2} \end{gathered}$	5752	0.500 $1.0 \text { or lar }$
Alloy (S.A.E. Alloy (S.A.E. S85	0.45 to 0.55 0.60 to 0.70	0.60 to 0.90 0.50 to 0.80	$\begin{aligned} & 0.80 \text { to } 1.10 \\ & 0.50 \text { to } 0.80 \end{aligned}$	1.50 to 2.00	0.15 to 025 0.30 to 0.40	54	1.0 or la

Duffin dow is

Whatever your "spec's" call for . . . you can be sure you will receive . . . here at Duffin. Duffin workers and supervisors are "old hands" in heavy steel fabrication. They know what's to be done and how to do it . . . and the large Duffin plant, complete with modern fabricating machinery, enables them to handle your jobs efficiently and quickly.

Whatever you need fabricated from steel whether it's welded or riveted-one or one thousand -Duffin can do it for you. You can count on your job being on time . . . and RIGHT! Call Duffin.

MD Smand

Contracting Office: 37 W. Yan Buren St., Chisago 5, Ill. - Plant: 4837 So. Kedzie Ave., Chicago 32, Ill

Peed that no austenite has time to insform between 1150 and $850^{\circ} \mathrm{F}$, te region of the nose of the S curve) ansformation of austenite is suppressed atil the M. point is reached; formation i martensite then starts and continues y cooling progresses. When the M ; xint is reached, the austenite is pracinlly completely transformed to marraite. In some tool steels and in high by steels a certain amount of ausaite is retained untransformed after the pench.
If, in the process of quenching, the wling is interrupted at some temperaIe within the martensitic transformamange, then transformation stops. a constant temperature is held, isoamal transformation will start after ane little time and progress slowly, but * time required for complete transmation would take too long for this deme to be of any practical use in mamercial heat treating. If, after inrupting such a quench, cooling is an continued, austenite will again conwe to transform to martensite until distantially completed.
Steels cooled by the usual quench in or water are transformed during the oling. They do not transform at the re rate and time, surface to center, soccurs when holding at a constant pperature, thus permitting isothermal anformation. It has been found by ange and Kiefer that transformation sing continuous cooling and isother* transformation have a definite reSon which can be evaluated. If transmation curves for continuous cooling d constant temperature be superimJod, the curves representing beginning 1 end of transformation during conailus cooling in commercial quenches ail be somewhat below and to the right the constant temperature or isomal curve.
Since it has been determined that Fere is a definite relationship between two types of cooling, the isotheryd diagrams can be used with a reason4 degree of accuracy to predict the - -emperature and the resulting prod${ }^{4}$ Liedholm has presented a method ereby a continuous cooling transPation diagram can be constructed a series of Jominy end-quench test 3
Pig. 15 is Grange and Kiefer's diagram ewing the beginning and completion transtormation for SAE 4340, which eals the above mentioned relationship Seen transformation during constant ling, and isothermally. The slow fical cooling rate of alloy steels has sy advantages, since maximum hardran be obtained with a less drastic fooch, iarger pieces may be quenched foll hardness, higher fatigue and hfuenength and greater toughness. bruence of the cross-section of the arat being quenched must continually be ace in mind while considering any 2t trating process. The microstructure Fhed is in a large measure related 4t unde of cooling and it is evident $4 t$ udder any given set of conditions
large sections will cool at a slower rate than thin sections. Equivalent final structures can only be had by using a faster quenching medium to neutralize the effect of larger sections, or by changing to a steel with a slower critical cooling rate.
The size of section and the severity of the quench have an influence in the occurrence of the common quench crack and the less familiar microscopic cracks. See Fig. 16.

Effects of Quenching Media

Cooling curves of the outside and center of similar pieces quenched in water, oil, air and salt and the process of transformation by these various quenching methods are illustrated in Fig. 13. In each case, the quenching speed exceeds the critical cooling rate of the steel being quenched, making it compulsory for martensite to form. The quenching rates are seriously affected by a natural law relating to mass of the part, which causes the interior portions to lag behind and cool slower than the outside. The faster the quenching speed, the greater the temperature differential between the surface exposed to the coolant and the center.

With a very rapid quench, such as shown by the curve for water quenching, there is a notable temperature difference between the outside and center, measured by the distance between curves at any time ordinate. When the surface of the part reaches the M. point, transformation of austenite begins, and progresses to completion at the Ms point. It is readily seen that in water quenching of the part in question, the outside is completely transformed while there is a large portion of the center still austenitic and above the M : temperature; in other words, there is a large volume of unstable austenite entrapped in a case of hard, brittle martensite. Later, as the center cools through the martensite transformation range, the entrapped austenite transforms. This would not be
serious but for the fact that in the transformation of austenite to martensite there is an increase in volume. It is this internal expansion within a shrunk hard case that causes excessive residual strains and quench cracks, distortion and low ductility.

The curves for oil quenching show a slower rate of cooling and a smaller temperature difference betwen the outside and center of the piece, resulting in greater amount of transformation and accompanying expansion of the center before the surface reaches the Mt point and forms a case of brittle martensite. Oil quenching therefore results in a smaller volume increase as there would be less transformation to take place within the part after the transformation is completed on the surface.

Steels that harden on such slow cooling as in still air are used for complicated dies and sections because they transform (as shown by the curves in Fig. 13) at the same time in all parts, and thus have a minimum of residual strains and possibility of quench cracks. When air quenched, the temperature difference between the outside and center is quite small and the formation of martensite will occur as the temperature drops through the transformation range at a fairly uniform rate throughout the matrix of austenite. Furthermore there is usually a sizable amount of retained austenite at the end of the quench and this relatively soft constituent will cushion or adjust the stresses so that a minimum of residual internal strains result.

Martempering

Martempering (its name indicates that the formation of martensite is the primary objective) consists of quenching the hot steel in a liquid salt bath at an elevated temperature above the M. point, holding in the bath long enough for the part to become uniform in temperature throughout, then cooling in air, then following with a conventional tempering
(Please turn to Page 164)

SNOW CRUISERS: Aluminum and steel construction of these tractors built by Iron Fireman Mfg. Co. of Portland, Oreg. allow them to be driven into large planes and carried to search areas for rescue, supply and scouting work of the Army Air Forces. The snow cruisers can be dismantled into four parts. Top speed is 18 miles per hour and maximum load over 2 tons. They will climb grades as steep as 35 degrees in deep snow, extra wide tracks and deep grousers aiding traction

Fig. I-Pigs of spiegeleisen weigh about 80 lb and are molded with breuking notch in middle
Fig. 2-Molten spiegel being poured into single-strand pig machine molds

SPIEGELEISEN is probably the most versatile alloy employed in the monufacture of iron and steel. It is used in the production of basic and acid open-hearth steel, electric furnace steel, daplex bessemer and open-hearth steel, duplex bessemer and electric furnace steel, and bessemer steel as well as in the production of gray iron and malleable iron in the cupoln or air fumace, and the duplex processes which are used in
their manufacture. It is added in the charge, or during the refining or finishing periods or for alloy purposes. It probably has more applications than any other ferroalloy.

Someone might advance the fact, in partial explanation, that this iron-manganese alloy has been produced in this country since 1855 . Actually, however, although more concentrated manganese alloys have become ayailable during

By S. E. MAXON
Technical Service New Jersey Zinc Co. New York
these 90 years, spiegeleisen has not onl been standard for certain practices durn all of this time, but has greatly expande its fields of application.

During the present war, as during mos of this period of 90 years, the Nerr Jerse Zinc Co. has been the largest producer spiegeleisen consumed in this countr Various needs of the steel industry no justify three grades of this iron-mangane alloy, all characterized by low pho phorus, but varying in their content both manganese and silica. Carb varies only slightly with the silicon 00 tent, and is usually of no importanc The grades produced have the typic composition shown in the accompanyi table.

Probably there is no individual a

How
 CRANE Helps Solve Your Piping Equipment Problems

ONE SOURCE OF SUPPLY - ONE RESPONSIBILITY - ONE STANDARD OF QUALITY

If all piping systems worked under the same conditions, the above statement wouldn't mean much. The fact is that you alone can determine the exact requirements governing your choice of piping materials. Here is the vital distinction of the Crane line as a truly helpful service. First, Crane helps by giving you the world's most complete selection of piping equipment for all applications. Then,
by making clear the relevant advantages of each type, Crane, with 90 years' experience, helps you choose with complete confidence. Ordering is simplified-your local Crane Branch or Wholesaler suppliesall yourneeds. Uniform quality in all materials - backed by single responsibility-insures the best installation and peak performance. Stop and think how this service fits your reconversion plans.

Feed tuater piping to boiler; superheater and soot blower system.
nected with the steel and iron industry who is not in a more or less general way familiar with the colorful name spiegeleisen and the fact that the literal translation, "mirror iron", is remarkably descriptive of the large mirror-like crystals which are revealed when the pigs are broken. It is probably the oldest ferroalloy used in the industry and was intimately associated with development of the bessemer process of steelmaking. Spiegeleisen was first made in Prussia about 1850, and has been made in this country from the Franklin ore since 1855. While a blast furnace was built and attempts were made to smelt these ores as early as 1779 , nothing of commercial importance was accomplished until a furnace was built in Newark, N. J., in 1855.

The early output was used for safe linings under the name of Franklin Iron. The product was soon found to be of value in the manufacture of car wheels, and is still used by nearly all foundries producing chilled iron wheels. Naturally is was also used extensively in the bessemer converters which were built in this country at about the same time, and for many years all of the steel made by this process was recarburized with spiegeleisen which was melted in a cupola and added to the blown metal in the molten state.
Today, if the subject of spiegeleisen is discussed with a steelmaker or foundry-
man he naturally thinks of his own application of the alloy, but is not always familiar with the many other ways in which it can be advantageously used. It is hoped that the following general description of the varied uses of this alloy will be helpful to those in the industry who are responsible for the excellent quality and large quantity of steel and iron which is produced today.

Use in the Charge: Spiegeleisen is frequently used in the charge of both basic and acid-open-hearth furnaces. It is not always possible to secure the required amount of manganese from the available scrap and pig iron, but by the addition of the proper amount of spiegeleisen it is possible to do this and insure the necessary manganese for best slag properties and the most desirable residual manganese.

A condition is frequently encountered in plants making both ingot iron and steel using hot metal. A high-manganese charge is desired for the steel heats and low manganese for the ingot iron. It is not practical to change the blast furnace product, but by running the furnace on low-manganese iron it is possible to add spiegel to the open-hearth furnace when steel heats are being made.

In plants using a cold metal charge it is often economically advantageous to increase the amount of scrap charged when the price ratio with pig iron is favorable. Sometimes this results in a lower

COMPOSITION OF THREE GRADES OF SPIEGELEISEN

Element, \%	A	B	C
Manganese	16.00-19.00	19.00-21.00	19.00-21.00
Iran ...	73.50-78.00	71.00-75.50	71,00-75.50
Carbon, combined	4.25-5.00	4.25- 5.00	3.00-3.20
Carbon, graphitic	0.15-0.35	0.15-0.35	0.90-1.10
Silicon ${ }^{\text {a }}$.	1.00-8.00	$1.00-3.00$	$3.50-4.50$
Phosphorus	0.05-0.08	0.05-0.08	0.05-0.08
Sulphur	0.01-0.03	0.01-0.03	0.01-0.03

${ }^{*}$ Grades A and B also available with 1 to 2 , or 2 to 3 per cent silicon.

total carbon and manganese than is desired, and spiegeleisen is helpful in sup. plying both of the required elements. It acid open-hearth furnaces the low phos phorus and sulphur content of spiegeleiser is of great assistance when this practic is followed.

Recarburizing and Reboiling: One 0 the most valuable and widespread uses o spiegeleisen is for recarburizing and re boiling open-hearth heats. Its purpose to prolong the boil without taking th heat down too low in carbon, and at the same time gain temperature.

Open-hearth fumace operations depen on a boil in the bath to provide the neces sary agitation and circulation so that th metal may absorb heat from the flame Ore or pig iron may be used for thi purpose during the early stages of th heat, but near the end it is much safe to use spiegeleisen.

Occasionally it is necessary to hol a heat beyond its scheduled tapping tim or a heat may drop faster in carbon tha anticipated, or melt soft (that is, low i carbon.) Spiegel is helpful in these case as it is when trouble is experienced fro undissolved lime in shaping up a slag. spiegeleisen addition will not only gil the needed agitation to speed up solutio of the lime, but will add manganese oxid (MnO) to the slag and give it the desire properties as well. At times it is foun that sulphur is near the specification limi A spiegel reboil will carry some sulphurt the slag and may save a questionabi heat.

Sometimes a boil will stop when th carbon is still a few points too high. Ot is not considered safe at this point an cold steel rods, while effective mome tarily, are temporary and laboriou Green poles or saplings are also use but are cumbersome, and there is dang of gas absorption from the water vapo Spiegeleisen, entirely safe and effectiv will not only produce a quick local to from the cold metal reaction, but it wi be sustained after it is melted inasmuc as manganese is exothermic. Hence, th metal will be hotter. In addition, ther is no danger of phosphorus reversion the MnO formed in the reaction it creases the basicity of the slag. Son oxides will be carried out as the MD rises.

Blocking and Reboiling: Probably th largest use of spiegeleisen is for blockin and reboiling open-hearth heats. Whe the carbon in a heat has been reduced t the desired point, a further drop is elim inated by adding spiegeleisen. Th manganese reduces the iron oxide (FeO of the steel, thus stopping the $\mathrm{FeO}+$ reaction while the analysis is beil checked. At the end of this time, Fe diffuses from the slag to the metal ar the boil is resumed. While silicon allo have been used for this purpose, spiege
(Please turn to Page 172)
Fig. 3-One of the blust furnaces at Palmerton, Pa. plant of New Jersey Zinc Co. burdened for spiegeleisen production

IF IT'S STEEL-and you can move it-we can make it! Our seven-million-dollar plant in eastern Ohio is one of the most modern and complete shops in Ancrica for the fabricating, welding, machining and assembling of heavy machinery, parts and equipment. Our experience

in the advanced welding techniques which have heen developed during the war has already proved highly valuable to our customers. Our ability to re-design heavy steel castings into practical modern weldments has effected great savings in weight, bulk and cost, in addition to substantial gains in strength, production speed, freedom from flaws, and ease of testing. If you have a problem that weldments might solve, or a heavy job of any kind that your own plant is not now in position to handle, put the matter up to our staff of practical-minded enginecrs. They'll gladly study your needs and give you their recommendations, without obligating you in any way.

There are many simple precision boring operations best handled by a simple machine which is applicable to a variety of work and can be operated by relatively unskilled labor. This type of machine permits adjustments and maintenance by the operator thus conserving the limited supply of skilled help for those places where it is really essential. Precision is built into the machine; design of the fixture makes loading and unloading easy for the operator; investment is low justifying its use on small production quantities.

Results of studies to determine whether surface finish of a steel affects protective value of plated coating are timely and of interest to all tabricators of steel products requiring a profective or "bright" plate

RECENT report on studies carried out The National Bureau of Standards in roperation with the American Electro'ders' Society' shows that wide differaes in the surface finish of a steel have significunt effect on the protective lue of the plated coating. However, the repurt on this work, it was brought at hat this may apply only to a very equalily of cold-rolled steel. Results Worted several years ago by other instigators² indicate that proper polishzimproves the life of contings on ordi--fy commercial cold and hot rolled steel th not on the high quality cold rolled red
The question of whether the finish of prior to electroplating affects the terlive value of the plated coating is widespread interest to engineers, demers and finishing experts dealing with e falrication and production of a vaty of iron and steel products. Now atenuversion to civilian goods has etted, finishing for appearance as well corrosion protection again is of inrest,
Studies carried out at the National Bual of Standards by C. A. Lux and Wilan Blums and reported in the April 2e of the Journal of Research of the atanal Bureau of Standards concerned Tholled thickness plating, with copperthedromium and nickel-chromium. steel specimens on which the degree polish varied from that produced with lery coarse abrasive (90 -grain) to the Gaileri "superfinish." These test specithas then were exposed to the atmosste at New York; Sandy IIook, N. J.; 1 Washington. The extent of rusting enved at periodic intervals of inspecwas expressed on a numerical scale daverage results over a period such 1 year finally were expressed as "per-tage-scores."
for most decorative plating it is cus-

Fip. 1-Rate of failure of bright sidel on steel. Curve "A," WashShton, D.C.; curve "B," New York City; curve "C" Sandy Hook, N. J.

Fig. 2-Rate of failure of buffed oull nickel on steel. Tests were bsed on same locations as Fig. 1

On Protective Value of Electroplated Coatings

PIPES OF PEACE HELPED WIN THE WAR

The forming of seamless pipe from solid rounds of steel is the ingenious process that has long made it possible to drill deep into the earth to produce petroleum, then, in pipe lines, transport it and its many products across the continent to serve us in infinite ways in our daily living and in our victorious war.

Partner to the oil industry, the gas industry, to all manner of services that provide water and steam and power, this J\&L seamless pipe mill has also been a first-line source of supply to our armed forces. On its huge machines it produced steel pipe from which bombs and shells were formed; axles for vehicles by which our troops and materiel were moved; shatter-proof containers for oxygen for high altitude flying. It has formed special steels into gun tubes for the barrels of field artillery and anti-aircraft guns. All this, and more, it has done in its stride for, like steel itself, this is a versatile mill, manned by skilled men, supervised by steel men, piloted by research and development.
The tough, young steels of war are coming back victorious to serve you in peace. This mill - all J\&L mills-will soon be passing on to you the benefits of metallurgical advancements that have been quickened - manufacturing experience that has been sharpened - by the urgent demands of war.

Jones \& Laughlin Steel Corporation PITTSBURGH, PENNSYLVANIA

CONTROLLED QUALITY STEEL FOR PEACE

James Dauherty, Heater Helper

Jacob Bushier, HEater Helper

Steel pipe line mileages in U.S. total 389,000 , divided into trunk lines as follows: crude oil, 128,000 miles; natural gas, 245,000 miles; gasoline, 16,000 miles. To this can be added an estimated equal mileage of gathering lines from the wells.
5 million bbs. daily of crude are produced, gathered, and transported in pipe lines. Steel tank cars saved the day for the Allies at start of World War II by hauling eastward millions of bbs. of petroleum produts while the "Big Inch" and "Little Inch" transcontinental pipe lines were being rushed to completion.
Pilot retired for "advanced years" by Army Air Corps, made first 100 -octane tryout in 1934 as test pilot for airplane company. He filled the tanks of his Seversky with this new fuel and took off. Engine performance exceeded anything previously dreamed of. Pilot's name? Jimmie Doolittle! First oil tank car, devised by Amos Densmore, 1865, a flat car on which he built two 45 bbl. wooden tanks, arrived in New York without leaking.
Col. Drake originated casing for world's first oil well to stop earth from caving in the hole before the drill got down to solid rock. By driving a length of iron pipe through the soil down 39 feet to bedrock, he drilled the well inside the pipe, thus establishing the flourishing business of manufacturing steel casing for oil and gas wells, in which the J\&L pipe mills participate extensively. William A. (Uncle Billy) Smith, and his two sons, experienced salt and water well drillers, were hired by Col. Drake to drill the first oil well on the site of an oil seepage long known around Titusville. The well came in Aug. 30, 1859 at $691 / 2$ feet. Uncle Billy leaped on a mule and set out to spread the news. That oil brought $\$ 20$ a barrel. Post-war motoring will benefit from produts perfected by petroleum industry for war and enjoy cheaper, quicker, smoother driving, longer life for engine parts, G. H. Freyermuth, Standard Oil of New Jersey engineer, told New York Times. Electric welded tube plant at Oil City, P_{2}, has been purchased by Jones \& Laughlin Steel Corporation. Its production of electric welded mechanical and pressure tubing in sizes $5 / 8$-inch to 4 -inch outside diameter, inclusive, will supplement J\&L's present line of seamless, lapwelded and butt-welded tubular products.
Steel has no substitute in the national econom, indicates the following extract from report submitted (June 14, 1945) by Denator J. C. O'Mahoney for Committee on Military Affairs: "In 1944, steel was the most important of all processed metallic and non-metallic basic materials used by manufacturing industries in the United States, accounting on a tonnage basis for about 85% of the total, while light metals accounted for only about 1.8%."
tomary to produce a bright finish. Results of studies are of particular interest in view of the fact the conper-nickelchromium combination is among the most widely accepted of common decorative plating procedures. Also of interest to the finishing engineer was the finding that exposure panels will buffed comper under bright nickel were distinctly better (21 per cent) than those with bright nickel of the same total thickness applied directly to the steel, and were equal to those with buffed dull nickel of the sume total thickness.

Defining Surface Finish: The term "polishing," as generally used in the plating and metal finishing industry, implies removal of metal from a surface by means of abrasive particles attached by an adhesive to surface of wheels or belts. While this method normally is used commercially for the purpose of making the surface smoother, Lux and Blum applied it in their investigation to yield any desired finish, which in some cases gave a surface rougher than the original, as, for example, when cold-rolled steel was polished with a 90 -grain alrasive.

In order to insure that specimens polished according to a given proceclure were sufficiently like each other and sufficeently different from those of another set to give reproducilde and significant results, it was necessary for the investigators to employ some objective method for defining the surface finish produced. Various methods have heen propnsed for measuring surface roughness, including (1) microscopic examination of cross section, (2) visual or photorraphic examination, usually with aid of a microscope, (3) measurements of reflectivity and (4) tracer methods. Lux and 131 inm foind that the tracer mollonds could best be applied to their particutar problem, as it was necessary to use a methot that fully defined the surface because all comparable specimens were polished by about
the same procedure except for the grain size of the abrasive.

In the tracer methods the mechanisin involves the drawing of a fine-pointed stylus across the surface whereupon its movements are measured or recorded. In the Brush surface analyzer ${ }^{3}$ this is accomplished by meins of a tracing pen, the vertical fluctuations of which are usually magnified much more than the horizontal. Typical results are shown in Fig. 3. The steel specimen was polished by a wheel headed with 120 -grain abrasive. Vertical magnification was X 3200 , and horizontal magnification X 80 .

The profilometer' converts movements of the stylus electrically into scale readings the magnitude of which expresses in microinches the root mean square of the deviations of the contours from a plane. Lux and Blum found that each of these tracer nethods for recording the condition of the surface had definite advantages and limitations. The Brush method gave a permanent record that was especially valuable in comparing the exact contours of surfaces. Because of the large magnification involved, this type of record usually covers only a short distance, about $0.06-\mathrm{in}$., and many observations would be required to explore and nroperly record the surface. The proflometer permi's moasurements over distances of several inches and directly yields numbers that serve to identify surfaces of a given type. To facilitate an accurate comparison of the finish produced at different stages in the life of a polishing whecl, systematic profilometer measurements were made throughout the entire investigation.

Procedure Followed: Lux and Blum used for their study an SAE 1010 steel of No. 22 U. S. gage having a coldrolled No. 3 finish and a No. 3 temper. Polishing grains consisted of artificiul aluminum oxide with specified grain sizes from 90 to 320 . Care was taken to se-
cure uniform surface finish in the polishing operation. Strips of cold-rolled sted were polished with wheels to which abrasives of different grain sizes were glued. Resultant finishes were measured with a profilometer and were expressed as root mean square, in microinches, of the departure of the contours from a plane surface. The finishes varied from a "superfinish" with a root mean, square of less than 1 microinch to 65 microinches, produced with a 90 -grain abrasive.

In general, the racked specimens were subjected to the following cycle of operations prior to plating: (1) Degreasing with trichlorethylene in a vapor degreaser, (2) electrolytic alkaline cleaning, (3) rinsing in water, (4) dipping in acid, and (5) rinsing in water. A Rochelle snlt copper, a dull nickel, a proprietary bright nickel, and a chromium plating solution were used in plating operations.

Atmospheric Exposure Tests: Inspec tions of exposed test specimens were made at regular intervals by members of the American Electroplaters' Society Research Committee and other interested persons. Each inspector assigned to every specimen a numerical rating from 0 to 5 . This was based on the percentage of the surface that had failed, the failed area being determined by the amount of rusting. Fig. 1 and Fig. 2 show the course of corrosion as a function of the clapsed time for the buffed dull nickel and bright nickel contings on steel, respectively, in the three locations". Specimens in both Fig. 1 and Fig. 2 were coated with $0.00075-\mathrm{in}$. of nickel and $0.00302-\mathrm{in}$, of chromium. Eight sets of each type of coating were cxposed in each of the three locations. Finish varied from 00 grain to superfinish. The three points in each location for each period represent maxinum, average and minimum ratings of each set of eight.

Results: Tests carried out bv Lux and
(Please turn to Page 186)

Fis. 3-Brush strface analyzer chart. Vertical magnification X3200. Horizontal magnification X80. Steel specimen polished with wheel headed with 120 grain

Water and amr haven't a chance against the metal of hydraulic and lubricating systems where Shell Tellus Oils have gone to work.
The new Shell Tellus Oils are not designed to remove rust. They will not eliminate all existing rusting conditions that may be present in your machines. But, where moisture is a factor, the new Shell Tellus Oils, because of the special rust inhibiting qualities built into them, afford unequalled protection against the formation of rust. At the same time, moving parts are lubricated and protected against wear.
In addition to helping prevent rust, Shell Tellus Oils have other valuable assets. For example, they have high oxidation stability. This prevents sludge, keeps viscosity uniform, and
enables the oil to shed moisture throughout long periods of service.

Still another advantage of this oil is its high viscosity index, which prevents wide fluctuation in oil viscosity with varying temperatures.

Why not try this new-type oil? It is available in a number of grades, providing necessary viscosity ranges for all normal applications. For details, get in touch with Shell Oil Company, Incorporated, 50 West 50 th Street, New York 20, New York; or 100 Bush Street, San Francisco 6, California.

INDUSTRIAL EQUIPMENT

Measuring Head

Brush Development Co., 3311 Perkins avenue, Cleveland, announces a new rough-finishing measuring head for checking rough surface finishes and waviness in metals, glass, plastics, plated and painted material. With trend towards more rigid specifications and tolerances,

particularly on turned surfaces, the rough surface analyzer makes a complement for the company's surface analyzer. The pickup and drive head accurately measwes irregularities from 100 to 3000 microinches, peak to valley. It thus extends use and range of surface analyzer from 1 to 3000 microinches.

Control Relay

A new relay for both ac and de service is offered by Electric Controller \& Mfg. Co., 2700 East 79th street, Cleveland 4, for use in relaying the output of electronic apparatus such as pyrometers, and for general control functions.

The relay is a double pole design with the poles electrically insulated on the moving arm. On alternating current, relays are available with single pole
auxiliary contacts of normally-open, double-break design.

Main contacts are rated at 10 amp , 300 v and may also be used on circuits up to 600 v under certain conditions. Contacts are silver to silver, including the auxiliary contacts on ac relays.

The relay is mounted on a thick molded base for direct mounting on metal bases. Front connected relays are standard; rear connected relays are optional.

Potentiometer Controllers

Bristol Co., Waterbury 91, Conn., announces a new series of electric-type potentiometer controllers. Five basic control unit types are available. Three are electric contact types to be known as Microact controllers and the other two are electric proportioning and current input types. The control units are mounted on internal panel of the company's potentiometer recorder and any type may

be converted to any other type by following wiring and mounting instructions.

The three Microact units are provided with one, two and three precision-type toggle switches respectively and six different terminal board connection arrangements to meet an assortment of control

circuit requirements. Proportioning controllers may be used with any type of electric proportioning valve and may be had with resetting contacts if required Proportional current input controller is primarily designed to provide close tem. perature control of electric furnaces and ovens.

Valve

Numatics, Milford, Mich., announces a new valve with a fluid lever. The design of this valve is a combination of compressed air and electricity to effect efficient, high speed control o

any single or double acting air cylinder up to $3 / 4-\mathrm{in}$. pipe capacity.

Requiring fewer operating parts, the fluid lever principle achieves a design that is compact. It makes possible the use of a very small solenoid, drawing only 3.6 amp at 110 v in all models regardless of valve size. Diverting to operating advantage a portion of the air that passes through the valve controls the ratio of air balance to such an extent that the remaining effort can be handled by a small solenoid.

Valve is also suitable for two pres sure control. The four-way model can be converted for three way use by plug ging one port. The straight line ain flow minimizes pressure drop, simplifies installation and requires fewer fittings.

Circuit Tester

A new circuit tester, designated as Lo-Volt Test Glo, intended for testing circuits from 5 to 50 v , is announced by Ideal Commutator Dresser $\mathrm{Ci}_{0}, 192$ Park avenue, Sycamore, Hil. It sim plifies testing of open circuits, burnec out fuses and can be used for indicatin? relative value of line voltage.
Incaodescent glow lamp is protecter by a transparent plastic housing. Over all length is 7 in. Fully insulated tes leads are 4 in . long.

If you want them light... strong.
shock resistant

Iun to Magnesium alloys for high quality die castings

It's basic that you turn to die castings for definite qualities: accurate dimensions, a minimum of machining, good surface finish, low cost. But don't stop there-add the benefits of strong, lightweight magnesium alloys to complete a job that gives you maximum quality . . . economy . . . speed.
Magnesium alloys offer weight economy that is unique among structural metals; at the same time they have high strength and resistance to shock. These magnesium advantages-together with the
benefits of die casting-form a combination that is doing an increasingly important job throughout industry.
How would magnesium alloys work in your own product? For a sound, dependable answer, we invite you to call upon the accumulated experience of many years' work in Dow's own shops. Get in touch with the nearest Dow office; a technically trained magnesium consultant will be assigned to work with you.

MAGNESIUM DIVISION, THE DOW CHEMICAL COMPANY, MIDLAND, MICHIGAN
品York - Buston - Philadelphia
Wrashington
Cleveland
Detroit - St. Louis •
Chicag:
Houston

- Patent Applied For
*T. M. Reg. U. S. Pal. Off
- Featherspec makes real safety news; weighs less than an ounce; much lighter than other types. Large one-piece plastic lens; can be replaced in ten seconds; held firmly in "suspension-lock" frame; in clear or Willson Tru-Hue^ green. FeatherSpec means real economy; costs less; can be worn over regular glasses; saves cost of special prescription spectacles. FeatherSpec is convenient to carry: slips into shirt pockets. FeatherSpec provides new convenience; new comfort; so workers will wear it all day long; for light grinding, spot welding, woodworking and so forth.

See Your Willson Distributor Or Write To ST-7.

goggles - respirators - gas masks - helmets WHESON
PRODUCTS INCORPORATED READING, PA., U.S.A.

Flash Butt-Welding

(Continued from Fage 118)
pressure at the moment of actual upset ting of the weld. A rubber diaphragn in each bottle is the pressure transmitting medium between the nitrogen and th oil reserve in the base of the accumu lator. Nitrogen is used instead of oxyge to preclude posibibility of formation o an explosive mixture. This type of ac cumulator is used to cut to a minimus losses due to friction.

Hydraulic oil is delivered througl the pneumatic accumulator and patentec Taylor-Winfield control valves directl? to the upsetting cylinder. The contro valve unit consists of a highly sensi tive fnllow valve to control the trave of the upset slide during flashing, dumping valve for rapid upset and G-E Thymatrol (adjustable voltage

variable speed motor driven cam whid controls the follow valve during auto matic flashing. Operation may be entirely manual, semiaulomatic, or completely automatic. In manual operation the amount of flashing and upset controlled by moveinent of a hand lever In semiautomatic oferation, flashing started manually and the motor-driver cam takes over control of the follon valve at a predetermined point in the flashing operation. In fully automatio operation, speed of flashing is controlled by a preset rheostat governing the cam motor and amount of flashing is controlled by cam rise during the complete welding process.

Welding current is provided by two 600 kva transformers connected in pa rallel and mounted on the side frames Through the clamping devices, one side of each transformer is connected to the bucket wheel and the other to the shaft. The 600 kva rating is based upo a 50 per cent duty cycle, in accordanc with standards set up by the Resistanc Welder Manufacturers' Association. Th transformers operate on 2300 v at cycles.

The equipment is controlled by fou G-E 2400 v electronic contactors (Fis

When you need 2uick Credit Information...

- the Credit Department of The National City Bank of Cleveland is at your service. Whether or not the inquiry comes from a customer of this bank, we shall be glad to be of service to any firms in the steel industry-an industry, by the way, with which we have been associated since its inception.

Our credit department, alert and well equipped, may be able to supply information more quickly than other sources.

If we may help you with credit problems-please call upon us freely.

THE

NATIONAL CITY BANK

OF CLEVELAND

Ewclid at East Suxtb

1845-ONE HUNDREDTH YEAR-1945
5), each having heat control, separate excitation and holding excitation for flash welder service. Each contactor is equipped with two Type 238 -B high voltage ignitron tubes and is arrangec for floor mounting. Contactors hav hinged doors, front and rear, with in terlacks to provide automatic dropou of the main circuit breaker wheneve the doors are opened. The contactor are arranged for connection to incom ing power lines from the floor and cool ing water may be piped in in the sam manner. The four units, measuring $3 i$ in. wide by 32 in . deep and 86 in , high may be mounted side by side. They alse are equipped with indicating lights or the front panels to show "control powe on", "cooling water on" and "powe on".

Ignitron contactors No. 1 and No. conduct primary current simultaneousl for preheat at high voltage. Ignitro contactors No. 3 and No. 4 control th flashing current for automatic burnoff Contactors No. 1 and No. 2 may b selected for upset or No. 3 and No. can remain conducting current for thi function, depending upon the current desired for the proper welding schedule

As the diagram shows, power is sup plied by an 833 kva single phase trans former with secondary voltage range 0 1000 to 2400 v in 200 v steps. Five ky of 230 v control power is necessary fo control of the four ignitron contactors An electronic relay provides a one cycl delay between transfer from one con tactor to another to prevent simultaneou firing of the two contactors. An im portant feature of this equipment, $C 00$ tributing to the successful welding o these materials, is the adjustment of th welding current by electronic hea control (heat control by the phase-shift) This method of current adjustmen permits the welding current to be ad justed in fine steps, quickly and easily

Selector switches on the control pane permit two types of operation as follows

First Type of Operation
Flash
Heat by Phase Control
Condition No. 1 Full
Condition No. 2 Reduced heat initiated
limit switch on welder
Condition No. 3 Further reduction of bea jnitiated by another switch on welder
Upset
Condition No. 4 Increased heat above tha Condition No. 5 Full heat

Second Type of Operation
Two of the electronic contactors, one for each transformer, connected to the highest voltage tap on the distribution transformer are first energized for siant ing the flashing operation. After the flashing is well started, these two con tactors are de-energized and the tw others connected to the lower voltag tap on the supply transformer ar energized to continue the flashing a this reduced voltage. It then is possibl to continue through the upsetting opera tion at this reduced voltage or perfor it at the original high voltage. A tim delay relay regulates the time of curren

CHOOSE YOUR TOOLS simply and scientifically

UP TO 90 SURFACE FEET PER MINUTE, High Speed Steel Tools are best, BUT at higher speeds they require frequent grinding, valuable time is lost, production suffers.
BETWEEN 90 and 190 SURFACE FEET PER MINUTE, TANTUNG IS IDEAL. Tantung operates at higher speeds, will take heavier cuts and feeds. It produces more pieces per grind than high speed steel and will do it in substantially less fime. Performance records consistently show six times tool life and trebled production. Tantung cuts any material that can be machined. Write for catalog of full line of Tanfung Cast Alloy Cutting Tools,
FOR HIGHER SPEEDS, use Vascoloy-Rame Tantalum/Tungsten Carbide Tools, by every comparison the world's finest carbide.

in Woll size and Pocket size. THESE CHARTS show of a glance

- table of speeds, feeds and proper tool selection, whether
you use high speed steel, TANTUNG, or cemented corbide.
The Vascoloy-Ramet standard of qualify is reflected in lower overall machining costs when you use Tantung or Tantalum/Tungsten Carbide Tools.

COIL HANDLING CONVEYERS

to sorve Production

Mathews Engineers have accumulated many years of experience in the development of coil-handling conveyers. This concentrated effort has resulted in high-quality up-enders and down-enders, combination up-enders and side tilters, troughed roller conveyer, turntables, and tail pullers. There is a Mathews Engineer operating in your vicinity. He will be glad to show you what has been done in the handling of steel, brass, and aluminum coils. He will also give you data concerning the many other types of Mathews Conveyers which have been engineered to serve production.

MATHEWS CONVEYER COMPANY

ELLWOOD
CITY.
PENNSYLVANJA

БAN PRANGIECB, GALO ORORT HOPE, ONT.
ENGDNEERINGOFFICES INAPRINGIPAL CITIES
flow during upset in both the first an second types of operation.
At the start of the flashing actic or preheating, the higher volage controlled by means of a thumb switc As soon as flashing is well establishe the automatic flashing mechanism started. This mechanism automatical selects the heat sequences noted abor
The machine can be completely co trolled, with the exception of loadin unloading and adjustment, by one ope ator standing at the control station (" Fig. 2). This panel provides controls f the preselection of welding time, hydraulic elements, for motors and t like. Additional equipment includ photo-electric current, pressure, a platen-travel recorders; completely aut matic Farval pressure lubricating ui ("L", Fig. 2) and cooling water lines the transformers, dies, etc.
Work is loaded and removed by mea of a carriage-type fixture, Fig. mounted on rails extending from rear of the machine. This carriage p: sents the work to the welder in an a sembled position.
The bucket wheel is nssted into t support bracket on the loading carias and the shaft is positioned on the whe hub by a split collar, after which steadying finger is tightened into phat on the upper part of the slaft. Th carriage with the work in place pusled into the machine against a sto and the support bracket is lowere hydraulically until the bucket whe slips into the locator ring on the plate The lower fixture clamps the whe in place. The shaft then is partial clamped in the upper fixture, the stend ing finger on the loading carriag loosened and the carriage removed.
The lower backup screw then turned until it butts firmly against tin bottom of the bucket wheel. Next, th upset slide is brought up until the sha end pushes firmly against the uppe backup screw. Then the shaft is clamper rigidly in the upper fixture, the splie collar is removed from around the lave end of the shaft and the welding cych is started. The welded assembly is re moved from the machine by means of the same carriage.
In joining the $3^{1 / 4}-\mathrm{in}$. diameter slaft to the bucket wheels, total welding time is about 135 sec . Total loss of length
 upset and $118-\mathrm{in}$. for automatic flasir ing. Eight to ten welds can be madd ner hour using the peesent carrige fo loading. Total upset current is apprax inately 58,500 amp. Flasting time ligured at about 30 sec per inch of shai diameter. Both the end of the shaft and the 2 -in. stub end of the bucket whec are machined with a 5° cone to facilitat flashing when the current is turned on

-0 -

A nomograph for deternining corre rotameter size for steam measurement available from Fischer \& Porter Co 9103-S County Line Road, Hatbor, P?

WITH THE

The Lindberg All-Purpose Brazing Furnace has a precisely controlled temperature range from $1300^{\circ} \mathrm{F}$. to $2500^{\circ} \mathrm{F}$. and is used for

Silver brazing

Copper brazing
Sintering of powder metals
Bright annealing
General tool hardening
High speed lool hardening
It is ruggedly built for production work and every facility is provided for easy and fast operation. Specially designed loading and unloading platforms make handling of the work easy. In larger sizes rollers are proyided in the cooling chamber. Both furnace and intermediate chamber doors are air op-
erated by either hand or foot valves and in larger sizes the discharge door also is air operated. Automatic flame curtains protect atmospheres at entry and discharge doors. And automatic temperature control of the cooling chamber is provided.

Get all the facts now about how this atmosphere furnace can serve you. Write for bulletin No. 201.

LINDBERGENGINEERING COMPAIIY 2466 WEST HUBBARD STREET, CHICAGO 12,ILLINOIS

- For many years, manufacturers in all branches of industry have looked to PAGE for uniformly high quality wire. For wire has always been the business of page. And stainless steel wire has been a PAGE specialty since the early days of stainless.

PAGE wire-round, flat or shaped-is available in section areas up to $.250^{\prime \prime}$ square; in widths to $38^{\prime \prime}$. In addition to various analyses of stainless, PAGE wire is made of high or low carbon steel or Armco ingot iron. Finishes, lengths, packaging to your specifications.

For wire or information about the best use of wire . . .

Get in touch with Page!

 AMERICAN CHAIN \& CABLE
Machine Tool Builders

(Continued from Page 120)

ready have been pushed right out in front.

There has been little or no time to groom their entries, or even to get thei blankets off. There is no National Ma chine Tool Show this fall to give an op portunity for the contestants to size uI each other's entries. This time strateg, will have to be framed during the race itself. It is safe to predict that there will be many surprises-new men in the drivers' seats and new and previously unheard-of entries forging ahead. Un doubtedly, some of the early entries wil drop out. At the same time, many nem entries will overcome the handicap o their late start and will come in with the winners.

Without pretending to have any ad vance knowledge of when the war wa going to end, but with a belief that it end would be sudden and unexpected the editors of STEEL began-shortl after the first of this year-to compile "tip sheet" on the competitive race whic was inevitable sooner or later in th machine tool industry. As things tume out, the timing of this project was al most perfect.

In compiling our tip sheet we did no follow traditional methods of gathering information - methods comparable te hanging around the track watching fo tryouts, watching the stables in the lope of seeing an entry getting a rubdown, 0 in the hope of getting someone careles ly to disclose something. Instead, wi went direct to those who are puttin! up the prizes-in other words, the ma chine tool users-to get their ideas ${ }^{2}$ to what characteristics the successful en tries in the competitive race should pos sess.

We had splendid co-operation. of the approximately 11,000 companies in thi country directly interested, 2358 wen to considerable trouble to tell us in de tail what they desire and expect in the machine tools which they intend to purchase for peacetime production opera tions.
We also had splendid co-operation from a number of the leading machine 100 builders during the interpretation compilation of our findings-in return for which we hope and believe that we have given the builders sometling o definite value to them in connection with the strategy of the big race in widch they now find themselves involved.
We know that many of them alteridy have done some excellent advance phn ning-the nature of which we are no at the moment in a position to reven We have, however, released our "ui sheet" under the title, "A Special 1 e port to Industry on Machine Tools (June 25, 1945, issue of STEEL) which several thousand reprints har been distributed. Incidentally, a limi ed number still are available and wiz be sent to those interested upon quest.
In the September 3, 1945, issue Steet (pages 124, 125, 126 and 18)

COKE OVEN EQUIPMENT

QUENCHING CARS AND LOCOMOTIVES

Abstract

All Atlas Coke Oven Equipment is of heavy-duty construction permitting the peak operating conditions required in today's stepped-up production schedules. As a result of years of experience, Atlas is able to design and build equipment, to meet the requirements of each particular coke plant. Detailed information available on request.

Other ATLAS Products

Cre Transfer Cars
Scale Charging Gars
Electrically Operated Cars for Every Haulage Purpose

Locomotives for Switching and Interplant Haulage

Turntables

The AThas can \& MPG. CO.

omoinatas:
1100 IVANHOS RD.

I expanded to some degree on a few of the findings in the "Report." In more 0 less the same vein, I will do likewis here with a few more of then. Pleas bear in mind that these findings do no represent what we assume industry want in new machine tools," or what the ma chine tool builders assume the use want. They represent what the usel themselves wart.

Of the numerous engineering matte explored through our survey, those dea with here apparently are of average ir terest. Take the matter of what w calied in our questionnaire "built-i lighting." When 66.8 per cent of ma chine tools users favor it-as has bee disclosed by the returns-that certainl cannot be taken lishtly.
The example illustrated by Fig. 1 pu posely is a simple one bectuse, when talked to many of the users, they saic "What we want in many cases need b no more complicated than a gooseneo lamp fastened to the machine." That exactly what Fiederick Colman \& Sor are employing in this instance on a hor zontal boring mill, operating on precisio tool work. The convenience of the thin is self-evident, as the toolmaker cor centrates the light on the point wher the work is being done.

Machine tool builders in many case have this matter of built-in lighting we in hand. Several of them have show? me ingenious installations involving bulb and tubes recessed in at strategic points with oiltight translucent covers to dif fuse the lizht and to keep out chips an coolant. Others have shown me in genious illuminated control panels, dial etc. This kind of thing goes'hand-in hand with "colors contributing to satet and lighting of work areas," in whic 67.2 per cent of the prospective buyer likewise are interested.
Another thing which is reflecte strongly through Steel's study the trend toward machine tools where in "built-in skill and intelligence" wi relieve operators of a lot of the physias and mental responsibility formerly in volved in the carrying out of the work Passing by at this time consideration that important group commonly calle "automatics," I will deal here with di sinking machines and tracer-controlle milling machines. Of the former, b. per cent of our informants have then while 7.9 intend to buy. Of the latter 4.2 have them, and 4.9 intend to buy In Fig. 3 I find it possible to presen a combined example-a tracer-controllec milling operation on a big forming dia job in the Frederick Colman stop Detroit. The man in this case is skilled toolmaker, and the fact that the machine embodies skill and intelligenc is no reflection on him. The point ber is: "How far would he be getting wit this job if he were trying to cut this di by old-fashioned methods-and how fa would the reconversion program be ge ting if skilled men like him did not hav the help of techniques such as this?"
With increasing use of plastics, met stampings, ?arge and small, die casting fornted powdered metal, etc., we proi

lackward wiring handicaps advanced equipment

.Wire

م"'t hobble new, improved equiptot for the sake of saving a few atradollars worth of wiring.
Remember, to get peak efficiency mpostwar production equipment ring must come first-foresighted iring to provide for greatly ex-
planned wiring and service equipment. Anaconda Wire \& Cable Company, Subsidiary of Anaconda Copper Mining Company. General Offices: 25 Broadway, New York City 4. ChicagoOffice: 20 North Wacker Drive 6. Sales Offices in Principal Cities. wsso
$\sqrt{ }$ Ched your wiring oldame Aflocethay chack yom!

[^3]

The Thomas Cold Rolled Strip Steel Handbook includes a description of uncoated and coated ThomaStrip for buyers and engineers. It gives price information, tolerances, tables showing weights per lineal foot, Rockwell hardness values, equivalents in decimal and fractional parts of an inch, and product illustrations.

Send your name, title, and address on your company letterhead.
electro- coated zinc, copper, migkel and brass . hot dipped tin and solder. lacader coated in colors. . uncoated precision strip. carbon ahd alloy specialties Jhowfliui
THE THOMAS STEEL CO. WARREN, OHIO
ably have only seen the beginning of this kind of thing. Actually, it is "multiplication and spreading of skill" by the help of machinery.

My final example in this article deals with what we called in our questionnaire "spesially built machines." Interest in these runs to 45.8 per cent in all industry, this figure jumping to 65.9 per cent in plants employing over 1000 people. This should be no surprise, because prominent industrialists have been emphasizing that only through a higher degree of mechanization can costs be held within reason.

A "special machine" can be anything from a slightly modified bench drill to a huge transfer machine which receives the raw material at one end and eject completely machined parts at the other Aircraft engine makers have sparked thi kind of thing during the war. Its pos sibilities in peacetime work are fore cast by those achievements.

In Fig. 2, I prosent a relatively simple example involving a multiple boring heat and a rollover fixture for rough boring V-type cylinder blocks. This job tooled up with Stellite-2400, each bor ing tool having six blades.
In passing, I would like to point ou that the rollover fixture has great possi bilities in connection with machines sucl as radial drills, makint such familiar ma chines into the equivalent of special ma chines in the best sense of the term.
In closing this article, I want to sas something about the engineering and seli ing organization problems with which have found machine tool builders deal ing in recent weeks. In many cases, sale and engineering departments are beins rebuilt literally from the ground us with an entirely new conception of th close interrelation of engineering an selling now that the war is over. looks to me as though there are going t be a lot more salesmen with engineerin background-and a lot more salesmind ed engineers. The two groups are goin to harmonize far better than before.

Old territories are in the process 0 being re-arranged and new industris areas are leading to the creation of man entirely new territories. There is a grow ing realization of what air travel and a delivery of tools and repair parts wi mean. Several companies plan thus spread the activities of "star" salesme and service men from their home office over very large areas. They plan to 1 vital repair parts out of the home plar rather than try to carry them in stoc here and there all over the country.

From what I have seen thus far of th reorganized engineering departments, would say that machine designers, to engineers and electrical engineers (f miliar with electronics) will all be re ognized as indispensable and will all on about an equal basis. I believe t that patternmakers, foundrymen, wel ing experts, and metallurgists are goi to be very much more "in on this en neering picture." The diay of the o fashioned rivalries and even of bit jealousies between these and other co tributing groups is gone forever.

1. Copper Base Alloys
dmpo Metal Inc.-28-page illustrated bul-每 No. 71 covers products, facilities and tities of company and points out applicams of Ampco metal and Ampeoloy bronzes. thods of fabricating are discussed. Engizring literature is described.
2. Curved Tooth Files

American Swiss File \& Tool Co.-8-page bstrated catalog of milled curved-tooth files smas complete range of types, sizes and cuts thorized by WPB. These files are recommed for use on ferrous and nonferrous yils, especially softer metals including aluzinm, brass, solder and babbitt.
Blast Cleaning
American Foundry Equipment Co.-12-page strated catalog No. 204 "The Wheelabrator
'4.Table" describes unit recommended for A cleaning wide variety of flat fragile work few pockets and high vertical edges. pailications, method of operation, electrical xafications, floor layouts and performance aild are covered.

Melamine
merican Cyanamid Co.-24-page illus-
fod booklet "Melamine" describes applicaars of chemical melamine in plastics, textile, or, leather, chemical, paint and allied insties. Written for popular appeal, booklet polements technical publications on sub-

Elthyl Silicate
Carbide \& Carbon Chemicals Corp.- 12 .
40 illustrated booklet No. F-5989 discusses
tolyyis of ethyl silicate and its use as
warce of silica. Principles of the hydrolysis

- typical formulas are included. Applica-
as as bonding agent and as preservative and
3herproofing agent are covered.
Fire Extinguishing System
Aardox Corp. Two illustrated bulletins
In 38 Seconds Flat" and "How Cardox Extinguishing Systems Tame Tough taromer Fires" describe fire fighting inthions for industrial use, Case studies are sunsed.
Y-Belt Drive
His-Chalmers Mfg. Co.-12-page illustrated
Nog No. B6051E is engineering summary
4 covers Texrope drive and Magic-Grip
ve, designed for fast, easy mounting and
anubing. Handy charts, tables and draw-
sid in selection of correct drive.
Tool Steel
Wucible Steel Co. of America-4-page tord data sheet No. DS115 is descriptive Nicas oil hardening tool steel which can be ${ }^{4}$ m manufacture of blanking, coining, drawflorming, plastic mold, thread rolling and elog dies as well as gages, broaches, kives and taps.
Butfer Tablets
tudt Technical Suppy Co.-4-page i1Thed catalog section B-205 describes Cole-
- ardfied buffer tablets. Methods and ad-
- 9 or of use, composition and prices are Lint of tablets for 2.00 pH to 12.00 pH Tona is exclosed.
Small Precision Drills
*130-Latrobe Twist Drill Works-4crstrated folder No. 50 M contains comdata, prices and dimensions of bigh nicro precision and watchmaker drills tin be used at speeds of 2500 to 10,000 Hoor per minute or higher depending meninability of materials being drilled.

11. Hydraulic Press

Denison Engineering Co.-Illustrated leaflet describes briefly features of Basic Multipress, Multi-Speed Multipress and Vibra-Press Multipress units. Exact control of ram actions is feature.
12. Plating Equipment

Udylite Corp.-10-pago fllustrated "Price Guide for Plating \& Polishing Supplies" Iists prices of various types of anodes, plating chemicals, plating accessories, and priority requirements for supplies procurement.
13. Magnesium Domes

Worcester Pressed Steel Co.-8-page illustrated methods article by J. Walter Gulliksen, Mechanical Engineer, contains design, material and processing data on deep dxawing magnesium domes.
14. Electric \& Automotive Units

Wagner Electric Corp.- 16 -page bulletin No. GU-86 briolly describes company's line of such electrical and automotive products as motors, transformers, brakes, controls, tachographs, brake linings and service tools.
15. Snow Removal
A. M. Byers Co.-6-page illustrated case study No. 4 presents information on use of underground hot water and steam wrought iron pipe lines for snow removal for sidewalks, driveways and industrial locations.
16. Self-Sealing Couplings

Acroquip Corp, 4-page illustrated bulletin No. 107 describes in detail use of this coupling in solving problem of disconnecting liquidcarrying lines without customary need for draining system and priming after reconnection.
17. Billet Shears

Buffalo Forge Co.-28-page illustrated bulletin No. 3295-A describes four types of shears, including billet shears, bar cutters, special bar cutters and diagonal bar cutters. Specifications and capacities are given.
18. Excavating Equipment

Bucyrus-Erie Co. - 36 -page illustrated brochure "In War and Peace Progress Starts With Excavation" shows typical uses of $1 / 8$ to $21 / 2-$ yard shovels, cranes and draglines.
19. Peelable Plastic Coating

Better Finishes \& Coatings-16-page illustrated booklet describes Liquid Envelope peelable plastic film used as protective coating for aircraft assemblies and with peacetime finished metal and wood or plastic surfaces during manufacturing operations.
20. Process Control Terms

Askania Regulator Co.-20-page illustrated technical paper No. 100 contains proposed A.S.M.E. definitions of process control terms with pictoral interpretations.
21. Hydraulic Presses

Bnldwin Locomotive Works, Baldwin Southwark Div.-36-page illustrated bulletin No. 160 describes Southwark self-contained hydraulic presses. Advantages of design are set forth and many typical presses are shown.
22. Relieved Form Cutters

Colonial Tool Co., Itd.-20-page illustrated bulletin No. D-45 contains complete data on company's line of relieved form cutters for gears, threads, worms and splines, as well as special form tools. Also included is aid for proper procedure in ordering cutters.

FTBST CAAS PEBMMT No. 88 (Sec 510 PInerg.) Cleveland, Ohio

BUSINESS REPIY CARD No Postage Stamp Necessary if Mailed in the United States
LE POSTAGE WILL BE PAID BY-

STEEL
Penton Building
Readers' Service Dept.
CLEVELAND 13, OHIO

STEEL
1213 West Third St., Cleveland 13, Ohio

1	11	21	31	41
2	12	22	32	42
3	13	23	33	43
4	14	24	34	44
5	15	25	35	45
6	16	26	36	46
7	17	27	37	47
8	18	28	38	48
9	19	29	39	49
10	20	30	40	50

Please have liferoture circled of laff sent to me.
NAME TIILE
COMPANI
PRODUCTS
MANUFACTURED
ADDRESS
CHII AND STAKXE
This cord MUSS bo complofoly flltod out Plocso TYPE or PRNT.

23. Steel Sheets \& Wire

Continental Steel Corp.-18-page illustrated booklet entitled "Continental Steel Sheets and Wire" covers sizes, tempers, shapes, finishes and coatings of steel sheets, and gives data on roofing, slding, fencing and standard and special wfres.

24. Flat Top Conveyor Chain

Chain Belt Co. 4 -page illustrated folder No. 461 describes Hex S815 Trble Top chatn belt for application in food handling and bottling or capping processes. Advantages of this chain belt include simplicity of design, detachability and easy cleaning.

25. Rivets

Cherry Mivet Co.-20-page illustrated pocket manual No. D-45 describes self-plugging and hollow rivets in various styles, sizes and alloys. Typical applications in such materials as sheet metal, fabric, plywood, plastic, rubber, leather and enamels are listed.

26. Tubing \& Fittings

Youngstown Welding \& Engineering Co.8 -page illustrated booklet No. T145 describes Weldco tubing and fittings of cupro nickel, monel, nickel, inconel and alloy and stainless steels as well as fabricated piping of all typer, sizes and thicknesses.

27. Fastening Devices

Camloo Fastener Corp.-8-page illustrated service manual No. 44-C describes various service operations of Camloc Fastener 4002 series. Presented in pictorlal form, procedure for replacement of fasteners is shown. Maintenance parts list is included.

28. Dynamometers

W. C. Dillon \& Co.-20-page illustrated booklat entitled "Dillon Dyamometer A Precision Instrument for Precision Testing is descriptive of traction type dynamometers in capacities from 500 to 20,000 pounds for use in steel, rubber, aircraft and marine industries.

29. Hydraulic Oils

Warren Refning \& Chemical Co,-72-page illustrated catalog entitled "Warren Spacialized Lubricants" explains devalopment and application of hydraulic power, selection and functions of hydraulic oils, and characteristics and properties of various hydraulic flulds.

30. Welding Electrodes

Air Reduction Sales Co.-56-page illustrated catalog No. 120 deals with selection of proper electrode for various applications, mechanical propertles and testing of electrodes, welding symbols and instructions for their use, hardness conversion and welding terms.

31. Screw Thread System

Aircraft Screw Products Co. 4 -page illustrated bulletin No. 242 gives complete data on adaptability, advantages, dimensions, specifications, design and installation of AeroThread system. Sequence of operations and installation tools are also shown.

32. Electrical Parts

Cutler-Hammer, Inc. 48 -page illustrated catalog No. CS-162A, second edition of ranewal parts guide, gives descriptions, dimensions and ratings of contacts, relays, arc shields, fingers, shoes, brushes, resistors, timera and coils.

33. Centrifugal Pumps \& Impellers

Deming Co.-20-page illustrated manual entitled "Facts You Should Know About Cen* trifugal Pumps and Impellers" discusses fundamental hydraulic law; various types of pumps; hydraulics; mechanical, static and dynamic balance; and various topellers.

34. Refrigeration Equipmen $\$$

Weatherhead Co.-38-page illustrated catalog J-104-F gives complete data on valves, dehydrators, strainers, manifold assemblles, accessories and fitings used in refrigeration industry. List prices, dimensions, part numbers and other technical information are included.

TEEL

9-17-45
213 West Third St., Cleveland 13, Ohio

lease have literature circied of lofs sent to me.

NAME

TIILS

COMRANI

PRODUCTS

MANUFACIURED

ADDRESS

CITI AND STATE
This card MUST be complofely filled out. Pleose TYPE or PRINT.

35. Hydraulic Presses

Colonisl Broach Co.-4-page illustrated bulletin No. VJI-44 gives specifications and shipping data of Junior bench and base typo bydraulic presses which are made in 1,2 and 4-ton capacities and are intended for light and medium duty assembly and broaching work Special accessories for this press are also described.

36. Protective Tissue

Charles Bruning Co.-8-page illustrated folder No. A. 1009 describes Dulseal tissuethin, transparent film that protects, preserves and repairs tracings, drawings, black and whito prints, blue prints, maps, records, charts, sketches and other papers.

37. Oxygen Generators

Air Products, Inc.-Illustrated technical booklet "Making Your Own Oxygen" explkins how savings of up to 60 per cent can be obtained on oxygen production costs through use of Air Products generators. Various models and sizes of generators are described. Units aro available with capacity to suit most industrici needs.

38. Plaster Mold Castings

Briggs Mfg. Co.- 8 -page illustrated bookle entitled "Plaster Mold Castings by Briggs" describes company's facilities for producing nouferrous castings through use of baked plaster molds. Chemical and physical characteristic of four standard alloys used in plaster mols casting production are listed.

39. Wirebound Boxes \& Crates

Rathborne, Hair \& Ridgway Co.-24-page illustrated booklet No. 45-A describes advantage of using wirebound boxes and crates in automotive, marine, aircraft and food processin industries. Thickness of face sectiong, size f cleats, size and position of battens, gage numbers and location of binding wires an staples are discussed.

40. Floor Sweeping Compound

A. J. Stull \& Co-b-page Illustrated folde shows applications and explnins properties o Re-Mov-Oil grease-absorbent floor sweeping anc cleaning compound which can be used on woad linoleum, metal, concrete or composition fions It is claimed to be nonskid, fireproof and non abrasive cleaner and deodorant.

41. Self-Tapping Screws

Parker-Kalon Corp. - 20-page illustrated bulletin No. 475A is entitled "Parker-Kalo Quality-Controlled Self-Tapping Screws." addition to explaining applications, mese fas turing technique and advantages of theso an tening devices, details and specifications given on various sizes and types for assembl of metal and plastic parts or equipment.

42. Hydraulic Presses

Watson-Stillman Co.-8-page Illustrated bu letin No. 550-A describes four types of by raulic presses used for spring stripping, bambe ing, forming and testing operations. Cond alt specifications of these self-contained, of erated machines which can be controlled wh single lever are included.

43. Industrial Equipment

A. O, Smith Corp.-16-page illustrated bu Ietin "We of A. O. Smith" traces orgrnizatio of company and describes principal product Latter include welding electrodes, pressurs sels, automotive frames, line pipliances, ce casing, glass--ins, electric motors, petroleu meters and allied equipment.

44. Microscope Aligning Instr ment

Cincinnati Grinders, Inc.-2-page iflustral specification sheet No. G-419-1 presents dets of microscope aligning instrument desigo specifically for checking alignoment of Cincinasti grinding machine beds. This a is recommended for shops having macan inch with rated table travels exceeding 98 inct

AE POSTAGEWILL BE PAIDBY-

Penton Building
CLEVELAND 13, OHIO

Coolant Separators

(Concluded from Page 130)

sdexing table, while the lower pan rewites removed swarf.
While no claims are made that the magxetic separator equals the efficiency of a Ler in removing sludge, experience in rany installations has shown on surface, olindrical, internal and thread grinders rost detrimental abrasive, as well as magstic material, is removed, due partly to te magnetic grid under the drum causy magretized particles to stand on end masse, thus serving as a brush to aeen out nonmagnetic material.
The magnet drum has four rows (two the small size and eight on the large) feight U-s.aped permanent magnets athed circumferentially to a cast iron Wider which is keyed to the rotating waft. The lower half of the drum passes hrough a sennicircular trough, coolant bwing in one side, under the drum and aling out the other side from a spout trich is slightly lower than the intake de, The scraper is positioned just above te discharge lip and, as the drum, roting at a speed of $4-1 / 6 \mathrm{~min}$ per revodion, pisses the scraper edge, the pardes cluging to the exposed magnet ends se removed and fall down a chute to be aliection receptacle.
Flux path of magnetic resistance for e permamert magnets is formed by the thannel between the underside of the fide-faced drum and the magnetic inner oflace of the cast iron frame surround-- the under portion of the drum, serv-- 8 as a magnetic shunt plate (see cutsay view of drum). This induction magefized apron grid causes magnetized raf to extend on end from the magnet des. A clrum with its top cover rewned, shown in Fig. 3, illustrates this Sect.
Where grivity feed of coolant from achine to separator is not practical, a alor driven pump can be used to translused coolant into the separator trough, which the cleaned coolant fows by manty into the reservoir of the machine.

Diten Re-Sef Industrial piamond Still in Use

A diamond dresser, considered the feest in the world, is still in use by * Northwest Engincering Co., Green 2y. Wis., after $41 / 2$ years of service and ten re-settings. This tool, originally with a common quality, 62.5 carat mond, is used on a 24 in . diam. by 3 - face, Norton crank-shaft grinder.

The diamond dresser is owned by ceddon M. Booth, president, Diamond ool C_{0}, Chicago., and is set in comas's patented Loc-Key-Set-Re-Set-Able 4tiog. It is said that this setting peris many quick re-settings without nage and results in the longest and - ${ }^{\text {ast }}$ complete utilization of the diamond The lowest priced service on its cost. Present weight of the thond is 19.2 carats.

Engineered by KINNEAR to cut your DOOR COSTS!

These KINNEAR advantages, plus savings in time, in manpower, in heating and air conditioning costs, and in maintenance, add up to an unbeatable combination for lower door costs. KINNEAR Steel Rolling Doors offer allsteel protection against theft and intrusion . . . extra protection against fire, wind, weather, and wear. They are individually engineered to fit openings of any size. Write today for complete information on KINNEAR Doors!
KINNEAR

The KINNEAR Mfg. Co.

1780-1800 Fields Ave.. Columbus 16, O.,
1742 Yosemite Ave., San Francisco 24, Cal.
Offices and Agents in Principal Cities

. . when you use :Some Aluminum Castings

YES, the savings which Acme's complete service brings to users of Acme Permanent Mold Aluminum Castings begin as customers' blueprints are checked. Often some slight design change recommended by Acme engineers results in a better casting-and saylings to the customer.
At every step in production, Acme customers enjoy the economies of experienced efficiency, for Acme facilities include pattern and mold making as well as one of today's most modernly equipped aluminum foundries. And Acme customers also enjoy the savings in assembly time that castings of uniformly high quality bring. Spectrographic and electrolytic analysis of metal used, plus X-ray and laboratory inspection, safeguard the quality of every Acme Casting.
You can depend upon Acme to relieve you of your casting problems. Submit your requirements for recommendations and prompt quotation.
operation, if needed. This method of interrupted quenching produces martensite with very low residual strains.

Martempering thus includes the quenching from an austenizing remperature into a salt bath at a temperatore near the Ms point of the steel and holding in that bath, then further cooling in the atmosphere at a moderate rate so as to set up no great temperature differential between the outside and center as the piece goes through the martensite transformation range. Formation of martensite then occurs at a fairly uniform rate at innumerable locations throughout the matrix of softer austenite. An excess of residual strain is avoided by this equalizing process.

As noted, the temperature of the quench bath should be near the Ms point; if much below this temperature, an appreciable quantity of martensite will form and may defeat the purpose of the process. This Ms point varies with different steels, and can be compouted by the Carapella formula, given in first article of this series, but $400^{\circ} \mathrm{F}$ usually has been found satisfactory for martempering the more tender of the SAE alloy steels and the high carbon, low alloy tool steels.

The operation is quite practical commercially, as the pieces may be held in the salt for considerable periods after equalizing in temperature with no offact upon the results. The S curves show that austenite does not begin to transform for a sizable fraction of an hour when held steady at a temperature of $400^{\circ} \mathrm{F}$.

Cooling power of salt at elevated demperatures previously had been underestimated, but agitated salt at $400^{\circ} \mathrm{F}$, is now established as laving a quenching speed approximately as fast as the customary oil quench. This conclusion could be drawn from some figures published by the Germans, Leg and Pomp, in "Stahl und Essen"' in 1941, p. 266, who measured cooling rates of $1 / 2$-in. steel balls quenched from $1475^{\circ} \mathrm{F}$ into oil at room temperature and salt baths at various temperatures. Cooling speeds at $1000^{\circ} \mathrm{F}$ the approximate nose of the S-curve are shown in Table II.

Agitating the molten salt will bring the cooling power up to equal that of still mineral oil at room temperature, and quite high enough to quench mans alloy steels to a 100 per cent martensitio structure. Stated in another way, the quenching speed of agitated salt at 400° F has an H -value of 0.25 to 0.30 (equivalent to still oil) on parts that have a machined surface. With materials having a light scale, the quenching speed is somewhat lower, approximately H equals 0.20 , equivalent to warm oil.

Heavier sections can be hardened by the martempering process that can be handled by austempering, and with minimum of residual strains. Quenching

The CENTRIFUGAL PUMPS of

 Superformance- More volume per horse power
- Service-free performance
- Compact... Streamlined design
- The advanced design and built-in efficiency of Superflo Pumps gives them increased capacity to the point where, a $1 / 8 \mathrm{H} . \mathrm{P}$. model is equal in volume delivered to many $1 / 4$ H.P. pumps.

Superflo's integral-streamline design gives compactness, strength and ease of installation. Dependable-service-free, in performance, they are ideal for pumping coolants, cutting oils and Lubricants, and are easily adapted to any machine. The flow can be regulated from a drip to a full stream without overloading the motor. Capacities from 9 to 44 gallons per minute. Models available for fluids with high abrasive content. There's a Superflo Pump for "superformance" on almost every application . . . for replacement or as original equipment. Write and tell us your needs.

GRAY-MILLS CO.

Evanston, Illinois

Models for Most Every Need

For borizontal. external mounting.

For submerging in coolant reservoir.

For submerging in tank and mountims 10 cover.

For submerging in tame, or mazning megrally with cover.
speed of the bath should not be overlooked; obviously, the lower the temperature of the salt bath, the faster is its quenching speed.

The martempering method has been used commercially to improve the quality and production of a large number of products. A few examples are:
I. Small tools such as shear blades, chisels, punches made of carbon steel, as well as tools of the same type made of alloy steel, eliminating possible quench cracks and permitting hardness without spulling of edges.
2. Alloy gears, bearing races, hall bearings-to obtain high harduuss with minimum distortion or dimensional changes, greater fatigue life and impact pruperties.
3. Spring steels are being hardened with a minimum of distortion and with very high resiijence. Spriugs and knife blades hase heen martempered to high hardness and then tempered to the same hardiness as the conventional guench and draw, with better resilience, resistance to shock and fatigue life.
4. Miscellaneous parts which must be finish-machined and then heal treated to high hardriess with a minimum of distortion and the finished surface clear and frue írom oxidation.
5. Grinding balls have been thus treated, rendering them free frum cracking, either as a result of heat treatment or in service thereatter.

Austempering

Austempering is an interrupted quench which consists of quenching steel in molten bath, usually salt, maistaines at a constant temperature of some puin between 400 and $800^{\circ} \mathrm{F}$, usually to ward the upper level of this rango which reduces the time required to transformation. The austenite trans forms isothermally into bainite or in termediato structure. This process used to attain hardnesses of C48 to 55 along with added desirable character istics of toughness and ductility. Com mercially it is applied to hent treat wire chisels, small springs, steel safety sho toes, among many other application which might be mentioned as suitable fo this process.

Tuble III shows the austempered hard ness ceilings and suggested maximur austemperable size for various carbo and alloy steels; as recommended iny th American Steel and Wire Co., a subs diary of United States Steel Corp, whic owns the patent.

A development in the interupte quench is a modification of austempe ing quench. This method is a threeste process: (a) Heating to austentre, immediately quenching in an agitate heated salt bath at $450^{\circ} \mathrm{F}$ or abo and holding at this temperature to pe mit isothermal transformation: (c) mersing in a third bath maintaileed a higher temperature to serve as a dra This method allows isothermal trat formation at a low temperature to pr duce bigh hardness, and then draws ba

TORFLEX flexible BEARINGS
Things are Happening

R-S gas-fired Furnace, twin-chamber pan type, capacity 27,000 lbs. per hour. Maximum temperature: 1500° F. Each chamber 5 feet wide and 36 feet long.

Plan now to operate R-S Continuous Furnaces for post-war production.

122 Berkley Street Philadelphia 44, Penna

BUY WAR BONDS
to the required physical properties. In this manner, parts of heavier section can be heat treated than can be handled in the conventional austempering method.

In summary, the various modern types of interrupted quenches designed to eliminate or materially reduce quench cracks, distortion and dimensional changes, include martempering, austempering, and their modifications. The mechanics of each are diagrammed in Fig. 14. In all of them, duplication of results is possible by workmen who are comparatively new to the science of heat treating.

Cycle Annealing

Thus far, discussion has been confined to the hardening of steel, but there are many requirements when softer structures are desired. High carbon, alloy and tool steels often have to be softened for machining or cold forming. The definition of full annealing, as given in the 1942 preprint of the American Society for Testing Materials, report of Committee $\mathrm{E}-8$, is "A softening process in which an iron-base alloy is heated to a temperature above the transformation range and after being held for a proper time at this temperature is cooled slowly to a temperature below the transformation range. The objects are ordinarily allowed to cool slowly in the fumace, although they may be removed from the furnace and cooled in some medium which reduces rate of cooling.
"Spheroidizing - any process of heating and cooling steel that produces a rounded or globular form of carbide Spheroidizing methods frequently used are as follows:

1. Prolonged heating at a temperature just below the lower limit of the transformation temperature range with subsequent slow cooling.
2. The object is subjected to a temperature which rises and falls alternately between a point within and a point just below the transformation range. This method gives good results with small high carbun steel objects.
3. Tool steel may be spheroidized by heating to a temperature above the transformation range and then, after holding a suitable time, caoling very slowly in the furnace.
4. Tool steel containing a carbide netwark may be spheroidized by quenching in oil from the minimum temperature at which all the carbon is dissolved, followed by reheating to a temperature slightly belaw the transformation range."
In general, the types of annealing may be described best by defining the result ing microstructure. (a) Lamellar strue ture is preferred for most machinin! operations on medium carbon and carbor alloy structural steels. (b) Spheroidize structure is generally required for cold working operation.
Principles of cycle annealing of stee as developed by Peter Payson, chie research metallurgist, Crucible Steel Co of America, are covered by patent issued to the author and assigned to tha company. Yet, in belief that they migh

- The $36^{\prime \prime}$ Openside Hy-Draulic Shaper has many unusual advantages. Its hydraulic drives give unlimited numbers of cutting speeds and feeds in specified ranges. Operators quickly get the exact combination of speed and feed for maximum production on each job. It is so simple and easy! Almost anybody . . . including blondes, brunettes, and redheads . . can produce a whale of a lot of work with the $36^{\prime \prime}$ Hy-Draulic Shaper and finish every shift feeling fine.
This Hy-Draulic Shaper has power, speed and lasting accuracy to handle easily those big jobs that make ram-type shapers grunt. Its box-section table reciprocates, planerfashion, on a deep extra-long bed; supports work-pieces solidly. There is no ram with long overhang, no leverage to accelerate wear on ways; no main-drive clutch to adjust or reface. Overhead tool is carried on rigid rail that has powerful clamping to column, enormously strong rear member. Openside construction and available side-head are notable advantages. The $36^{\prime \prime}$ Openside Hy-Draulic Shaper can take seven-day, three-shift running for years of "duration", and then some. It's "tops" for high quality and output. Investigate! Write today for Bulletin 2906
Shapers..Planers.. Slotters. Shaper-Planers

Rolling Trunnion AIR DUMP CARS

- PROVIDE MAXIMUM CAPACITY IN LOCAL ORE SERVICE FOR AN IMPORTANT Steel Plant

An impressive number of modern Rolling Trunnion Air Dump Cars are in constant use at this large steel plant-and were installed because of their known dependability, extra load carrying capacity, fast dumping action, low air consumption and minimum maintenance costs.

The above illustration shows part of the sintering plant operation, where the ore is dumped on a grill, which feeds to a belt conveyor-carrying the ore into the sintering plant.

> Descriptive Bulletin on Requect. - Let Pressed Steel Car engineers show you how present haulage capacities can be materially increased through the use of modern, all-steel constructed Air Dump Cars.

Designers and Builders of Railway Cars Since 1898

be of use, the information was made available by Crucible Steel to anyone wishing to utilize it during the war years.
Basic principle of cycle annealing is taken from construction of the S or TTT-curve. In the hardening of steel we are mainly interested in that portion of the S-curve showing the time and temperature for the begiming of transformation in order to avoid the softer structures forming it the higher temperatures. In cycle ammealing the chief concern is the temperature and time required for completion of trarisformation of the softer structures in the temperature range between the nose of the S-curve $\left(1050^{\circ} \mathrm{F}\right)$ and the lower critical temperature, An n_{1}. If the trinsformation takes place within this range, the higher the temperature at time of transformation, the coarser and softer the structure.

Curve representing the ending of transformation tells us relatively how slowly we must cool to avoid formation of the harder structures and at what temperature the retarded cooling may be discontinued safely. This temperature may vary with the type of steel, in accordance with the difference in the form of the isothermal transformation curve. In the vicinity of $1200^{\circ} \mathrm{F}$, usually must carbon and alloy steels require the minimum time to end transformation; to continue slow cooling below this temperature is a waste of time.

According to Payson, the shortest annealing cycle would be to cool as quickly as possible to some predetermined temperature below the lower critical temperature for the time indicated by the S-curve for completion of transformation, and then complete the cooling in the most convenient manner. Precautions should be taken when considering an S-curve of a particular steel as that Scurve represents one heat of steel, as different heats of similar analysis vary somewhat in hardenability, which in turn will change the location of the curve.

It is possible to construct an S -curve for any steel for determining the time and temperature required for cycle annealing, but for the steels in common use, such curves have already been developed and are available.
Cycle annealing is a practical application for annealing of high carben and alloy steels when time is an important factor. The preferred method for cycle annealing is to cool rapidly from the austenizing temperature to the annealing temperature and hold there long enough to permit isothermal transformation However, the slow continuous cooling will produce approximately the samt results.
(Continued next week)

$-0-$

An 800 -page catalog containing en gineering and detail information on mor than 20,000 items used for industrial, con tracting and mining operations is avai able from Colonial Supply Co., 217 Wate Pittsburgh 22.

GEIERRL STEEL URREHOUSE [が

CHICAGO 39, 1830 N. KOSTNER AVENUE, Belmont 4266

NEW YORK, 17 441 Lexington Ave. Vandert ilt 6-2750

1200 Times Star Bldg. Cherry 0691

ST. LOUIS, 5
9307 Bonhomme Road Wydown 1368

MINNEAPOLIS, 11 100-17th Ave., North Cherry 4457

[^4]

THE compactness and portability of the Self-Contained Unit is made possible by the Roto-Clone with its exclusive feature of combining the functions of exhauster and dust precipitator in a single operation. The Roto-Clone and motor are mounted directly upon the dust hopper which also serves as a housing for the air filter. Filtering the exhaust air eliminates any need for outside duct connections that might limit the mobility of the unit. The dust collected by the Roto-Clone is deposited in a dust drawer to facilitate disposal. Servicing can then consist of installing an empty dust drawer, and transferring the loaded drawer to a central disposal point. Send for Bulletin No. 275D.

Spiegeleisen

(Continued from Page 140). eisen is preferred because the MnO , which is formed in the reaction, increases the basicity of the slag and does not tend to cause reversion of phosphorus to the metal. The MnO also acts as a flux for impurities and some sulphur is removed. This practice is almost essential on quality steels and is excellent insurance on steels of lower quality, particularly where a plant is having trouble in consistently meeting specification requirements.

This practice has been used primarily on low-carbon killed steels, but recently it has been found that it is exceilent for killed steeis of medium-carbon content. The rebul is eliminated, and spiegeleisen used only as a bluck. It has been found that it results in increased lluidity which improves the pouring qualuties of the steel, with the result that better ingot surface is secured and chipping costs are reduced. With regular grades of spiegel of normal silicon content about 50 per cent of the manganese is retained in the steel w.th the result that less ferromanganese is required. With the high-silicon grade of spiegel manganese, efficiencies from 70 to 80 per cent are obtainable.
High-silicon spiegeleisen is helpful in duplex steel operations where the low slag volume imposes limitations with respect to the kind of deoxidizers used without danger of phosphorus reversion. The more concentrated alloys are not as well suited for blocking dupiex heats as is high-silicon spiegel. It has been found that steel treated in the furnace with silico-spiegel is superior to that which is entirely deoxidized in the ladle with siticon and aluminum, and also gives higher sields of finished material. In pants using a cold charge it has sometimes been found that the more concentrated alloys of silicon and manganese caused a cutting effect on the basic bottoms, while no trouble was experienced with silico-spiegel. Other steelmakers have found they experienced less trouble in maintaining the correct finishing temperature when this alloy is used.
An interesting phase of the general use of spiegel has been developed by producers of acid open-hearth steel. It has been found possible to increase production by sliurtening the furnace time of heats. The general practice consists of continuing to add ore to the furnace to a much later period than was formerly considered safe, and by using spiegel to slow up the reactions during the final finishing stages of the heat. The spiegel not only reduces the carbon elimination but luxes the residual oxides resulting from late oreing

1 inishing: Spiegelesen is not used ex tensively for alloy purposes, in the stee plant, except as previously mentioned This is primarily due to the high rati of iron and carbon to manganese. Som plants, however, find it economical par ticularly where medium and high-carbol steels are made, and where a fairly hig residual manganese is carried in the bath If moderate recarburization is required

If you buy or use twist drills, it will pay you to investigate "SHANKLESS"-put a few of them to the test on your own operations. Meanwhile, send for your copy of the new Manual $\$.4$ which tells the complete story of these sensational drills.

Please send me a copy of your new Manual which gives the complete story of Republic's "Shankless" drills.

rember 17,1945

HE list of wire cloth specifications required by American industry is staggering in size.
To be able to obtain all you need from one source is the tremendous advantage of checking first with Buffalo Wire.
The large, diversified clientele of this Company is attributable to an extremely broad range of standard and special weaves, sizes and metals for all applications:

spiegeleisen is desirable as it has a carbon content of about 5 percent, most of which is combined carbon. The low phosphorus and sulphur content of spiegel makes its use for this purpose possible for both acid and basic steel. High-s.licon grades are particularly suited for this purpose when used as a combined block aud for alloy additions. Ferromanganese may be used to supplement the spiegeleisen if the manganese specification is ligh.

In considering the economics of this application of spiegeleisen or, in fact, all applications in the steel plant or foundry, it must be borne in mind that about 75 per cent of the spiegel added is iron, which adds that amount to the yield, and is sold for same piice as product.
Flectric Furnaces. The volume of spiegeleisen used in electric furnaces is not large, but it has several applications nevertheless. Some plants use small quantities to produce a boil for obvious purposes, and it is also used as a recarburizer in those plants which prefer to take all heats down low in carbon and adjust the composition by additions of allouss. A considerable portion of the reguired manganese is incidentally ohtained. In phats which use blown metal for the charge, spiegel adds carbon and nuangauese, both of which are desired.

Gray Iron: In cupola operations it is seldom pussible to obtain the desired amount of manganese from the raw materials charged. Spiegeleisen is an efficicut and economicn: alioy for this purpuse, and may be added with the charge without urdue loss of mangancse. The meltirg point of spiegeleisen (about $1150^{\circ} \mathrm{C}$ or $2048^{\circ} \mathrm{F}$) is about the same as the pig irans of low-mclting puint, cunse quently the possiblity of retarded medt ing is eliminated. It is also licelpful where high sulphur is encountered, as sone manganese will combine with the sult phur and carry it to the sligg. In addition the spiegel has the same dousidizine properties in the cupola that it has in the steel furnace.

Malleable Iron: In the pronliction 0 malleable iron, either by the direct proo ess or duplex prucess, spiegeleisen is isec for the same purposes that it is used in gray iron.

Use of spiegeleisen in the war effor did establich its familiority in many the steel industry who previonsly wen not aware of its versatility. Indication are that the nexl few years will see nume additional experimentation with this mate rial and its consequent aduption in mans sleelmaking operations.

Die-Cast Line Expanded

Company line of die-castings f plumbing and heating and the applianc and hardware trades is beine expande by Titan Metal Mfg. Co., Bellefonte, P It includes products cast on Polak hydr mechanical machines, originally imparte from Czechoslovakia, and, although ti company now has facilities for producir brass pressure die-castings weighing to 11 lb , it has not yet applied pressu die-casting for producing parts weighii more than 4 lb .

For superior welding with alternating current use these

ELECTRODES
 High Ductility-
Deep Penetration Type
$\begin{aligned} & \text { RACO TyPO A.W.S.-A.S.T.M. Clo } \\ & \text { RACO } 11 \\ & \text { RACO } 7011\end{aligned} \quad$ E 6011
\qquad
\qquad
RACO Type
RACO 13

$\mathrm{W}_{\text {ith }}$ the increasing popularity of transformer welders of all types, the demand for A.C. electrodes low-alloy steels is steadily steel and high-tensile, low lits advantage of altermounting. The outstanding ading, of course, the notractical elimination of magnetic arc blow. For this reason, A.C. electrodes are especially degirable in assemblies involving intricate corner tions favoring arc blow.
All the above electrodes give excellent results when used with direct current. Samples on request.

RHID-AVERY MPANY

DUNDALK
NCORPORATED
BALTIMORE 22 \qquad MAR YLAND

Neptember 17,1945

German Fasteners

(Continued from Page 123)
Between 900 and 1000 persons were em. ployed. Of the total 65 per cent were aliens, mostly Danes and Belgians, the latter being best woikers of ull for eigners employed.

Lenerwerk G. M. B. II.: The firm of Lenerwerk formerly known as Ccleer Knipping, is a branch of Vercingle, Stall. werke. They made bolts, muts, screns, and rivets. The plant is fairly well maintained but not up to American or British standards; lnyout is nut good and building badly liphted and ventilated. Employment during the war was about 1000 , of whom 440 were for eigners.
Schraubenwerke, Neuss (Fisene \& Co.): This company has the most up-to-dute factory in Germany for manufacture of wooden screws. It employed 350 people to make 800,000 gross of screws pet month, using 130 foreigners and, of the total, 60 per cent women. It has dispersal plant at Velbert in runniug order, and with 55 employes can produce 200,000 gross of screws monthls in a short time. Equipment consist of 80 heading machines, 470 slotters and 851 threaders. Smallest size screvi made is 1.3 mm diameter $x 5 \mathrm{~mm}$ long, and largest is 10 mm diameter 100 mm long.

Funcke \& Hueck, A G: The factory of Funcke \& Hueck has built many machines for its own use Warr employment totaled 1200, of which 500 were women, many of them Russian. Com mercial bolt and nut production was 400 to 500 tons per month; hizh tensile bolt production, 160 tons per montin, and drop forgings, 300 tons per month No new development was seen. Small est diameter made is $1 / 4-\mathrm{in}$. cold, larges is $5 / 8-\mathrm{in}$. cold, and up to 2 -in. diameter made by hot forgings on either Vincent presses or 4-hammer headers. Nuts are cold pressed on horizontal machines up to $1 / 2$-in. diameter and hot forged up to $2-\mathrm{in}$.

Altenloh Brinck \& Co.: Bolt plani is at Gevelsburg, near ILagen. Com mercial bolt production was concentrated in 6,8 , and 12 mm diameter, with a few 16 mm , all of these being cold headed. Factory made a small quantily of 19 mm , hot forged. It emploved between 500 and 600 workers during the war. Monthly production avernge ower 6 years was about 250 tons, wi!h a peak of 290 in 1941. Materinl used was et. clusively commercial quality. In 1944 company also made a small number of aircraft studs, about 50,000 pieces pen month. These were turned and rolled on Pee-Wee thread rollers of the cir-cular-die type similar to Great Britain and marketed by Leo Steinle \& Co. Ltd. and by Watson-Flagg in the U. S. Ma chine does not compare favorably with either British or American counterpart being less robust in construction. Roll ing dies, however, are more economica to produce and average cost per pair o

The Safety Director. Industry's No. 1 Morale Builder

War's slaughter steels human hearts to better withstand death's realities. But when human values are weighed in happier days accidents will hold all their peacetime horrors, bringing nerve-shattering tension that undermines plant morale and cuts production energy. That is why more management men are consulting the Safety Director about even greater protective programs for peacetime production. This provision for high-
er plant morale can well be the advantage one company may have over another when manufacturers once again are striving for greatest possible share of a competitive market.

FREE 64-PAGE BOOK! Send for your illustrated copy of Hy -Test's Safety Engineer's Digest, "Let's Use Our Heads and Save Our Feet," written expressly for "those who believe roes are worth sav. ing." It offers a complete guide to greater foot protection for your workers.
 HY-TEST SadetyShoes

Difficult Fabrication IBASIER

 It's impossible for you to drag your welding machine down in the double-bottom of a "Victory" ship or bigh in the cir on a big construction job . . . however, with a Hobart you can have the same fine adjustmonts of welding heats as if your machine was right at your side. Hobart's "Remote Control" is small and convenient enough to be carried anywhere. It allows you to make the correct heat adjustments for every application, whether it be overhead, vertical or horizontal welding . . . assuring you of sound, ductile wolds at all times. HOBART BROTHERS CO., BOX ,T-952 TROY, O.
dies in Germany was 225 reichmarks, and average life was 15 to 20,000 studs 8 mm in diameter and made from material with tensile strength of 80 kg per sq mm . Plant was very old and in bad condition.
Speck \& Hoeltgen: Located at Ratsbourg, near Lubeck, compainy was reported to have a special method of zinc plating. From Mr. Speck's uwin account, it soon became apparenal the process was well-known and would mil be considered of much iulurest to thi delegation. He used an alkaline solution with current of 600-700 amp at 10 v and treated 50-60 kilos per hour pur barrel, obtaining thickness of $0.00013-3$-in. Factory was well haid out and modern in construction. At its previmus hecation. Remsheid, the firm also did hard cliromium and nickel plating.
Ebrenreich, Obercassel, Dussel....rl: This is a firn specializing in bill dunl socket connections used by antunnitive industry mainly for steering gear anis track rods. Plant was found to In very old and in very dirty condi inll. and product was inferior to thatt receognized as standard in Enylaud and America.

Altenloh Brinck \& Co.: Lacated at Milspe, near IIagen, this ciminnuy proved to be one of the larsex 1% ducers of wood screws in Curnitity. Plant has not been added tw durius war and no new developmptis were found. Average dinily producoinn of wood screws over 7 years from 19 ms through 1944 was slightly under $\mathfrak{Z A}$ all: gross, a peak of 29,000 being reached in 1942.

Wood screw plant consists of 70 heading machines, 400 sloticrs. and 700 threaders. Plant was undanaged bv bombs.

Carl Bauer, K. G., Kronentures. Wunpertal: Produced mainly serwiws fur metal thread work and speci,l wirth. but plant and production wire crulte. Employment totaled 600 persinus, whethird foreign. No heat trentinus ":n done at this plant, and, althumeht is hul an automatic department and f.urititios for drawing bars, these were unt up to date.

Hugo Betzer, Ludenscheid. Me:ur ITa_{2} gen: Small factory buit inienilutily equipped with Iiligeland marhinus. of these there were 14 doulsh--Llww heraders, the largest heing 36 -in. and re mainder varying hetween 6 mun liamiter and 2.6 mm diameter. Alsn scerl were 18 slotters, 11 thread rollers anni ? An'nmatic pointing machines. Slup vas mndern and clean. Maximım of 3.5 employes can attain top pruluction of in to 12 million screws per 49 hr shift. Prockuct was of highest quality.

Berninghaus \& Co., Velbert. near Essen: Firm is primarily machine tool builder. specializing on presses and forging equipment. Large number of mawincs were found in semi-finicherl condibim, amnng them a hinge-making macline suitable for making hinges 3 -in. long and $1 / 8$-in. thick. Unit is similar to those used by Stanley Works in same

Our services provide the combined talents of regis. tered licensed, professional industrial and mechanical engineers, accountants, architects, structural, civi and hydraulic engineers, electrical, heating, ventilat ing, air conditioning, chem: ical, foundry gud metalur. gical engineers to work closely with members of your staff in helping to build a more effective husiness organization.

Illustrated folfer on request

- Industrial Enginecring
- Methods
- Plant Layout
- Production Flow
- W ork Standards and Coss
- Job Evaluation
- Wage Incentives
- Architecture
- Structural Fnginearing
- Civil Dngineering

The successfol futmre of many a business hangs on the thread of maling a de cision to do something lodrs?

ASSOCIATED EMGIMEERS, INC.
 Joseph C. Lewis, President

230 EAST BERAY STREET Fort Wayne 2, Indiand

AEI
"READ OUT!

Sixteen fact - packed and well - illustrated pages tell you the salient points and many of the significant details of the Greenlee Six . . . and give you specification figures from which you can judge how well this machine will fit your needs. We have gone easy on the glittering adjectives and tried, instead, to tell a straightforward story of all the things a Greenlee Six can do, and how they are accomplished. Send for your free copy today. . . if you are interested in production machinery, you will find it worthwhile reading.

Here is a machine that was designed with three priaciples in mind . . : (1) 10 provide accurate bigh production, (2) to make operating easier, thd (3) to make set-ups faster. Many details of design contribute uffectively to the accomplishment of these aims, such as wide open boling area, built-in coolant system, highly refined and accurate spindle tod carrier construction, compensating stops, identical cross slide rool cavities, simple cross slide camming, no cams on main tool slide, Dovenient stock feed adjustments, and a variety of attachments for treading, tapping, reaming, drilling, recessing, boring, form-turning, and eccentric boring. The unusual qualities of the Greenlee Six have vien earned it the title of "The Operator's Favorite."

Richt, two typical spreads in the booklet shown above, to give you an idea of how thoroughly and carefully the significant facts on the Greenlee Six are presented.
GREENLEE BROS. \& CO. 1929 MASON AVE., ROCKFORD, ILL.

town. In addition, there were two Ajax-type horizontal forging machines with capacity of $1 / 1 / 2$ to 2 in . ready for delivery. It is believed machines of this lype are urgently needed in this country.

Scissenschmidt \& Co., Plettenberg, near Itagen: Company produced large commercial bolts for railroad use by extromely crude methods. Here, again, the answer was cheap labor.

Gracve \& Kayser, Plettenberg: A rather large plant, entirely undamaged, employing 1200 to 1400 persons in normal times, making a complete line of commercial products and some high tensile bolts. One very economical hollow
hex cap screw was being produced. Nothing else of interest was found.

Cebruder Hilgeland, Wuppertahl, Ronsdorf: Unquestionably the best makers in Germany of machine tools for the bolt, screw and rivet trade. Firm's modern factory was well organized and well equipped. Quality of work was highest possible. Ton much hand work done, resulting in machines being individually built and parts not always being interchangenhle. Firm's modified automatic pointer just entered the market in 1939.

Methods

Cold-hending of fasteners has progressed much further than hot methods.

On the whole machines are excellent, and recent installations show trend toward a heavier more rigid machine lhan is employed here or in Eugland. They are slightly slower in production, and bolh open and sulid die types in sitgle and double blow are employed.

One unusual machine was found al Lenerwerk, making $3 / 4 \times 3-\mathrm{in}$. rivets which had solid die type of culorf and carts over into an open die with the ussual mechanism. Recent machines of litigeland (See description of this limm) were comparable with those of Water bury-Farrel Foundry \& Machine Co. and E. J. Manville.

Cold-heading coils are no larger than $5 / \mathrm{sin}$. diameter and limited to aboul 80 ft of wire, except in one case where heavier coils up to 250 lb were found permitting ton diameter of $3 / 4 \mathrm{-in}$.

Hot Forging: Investigation of hot forg ing methods for bolts afforded ven little information of interest. The 3 slide type hammer header was common being used on short as well as long bolts Another typical method is to forge th bolts from a cold-made up,et on Vincent press, with its power unit large vertical screw acting as headin ram, driven by a friction wheel. It wi produce unusual heads, large diamete odd shapes but as a production m^{2} chine is slow and inefficient. Typica of heat treating are furnaces made 0 cylindrical tiles radially pierced whict after receiving blanks, are rotated b hand. Neither continuous nor han wrought hot headers were found. Mor modern plants had quite good trim ming machines but with no unusual fea tures. Feeds were largely hopper isp with a few chain feeds similar in th Waterbury. Bolt trimming of hot bol and pointing methods were very crud the one exception being a 2 -station al tomatic feed pointer of rather expet sive and rigid design, resembling American-made Economy and produce by Hilgeland. Pointing operation wh very positive.

Thread Rolling: Threading of bo and screws was distinguished oniy roll threading machines and methou which were more in line with our pria tices. Cut threading was done man ally on single and double spindle han threaders. Insert was done manuall The best roll threading machines we? of Hilgeland make, but no adsance new art was observed. Typical π thread die was threaded both sides ${ }^{\text {an }}$ with square ends, omitting the famili American dovetail.

An unusually large machine at Bal \& Schaurte was fitted with very de composite dies (possibly 10 in) with individual adjusting wedges backing each die to obviate shimming.
A novel roll threader, known as PC Wee, was very popular in the bett plants. It employs a round roller and resembles the Watson-Flagg (ADe ican) and Steinle (British). The pro nct looked satisfactory. It was criticit for not being rigid enough and also

Whitcomb IOCOMOTIVES

To keep hauling costs at a minimum and to avoid costly lay-ups, engineers know that WHITCOMB LOCOMOTIVES provide the strength and stability to assure long and dependable service. Power, acceleration and mobility are combined with these qualities to make WHITCOMB the best all-around locomotive available. To meet your requirements there is either a WHITCOMB ready or one can be designed to do your job better than you thought possible. Write for full particulars.

brief die life- 15 to 20 M bolts-and for cost of dies (250 reichmarks).

Another novel installation, built in 1910 by the company using it (Fuucke \& Hueck) had a long stroke roller, perhaps $20-\mathrm{in}$, die length, and a shiviug tool following the work and cutting ofl thread as it rolled up until, finally finished bolt had full dianieter thread with full diameter shank. Toul alsu pointed bolt. Thus excess metal is cut off as dispersed. Roll Uliread dice. 20 in . long, 3 in. deep, and $3 / 4$-in. Ulick. were produced for 35 years.

A method of blank rolling produced a finish superior to centerless griuding It was used on "waisted" bolls "ir stuch for engines and consisted of rullime nurd uct between polished and lialurd ditss latter contacting full width of waisted portion and up into radii al meth coul.
Special Operations: Gond-rp.ality. economical hollow hex cap screw was pros duced (Graeve \& Kayser) hy siumple inp. selting on a cold header. Bluinh waheated and fed while hot int" Diturent press which punched hevagen rewess to produce a fillister head wi/hwul hirther finish machinng. Screw louked crude but was highly efficicont.
Wool Screws: No features of major importance in machitue duist innprovement were found. Shutliug. wh.ning, and threading machines rimem'te those in vogue here and in F.nelland. The product was good. Alnusinum substituted for hrass in wroul arrows, due to brass shortage. Out plam (Nhenloh Brinck) had machines sis (wipipmed that finished screws dropped on a shaker chule which distributed screws in a forked receptacle, the chips and slavings dropped through, leaving screws hanging in the fork with hwals arranged for inspection by furuli.r. One type threader used a towhed cutting tonl something like a Felliws scour sunerating tool. It rotated as it was fed against screw, and loy proner caminu generated thread and painu. Sume lag screws were made this waly.
Machine Screws and Stuve Bolts: These are produced in the irnical way by heading, slotting and rull iliremling on Walerbury-type machines. Fillister binding head design serured proular. Many mach'nes had no limrr remowers.
Aireraft Studs and Bolls: All illtra high speed lathe rumning from 1.500 to 5000 rpm , depending ml wo k diameter, makes aircraft fastemers in everal plants. Shank of the holt ir stad is turned undersize to ront diumet, of of thread or below in order tio dillilute load. Live center of mowhine is a matrix formed to receive hall heatl. or is a chuck in the case of stuch. Dead center receives pointed rull and is mounted on ball hearings, this free to revolve with work. Positiming is dome, hydraulically or with ar. Alachine's design is such that full cutting spreds of tungsten carbide tipped tiril :are need. Tonl slide is held to worts. Imil follows a cam which detrmines lencth of full diameter and lenuth of wwisted reduced area to be cut away. Directly op-

WILL SOLVE 90% OF YOUR PROBLEMS

DARK GREEN: For economical repair of wearing parts on machinery, plows, excavator buckets, shovel teeth, valves and dies, as well as any other machine part damaged by severe wear and impact.

Brinell Hardness 400-600.
PINK: For hard-surfacing of steel parts in process manufacturing as well as for refacing of worn carbon steel parts, mainly worn or battered rail-ends, tractor shoes and carwheels.

Brinell Hardness 290-400.
RED: A medium hard and abrasion resistant hard-surfacing material where machineability after welding is required. Usual applications are the rebuilding of gears, knuckles, brakeshoes, clutches, etc.

Brinell Hardness 200-250.
VIOLET: A self-hardening, 12.14% manganese steel weld deposit for the building up of surfaces exposed to extreme impact and abresion, such as railway frogs, crusher jaus and rolls, pulverizer hammers, te. Brinell Hardness 200-490.

AMERICAN AGILE CORPORATION

5806 HOUGH AVE. CLEVELAND 3, OHIO

SEND FOR FREE CATALOG

100 YeARS Making strong the thinge that make Cumerica strong

COLD $=$ FOR GED . . . on bolt-making machinery . . .

for strength, accuracy, appearance and economy

De same method that is used so suczssully to manufacture RB\&W EMRE Bolts was used to produce these fectial parts . . . with maximum strength, curacy and appearance, and at lowest mas.
Cold-forging on RB\&W equipment inases tensile strength, intensifying the 3in while preserving the flow lines of 4 metal . . and provides an automatic spection of the material. Headed parts formed with extreme accuracy, for dis modern machinery is operated to a) close tolerances. Threads are per4. Appearance is unmistakably that ${ }^{2}$ a quality product.

Costs are lower, because RB\&W's equipment operates at very high speeds, and, in cold-forging, the scrap waste is virtually eliminated.

THE LONGEST EXPERIENCE IN AUTOMATIC COLD-FORGING

This is RB\&W's 100th year. The history of this company is also the history of automatic cold-forging, for it introduced the original automatic coldheading machine and has since pioneered in many respects to improve the quality and lower the costs of fasteners and other parts which can be cold-forged.

In planning new parts, consider the
many metal shapes which can be pro-' duced by cold-forging and also that RB\&W's experience and facilities make it your logical source of supply. At present, wartime commitments have monopolized those facilities; meanwhile, keep in mind the advantages of this method.

RBEM

Russell, Burdsall \& Ward Bolt and Nut Company. Factories at: Port Chester, N. Y., Coraodolis, Pa., Rack Falls, III. Sales offices at: Philadelphin, Detroit, Chicago. Chattanooga, Los Angeles, Portland, Seattle... with the industry's most complete, easiest-po-use catalog.

Capacities:

5 to 150 TONS

ANY SPAN OR LIFT

Send for Your Copy of Crane Catalog

> ELECTRIC OVERHEAD TRAVELING CRANES GANTRY CRANES O STEEL DERRICKS BUILT TO YOUR SPECIFICATIONS STRUCTURAL STEELOSTEEL BUILDINGS AIRPLANE HANGARS

| Enginears
 Deslgners
 Fabricetors | BEDFOR1 FOUNBRY \& MACHINE CO. Groy |
| :--- | :---: | :---: |
| Bedford, Indiana, U.S.A. | Iren |
| Castings | |

JOHNSON Wire

posite is a steady rest, movable in an out, so that if reduced section is long, st arate profile or cam will determine po tion of this rest and steady work.
In operation, worker takes through to the end, shuts off feed, faces underside of head, with a we elficient job of filleting at junction head and shank. On a bolt about sosit diameter, with feed of 0.01 -centimel per revolution, 0.2 mm in depth, a was taken in 68 sec on a $12-\mathrm{in}$. leng seducing diameter 0.4 mm . In oper tion feed and rpm are balanced agair tool's capacity.
Forging Hot Nuts: A machine for ma ing hot hexagonal nuts with very lit scrilp is widely employed, the prot -indenting hot bar, squeezing rougt is tom, wutting off, carrying back manis die where piercer partly swag stock from hole mitwardly to fill a ners as corresponding punch advanc to punch and size hole-never altain much success in the United States cept at the old Neely plant in Pil burgh. Steel for these nuts is rep ed to be low in carbon and high in pha phorus and possibly of diflerent working characteristics than ours. is made by the Thomas process.

Bar Nut Making: A single spinc screw machine, the Index, was usual used. Employed stationary drill a two cutoffs, with a countersinking 10 Made good nut of high accuracy and so isfactory finish.
Nut Tapping: In contrast to common hand-tapping machines was very good automatic tapper used nuts from $3 / 16-\mathrm{in}$. to $1-\mathrm{in}$. bolt siz Called the Nutap, it is a twin-stati machine with two chutes loading out hoppers and feeding two taps of Be design, the latter being enclosed.

Centerless Grinding: This melh was used generally on aircruft bol Crinder design was light and frail cot pared to our machines, their light co struction making it difficult to hold th erances with any degree of accuricy.
One notable and very new develo ment (at Bauer \& Schaurte) was an auth matic fued for bolts. This embract the idea of cutting away the feed whe at two points and mounting cams on bo sides of the wheel to time the fet with relation to the cut-out portion Blade-type hopper, mounted on the cen terless grinder, then fed $1 / 4 \times 1 / 2$ bolts at the rate of 35 per min into a inclined magazine, an escaple motio permitting one bolt to slide down th chute. Striking end of chute, it fell horizontal slide below. Pu, her the advanced bolt, point first, between fee ing wheel and grinding wheel.
Ileat Treating Furnaces: Furnac almost universally used for heat trea ing were similar to the Victor Pentros lar Curnaces of America, using a ligh sheet metal belt made of 25 per ce chromium, 20 per cent nickel materi known as Anti-Corro Steel-PuldiK. C. These furnaces seem to have give very little trouble.

RRGING PRESSURE \mathbb{N}

ating:

XVA at 50% duty cycle. Single allernating current of one voltand one frequency. Power supply 25 be 440 or 220 volts. 60 , 50 specifi-

ions.
 performance:

 APACITY: As a projection welder- 6 xojections on $.080^{\prime \prime}$ plas $.080^{\prime \prime}$ - - disance between wilds RWMA standards. in accordance wirrent on secondary side, 31,000 amps. with a distance of $11^{1 / 2}$ between arms. As a spot welder-- (electrode holders optional equipment "032" plus less or clean mild steel ring $187^{\prime \prime}$ plus .032" up to and includingSPEED: 180 welds per minute on $.032^{\prime \prime}$ plus . $032^{\prime \prime}$ pickled mild steel.
THROAT DEPTH: $18^{\prime \prime}$ from center line of welding ram to face plate. CLEARANCE BETWEEN ARMS: Lower arm adjustable over a range of $11^{1 / 2}$.

$21^{\prime \prime}$.

ELECTRODE STRORE: Adjustable stroke, retractible head, permits a working stroke of $1 / 2^{\prime \prime}$ with tal opening up to traction to give a tot constant working $2^{3} /^{\prime \prime}$. Selection of constan with retracstroke, or working stokitch mounted on tion is through toggle setraction feature is control ponel. The relding. It may also designed for spotwelion welding if debe used for projection welding

WELDING PRESSURE: Maximum 3000 lbs. for 90 psi. line pressure.

> AMERICAN SHEAR KNIFE CO. HOMESTEAD • PENNSYLVANIA

Polishing Steel

(Continued from Page 146)

Blum are of interest when using steel base construction that later is to be given a bright plate of the copper-nickelchromium type or nickel-chromium type. However, in order to draw conclusions from their data, the experimenters found it necessary to first evaluate the reproducibility of the results. To be significant, any effects of a particular variable must be greater than the accidental varintions. A stucly of the results of their investigations and of the much larger number of inspection data from previous similar exposure tests has indicated that in any single lacalion a given score must vary by about 10 per cent from the average of comparable sels to be significant and for the mean of three or more locations, by at loast 5 per cent from the average. Application of this criterion to the tests afforted definite conclusions.

No conclusive evidence was obtained of a consistent effect of the polishing or surface finish on the protective value of the plated coatings on cold-rolled steel. For example, it was pointed out that with 0.000 -5-in. of bufted dull nickel followed by $0.00001-i n$. of chromium. eight sets ranging from a 90 -grain finish to a superfinish showed no variations as high as 5 per cent from the average of the three locations. No significant effects of polishing were olserved with seven similar seis plated with bright nickel and chromium.

No significant elfects of polishing on corrosion resistance were noted in test samples from which different depths of metal were removed from the surface, but having the same final polish. Varying the cleaning proceclure had no significant effect on the life of the coatings so long as adherent deposits were obtained.

The results show a consistent increase in the protective value of the coating as the thickness of bright nickel or of copper plus bright nickel was varied from $0.000-\mathrm{-in}$. to $0.00125-\mathrm{in}$. This confirms what has been found in olker exposure tests. On those sets in which unluffed dull nickel was compared wilh buffed nickel the unbufted specimens showed a marked superiority (pliss 21 per cent) only on the unpolished cold-rolled steel. On exposure suts polished with 150 or 220 grain, bulfing of the nickel had no large effect.

Sets with buffed copper under bright nickel were distinctly hetter (plas 21 per cent) than those with bright nickel of the same total thichness applied directly to the steel, and were equal to those with buffed dull nickel of the same total thickness. This result is different from the previously reported detrimental effect of copper under buffed dall nickel. These results were confirmed in supplemental exposure tests with additional sets plated with copper followed by buffed or bright nickel.

Discussion: It has been generally be-

Get the helep of this

 new husiniess iil -Photocopying!

With APĒCO PHOTOEXACT, quickly make copies of LETTERS, VALUABLE PAPERS, BLUE PRINTS, FINANCIAL DATA, PIC. TURES, CHARTS, CLIPPINGS, CONTRACTS - over 100 others Now, with this handy unit in your office or plant, you can have plenty of copies of anylhing, whether written, typed, printed drawn, or photographed - even ii on both sides ... permanent, errorproof photocopies-at amazingly low cost! APECO makes them at 1-a-minute speed-expedites work. No darkroom or technical knowledge needed - even a boy or girl can easily operate $A P E C O \overline{\text { E }}$
... Send for your free copy of this informative book

Tells how APÉCO

Photocopying can serve you
Sce how you can save time, money, labor, and assure accuracy with this most modily method of copying. APECO'S 20-page, illustrated boak gives you the story of Yhoto-copying-shows graphically the "what" gnd "how" of this amazingly simple procedure. Yours without obligation. Write, today:
AMERICAN PHOTOCOPY EQUIPMENT CÜ.
2849 N. Clark St., Dent. JF95 Chicago 14, Ill.
Representatives in principal cities and Canada

PHQTOGOPY EQU|PMENT

RELIANCE

WITH DOUBLE-SHIELDED BALL BEARINGS

 GIVE LOWCEER TBOUBELFFFFREFlieved that plated coatings of a given thickness are more porous aud hence less protective when applied to rough surfaces than to smooth or highly polished surfaces. This belief was not burne out by the recent work of Lax and Blum, and these experimenters point out several causes that may have contributed to this apparent contradiction between wo sets of results.

Steel used in the study was cold-rolled and the surface was free from oxide or scale such as is normally present on hotrolled steel. It was reasoned that a given polishing scheme might not leave as continuous a metal surface on hot-rolled steel as on the cold-rolled used in this study. It also was pointed out that the steel plated in this study was of a type that possibly might contain less foreign inclusions than other grades of steel, especially hot-rolled.

A study similar to this one is described by Pinner ${ }^{2}$, who polished panels of hotrolled SAE 1085, commercial cold-rolled SAE 1010, and "perfect" cold-rolled SAE 1010, with various abrasive grains, plated them with nickel, and subsequently exposed them to salt spray tests. Wilh the hot-rolled steel and the commercial coldrolled steel Pinner found that a decrease in grain size of the abrasive, in general, improved the protective value of the nickel coatings. The grain size of the abrasive studied varied from 90 to 220
grain. With the perfect cold-rolled steel no effect of grain size was observed by Pinner except with the coarse 90 -grain which yielded a poor protective coating The results obtained by Pinner on the perfect steel are consistent with thox found by Lux and Blum, except for tix low rating on the 90 -grain abrasive, axd it was pointed out that this discrepary may involve the use of the salt spray Pinner's test as contrasted with the prex ent atmospheric corrosion tests.

Thus the conclusion reached in th study by Lux and Blum, that wide varia tions in polishing operations and in 00 tours of the steel surface prior to platin have no significant effect on the prota tive value of plated coatings, may ther fore apply only to steel that is initial free from scale and inclusions and b not been polished to produce a smot surface after plating.
Correlation of Accelerated Corrosic Tests with Exposure Tests: It is the ge eral purpose of accelerated corrosi tests on coated metals to debermine in short time the relative protective val of two or more coatings. Due to the fa it is necessary to change some conditio of the test in order to expedite corrosio results obtained often do not check tho in actual service. Lux and Blum in the study carried out a comparison of a celerated tests with atmospheric exp sure tests. In view of the fact failure

In redesigning old or developing new products, you will find the metals data in our new 16 page catalog extremely helpful.
Tables cover: "Relative Weights Of Structural Metals"; "Physical and Mechanical Properties of Cast Metal"; Chemical Compositions and Mechanical Properties of Magnesium-Aluminum and Copper-Base Alloys and Ampco Metal; Conforming Specifications, etc.
Write for your copy of this catalog . . TODAY
THE WELLMAN BRONZE \& ALUMINUM COMPANY GENERAL OFFICES:
2539 EAST 93 rd STREET - CLEVELAND 4, OHIO

Eberhardt-Denver Co.

BUSHINGS, SLEEVES, ROLLS AND OTHER HARDENED PARTS
 Machines can be improved and their manufacturing cost reduced by use of tool steel tubing for tubular and ringshaped parts. The milling machine headstock shown above has a main spindle sleeve bearing (lower left) made of tool steel tubing, providing several advantages over the previously used bronze bearing. Write for details.

IMMEDIATE

SHIPMENT FROM STOCK
Carbon and Alloy Steels, H.R. and C.D. Ball Bearing Steel. Aircrati Steels. Boiler Tubes Chisels - Cold Finished Steels Cumberland Ground Shalts - Drill Rod High Speed Tool Bita Shim Steel Spring Steels - Tool Steals Tool Steel Tubing

в13co

THE BISSETI STEEL CO. 145 INST GTL 5t., CLETELMD 8, 0EIO
coatings of relatively noble metals, such as copper and nickel on steel, is generally believed due to porosity of the cuating, the accelerated corrosion tests used were based on four types of porosity tests, namely (a) salt-spray test, (b) ferroxyl lest's, (c) hot water test ${ }^{4}$, and (d) moisture-condensation test ${ }^{7}$.

According to Lux and Blum, results obtained from the salt-spray test cast doubt upon the value of this method for detecting pores in nickel coatings. Pending a more cxhaustive study it was suggested that as a tentative measure of porosity, the results of a relatively short perind, such as 100 hr , in the salt-spray be taken.

There is the possibility that long exposure in the salt-spray may slowly attack the coatings, proclucing pores where none existed previously. When this saltspray test criterion was applied to the results with the polished and plated specimens, no correlation was found with the exposure tests. An example cited to illustrate this lack of corrclation was Inat of two sets of dill nickel panels which showed large numbers (40 and 20) of spots in the salt spray and the one of bright nickel (30 spols), all were from sets that showed no marked failure in the exposure tests. Similarly the number of porosity spots brought out by the ferroxyl test ${ }^{n}$ and the hot water test ${ }^{6}$ showed no correlation with the results of the exposure tests. Results with the moisture condensation test? which has been used at the National Bureau of Standards for testing painted contings on steel, indicated in general that this test is impractical for testing plated metals.

REFERENCES

Research Paper RP 1645, National Bureau of Standards.

Pinner; proceedings, American Electroplating Society (1940).
${ }^{3}$ Made by Brush Development Co., Cleveland.

- Made by Physicists Research Co., Ann Arbor, Mich.
${ }^{5}$ Figures taken from Research Paper RPI645, Nationa! Bureau of Standards.
- P. W. C. Strausser; proceedings, American Electroplaters' Soclety (1939).
${ }^{2}$ Pollard and Porter; National Bureau of Standards Report BMS 44 (1940).

Metal Welded to
 Glass by Special Alloy

An alloy of iron, nickel, and cobalt whinos expansion with temperature closely mallels that of hard glass up to abor* 465 degrees Cent., where glass bextins to soften, provides an intermediar by which metal can be permanently welded to glass of an electronic tube, according to Westinghouse Electric Corp., Piltsburgh, Pa. This process does nut require extensive operator training. Thornughly cleaned glass and Kovar alloy are heated in a gas flame, the oxidized alloy worked into the softened glass and the joint allowed to cool. The compound surface then provides a base for conventional soldering or brazing processes.

THE WORLD'S BEST ARC WEIDER

AND MANY OTHER FEATURE! NOT FOUND IN ANY OTHER TYPE OF WELDER
Sold by Leading Jobbers Everywhere
WRITE FOR NEW FREE BULLETIN JUST OFF THE PRESS

Decause purchasing a hydraulic press is a major investment for even a large company, the trade mark is a vital key in making sure the investment is a sound one.
At Birdsboro, we like to think of the trade mark as symbolic of trained engineers constantly at work - improving the designs of Birdsboro high speed presses to make them produce more parts per hour ... to make them safer, easier to use ... to make them cost less to maintain. Thousands of satisfied users in the aircraft and allied industries testify to our success in providing greater press value per dollar invested.
So look for this then when you're in the market for hydraulic presses. We'll be glad to put our experience to work on your next hydraulic press problem.

BIRDSBORO STEEL FOUNDRY AND MACHINE COMPANY - BIRDSBORO, PA.

THE BUSINESS TREND

Reconversion Checking Industrial Decline

PROGRESS of reconversion appears to be checking the strong downward influence that was thrust into industrial production by cessation of the war.

One evidence of this is the performance of the steel ingot production rate over the Labor Day holiday. Although this holiday came only three weeks after the ending of hostilities jolted industry out of its war production pace, the ingot output rate which was recovering from a V-J week low was affected adversely by only 1.5 points.

Another evidence that many plants are mechanically prepared to operate on a considerable scale is the display of "Help Wanted" signs. Numerous labor-seeking plants are having difficulty obtaining additional workers because many people displaced from war work are loath to accept johs paying less money or offering less desirable working conditions than some war work, but the fact that there are jobs available indicates some industries are ready for all-out peacetime production.

All indicators, however, will not show an upward trend in adjusting to peacetime production.
ELECTRIC POWER-Until the Labor Day holiday week, electric power ontput recovered moderately from the V-J week low but nredictions have been made that a heavy decline in electricity consumption will nccur about a month hence. It is reported that since the end of the Japanese war the decline in power consumption has been restricted almost solely to large industrial users but that the cutback is beginning to filter down to subcontractors in the small industrial and large commercial consumer classifications.
OIL_The oil industry is one that already has made a good start in adjusting for peacetime. Expecting a demand of 4,200,000 barrels of petroleum products
daily against a war peak of slightly more than five millio barrels, the industry in the week ended Sept. 1 cut in refinery operations by 246,000 barrels of crude oil dali following a daily reduction of 269,000 barrels in the pren ous week.
EMPLOYMENT-First real measure of the change total factory employment since the end of war is a Burea of Labor Statistics report that such employment droppe $111 / 2$ per cent during August from $13,900,000$ on July 3 to $12,300,000$ on Aug. 31. The reduction of $1,600,01$ consisted of $1,400,000$ rubber, metal, and chemical wor ers, and 200,000 factory employees in other fields. WAR COSTS-As reconversion got undervay, war e penditures in August not only were 13 per cent belo those of July and 15 per cent below those of Augns 1944, but were the lowest since February, 1943.

Wholesale Commodity Price-Cost of Living Index

		$\begin{aligned} & \text { mmodit } \\ & 3: 2=1 \end{aligned}$ $19+4$	1943		$\begin{aligned} & \text { iving Co } \\ & -39=1 \\ & 19.4 \end{aligned}$
	1945	$19+4$	1943		
Janıary	104.9	103.3	101.9	127.1	124.2
February	105.2	103.6	102.5	126.9	123.8
March .	105.3	103.8	103.4	126.8	123.8
April	105.7	103.8	103.7	127.1	121.6
May	1188.0	104.0	104.1	128.1	125.1
June	108.1	101.3	103.8	129.0	125.1
July	105.9	IIM. 1	103.2	129.4	126.1
August		103.9	103.1		126.4
Spptember		104.0	103.1		128.5
October .		104.1	103.0		120,5
Novemiser		10-4.4	102.9		12 F .6
Deceniber		104.7	103.2		127.0
Average		104.0	103.2		125.5

FIGURES THIS WEEK

INDUSTRY

Steel Ingot Output (per cent of capacity)
Ficetric Power Distributed (million kilowalt hours)
Bituminous Coal Production (daily av- 1000 (ons).
Petroleum Production (deily av.- 1000 bbls.).
Construction Volume (ENR-Unit $\$ 1,000,000$)
Automobile and Truck Output (Ward's-number units)

- Dates on request.

TRADE
Freight Carloadings (unit-1000 cars)
Business Failures (Dun \& Bradstreet, number)
Money in Circulation (in millions of dollars) \ddagger
Department Store Sales (change from like wk. a yr. ago) \ddagger
\dagger Preliminary. \ddagger Federal Reserve Board.
Latest
Period
73.5
$3,9.29$
2,020
4,518
$\$ 30.8$
14,560
$737 \dagger$
19
$\$ 27,750$
\$27,750
-1%

Prior	Month
Week	Ago
75	88.5
4,137	4,395
2,000	1,892
4,875	4,934
$\$ 35.3$	$\$ 30.2$
13,845	20,790

860 \$27,600
$+6 \%$

Commercial Steel Castings \dagger (Net tons in thousands)

Orders Production

	Orders		Production	
	19.45	1944	1945	1944
Jan.	210.2	167.7	157.2	159.8
Feb.	214.4	173.8	146.2	161.4
Mar.	20:3.2	162.6	166.9	174.6
dpr.	177.7	175.1	1503	155.8
May	89.8	177.0	145.1	161.8
June	130.2	181.8	125.1	157.4
July		169.9		131.9
Aug.		171.8		151.9
Sept.		129.8		144.3
0ct.		146.1		150.7
Yov.		120.7		146.4
Dec.		138.7		144.2
Ave.		159.5		153.6

f For sale.

Statistics of Class I Railronds
Ton-Miles

Net Operating Income Revenue Fruight | 1945 | 1944 | 1943 | 1945 | 1944 |
| :--- | :--- | :--- | :--- | :--- | —(millions) - -(billions) . $\$ 730 \$ 84.9 \quad \$ 105.3 \quad 56.8 \quad 60.5 \quad 55.1$ $\begin{array}{llllll}73.2 & 84.5 & 105.8 & 55.3 & 59 & 3.1 .4\end{array}$ $\begin{array}{llllll}999 & 92.5 & 129.7 & 62.9 & 62.7 & 61.2\end{array}$ $\begin{array}{lllllll}91.9 & 87.7 & 128.7 & 61.6 & 60.4 & 59.1\end{array}$ $\begin{array}{llllll}019 & 9 Q & 109.5 & \text { f4 } 6 & 64 & 621\end{array}$ $\begin{array}{lllllll}96.1 & 99.8 & 109.0 & 63.6 & 62.0 & 58.0\end{array}$ $\begin{array}{lllllll}5 i .1 & Y_{9} 0 & 127 & 8 & 60.1 & 62.8 & 63.7\end{array}$ $101.4 \quad 139.3 \quad \cdots .84 .5 \quad 65.1$ $69.1 \quad 110.3$... $81.0 \quad 62.5$ $\begin{array}{rrrr}97.8 & 113.1 & \therefore & 63.5 \\ 91.6 & 96.0 \\ & 9.4 & & 59.4 \\ 54.9\end{array}$ $\begin{array}{llll}69.8 & 76.9 & \ldots & 57.3 \\ 60.6\end{array}$ $\begin{array}{lllll}\$ 91.3 & \$ 113.7 & \ldots & 61.5 & 60.6\end{array}$

NANCE

Bank Clearings (Dun \& Bradstreet-millions)
Federal Gross Debt (billions).
Stond Volume, NYSE (millions)
Stocks Sales, NYSE (thousands)
Coans and Investments (billions)
Vited States Gov't. Obligations Held (millions) \dagger
Hember banks, Federal Reserve System.
ICES
STEEL's composite finished steel price average
(II Comed
(1) Commodities \dagger

Heustrial Raw Materials \dagger
gnraul $^{\text {mactured Products } \dagger}$
Mreau of Labor Statistics Index, $1926=100$.
Latest
Period
$\$ 3,177$
$\$ 263.2$
$\$ 30.6$
5,141
$\$ 62.5$
$\$ 4,371$
$\$ 58.7$
105.2
115.8
102.1

58 $105.5 \quad 105$ $116.9 \quad 118.1$ $\begin{array}{ll}102.1 & 101.9\end{array}$
Prior
Weck
$\$ 9,944$
$\$ 263.4$
$\$ 22.2$
5,767
$\$ 62.7$
$\$ 46,455$
58.27

Year Ago \$8,034 $\$ 211.2$ $\$ 84.2$
4,725
$\$ 55.5$
\$41,446
$\$ 56.73$
103.6
112.7
101.1

Month	Year
Ago.	Ago
$\$ 10,837$	$\$ 8,034$
$\$ 262.7$	$\$ 211.2$
$\$ 25.2$	$\$ 84.2$
5,335	4,725
$\$ 63,7$	$\$ 55.5$
$\$ 47,000$	$\$ 41,446$

DE T/GUT offers cut-off power to spare!

The new DeWalt "Wet-Cut" Metal Cutting Machine:

- euts waf with coolant or dry if desired -
- suts off wide stock and odd shapes
- also cuts metals on an angle

Power is the keynote of the new DeWalt "Wet-Cut" Hea Duty Metal Cutting Machine. Its 15 H. P. DeWalt-built mol driving an $18^{\prime \prime}$ diameter abrasive wheel or steel saw bla makes it possible to "walk" through the toughest kind of mol It is this same power that keeps abrasive wheels operating constant speed, thus increasing wheel life and accuracy of It is power like this that saves time and lowers cutting cost. If you have a heavy-duty metal cutting job to do, investig this DeWalt. Write for full information.

DEWALT PRODUCTS CORPORATIC

ieel Orders, Output Fast tproaching Wartime Level

Deliveries in some lines in next year . . . Mills make gain in operations . . . New basing points established on stainless steels

StEEL backlogs are increasing rapidly, with schedules in se lines, especially light flat products, becoming almost as maded as they were before the end of the war.
Sone early gaps are appearing in mill schedules, even in lducts most in demand, as cancellations and readjustments itinue. But in general deliveries are increasingly tight, in me instances several months away, some sheet producers iang February and March. Some carbon bar sellers are out the market for this year. Merchant pipe, shapes and some te specialties, among others, also reflect the strong upsurge arilian buying.
Position of some mills is tighter because of MM tonnage. of this was booked originally under CiMP ratings, esdially for shipyards, and general opinion is that a relatively d lonnage of this character will come out. Few CC ratrepresenting urgent civilian needs, have been issued and are is increasing confidence that these will be used sparingly. sern in some quarters that possibly entire industries might put on such a rating has been completely eliminated by asaces from Washington that such will not be the case and CC rating will be used only in individual cases in breakspecial bottlenecks, and only as a last resort.
thile some sellers of carbon bars are practically sold for Year tonnage still may be obtained for late November and aember, in cold-drawn as well as hot-rolled. In general producers have not regained as much ground since the end the war as sheetmakers, particularly considering hot-top dity bars, which were quoted for second quarter before the these surrender and now can be had on a parity with ordiy commercial steel bars, which is late this year.
pape schedules are extending to the point where some pro-

ducers have little to offer before December. Strictural activity is increasing materially, with fabricators practically forced to choose tonnage for figuring because of shortage of estimators and draftsmen. Practical capacity of shape mills is estimated by some authorities at about $5,400,000$ tons annually, compared with about $4,600,000$ tons when civilian prewar demand was at its height. Present estimated capacity would be at 450,000 tons per month, well in excess of production in war years and also of the better peacetime years.

An important market development is establishment of new basing points on stainless steel products, now covering practically all producers and all plants. This will be in effect a reduction in price of stainless steel from all mills except those in the Pittsburgh district, which formerly was the only basing point.

Steel operations last week took a long step in postwar recovery, the estimated national rate advancing 7 points to $801 / 2$ per cent of capacity, with substantial increases in all the leading districts and only two minor decreases. Pittsburgh rose 8 points to $721 / 2$ per cent, Chicago $111 / 2$ points to $831 / 2$, Youngstown 13 points to 85 , Cleveland 4 points to 83, eastern Pennsylvania 3 points to 75 , Buffalo $91 / 2$ points to $81^{1 / 2}$ and St. Louis 3 points to 68 . New England lost 2 points to 78 per cent and Cincinnati 6 points to 76 . Kates were unchanged at Wheeling, 95; Birmingham 95 and Detroit 89.

Reaching the lowest figure since June, 1940, steel ingot production in August was $5,712,770$ net tons, a result of the dip following end of the Japanese war. This contpares with $6,987,008$ tons in July and with $7,498,913$ tons in August, 1944.

Scrap and pig iron are in sufficient supply but are tight, with. some concern expressed over prospects for winter. Both sulfer from jack of manpower in yards and at furnaces.

Average composite prices of steel and iror products show no change, remaining at ceilings. Finished steel composite is $\$ 58.27$, semifinished steel at $\$ 37.80$, steelmaking pig iren at $\$ 24.05$ and steelnaking scrap at $\$ 19.17$.

COMPOSITE

Se' inished Steel Composite:-Average of industry-wide prices on billets, slabs, sheet bars, skelp and wire rods. Steelmaking Pig Iron Composith Average ol basic pig iron prices at Bethlehem, lhimmgiam, Buffalo, Chicaga, Cleveland, Nevile inand, Gensylvania. Finished steel, net tons; Scrap Cmposite:-Average of No. 1 heavy melting sseel urices at Pittsburgh,

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for last Month, Three Months and One Year Ago

Finished Material
Steel bars, Pittsburgh
Steel bars, Philadelphia
Steel bars, Chicago
Shapes, Pittsburgh
Shapes, Philadelphia
Shapes, Chicago
Plates. Pittaburgh
Plates, Philadelphia
Plates, Chicago
Sheets, hot-rolled, Pittsburgh
Sheets, cold-rolled, Pittsburgh
Sheets, No. 24 galv. Pittsburgh
Sheets, hot-rolled Gary
Sheets, cold-rolled, Gary
Sheets, cold-rolled, Gary
Bright bess., batic wire, Pittsburgh
Tin plate, per base box, Pittsburgh
Wire nails, Pittsburgh

Sept. 15
Sept. 15,
1945
2.250
2.57
2.25
2.10
2.215
2.10
2.25
2.30
2.25
2.20
3.05
3.70
2.20
3.05
3.70
2.75
$\$ 5.00$
2.90

15

Sept, 1944 2.15 c 2.47 2.15 2.10 2.215 2.10 2.10 2.15 2.10 2.10 3.05 3.50 2.10 8.05 3.50 2.80 $\$ 5.00$ 2.55

Pig Ir Bessem Basic, Basic, Nu. 2 No. 2 Southe Southe No. 2 Mallea Mallea Lake Gray Ferron Serap

Heavy melting steel, No. 1 Pittsburgh	\$20.00	\$20.00	\$20.00
Heavy melt. steel, No, 2, E. Pa. ...	18.75	18.75 1875	18.75
Heavy melting steel, Chicago	18.75	18.75	22.25
Hails for rolling, Chicago	22.25 20.00	22.25 20.00	20.00
No. 1 cast, Chicago	20.00	20.0	
Coke			
Connellsville, furnace, ovens	\$7.50	\$7.50	$\$ 7.50$ 8.25
Connellsville, foundry ovens	8.25 13.35	13.25	13.35

Semifinished Material
Sheet bars, Pittsburgh, Chicago Slabs, Pittsburgh, Chicago
Rerolling billets, Pittsburgh
W

STEEL, IRON RAW MATERIAL, FUEL AND METALS PRICES

Following are maximum prices established by OPA. Schedule No. 6 issued April 16, 1941, revised June 20, 1941, Feb. 4, 1942 and Ma 1945. The schedule covers all iron or steel ingots, all semfindshed fron or steel products, all finished hot-rolled, cold-rolled iron or steel pro and any fron or steel product which is further finished by galvanizing, plating coating drawing extruding etc., although only principal Irhed basing points for selected products are named speciacally. Seconds and ofr

Semifinished Steel

Gross ton brsim except wire rods, skelp.
Carbon Sted Ingots: F.o.b. mill base, rerolling ual stand analysis 83100
(Empire Sheet \& THn Plate Co., Mansfleld, O. may quote carbon steel Ingots at $\$ 33$ gross ton, f.o.b. mill Kalser Co. Inc, $\$ 43$, f.o.b. Paclfic ports.)
Alloy Steel Inkots: Pittsburgh, Chicago, Buffa1o, Bethlehem, Canton, Massillon; uncrop, \$45, Rerolling Rillets, Blooms, Slabs: Plitsburgh, Chicago, Gary, Cleveland, Bulfalo, Sparrows Point, Blrmingham, Youngstown, $\$ 36$; Detroit, del. S38: Duluth (bil) $\$ 38$; Pac. Ports, (bll) \$48. (Andrews Stee] Co. carbon slabs S41; Continental Steel Corp., billets \$34, Kokomo, to Acme Steel Co.; Northwestern Steel \& Wire Co., \$41, Sterling, IIt: Laclede Steel Co., \$34 Alton or Madison. Ill.: Wheeling Steel Corp. $\$ 36$ base, bllets for lend-lease, $\$ 34$, Portsmouth. O., on slabs on WPB directives. Granite City Steel Co. $\$ 47.50$ gross ton slabs from D.P.C. mill. Geneva Steel Co., Kaíser Co. Inc., \$58.64, Pac. ports.)
Forcing Qunlity [lonms, Stabs, Bullets: Pittsburgh, Chicaso, Gary, Cleveland, Buffalo, Birmingham, Xoungstown, \$42. Detrolt, del. 144; Duluth. bllets, \$44: lorg. bll. f.o.b. Pac. ports, $\$ 54$.
(Andrews Steel Co. may quote carbon forging bllets $\$ 50$ gross ton at established basing points: Follansbee Steel Corp., $\$ 49.50$ f.o.b. Toronto. O. Geneva Steel Co., Kalser Co. Inc., $\$ 64.64$, Pacifle ports.)
Open Ferrth Shell Steel: Pltesburgh, Chicago, Gary, Cleveland, BuIlalo, Youngstown, BImmingham, base 1000 ions one size and section; 3-12 in., \$52; $12-18$ In., excl., \$54.00: 18 in . and over $\$ 56$. Add $\$ 2.00$ del. Detrolt: $\$ 3.00$
del. Eastern Mich. (Kalser Co. Inc. $\$ 76.64$, f.o.b. Las Angeles.)

Allos Billets, Slahs, Blooms: Pittsburgh, Chlcago, Buttalo, Bethlehem, Canton, Massilion, \$54, del. Detrolt \$56. Eastern Mich. \$57. Shet Bars: Pitsburgh Chicago, Cleveland, Buffalo, Canton, Sparrows Point, Youngstown, $\$ 36$. Wheellng Steel Corp. \$37 on lend-lease sheet bars, $\$ 38$ Portsmouth. O., on WPB dlsheetlves; Emplre Sheet \& Tis Plate Co., Mansrectlves; Empire Sheet \& ins Pate co.. Mans-
Ield, O., carbon sheet bars, $\$ 39$, fob. mill.) Skelp: Pittsburgh, Chicago, Sparrows Polnt, Youngstown, Coatesville, $1 \mathrm{~b} ., 1.90 \mathrm{c}$.

WIre Rods: Pittsburgh. Chlcago, Cleveland, Blrmingham. $5-\rho_{5} \mathrm{in}$. incluslve, per 100 Ibs., $\$ 2.15$ Do., over s- $4.7 n$. incl., $\$ 2.30$; Worcester add $\$ 0.10$: Pacific ports $\$ 0.50$ (Pittsburgh Steel Co., $\$ 0.20$ higher.)

Bars

Hot-Rolled Carbon Bars and Bar-Slze Shapes inder 3 : Plttsburgh, Cnicago, Gary, Cleveland, Buffalo, Birmingham base 20 tons one slze, 2.25 c ; Duluth, base 2.35e; Mahoning Val ley $2.321 / 2 \mathrm{c}:$ Detrolt, del. 2.35 c : Eastern Mich. 240 c ; New York del. 2.59c: Phlla. del. 2.57c; Gulf Ports, dock 2.62 c ; Pac. Dorts, dock 2.90 c , (Calumet Steel Division. Borg-Wamer Corp., and Joslyn Meg. \& Suply Co., may quote 2.35 c , Chicaga base; Shetfield Steel Corp., 2.75c, f.o.b. St Louls.)

Rall Steel Bars: Same prices as for hot-rolled carbon bars except base is 5 tons.
(Sweet's Steel Co. Williamsport, Pa., may quote rall steel merchant bars 2.33 c f.o.b. mill.)
Hot-Rolled Alloy Bars: Pittsburgh, Chlcago, Canton, Massillon, Buffalo. Bethlehem, base 20 tons one size, 2.70 c ; Detrolt, del., 2.80 c (Texas Sleel Co. may use Chicago base price as maximum f.ob. Fort Worth, Tex., price on sales outslde Texas, Oklahoma.)

AISI	(*Basic	AISI		(Baste
Serles	O-H)	Serjes		-H
1300	\$0.10	4100	(.15-. 25	Mo) 0.70
			(.20-.30	Mo) 0.75
2300.	1.70	4300		1.70
2500	2.55	4600		1.20
3000	0.50	4800		2.15
3100	0.85	5100		0.35
3200	1.35	5130	or 5152	. 0.45
3400	3.20	6120	or 6152	0.95
4000	0,45	6145	ar 6150	1.20

[^5]jves at 2.65c, Mansfleld, Mass., Dlus on hot-rolled bars from Buffalo to Mans Cold-Findshed Alloy Bars: Pittsburgn, C Gel. 3.45 c ; Eastern Mich. 3.50e.
Refntorelne Bars (New BHet): Pittst Chicago Gary, Cleveland, Birmingham, rows Point, Buffalo, Youngstown, base Detrolt del. 2.25 c ; Eastern Mich, and $2.30 \mathrm{c}:$ Gulf dock 2.55 c .
Refnforcing Bars (Rall Steel): Pitsburgh ago, Gary, Cleveland, B!rmingham, Y town, Bufralo base 2.15 c ; Detroit, Gell Enster M
dock 2.50 c.
ron Bars: SIngle refined, PHts. 440 c ; efined 5.40 c ; Pittsburgh, stayholt, 5.75 c ; Haute, single ref., 5.00, double rel.,

Sheets, Strip

Hot-Rolled Sheets: Pittsburgh, Chicago, cleveland, Birmingham, Bulfalo, Youngs Sparrows Pt., Mlddletown, base 2.200 : G Clty, base 2.30 c ; Detrolt del, 23 ci , Yort Mich. 2.35c: Phlla. del. 2 2.44 c ; Pacific ports 2.75 c .
(Andrews Sieel Co. may quote hok molled for shipment to Detrolt and the Detroil on the MIddletown, O., base; Alai 2.3 Co., Conshohocken, Pa., may quote 2. hot carbon sheets, nearest eastern basago. Cold-Rolled Sheets: P!tsburgh, Chicago. land, Gary, Buffalo, Youngstown, 150 ; D base, 3.05c: Granite City, base New Yor del. 3.15 c : Eastern Mich. 3.zoc ports 3.39c; Phlla. del. 3.37c; Pacific porth Galvanlred Sheets, No. 24: Pity Youns cago, Gary, Birmingham, Bufialo, 3 70c: Sparrows Point, Middletown, base 3. del. Ite City base 3.80 c ; New York Phila. del. 3.87c: Pacilic ports 4,20 (Andrews Steel Co. may quote ga (Andrews Steel Co. mblsbed basing poin corrs Corruzhted Galv. Sherts: gage, por square Gary, Birmingham, Pittsburgh. Cilcaso. Birmingham, is gage not corrugatedfc Birmingham, 16 gage not 3.70 c ; Pacific alloy 3.60c: Gramite 90 c ; pure Iron 3.9 x 4.25 c ; copper iron, 3.90 c , preated, No. 24 coated, hot-di
burgh, $4.25 c$.

Lameling Sherts: lo-kagc; Plttsburgh, Chl , Gary, Cleveland, Younestown, Mlddle Defoit, del. 2.95c; eastern, Mich. 3.00 c : Pabie ports 3.50c: 20-gage; Pittsburgh. Chicago Gry, Cleveland, Youngstown, Middletown, ase 3.45c; Detroit del. 3.55c; eastern Mich.区etrical Sheets No

	Pittsburgh Base	Paclif Ports	Granite Cly
ned grade	. 3.30 c	4.05 c	3.30 c
dimature	$3.65 c$	4.40 c	$3.75 c$
teetrical	4.15 c	4.90 c	4.25
Wolor	5.05c	5.80 c	5.15 c
Dhamo	5.75 c	6.50 c	5.85 c
transformer			5.85c

and coupled to consumers about $\$ 200$ per net and Lorain 0 . Gary, ind plpe Pittsburgh lap weld, 1 polni less on butt weld. Pittsburgh base only on wrought iron pipe.

Butt Weld

Hofler Tuben: Net base prices per 100 feet wall, cut lengths 4 to 24 feet, inclusive.

Rails, Supplies

Standard rails, over 60-lb. f.o.b. mill, gross ton, \$43,00. Light ralls (bllet), Pittsburgh Chicago, Birmingham, gross ton, \$45.00.
Relaying rails, 35 lbs. and over, f.o.b. rail road and basing polnts, \$31-\$33.
Supplies: Track bolts, 4.75 c ; heat treated 5.00 c . Tle plates $\$ 46$ net ton, base, Standard spikes, 3.25 c .

*ixed by OPA Schedule No. 46, Dec. 15,

Tool Steels

Tool Steels: Plttsburgh, Bethlehem, Syracuse, base, cents per lb. i Reg. carbon 14.00c, extra carbon 18.00c; speclal carbon 22.00 c ; oll-hardening 24.00c; high car.-chr. 43.00 c .

Tung.	Chr.	Van.	Moly.	per 1 b
18.00	4	1	6.	67.00 c
7.5	4	1	8.5	54.00 c
6.40	4	2	8	54.00 c
5.50	4.15	1.90	5	57.50 c
	4.50	4	4.50	70.00 c

Stainless Steels

Base, Cents per ib., f.o.b. mill base

Type	Bars	Plates	Sheets	Strlp	Strip
302.	24.00c	27.00 c	34.00 c	21.50 c	28.000
303.	26.00	29,00	36.00	27.00	33.00
304	25.00	29.00	36.00	23.50	30.00
308	29.00	34.00	41.00	28.50	35.00
309	36.00	40.00	47.00	37.00	47.00
310.	49.00	52.00	53.00	48.75	56.00
312.	36.00	40.00	49.00		
-316.	40.00	44.00	48.00	40.00	48.00
t321.	29.00	34.00	41.00	29.25	38.00
$\ddagger 347$.	33.00	38.00	45.00	33.00	42.00
431.	19.00	22.00	29.00	17.50	22.50
STRAIGKT CHROMIDM STEEL					
403.	21.50	24.50	29.50	21.25	27.00
**410.	18.50	21.50	26.50	17.00	22.00
416	19.00	22.00	27.00	18.25	23.50
\$1420.	24.00	28.50	33.50	23.75	36.50
430.	19.00	22.00	29.00	17.50	22.50
$\ddagger \ddagger 430 \mathrm{~F}$.	19.50	22.50	29.50	18.75	24.50
4.10A.	24.00	28.50	33.50	23.75	36.50
442.	22.50	25.50	32.50	24.00	32.00
443.	22.50	25.50	32.50	24.00	32.00
446.	27.50	30.50	36.50	35.00	52.00
501.	8.00	12.00	15.75	12.00	17.00
502.	9.00	13.00	16.75	13.00	18.00

STAINLESS CKAD STEEL (20%)
304.

- With 2-3\% moly. fWith titanium. \dagger With columbium. - Plus machining agent. ffHIgh carbon. $\ddagger \ddagger$ Free machining. §§Includes arnealIng and plckling.
Basing Polnt Prices are (1) those announced by U. S. Steel Corp. subsidlaries for first quarter of 1941 or in effect April 16, 1941 at designated basing points or (2) those prices anncunced or customarily quoted by other proanncunced or eustomarily quated points. Base prices under (2) cannot exceed those under
(1) except to the extent prevailing in third quarter of 1940 .
Extra mean addltions or deductions from base prices In effect Aprll 16, 1941
Delivered prices applying to Detrolt, Eastern Michigan, Guli and Pacific Coast points are deemed basing points except in the case of tion is not available, in which case nearest basing point price plis all-rall fretght may be charged.
Doncstic Celling prices are the aggregate of (1) governing basing polnt price, (2) extran and (3) transportation charges to the polnt of dellyery as customarly computed. Goverping basing polnt is basing point nearest the consumer providing the lowest dellvered price. Seconds, maximum prices: flat-rolled rejecti 75% of prime prices, wasters 75%, wasto wasters 65% except plates, which lak waster prices; tin plate $\$ 2.80$ per 100 Ibs.; terne Dlate $\$ 2.25$: semifinished 85% of primnea; other grades llmited to new material cellings.
Export cellus prices may be elther the as gregate of (1) governing basins polnt or emergency basing polnt (2) export extras (3) export transportation charges provided they are the $1 . a, s$, seaboard quotations of the $U . S$. Steel Export Co. on Aprll 16, 1941.

Bolts, Nuts

F.o.b. Pittsburgh, Cleveland, Birmingham, Chicago. Discounts for carloads addllonas 5% full containers, add 10% Carriage and Machino

1/2 $x 6$ and smaller
 Do., ${ }^{\circ}$ and $68 \times 6-1 n$ and shorter....654 of Do., $\frac{1}{}$ to 1×6-in. and shorter.

$11 / 8$ and larger, all lengths
All diameters, over 6-in. long
Tire bolts
plow bolts
Stove Bolts
In packages with nuts separate 71-10 off: with nuts attached 71 off: bulk 80 ofl on 15,000 of 3 -inch and shorter, or 5000 over 3 -in.

Semifinlshed hex	U.S.S.	S.A.E.
x^{7}-inch and less	62	64
1tio-1-inch	59	60
136-132-inch	57	58
1\%\% and larger	56	
Hexagon Cap	crews	
Upset 1-in., smaller		64 ofl
Milled 1-in., smaller		60 OII
Square Head Se	crews	
Upset, 1-In., smaller		71 02l
Headless, $1 / 4-1 n, 0$ larger		60 off
No. 10, smaller		70 off
Piling		
Pittsburgh, Chicago, Buffal		2.40 c
Rivets. Washers		

F.o.b. Pittsburgh, Cleveland, Chicago

Structural Th-Inch and under Wrought, Washers, Plttsburgh, Chicaso, 65-5 off - Philadelphia, to jobbers and large nut, bolt manufacturers l.c.1.\$2.75-3.00 off

Metallurgical Coke
Price Per Net Ton

Connellsville, furnace	-7.50
Connellsville, foundry	8.00-8.50
New River, foundry	9.00- 9.25
Wise county, foundry	7.75-8.25
Wise county, furnace	7.25-7.75
By-Product Foundry	
Kearney, N. J., ovens	13.05
Chicago, outside dellvered	13.00
Chlcago, dellvered	13.75
Terre Haute, dellvered	13.50
Milwaukee, ovens	19.75
New England, dellvered	14.65
St. Louis, delivered	$\dagger 13.75$
Birmingham, delivered	10.90
Indlanapolis, dellvered	13.50
Cincinnati, delivered	13.25
Cleveland, delivered	13.20
Buffalo, dellvered	13.40
Detroit, delivered	13.75
Philadelphla, dellvered	13.28

* Operators of hand-drawn ovens uatng trueked coal may charge $\$ 8.00$; effective May 26 , 1945 +14.25 Irom other than Ala., Mo., Tenn.

Coke By-Products
Spot, gal. freight allowed east of Omaha
Pure and 90% benzol 15.00c
Toluol, two degree
Solvent naphtha
$15.00 c$
28.00 c

Phenol Per lb. f.o.b. works
nol (car lots, returnable drums)
Do., less than car lots
Eastern Plants, per ib.
Naphthalene flakes, balls, bbls., to job-
bers .. 8.00 e Sulphate of ammonia29.20

WAREHOUSE STEEL PRICES

Base delivered price, cents per pound, for delivery within switching limits, subject to established extras.

	$\begin{aligned} & \text { a } \\ & \text { 릉 } \\ & \overline{0} \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\mathscr{H}}{\stackrel{y}{\pi}}$										
	4.044 ${ }^{1}$	3.9121	$3.91{ }^{1}$	$5.72{ }^{1}$	3.774^{1}	4,108 ${ }^{1}$	5.106^{1}	5.224^{14}	4.744^{14}	4.244^{11}	4.715	6.012^{23}	6.01
New York	3.853^{1}	3.7581	$3.768{ }^{1}$	5.5741	3.590^{2}	$3.974{ }^{1}$	$3.974{ }^{1}$	5.010^{17}	4.613 ${ }^{14}$	4.203^{21}			
Jersey City	3.853^{1}	$3.747{ }^{1}$	$3.768{ }^{1}$	5.5741	3.5901 3.5181	$3.974{ }^{1}$ 3.922^{1}	$4.974{ }^{1}$	5.018^{15}	4.872^{25}	4.172^{21}	4.772	5.816^{27}	5
Philadelphia	3.822^{1}	3.666^{1}	3.805^{1}	5.2721 5.252		3.922^{1}	4.252	4.894^{1}	4.852^{25}	4.152^{21}			
Baltimore	3.802^{1}	3.759	3.594^{1}	$5.252^{\text { }}$	3.394^{1}	3.902^{1}	$4.25{ }^{2}$	$4.89{ }^{1}$	4.852				
Washingtort	3.941^{1}	$3.930{ }^{1}$	3.796^{1}	5.341^{1}	3.598^{1}	4.041^{1}	4.391^{1}	${ }_{5}^{5.19817}$	4.841^{10} 4.965	4.141^{21} 4.265^{21}			
Norfolk, Va,	4.065^{1}	4.002^{1}	3.971^{1}	5.4651	3.771^{1}	4.165^{1}							
Bethlehem, Pa.		$3.45{ }^{1}$											
Claymont, Del.:			3.451 3.451										
Coatesville, Pa.									4.40^{10}	$3.85{ }^{21}$	4.669	$5.60{ }^{23}$	5.75
Buffalo (city) Buffalo (country)	$3.35{ }^{1}$	3.40^{1} 3.30^{1} 3.481	3.631 3.301 3.801	5.26^{1} $4.90{ }^{1}$	$3.35{ }^{1}$ 3.25	3.819^{1} 3.81	3.810^{1}	$4.65{ }^{1 / 3}$	$4.30{ }^{10}$	$3.75{ }^{21}$		5.60^{23}	
Buffalo (country)	3.25 ${ }^{1}$	$3.30{ }^{1}$ 3.40^{1}	3.301 3.40^{1} 1	$4.90{ }^{1}$ 5.00^{1}	3.25 ${ }^{1}$	$3.80{ }^{1}$	$3.60{ }^{1}$	$4.75{ }^{12}$	4.40^{24}	$3.85{ }^{\text {21 }}$			
Pittsburgh (city)	$3.35{ }^{1}$	3.40^{1} 3.30^{1} 3	$3.40{ }^{1}$ 3.301	5.00^{2} 4.90^{1}	3.25:	$3.50{ }^{1}$	$3.50{ }^{1}$	$4.65{ }^{12}$	4.30^{24}	$3.75{ }^{21}$			5.65
Pittsburgh (country)	$3.25{ }^{1}$	3.301 $3.588{ }^{1}$	3.401 3.4	$5.188{ }^{1}$	$3.35{ }^{\text {² }}$	$3.60{ }^{1}$	3.60^{1}	4.877^{17}	4.40^{24}	$3.85{ }^{\text {² }}$	$4.45{ }^{71}$	$5.60{ }^{-3}$. 6
Cleveland (country)	3.251		$3.30{ }^{1}$		$3.25{ }^{1}$	3.501	3.50^{1}		4.30^{24} 4.500^{24}	$3.75{ }^{21}$ 3.900^{21}	$\begin{gathered} 4.35^{31} \\ 4.859 \end{gathered}$	$5.93{ }^{23}$	5.93
Detroit	3.4501	3.661^{1}	3.609^{1}	5.281^{1}	3.450^{1}	$3.70{ }^{1}$	3.700^{1}	5.000^{12}	5.443^{24}	4.543^{12}			
Omaha (city, delivered)	4.115^{1}	4.165^{1}	$4.165{ }^{1}$	5.765^{1}	3.865 3.7651	4.215^{1}	$4.15{ }^{1}$	5.508^{19}					
Omaha (country, base) Cincinnati	4.0151 3.611	4.0651 3.691^{11}	${ }^{4.0651}{ }^{1}$	5.661^{1}	$3.42{ }^{1}$	3.675^{1}	3.675^{1}	4.825^{12}	$4.475^{* 4}$	4.111^{21}	4.711	6.10	6.20
Youngstown, $0 .{ }^{\circ}$								$\begin{aligned} & 4.40^{\mathrm{xi}} \\ & 4.65^{141} \end{aligned}$					
Middletown, O.-					3.25^{1} 3.251	$\begin{aligned} & 3.50^{1} \\ & 3.60^{2} \end{aligned}$	$\begin{aligned} & 3.50^{1} \\ & 3.60^{2} \end{aligned}$	$\begin{aligned} & 4.65^{1+1} \\ & 5.231^{15} \end{aligned}$		$3.85{ }^{\text {21 }}$	4.65	$5.75{ }^{23}$	5.853 6.085
Chicago (city)	${ }_{3.537^{1}}{ }^{1}$	$3.55{ }^{1}$ 3.687^{2}	${ }_{3.687^{1}}$	5.287^{1}	3.2511 3.3871	3.737^{1}	3.737^{1}	5.272^{16}	4.3377^{24}	3.987^{21}	4.787 4.78	5.987^{73} $6.08^{\text {a }}$	
Indijanapolis	3.585	3.63^{1}	$3.63{ }^{2}$	5.23^{1}	3.518^{1}	3.768^{1}	3.768^{1}	4.918^{15}	4.568^{2+}	$4.08{ }^{21}$	4.78		
St. Paul	$3.76{ }^{2}$	$3.81{ }^{2}$	$3.81{ }^{2}$	5.41^{3}	$3.51{ }^{2}$	$3.86{ }^{2}$	$3.86{ }^{3}$	5.257^{15}	4.466^{24}	4.4611^{21}	5.102	8.09^{23} 6.181^{23}	$\begin{aligned} & 6.1981 \\ & 6.281 \end{aligned}$
St. Louis	3.647^{1}	3.6971	3.697^{1}	5.297^{1}	$3.397{ }^{1}$	3.747^{1}	3.747^{1}	5.172^{13}	${ }^{4.3474}{ }^{4}$	$4.13{ }^{21}$			
Memphis, Tenn.	4.015^{5}	$4.065{ }^{\text {8 }}$	4.065^{5}	$5.78{ }^{5}$	3.965^{6}	4.215°	4.210°	4.265^{15}	4.782^{24}		5.215		
Birmingham	$3.50{ }^{1}$	3.551 3.904	3.551 3.904	5.903^{1}	3.451 4.058	3.70^{1}	3.700^{1} 4.2	$5.25{ }^{\text {mb }}$	5.079^{10}	4.70^{73}	5.429		
New Orleans (city)	4.10^{4}	3,904	$3.90{ }^{6}$	$5.85{ }^{\circ}$	4.058								
Houston, Tex.	$3.75{ }^{3}$ 4.404	4.25^{3}	4.253	$\frac{5.50^{9}}{7.20^{4}}$	$\begin{aligned} & 3.763^{3} \\ & 5.00^{4} \end{aligned}$	$\begin{aligned} & 4.313^{\circ} \\ & 4.95^{4} \end{aligned}$	$\begin{aligned} & 4.313^{3} \\ & 6.75^{4} \end{aligned}$	$\begin{aligned} & 5.313^{2010} \\ & 6.00^{22} \end{aligned}$	$\begin{aligned} & 4.10^{10} \\ & 7.20^{\circ} \end{aligned}$	$\begin{aligned} & 3.75^{27} \\ & 5.683^{22} \end{aligned}$	5.613	5.85	5.95
Los Angeles	4.404 $4.15:$	$\begin{aligned} & 4.65^{1} \\ & 4.35^{7} \end{aligned}$	$\begin{aligned} & 4.95^{4} \\ & 4.85^{\top} \end{aligned}$	$\begin{aligned} & 7.20^{4} \\ & 6.35^{7} \end{aligned}$	$4.55{ }^{7}$	4.95^{\top}	6.75°	$6.35{ }^{15}$	7.300^{15}	5.433^{23}	7.333	$8.304^{\text {² }}$	
Portland, Oreg,	$4.45{ }^{27}$	$4.45{ }^{\text {\% }}$	$4.75{ }^{27}$	$6.50{ }^{27}$	$4.65{ }^{2 T}$	$4.75{ }^{27}$	6.80^{75}	$5.75{ }^{15}$	6.60^{15}	5.6383^{16}			$8.00^{ \pm}$
Tacoma,	$4.35{ }^{8}$	$4.45{ }^{\text {® }}$	$4.75{ }^{\circ}$	$6.50{ }^{\text {¹ }}$	$4.65{ }^{\text {n }}$	$4.25{ }^{\text {® }}$	$5.45{ }^{\circ}$	$5.95{ }^{14}$	$7.60{ }^{15}$	5.883^{21}			8.00^{17}
Seattle	$4.35{ }^{\text { }}$	$4.45{ }^{\text {b }}$	$4.75{ }^{\circ}$	$6.50{ }^{\prime \prime}$	$4.65{ }^{\text {\% }}$	4.25	$5.45{ }^{\circ}$	5.95	7.05	$5.88{ }^{-1}$			

[^6]
BASE QUANTITIES

2400 to 1999 pounds; ${ }^{2} 400$ to 14,999 pounds; ${ }^{3}$-any quantity; t-400 to 39,999 pounds; - -under 2000 pounds; s-under 4000 pounds: 10- 500 to 1499 pounds; 4 -one bundle to 39,999 pounds; $12-150$ to 2249 pounds; ${ }^{23}$ - 150 to 1499 pounds; ${ }^{14}$-three to 24 bundles; ${ }^{15}-450$
to 1499 pounds; ${ }^{\text {nn }}$-one bundle to 1499 pounds; ${ }^{1 T}$-one to nine bundle 24-one to sir bundles; ${ }^{13}-100$ to 749 pounds: -300 to 1999 pound z1 - 1500 to 39,999 pounds; 1500 to 1999 pounds; ${ }^{23}-1000$ 39,999 pounds; $24-400$ to 1499 pounds; ${ }^{25}-100010$ pounds, bas "-under 25 bundles.

Provo, Utah, and Pueblo, Cok 91.0 c ; prices include duty on in ported ore and are subject to pt miums, penalties and other pros sions of amencled M.P.R. No. 24 effective as of May 15. Price basing points which are also poin of discharge of imported monk nese ore is f.o.b. cars, shipside, dock most favorable to the buyc

Molybdenum

Sulphide conc., lb., Mo. cont, $\$ 0.7$ mines

Pig Iron

Prices (ln gross tons) are maximums flxed by OPA Price Schedule No difective June 10, 1941, amended Feb. 14, 1945. Exceptions indicate footnotex. Base prices bold face, dellvered light face. Federal tax a frefght charges, effective Dec. 1, 1942, not included in following prices

	Foundry	Basic	Bearemer	$\begin{aligned} & \text { Mal- } \\ & \text { leable } \end{aligned}$
Bthlehem, Pa, base.	. \$26.00	\$25.50	\$27.00	\$26.50
Newark, N. J., del.	27.53	27.03	28.53	28.03
Brooklyn, N. Y., del.	28.50			29.00
Zrdstraro, Pa, base	26.00	25.50	27.00	26.50
Kmingham, base	+21.38	+20.00	26.00	
Bullimore, del.	26.61			
Boston, del.	26.12			
Chicago, del.	25.22			
Cincinnatl, del.	25.06	23.68		
©leveland, del.	25.12	24.24		
Niewark, N. J.	27.15			
Phladelphta, del.	26.46	25.96		
SI. Louls, del.	25.12	24.24		
mfato, base	25.00	24.00	28.00	25.50
Boston, del.	26.50	26.00	27.50	27.00
Rochester, del.	26.53		27.53	27.03
Syracuse, del	27.08		28.08	27.58
desso, base	25.00	24.50	25.50	25.00
Milwaukee, del.	26.10	25.60	26.60	26.10
Xuskegon, Mich., del.	28.19			28.19
Cheland, base	25.00	24.50	25.50	25.00
Akron, Canton, O., del.	26.39	25.89	26.89	26.39
mrolt, base	25.00	24.50	25.50	25.00
SXginaw, Mich., del.	27.31,	26.81	27.81	27.31
Mluth, base	25.50	25.00	26.00	25.50
\$. Paul, del.	27.63	27.13	28.13	27.63
We, Pa., base	25.00	24.50	26.00	25.50
[rerett, Mass., base	26.00	25.50	27.00	26.50
Boston, del.	26.50	26.00	27.50	27.00
hanalte Clty, Ill., base	25.00	24.50	25.50	25.011
\$. Louis, del.	25.50	25.00		25.50
lualtion, O., base	25.00	24.50		25.00
Cneinnati, del.	25.44	25.61		26.11
ratle Island, Pa., base	25.00	24.50	25.50	25.00
fPitsburgh, del.				
No. \& So. sides	25.69	25.19	26.19	25.69
Fraso, Utah, base	23.00	22.50		
4ypstille, Pa., base	25.00	24.50	25.50	25.00
Wrows Point, base	26.00	25.50		
kalitmore, del.	26.99			
*lton, Pa., base		25.50		26.50
Hereland, Pa, base	26.00	25.50	27.00	26.50
Phadelphla, del.	26.84	26.34		27.34
Huldo, 0., base	25.00	24.50	25.50	25.00
lunylown, O., base	25.00	24.50	25.50	25.00
Mansfleld, O., del.	26.94	26.44	27.44	26.94

grade, silleon $1.75-2.25 \%$; add 50 cents for each additional 0.25% m, or portion thercof; deduct 50 cents for sllicon below 1.75% on tikes fook. For phosphorus 0.70% or over deduct 38 cents. $\$ F$ or kee, Rocks, Pa., add . 55 to Neville Island base; Lawrencevllle, Home20, McKeesport. Ambridge, Monaco, Allqulppa, . 84 ; Monessen, MononTore: Add 50 (water) ; Oakmont, Verona 1.11; Brackenbrldge 1.24. rere: Add 50 cents per ton for each 0.50% manganese or portion
likel differentials: Under 0.50%, no extra; 0.50% to 0.74% incl., $\$ 2$ ton: for each additional 0.25% nickel, $\$ 1$ per ton

6.00-6.50

$6.51-7.00$ cent (base) . $\$ 30.50$ 7.01-750 . 32.50 9.01-9.50. 36.50 $7.51-8.00$. $32.50 \quad 9.51-10.00$. 37.50 $\begin{array}{llll}8.51-8.00 \ldots & 33.50 & 10.01-10.50 & 38.50 \\ 8.01-8.50 . & 34.50 & 10.51-11.00 & 39.50\end{array}$ $\begin{array}{llll}8.01-8.50 . . & 34.50 & 10.51-11.00 & 39.50 \\ 8.51-9.00 \text {. } & 35.50 & 11.01-11.50 . & 40.50\end{array}$ F.o.b. Jackson county, O., per gross higher prlees subject to additional charge of 50 cents a ton for each 0.50% manganese in excess of 1.00%.
Hectrie Furnace Ferroblilicon: Sll
14.01 to $14.50 \%, \$ 45.50$; each addl tlonal 50% silicon up to and Includ ing 18% add $\$ 1$; low impurities not
exceeding 0.05 Phos., 0.40 Sulphur, exceeding 0.05 Phos.
1.0% Carbon, add $\$ 1$.

Beasemer Ferrosllicon

Prices same as for high silicon sllvery iron, plus 51 per gross ton. (For higher silicon Irons a differential over and above the price of base grades is charged as well as for the hard chilling iron. Nos. 5 and 6 .)

Charcoal Pik Iron Northe
Lake Superio
Chicago, del
34.00
37.34

Southern
Semi-cold blast, high phos
[.o.b. furnace, Lyles, Tenn, $\$ 28.50$
Semi-cold blast, low phos.,
f.o.b. furnace, Lyles, Tenn 33.00 Gray Forge
Neville Island, Pa.
$\$ 24.50$
24.50
Valley base...............
Basing Low Polnts: Blrdsboro, Pa.
$30.50 ;$ Steelton, Pa., and Buffalo,
$\mathrm{N} . \mathrm{Y} ., 30.50$ base; 31.74 del
N. Y., 30.50 base; 31.74 del.

Central Furnace, Cleveland, $\$ 27.50$
Switching Charges: Basing point prices are subject to an additional charge for dellvery withln the switching limits of the respective districts.
Silleon Differential: Basing point prices are subject to an addlitional charge not to exceed 50 cents a ton base grade (1.75 to 2.25%).
Phosphorus Dirrerential: .Basing point prices are subject to a reduc tion of 38 cents a ton for phos phorus content of 0.70% and over
Celling Prices are the aggregate of erentlals (3) transportation charge
rom governing basing point to poln f delivery as customarily computed Governing basing point is the one esuling in the lowest
Exceptlons to Cellins Pricel Struthers Iron \& Steel Co. may charge 50 cents a ton in excess of basing point prices for No. 2 Found ry, Basic Bessemer and Malleable Mystic Iron Works, Everett, Mass.
may excecd basing point prices by may excec
$\$ 1$ per ton.

Refractories

Per 1000 f.o.b. Works, Net Prices Fire Clay Brick Super Duty
Pa., Mo., Ky.
Pa., Ihl., Md., Mo., Ky
Alabama, Georgla
New Jersey
Ohio
Second Quality
1’a., Ill., Md., Mo., Ky.
Alabama, Georgía
Alabama,
40.30
52.00

On
63.45

All buses
alleable Bung Brick

Birmingham, Aadie Brick
(Pa., O., W. Va., Mo.)

Domestic dead-burned grains,
net ton f.o.b. Chewelah,
Wash.. net ton, bulk 22.00
net ton, bags 26.00 net ton, bags

Baslc Brick
net ton, f.o.b. Baltimore, Plymouth Chrome brick, 54.00 Chrome brick i............. 54.00 Chem. bonded chrome 54.00 Magnesite brick 76.00
Chem. bonded Magnesite 65.00

Fiuorspar

Metallurgical grade, f.o.b. Il., Ky., net. tons, carloads CaFr content, 70% or more, $\$ 33$; 65 but less than $70 \%, \$ 32 ; 60$ but less than 65% Aug. 29 base price any grade $\$ 30.00$ war chemicals.

Ferroalloy Prices

Tonanueanese (standard) 78-82\% bruss ton, duty pald, $\$ 135$; add 250 less-ton, c.1., $\$ 10$ for ton, 35 less-ton, f.o.b. cars, Balti3 Fniladelphla or New York, Rockdale or most Pavorable to buyReckdale or Rockwood, Tenn.: Dirmingham, Ala., where 4 Sheffield Steel \& Iron Co. veller: $\$ 1.70$ for each 1% or Sor contained manganese over or under
Trmanganeso (Low and MLedlum rona); per lb, contalined manie; eastern zone, low carbon, yc, medtum, 14.50 c and 15.20 c ; ztra, low carbon, bulk, c.1, Hium 14.80 c and 16.20 c ; westinf is carbon, bulk, c.1., 24.50 c Sise and c.l., 17.20 c ; f.o.b. medium, shipping at, trefght allowed.

- ing loks, Manpanese: 99.9% plus, relum 3 , per $1 \mathrm{lb}, 37.6$ cents.
A max. 50% carbon, eastern \& CL I. contained chromlum R Eentral $79.50 \mathrm{c}, 2000 \mathrm{lb}$ and to c.l. 8250 c . mose shd and 82.50 c ; west\& polnt and 84.75 c ; f.o.b. shipPolint treight allowed.
hed columblum $50-60 \%$, per 1 lb , coniract basis, R gross ton i, eastern zone, $\$ 2.25$; lesshis $\$ 2.30$ Spot prices 10 cents
bulk, c. High carbon, eastern
c.l., 13.90 c ; central, add 40 c and b5c; western, add ic and 1.85 c high nitrogen, high carbon ferroferroch, Add 5c to all highes; low carbon eastern bulk, max 0.06% carbon, $23 \mathrm{c}, 0.10 \% 22.50 \mathrm{c}$, $0.15 \% \quad 22 \mathrm{c}, \quad 0.20 \%$, $21.50 \mathrm{c}, \quad 0.50 \%$ $21 \mathrm{c}, 1.00 \% 20.50 \mathrm{c}, 2.00 \% 19.50 \mathrm{c}$; $23.50 \mathrm{c} \quad 0.15 \%$, $23 \mathrm{c}, 0.20 \%$, 0.10% 0.50%, $22 \mathrm{c}, \quad 1.00 \% \quad 2150 \mathrm{c}, 22.50 \mathrm{c}$ $0.5 \% \mathrm{c}$: central, add 4 c for bulk c.1. and .65 for 2000 lb . to c.1. western, add 1c for bulk, c.l. and $1.8 \overline{\mathrm{y}} \mathrm{c}$ for 2000 lb. c.l. carload packed differential . 45 c ; 1.o.b. Shipping point, freight allowed. Prices per lb . contained Cr high nitrogen, low carbon ferrachrome: Add $2 c$ to low carbon ferrochrome prices; all zones. For higher nitrogen carbon add 2 c for
over 0.75%.
Sueclal Foundry ferrochrome: (Chrom. 62-66\%, car. approx. 5$7 \%$) Contract, carload, bulk 13.50 c , packed 13.95 c , ton lots 14.40 C , less, 14.90 c , eastern, freight allowed, per pound contained chromium; 13.90 c , $14.35 \mathrm{c}, 15.05 \mathrm{c}$ and 15.55 c centrad; $14.50 \mathrm{c}, 14.95 \mathrm{c}, 16.25 \mathrm{c}$ and 16.75 c , S.3h. Ferrochrome, high carbon:
(Chrom: $60-65 \%$, sil, $4-6 \%$ mang. (Chrom: 60-65\%, sil, $4-6 \%$ mang. 4-6\% and carbon 4-6\%.) Contract, carlot, bulk, 14.00c. packed 14.45c, ton lots 14.90 c , less 15.40 c , eastern, frelght alowed; 14.40 c , 14.85 c , 15.55 c and 16.05 c , central; 15.00 c , $15.45 \mathrm{C}, 16.75 \mathrm{c}$ and 17.25 c , western; spot up 25 c ; per pound contained chpomium.
S M. Ferrachrome, low carbon:

4-6\% and carbon 1.25% max.) Conrac, carlot, bulk, 20.00 c, packed 22.45 c , ton lots 21.00 c , less ton lots pound eastern, rreight allowed, per 20.85 c , 11.65 c chromium, 20.40 c , $21.00 \mathrm{c}, 21.45 \mathrm{c}, 22.85 \mathrm{c}$ and 23.85 c , western; spot up .25 c .
SMZ Alloy: (Silicon $60-65 \%$, Mang. 5-7\%, zir. $5-7 \%$ and Iron approx. 20%) per lb . of alloy contract carlots 11.50 c , ton lots 12.00 c , less 12.50 c , eastern zone, frelght alcentr: $12.00 \mathrm{c}, 12.85 \mathrm{c}$ and 13.35 c 15.10 c , western; spot up .25 c . Sllcax Alloy: (Sil. $35-40 \%$, cal. $9-11 \%$, alum. $6-8 \%$, zir. $3-5 \%$, tit. $9-11 \%$ and boron $0.55-0.75 \%$), per lb. of alloy contract, carlots 25.00 c . ton lots 26.00 c , less ton lots 27.00 c , 26.75 c and 27.75 c , central; 27.50 c , 28.90 c and 29.90 c , western; spot up . 25 c. and 29.90 c , western; spot up Slivaz Alloy: (SII. $35-40 \%$, van. 9-11\%, alum. 5-7\%, zir. $5-7 \%$, tut. $9-11 \%$ and boron $0.55-0.75 \%$), per lb. of alloy. Contract, carlots 58.00 c . ton lots 59.00 c , less 60.00 c , eastern, fretght allowed; $58.50 \mathrm{c}, 59.75 \mathrm{c}$ and 60.75 c , central; $60.50 \mathrm{c}, 61.90 \mathrm{c}$ and
62.90 c , western 62.90 c , western ; spot up 14 c .

OMSZ Alloy 4: (Chr. $45-49 \%$, mang. 4-6\%, sll. 18-21\%, zir. 1.25-1.75\%, and car. $3.00-4.50 \%$). Contract, car lots, bulk, 11.00 c and packed 11.50 c ton lots 12.00 c ; less 12.50 c , eastern frelght allowed; 11.50 c and 12.00 c 12.75c. 13.25 c , central; 13.50 c and $14.00 \mathrm{c}, 14.75 \mathrm{c}, 15.25 \mathrm{c}$, western; spot
OMSZ Alloy 5: (Chr. $50-56 \%$, mang.
4-6\%. sil. $13.50-16.00 \%$, zir. . 75 1.25%, car. $3.50-5.00 \%$) per 1 b . of alloy. Contract, carlots, bulk, 10.75 c ,
packed 11.25 c , ton lots 11.75 c , les 12.25 c , eas'ern, freight allowed $11.25 \mathrm{c}, 11.75 \mathrm{c}$ and 12.50 c , central 13.25 c and $13.75 \mathrm{c}, 14.50 \mathrm{c}$ and 15.00 c , western; spot up. 25 c .

1. rio-Birun: (Bor. 17.50% min, sil. 1.50% max., alum. 0.50% max. and car. 0.50% max. Der 1 b . of alloy contract ton lots, $\$ 1.20$, lesa ton lots $\$ 1.30$, eastern, freight al lowed: $\$ 1.2075$ and $\$ 1.3075$ central; $\$ 1.229$ and $\$ 1.329$, western; spot add 5 c .
Manganese-Boron: (Mang. 75\% appati. boron $15-20 \%$, iron 5% max sil. 1.50% max and carbon 3% max.), per lb. of alloy. Contract inn lots, $\$ 1.89$, less, $\$ 201$ eastem freight allowed; $\$ 1.903$ and $\$ 2.023$ central, $\$ 1.935$ and $\$ 2.055$ western; spot up 5 c .
1 , wisel-horon: (Bor 15-18\%, ahm, 1% max., sil. 1.50% max, car 0.50% max., Iron 3% max., nickel. halance), per ib. of alloy, Contract 5 tons or more, $\$ 1.90,1$ ton to 8 lons, $\$ 2.00$, less than ton $\$ 2.10$, eastern, freight allowed; $\$ 1.9125$ $\$ 2.0125$ and $\$ 2.1125$, central $\$ 1.9445, \$ 2.0445$ and $\$ 2.1445$, west Chri; spot same as contract.
Chromlum-Copper: (Chrom. $8-11 \%$, $\begin{array}{ll}\mathrm{cu} . & 88-90 \% \text {, iron } 1 \% \text { max sil. } \\ 0.50 \% \text { max.) contract, any quan- }\end{array}$ tity. 45 c , eastern, Niagara Falls, N. Y.. basis, freight allowed to desination. except to points taking rate in excess of St. Louis rate to which equivalent of St. Louls rate will be allowed; spot up 2c.
Vanadium Oxide: (Fused: Vanadium oxide $85-885$, sodium oxide approx. 10% and calcium oxdde approx 2% or Red Cake: Vanadium oxlde 85% approx, sodium oxide. approx. 9% and water approx
2.5%) Contract, any quantity, $\$ 1,10$ eastern, freight allowed per pound vanadium oxide contained; contract carlots, $\$ 1.105$, less carlots, $\$ 1.108$, central; $\$ 1.118$ and $\$ 1.133$, western; spot add $5 c$ to contracts in all cases. Calcium metal; cast: Contract ton
lots or more $\$ 1.80$, less, $\$ 2.30$, lots or more $\$ 1.80$, less, $\$ 2.30$,
eastern zone, freight allowed, per eastern zone, ireight allowed, per
pound of metal; $\$ 1.809$ and $\$ 2.309$ Central, $\$ 1.849$ and $\$ 2.349$, western; spot up 5 c.
Cajclum-slankanese-Silicon: (C a 1.

$16-20 \%$ mang. 14-18\% and sil. | $16-20 \%$ |
| :--- |
| $53-59 \%$ | mang, 14-18\% and sil, carlots, 15.50 c , ton lots 16.50 c and less $17.00 c$, eastern, frefsht allowed; $16.00 \mathrm{c}, 17.35 \mathrm{c}$ and 17.85 c , central; $18.05 \mathrm{c}, 19.10 \mathrm{c}$ and 19.60 c western; spot up .25c.

Calcluni-Sillcon: (Cal. 30-35\%, sil. $60-65 \%$ and iron 3.00% max.) per 18.00 c , ton lots 14.50 c , less 15.50 c , eastern, freight allowed; 13.50 c , 15.25 c and 16.25 c central; 15.55 c , 17.40 c and 18.40 c , western; spot up . 25 c . Fer, Fermancanese: (Weight approx. 3 lbs. and containing exactiy 2 bs. mang. per lb. of bripacked .063c, tons .0655 c , less .068c Dacked .063c, tons .065xc, less.068c $.0655 \mathrm{c}, .0755 \mathrm{c}$ and .078 c , central .066 c , $0685 \mathrm{c}, .0855 \mathrm{c}$ and .088 c Briquets: Ferrochrome, containing exactly 2 lb . cr., eastern zone, bulk c.l., 8.25 c per lb . of briquets, 2000 b. to c.l., 8.75 c ; central, add .3 c for c.l. and . $5 c$ for 2000 lb. to c.l.;
western, add .70 c for c.l., and . 2 c for 2000 lb . to c.l.; sllconinnganese
easlern, containing exactly 2 lb . manganese and approx. $1 / 2 \mathrm{lb}$. c.1. 6.30c; central add .25c for c.l. and lc for 2000 lb. to c.l. westc.l. and ic for for c.l and $2 c$ for 2000 add 5 c for c.l., and 2 c for 2000 hl . to c. 5 i ib., contalning exern, approx. actly 2 , prox. $2,1 \mathrm{~s}$, and contains 3.35 c 2000 lb. to c.l., 3.80 c ; central, add 2000 c for c.l., and .40 c for 2000 lb . to c.l.: western, add 3.0 c for c.l. and . 45 c for 2000 to c.l. ; f.o.b. shipping point, freight allowed,
kearomolybdeninn: $55-75 \%$ per lb . contalned molybdenum f.o.b. Langeloth and Washington, Pa., furHace, any quantity 95.00 c .
Ferrophosphorus: 17-19\%, based on 18% phosphorus content, with unitage of $\$ 3$ for each 1% of phasphorus above or below the base; gross tons per carload f.o.b. sellers' works, with freight equalized with Rockdale, Tenn. contract price $\$ 58.50$, spot $\$ 62.25$.
Ferrosllicon: Eastern zone, 90-95\%, bulk, c.l., $11.05 \mathrm{c}, 2000 \mathrm{lb}$. to c.l., $12.30 \mathrm{c} ; 80-90 \%$ bulk c.l., 8.90 c, $2000^{\prime} \mathrm{lb}$. to c.l., 9.95 c ; 75% bulk, 50%, bulk c.1., 6.65 c and 2000 lb . to cil. 7.85 c ; central $90-95 \%$, bulk, c. $1 . \mathrm{c} .11 .20 \mathrm{c}, 2000 \mathrm{lb}$. to c.l., 12.80 c ; $80-90 \%$, bulk, c.l., $9.05 \mathrm{c}, 2000$ to

 c.1., $\begin{aligned} & \text { western, } 00-95 \% \text {, bulk, c.l., } 11.65 \mathrm{c} \text {, }\end{aligned}$ western, $90-95 \%$ bulk, c.l., 11.65 c ,
2000 lb , to c.l., $15.60 \mathrm{c} ; 80-90 \%$. bulk, c.l. $9.55 \mathrm{c}, 2000 \mathrm{jb}$. to c.1., $13.50 \mathrm{c} ; 75 \%$ bulk, c.l., $8.75 \mathrm{c}, 2000$
to c.l. $13.10 \mathrm{c} ; 50 \%$ bulk, c.l.,
$7.25 \mathrm{c}, 2000$ to c.1. $8.75 \mathrm{c} ;$ f.o.b. ship7.25c, 2000 to c.l., $8.75 \mathrm{c} ;$ f.o.b. Ship-
ping point, frelght allowed. Prices per lb. contained silicon.
Silicon Metal: Min. 97% sllicon and max. 1\% Iron, eastern zone, bulk, c.1., $12.90 \mathrm{c}, 2000 \mathrm{lb}$. to c.l., 13.45 c ; central, 13.20 c and 13.90 c ; western, 13.85 c and 16.80 c ; min. 96% silicon and max. 2% iron, eastern, bulk, $\mathrm{c} .1 ., 12.50 \mathrm{c}, 2000 \mathrm{lb}$. to $\mathrm{c} .1 ., 13.10 \mathrm{c}$; cential, 12.80 c and 13.55 c ; western, 13.45 c and 16.50 c f.o.b. shipping 3.45 and allowed. Price per po. contained silicon.
Manganese Metal: (96 to 98% manpanese max 2% iron), per lb of metal tastern 2000 ib to cl 38 c central 36.25 c and 39 c ; western 36.55 c and 41.05 c ; 95 to 97% manganese, max, 2.50% ron, eastern, butr, ci. 1 to c.1., 35 c i central 34.25 c and 36 c western, 34.55 c and 36.05 c ;
shipping point, freight allowed.
shipping point, freight allowed. Ferrotungsten: Spot, carlots, per lb. contained tungsten, $\$ 1.90$; freight allowed as far west as St. Louls Tungsten Metsi Powder: spot, not less than 97 per cent, $\$ 2.50-\$ 2.60$; freight allowed as far west as St Louis.
Ferrofitanlum: 40-45\%, R.R. frelght allowed, per lb. contained titanium ton lots $\$ 1.23$; less-ton lots $\$ 1.25$ castern. Spot up 5 cents per lb. Ferrotitanlum; 20-25\%, 0.10 maximum carbon; per 1 b . contained titanium; ton lots $\$ 1.35$; less-ton lots $\$ 1.40$ eastern. Spot 5 cents per lb. higher.
Hha-Carbon Ferrotlanium: 15-20\% contract basis, per gross ton, f.o.b. Njagara Falls, N, Y., freight al-
lowed to destination east of Misile
sippi Rlver and North of Ballimot and St. Louls, 6-8\%
$3-5 \%$ carbon $\$ 157.50$.
Carbortam: Boron 0.90 to 1.15 net ton to carload, 8 c
Suspension Bridge, N, Y., irt. a lowed same as high-carbon fem Itanium.
Bortum: Boron 1.5-1.9\%, fon $45 \mathrm{c} 1 \mathrm{~b} .$, less ton lots 50 c 1 b . Ferrovanadium: $35-55 \%$, conur basis, per lb. contained vanadur f,o.b. producers plant with us freight allowances; open-near grade $\$ 2.70$; special grade $\$ 28$ highty-special grade $\$ 2.90$. Zirconium Alloys: $12-15 \%$, per of alloy, eastern contract, cario bulk, 4.60 c , packed 4.80 c , ton 4.80 c , less tons $5 \mathrm{c}_{\text {, }}$ carloads, S107 50. ton lats S108: less-ton l $\$ 112.50$. Spot $1 / 4 \mathrm{c}$ per ton higher. zirconin Alloy: $35-40 \%$, Easte contract basis, carloads in bulk contract basis, ib of alloy 14.0 package, per 15.00 c : less-ton 16.00 c . Spot $1 / 4$ cent higher.

Alslfer: (Approx. 20\% alumino 40\% sllicon, 40% iron) contract sis f.o.b. Niagara Falls, N. Y, cent higher.
Siminal: (Approx. 20\% each Mn., Al.) Contract, frt. all. not 0 St. Louis rate, per lb. alioy, lots 8 c ; ton lcts 8.75 c ; less ton 9.25 c .

Borosil: 3 to 4% boron, 40 to 4 St., \$6.25 lb. cont. Bo., t. o.b. Ph O., freight not exceeding St. L rate allowed.

OPEN MARKET PRICES, IRON AND STEEL SCRA

Following prices are quotations develoned by editors of STEEL in the vari ous centers. For complete OPA ceiling price schedule refer to page

Cast Grades

(F.o.b. Shlpping Point)

Heavy Breakable Cast
16.50
1900

Charging Box Cast
Unstripped Motor Blocks Malleable
Chemical Borings
20.00

NEW YORK:

(Dealers' buying prices.)
No. 1 Heavy Melt. Steel
No. 2 Heavy Melt. Steel No. 2 Hyd. Bundles No. 3 Hyd. Bundles
Chemleal MBorlngs
Machine Turnings
Mised Borlsgs, Turnings
No. 1 Cupola
Heavy Breakable
Unstrip MIotor Blocks
Stove Plate
$\$ 15.33$

CLEVELAND:
(Delivered consumer's plani)

18.75
8.75
8.75
16.75
13.75
13.75
23.75
21.25
21.25
21.25
19.75
18.25

15.33

13.33
14.33
10.33
10.33
20.00
19.00
16.50
17.50
19.00
of Sept.
boston
No. I Heavy sipelt Steel
No. 2 Heayy Melt. Steel
No. 1 Bundles
$\begin{array}{ll}\text { No. } 2 \text { Bundles } & 14.06 \\ \text { No. } 1 \text { Busheling } & 14.06\end{array}$
NachIne Shop Turnings
Mixed Borings, Turnings
Short Shovel Turnings
Low Phos. Clippings
No. 1 Cast cast
Stove Plate
Heavy Breakable Cast
16.50 Boston Dithe cents high\$1.09 higher.
PITTSBURGM:
(Delivered consumer's plant)
Railroad Heavy Melting $\$ 21.00$
$\begin{array}{ll}\text { No. } 1 \text { Heavy Melt. Steel } & 20.00 \\ \text { No. } 2 \text { Fleavy MIelt. Steel } & 20.00\end{array}$
$\begin{array}{ll}\text { No. } 2 \text { Fleavy MIelt. Steel } & 20.00 \\ \text { No. } 1 \text { Comp. Bundles ... } & 20.00\end{array}$
No. 2 Comp. Bundles Short chovel Tumies Nach Shop Turnings 15.00 Mixed Borings, Turnings 15.00 No. 1 Cupola Cast Heavy Breakable Cast Cast Iron Burings Billet, Bloom Crops Sheet Bar Crops Plate Scrap, Punchings Raflroad Speciallies Scrap Rail
Rall 3 ft, and under Railraad Malleable

20.00 16.50

16.50
16.00

VALLEE:

(Delivered consumer's plant)
No. 1 R.R. Hvy Melt. $\quad \$ 21.00$ $\begin{array}{ll}\text { No. } 1 \text { Heavy Nelt. Steel } 20.00 \\ & 20.00\end{array}$ No. 1 Comp. Bundles Short Shovel Turnings Cast Iron Borings Machine Shop Turnings $\begin{array}{ll}\text { Machine Shop Turnings } & 16.00 \\ & 15.00\end{array}$ Low Phos. Plate

MANSFIELD, 0 .
(Dellvered consumer's plant)
Machine Shop Turnings
HIRMINGHAM
(Delivered consumer's plant)
Bllet Forge Erops
Structural, Plate Scrap
Scrap Ralls Randon
Rerolling fiails
Angle Splice Bars

Solid Steel Axles Cupola Cast	24.00	Machine Turnings ${ }_{10}^{8.000}$
	0	Shoveling Turning
Stove Plate	10	Rerolling Ralls
Long Turnings	9.00	Steel Car Axles
Cast Iron Borings	8.50-9.00	Steel Rails, 3
Iron Car Wheels	16.50-17.00	Sieel Angle Bar
		N
No, R.R. Hvy Melt,		Railroad Malle
No, 1 R.R. Hvy Melt,		Breakable Cast
No. 1 Heavy Melt. Steel	18.75	Stove Plate
No. 2 Heavy Melt. Steel	18.75	Grate Bars
No. 1 Ind. Bundles No 2 Dir. Bundles	18.75	Brake Shoes
	18.75	(Cast grades f.o.
Baled Mach. Shop Turn.	18.75	Stove Plate
No. 3 Galv. Bundles Nachine Turnings.	16.75	
	13.75	CLNCRNNATI
Mix. Borings, sht. Turn Short Shovel Turnings	13.75	(Delivered
	15.75	No. 1 Heayy Melt. Steel
Cast Iron Borings Scrap Ralls	14.75 20.25	No. 2 Heavy Melt. Steel
	$\begin{aligned} & 20.25 \\ & 22.25 \end{aligned}$	No. 1 Comp. Bundles ..
Cut Rails, 18 -inch	23.50	No. 2 Comp. Bundles
	22.25	Machine Turnings
Plate Scrap, Punchings	21.25	Shoveling Turnins
Kallroad specialtles No. 1 Cast	22.75	Cast Iron Borms Tu
	20.00	No. 1 Cupola Cast
(Cast grades f.o.b. shlpping point, rafiroad grades f.o.b. tracks)		Jow Phosphorus
HUFFALO: (Delivered consumer's plant)		Scrap Rail
		Stove
No. 1 Heavy Melt. Steel	\$19.25	OS ANGELE
No. 2 Heavy Melt. Steel	19.25	(Delivered
No. 1 Bundles	19.25	No. 1 Heavy Mrelt. Steel
No. 2 Bundies	19.25	No. 3 Heavy Melt. Steel
Nachine Turnings	14.25	No. 1, 2, Deal. Bund
\$.art Shovel Turnings	16.25	Machine Turnings
Mlxed Borings, Turn.	14.25	Maxed Borings
Cast Iron Borings	15.25	
Low Phos.	21.75	
DETROIT: (Dealers' buying prices.)		(Dellivered
		No. 1 Heary Melt. Steel
Heavy Melting Steel	\$17.32	No. 2 Heary Melt. Stee
No. 1 Busheling	17.32	No. I Busheling
Fiydraulic Bundles	17.32	No. 1, No. 2 Bun
Flashings	17.32	No. 3 Bundles
Machine Turnings	11.00-11.50	Machine Turning
Short Shovel, Turnings	12.50-13.00	Blllet, Forge Crops
Cast Iron Borings	11.50-12.00	Bar Crops, Plate
Low Phos. Plate	19.82	
No. 1 Cast	20.00	Cut, Structural,
Heavy Breakable Cast	16.50	$1^{\prime \prime}$, under
		Alloy-free Turning
(Delivered consumer'	plant	Tin Can Bund
Heavy Melting	17.50	No. 2 Steel Wheels
No. I Locomotise Tires	20.00	Iron, Steel steel
Misc. Rails	19.00	No. 2 Cast
Railroad Sprines	22.00	Uncut Fross,
Bundled Shee	17.50	Scrap Ralls
Axle Tuinings	17.00	Lacomotive

inper: Electrolytic or Lake from producers in uhts 12.00 c , Del. Conna less carlots $12.121 / 2 \mathrm{c}$, thery; dealers may add 3 yc for 5000 lbs. to Htod: $1000-4999$ lbs. 1c; $500-99911 / \mathrm{c} ; 0-499$
\& Casting, 11.75 c , reflnery for 20,000 lbs., or zas, 12.00 c less than 20,000 lbs.
lus lngot: Carlot prices, Including 25 cent x hundred freight allowance; add $1 / \mathrm{c}$ for
as than 20 tons; $85-5-5-5$ (No. 115) 13.00 c ; es tham 20 tons; $85-5-5-5$ (No. 115) 13.00 c ;
H10.2 (No. 215) $16.50 \mathrm{c} ; 80-10-10$ (No. 305)

 100c; manganese bronze (No. 420) 12.75 c .
3y: Prime western 8.25 c , select 8.35 c , bras
wial 8.50 c , intermedLate 8.75 c , E . St Louls wetal 8.50 c , IntermedLate $8.75 \mathrm{c}, \mathrm{E}$. St, Louls,
7 carlots. For 20.000 lbs , to carlots add r carlots. For 20.000 lbs. to carlots add
ix; $10,000-20,000 \quad 0.25 \mathrm{c}: 2000-10,000 \quad 0.40 \mathrm{c}$;

ad: Common 6.35 c , chemical, 6.40 c , corrod4. 6.45c, E. St. Louls for carloads; add 5 mals for Chlcago, Minneapolls-St. Paul, Mul-face-Kenosha districts; add 15 points for aldid-Akron-Detrodt area, New Jerses zed, Inclanapolis-Kokomo; add 20 polint for Fincham, Connectlcut, Boston-Woreester, inarteld, New Hampshire, Rhode Island.

Fary Alumnum: 99% plus, ingots 15.00 c in pres 14.00c del. metallurgical $94 \% \mathrm{mln}$. 150 ded. Base $10,000 \mathrm{lbs}$, and over; add $1, \mathrm{c}$ misp9 lbs.; Ic less through 2000 lbs .
modary Aluminam: All grades 12.50 c per lb . $=$ ot as follows: Low erade plston alloy (No. (trde) 10.50 c ; No. 12 foundry alloy (No. made $10.50 c$ chemical warfare gervice Wh ($921 \% \%$ plus) 10.000; steel deooddizers (294/ \%) 11.00 c , Grade 2 ($92-95 \%$ shot, Grade 1 ${ }^{2}$ Grade $3(90-92 \%$) 8.50 e to 8.75 c , Grade x, grade 3 ($90-92 \%$) 8.50 e to 8.75 c , Grade
$150-50 \%$) 7.50 c to 8.00 c ; any other Ingot rithese over 12 lron, except PM 754 and Rnes, $12,00 \mathrm{c}$. Above prices for $30,000 \mathrm{lb}$. are; add $1 / \mathrm{ec} 10,000-30,000 \mathrm{lb}$. ; 1/c $1000-$
0 . 1000 lbs . Fices in-- hardint at carload rate up to 75 cents - hundred.

Tanalum: Commerclally pure (99.8%) standhasots (4-notch, 17 lbs.), 20.50 cec lb , add ar speclal shapes and sizes. Allog ingots, cmary bomb alloy, 23.40 c : $50-50$ me8-cin-aluminum, ${ }^{23.75 c ; ~ A S T M}$, B93-41T,
 H-1T, Na 8X, 23.00c; No. 18, 23.50c; No. 25.00c. Selected maznesium crystais. mat and muIts, Including all packing findi, barrelling, handiling, and other or more: for $25-100 \mathrm{lbs}$. Prices for 100 then 25 ibs., 20 c . Incendiary bomb : for if plent, any quantity: carioad frejecht alill other alloys for 500 lbs . or more.

Pilces ex-dock, New York in 5 -ton lots, © 500 -909 for 2240-11, 199 lbs., 11/2c 1000-2239. Non-999, 3 c under 500 . Grade A, 99.8% Lik on (inctudes Straits), 52.00 c ; Grade B, Orade Aigher, not meeting specifications eriche 51.871 with 0.05 per cent maximum
 2ur; Grade D, $99.50-99.64 \%$ Incl. 51.50 c ; in 99% (for 99.99 incl. 51.12 yc ; Grade F. ता 99% (for tin content), 51.00 c .

Tana: American bulk carlots 1.o.b. Lalox, 99.0% to 99.8% and 99.8% and She 090 not meetling specifications below. other 8 and over (arsenlc, 0.05%, max harer sales estiles, 0.1%, max.) 15.00 c . On acon' sales add $1 / \mathrm{c}$ for less than carload 4is, and jess. for $9999-224 \mathrm{lb}$; ; and 2 c for is and less; on sales by dealers, distribu9 . jobbers add $4 / 2 \mathrm{c}$, 1 c , and 3 c , respec-

Sed: Electrolytic cathodes, 99.5%, 1.0.b. hwatic cathodes 36,00 shot produced from Wat for additions to cast iron, 34.00 c : 4 shot 28.00 c .

Tiv2 Open market, spot, New York, noml-
par 76-1b. flask. - 225 par 76-1b. flask.
vole: Frime, white, 99%, carlots, 4.00 c lb . AR Re Copper: $3.75-4.25 \%$ Be., $\$ 17 \mathrm{lb}$. con-
4. Bars, Ingots, penclls, plos, plates,
stralght or flat forms 90.00 c lb , del.; anodes, balls, discs and all other special or patented shapes 95.00 c lb. del.

Cobalt: $97-99 \%, \$ 1.50 \mathrm{lb}$. for 550 lb . (bbl.) ; $\$ 1.52 \mathrm{lb}$. for 100 lb . (case): $\$ 1.57 \mathrm{lb}$. under 100 lb.

Indlum: $99.9 \%, \$ 7.50$ per troy ounce.
Gold: U. S. Treasury, $\$ 35$ per ounce.
Sllver: Open market, N. Y. 44.75 c per ounce.
Platinum: $\$ 35$ per ounce.
Indum: $\$ 165$ per troy ounce.
Palladum: $\$ 24$ per troy ounce.

Rolled, Drawn, Extruded Products

(Copper and brass product prices based on 12.00 c , Conn., for copper. Frelght prepald on 100 lbs . or more.)
Sheet: Copper 20.87 c ; yellow brase 1848e; commerclal bronze, $90 \% 21.07 \mathrm{c}$. 96% 21.28e; red brass, 80% 20.15c. $85 \% 20.36 \mathrm{c}$; phosphor bronze, Grades A and B 5\% 36.25c; Everdur,
Herculoy, Duronze or equiv. 26.00 c ; neval Herculoy, Duronze or equiv. 26.00 c ; neval
brass 24.50 c ; manganese bronze 28.00 c ; Muntr metal 22.75 c ; nickel sllver $5 \% 28.20 \mathrm{c}$.
Rods: Copper, hot-rolled 17.37 c , cold-rolled 18.37 c ; yellow brass 15.01 c ; commerclas bronto 90% 21.32c, $95 \% 21.53 \mathrm{c}$; red brase 80% 20.40 c , 85% 20.61c; phosphor bronze Grado $\mathrm{A}, \mathrm{B} 5 \% 36.50 \mathrm{c}$; Everdur, Herculoy, Duronze or equiv. 25.50 c ; Naval brass 19.12 c ; manganese bronze 22.50 c ; Muntz metal 18.87 c ; niekel sllver $5 \% 25.50 \mathrm{c}$.
Seamless Tubing: Copper 21.37c; yellow brass brass $80 \% 22.80 \mathrm{c}, 85 \% 23.01 \mathrm{c}$.
Extruded Shapes: Copper 20.87c; architectural bronze 19.12c; manganese bronze 24.00 c ; Muntz metal $20.12 x$; Naval brass 20.37 c .

Angles and Channels: Yellow brass 27.98c; commerclal bronze 90% 29.57c, 95% 29.78c; red brass $80 \% 28.65 \mathrm{c}, 85 \% 28.86 \mathrm{c}$.

Copper Wre: Soft, f.o.b. Eastern mille, carlots $15.371 / 2 \mathrm{c}$, less-carlots $15.87 / 4 \mathrm{e}$; weatherproof, f.o.b. Eastern mills, carlot 17.00c, less-carlots 17.50 c ; magnet, dellvered, carlots 17.50 c . $15,000 \mathrm{lbs}$. or more 17.75 c , less catlots 18.25 c.

Aluminum Sheeta and Circles: $2 s$ and $3 s$, fat mll fnish, base 30,009 lbs. or mare; del. sheet widths as indicated; circle diameter $9^{\prime \prime}$ and larger:

Gage	Width	Sheets	Cricles
. $249^{\prime \prime}-7$	$12^{\prime \prime}-48^{\prime \prime}$	22.70 c	25.20 c
8-10	$12^{\prime \prime}-48^{\prime \prime}$	23.20 c	23.70 c
11-12	$26^{\prime \prime}-48^{\prime \prime}$	24.20 c	27.00 c
13-14	$26^{\prime \prime}-48^{\prime \prime}$	25.20 c	28.50 c
15-16	$26^{\prime \prime}-48^{\prime \prime}$	26.40 C	30.40c
17-18	$26^{\prime \prime}-48^{\prime \prime}$	27.90 c	32.80 c
19-20	$24^{\prime \prime}-42^{\prime \prime}$	29.80 C	35.30 c
21-22	$24^{\prime \prime}-42^{\prime \prime}$	31.70 c	37.20c
23-24.	$3^{\prime \prime}-24^{\prime \prime}$	25.60 c	20.200

Lead Products: Prices to Jobbers; full sheets 9.50 c ; cut sheets 9.55 c ; plpe 8.15 c , New York; 8.25 c , Philadelphla, Baltimore, Rochester and Buffalo; 8.75 c ; Chicago, Cleveland, Worcester, Burfalo
Boston.
ZInc Prodacts: Sheet 1.0.b. mill $13.15 \mathrm{c} ; 36,000$ lbs. and over deduct 7%. Ribbon and strlp $12.25 \mathrm{c}, 3000-\mathrm{lb}$. lots deduct $1 \%, 6000 \mathrm{lbs} .2 \%$ 9000 lbs. $3 \%, 18,000$ lbs. 4%, carloads and over 7%. Boiler plate (not over 12°) 3 tons and over 11.00c; 1-3 tons 12.00c; 500-2000 lbs, $12.50 \mathrm{c}: 100-500 \mathrm{lbs} .13 .00 \mathrm{c}$; under 100 lbs. 14.00 c . Hull plate (over $12^{\prime \prime}$) add Ic to boller plate prices.

Plating Materials

Chromic Acld: 99.75%, flake, del., carloads 16.25 c ; 5 tons and over $16.75 \mathrm{c} ; 1-5$ tons 17.25 s 400 lbs . to I ton 17.75 c ; under 400 lbs . 18.25 c .
Copper Anodes: Base 2000-5000 lbs,, del.; oval 17.62c: untrimmed 18.12c; electro-deposited 17.37 c .

Copper Carbonate: 52-54\% metalle cu, 250 lb . barrels 20.50 c .
Copper Cyanide: $70-71 \%$ cu, $100-1 \mathrm{~b}$. Kegs or Copper 34.00 c 1.0.b. Nlagara Falls.

Sodum Cyand de: $96 \%, 200-\mathrm{lb}$ drums 15.00 c ; 10,000-ib. lots 13.00 c f.o.b. Nlagara Falls.
Nlckel Anodes: $500-2999 \mathrm{lb}$. lots; cast and rolled carbonized 47.00 c ; rolled, depolarized 48.00 c .

Nickel Choride: 100-1b. kegs or 275-1b. bbls. 18.00 c lb ., del.

TIn Anodes: 1000 lbs and over 58.50 c , del.; $500-99959.00 \mathrm{c}$; 200-499 59.50 c ; $100-19961.00 \mathrm{c}$.
Tin Orystals: 400 lb . bbls. $39,00 \mathrm{c}$ 1.0.b. Grasselli, N. J.; $100-\mathrm{lb}$. kegs 39.50 c .
Sodlum Stannate: 100 or $300-\mathrm{lb}$. drums 36.50 c , del.; ton lots 33.50 c .
Tinc Cyanlde: $100-\mathrm{lb}$. kegs or bbls, 33.00 C 1.o.b. Nlagara Falls.

Brass MII Allowances: Prices for less than
15,000 ibs. f.o.b. shipping point. Add 5 for for $15,000-40,000 \mathrm{lbs}$. ic for $40,000 \mathrm{lbs}$. or more.

Scrap Metals

	Clean Heavy	Rod Ends	Clean Turning
Copper	10.250	10.250	9.500
Tinned Copper	9.625	9.625	9.375
Yellow Brass	8.625	8.375	7.875
Commerclal bronze			
90\%	9.375	9.125	8.525
95\%	9.500	9.250	8.750
Red Brass, 85%	9.125	8.875	8.575
Red Brass, 80%	9.125	8.875	8. 375
Muntz metal	8.000	7.750	7.2450
Nickel ST1, 5\%	9.250	9.000	4.625
Herculoy Everdur or equivalent	11.000	10.750	9.750
	10.250	10.000	9.250
Naval brass	8.250	8.000	7.500
Mang. bronze	8.250	3.000	7.500

Other than Brase MIII Scrap: Prices apply on material not meeting brass mill specification and are f.o.b. shipping point: add ke for shipment of 60,000 lbs. of one group and $1 / \mathrm{c}$
for 20,000 lbs. of second group shlpped in same car. Typical prices follow:
(Group 1) No. 1 heavy copper and wire, No. 1 tinned copper, copper borings 9.75ci No. 2 copper wire and mixed heavy copper, capper tuyeres $8.75 c$.
(Group 2) soft red brass and borings, aluminum bronze 9.00 c ; copper-nlckel and borings 9.25 c ; car boxes, cocks and faucets 7.75 c ; bell metal 15.50 c ; babbit-lined brass bushinga 13.00 c .
(Group 3) zincy bronze borings, Admiralty condenser tubes, brass plpe 7.50 c ; Muntz metal condenser tubes 7.00c; yellow brass 6.25 c : mancanese bronze (lead $0.00 \%-0.40 \%$) 7.25 C , (lead $0.41 \%-1.0 \%$) 6.25 c ; manganese bronze 1.00%) 5.50 .

Aluminum Scrap: Prices $1.0, \mathrm{~b}$. point of shipment, truckloads of 5000 pounds or over; Seeregated solids, $28,35,5 \mathrm{c} 1 \mathrm{lb} ., 11,14$, etc. 3 to 3.50 c lb . All other bigh-grade alloys 5 c lb. Segregated bortngs and turnings, wrought alloys, $2,2.50 \mathrm{c}$ lb. Other high-grade alloys $3.50,4.00 \mathrm{c}$ lb. Mixed plant scrap, all solids. $2,2.50 \mathrm{c} \mathrm{lb}$. borings and turnings one cent lesi than segregated. Lead Scrap: Prices f.o.b. point of shlpment. deduct 0.55 c from basing polnt prices for refined metal.

Zinc Scrap: New cllppings 7.25 c , old zinc 5.25 c f.o.b. polnt of shlpment; add $1 / 2$-cent for 10,000 lbs. or more. New die-cast serap. radiator zinc dross, dle cast slab 5.80 c any quantity.

Nickel, Monel Scrap: Prices 1.o.b. point of shlpment; add $1 / 2 \mathrm{c}$ for 2000 lbs. or more of nickel or cupro-nickel shipped at one thme and $20,000 \mathrm{lbs}$. or more of Monel. Convertera (dealers) allowed 2 e premlum
Nickel: 98% or more nickel and not over $1 / 2 \%$ copper 26.00 c ; $90-98 \%$ nickel, 26.00 c per 1 lb . nickel contained.
Cupro-nickel: 90% or more combined nicked and copper 26.00 c per lb. contalned nickel, plus 8.00 c per lb . contained copper; less than 90% comblned rickel and copper 26.00 c for contalned mickel only.
Monel: No. 1 castings, turnings 15.00 c : new
clpping 20.00 c ; soldered sheet 18.00 c .

Sheets, Strip

Sheet \&o Strip Prices, Page 196

Sheet and strip bookings continue to extend and deliveries now are well into next year for some producers, March being quoted in some instances. New business now far exceeds losses from cancellations. Most producers are planning allocations after expiration of CMP Sept. 30, to assure their customers fair supply. Inventory limitations still hold and prevent undue accumulations at the expense of other consumers.
New York - Sheet backlogs are extending rapidly. Some procucers now quote March on hot-rolled pickled sheets and only little better for plain hotrolled sheets; also they are quoting well into first quarter on cold-rolled sheets. At the same time certain sellers have not yet arrived at a position where they are able to quote reasonably firm deliveries. Still another mill has closed schedules for fourth quarter, but on the major items such as hot and cold sheets and galvanized sheets has not opened books for first quarter. This should take place very shortly, however. On specialties, such as electrical sheets and stainless steel sheets, sellers generally are booked into next year and well into the year on electrical sheets. Pressure for galvanized sheets is strong, although some producers are none too keen for this business, because of the extra costs involved and with ceiling prices as they are.

Chicago - Virtually all sheet producers are prepared to serve their customers through some plan of allocation after Sept. 30 when CMP expires. Because of the extremely tight situation, only in this way can users be assured of equitable treatment. Pressure for cold-rolled, light hot-rollcd, hot-rolled pickled, and galvanized sheets is particularly acute. Much of the tonnage on mill books at the end of the war has remained and schedules are filled well into first quarter. A number of military items, such as small arms ammunition boxes, portable hospitals, etc., fabricated from sheets, have so far not been canceled. Furthermore, production of prefabricated houses for Great Britain has not been stopped, suggesting that the previous lend-lease procedure has been supplanted by some other form of financing.

Buffalo - Mills have difficulty forming schedules, with a flood of civilian orders coming in while cancellations are far short of expectation. Galvanized sheets are booked solidly to the middle of next year. A leading producer could ease this situation if labor were available to reopen an idle unit. Deliveries on other grades extend into December and January.
St. Louis - Sheet and strip mills have passed the worst of war cancellations and less than 10 per cent of mill capacity now is on govemment orders. Volume of civilian orders is heavy and schedules are filled far ahead. Old customers have heen checked and few cutbacks resulted, the principal change being alteration of specifications. New customers are coming in rapidly, with few inquiries except those based on firm orders. Galvanized sheets are in most demand, mainly from farm areas. Cincinnati - Sheet mills are faced with the problem of allocating avail-
able tomnage, with demand considerably in excess of supply. Strong pressure for early delivery is being encountered and mills strive to do their part in speeding reconversion. Confusion created by military cancellations is being cleared, but continues to be a factor in forming schedules. Backlogs are extended but accurate figures are unavailable. Some ordering anticipates deliveries one year hence.

Birmingham-Sheet production maintains the increased pace evident ever since the end of the war. Pressure for delivery is maintained as strongly as during the war.

Boston - Strip and sheet buying by fabricators of household appliances is heavy, including sheets for electric ranges, soft drink cabinets, washers and a growing number of light consumer products. There is no easing in carbon sheet schedules and deliveries of cold-finished, hot-rolled pickled and galvanized are extended through fourth quarter. Plain hot-rolled carbon sheets are available for October delivery. Labor is the main production problem on pickling lines, some operating under 70 per cent of capacity. Few producers can promise stainless sheets before December and polished stainless in first quarter. In addition to strong sheet demand for reconversion, warehouses are pressing for shipment of all tonnage in with mills. Buying of both sheets and strip in the Springfield and Connecticut areas for household goods is notably active. Pressure by automotive builders, including parts, is increasing. Orders for sheet material for 275gallon household tanks are also numerous and well maintained in volume. Although some mills are beyond, narrow hot strip deliveries are in November and October for cold-rolled. Others range into December for cold-rolled. For October and probably November hot strip producers are planning schedules to maintain tonnage to converters in the same volume as before expiration of CMP.
Producers of anti-friction bearings are confronted with a price squeeze if forced to sell at 1942 prices. This has been a mild delaying factor in reconversion to meet heavy postwar demand, which more than balances cancellations in aircraft and war equipment. The automobile industry will require a tremendous volume of bearings, for some time, fully 60 to 75 per cent of the production of some plants as before the war. The average passenger car needs 30 or mors bearings of the anti-friction type.
Cleveland - Sheet steel order books remain muddled, although clerical staffs have been working at top speed to rearrange rolling and delivery schedules. The companies are still canvassing the trade to determine the exact status of orders, as they are unwilling to risk rolling orders only to have them rejected on the basis of canceled war contracts.
Many mills are not guaranteeing delivery on any new orders placed pending clarification of the situation and at best first quarter delivery is earliest available with the exception of unpickled. Demand continues pressing with manufacturers anxious to get into civilian production quickly.
Pittsburgh - Sheet and strip output has recovered rapidly the past ten days, with most schedules now near capacity.

Demand continues to exceed oite accentuating the necessity of promi putting into effect some type of vol tary distribution system to spread as able supply as fairly as possible. most instances company quota syst become operative Oct. 1. Galvani sheets are under heavy pressure for livery, with shipments extended January and February. McLouth S Corp., Detroit, is now making stain steel sheets and strip, the first time material has been produced in that trict. Up to late last week the basing points established on hot-0 stainless steel strip were at Chice Youngstown and Reading, Pa.; rolled stainless strip at Clevel Youngstown and Reading, Pa.; and sl at Chicago, with Pittsburgh retaine

Steel Bars

Bar Prices, Page 196
Bars are tightening with many ducers sold for the year, in both hot cold-rolled, December being quote the earliest. Some alloy bar users changing from NE steel analyses to going back to the material they before the war. Alloy bar schedules easy at 30 to 60 days.

New York - Carbon bar sched continue to tighten, with most produ now quoting December and Jant and with some, in fact, virtually ou the market for the remainder of year. Cold-drawn bar producers, find schedules tightening, with eries in general quoted for Decem Some November tonnage can he had the amount is relatively small. drawers declare that despite heayy cellations since the end of the their civilian backlogs have increase an extent that they now virtually 0 canceled tonnage. Meanwhile, alloy schedules are relatively easy at att 30 to 60 days.

St. Louis-Pressure for merchant is strong, with new civilian orders setting military cancellations. 10 per cent of capacity is still is CMP ratings, mainly for utilities farm implements. Bar mills, in con to sheetmakers report improved conditions, though full employment not been reached. Merchant bars booked to January.

Boston - Revisions in alloy bar 5 fications from NE grades to double a formerly used are mounting with sumers and by warehouses in some although in case of forge shops th not yet so apparent. Although well low the war peak, demand for carbon and alloy bars tends to mo New buying includes an NE for die-lock chain for the Navy 0 Hot-rolled alloy bar delivery is in ber cold and cold-finished in December. Cat bars are tighter than alloys, freque in November. Alloy volume is maintained but increased capacity flects the relatively easy position of exal producers. Fonward promise du carbon stocks are still indefisite, du uncertainty as to the volume of finished for bar finishing beyond next few weeks.

Cleveland - Bar sellers are scan incoming orders carefuily io limit chasing to nearby needs and in pro tion to customers' normal rate of hir

Pemand has been heavy from all classes f consumers, but especially from the alomotive, house appliance and farm molement industries. Special requirezent steel bar demand also continues beary, although it now originates with Gatware and similar manufacturers.
The 8 -inch mills are filled well into IH6 but some space is still available 10 and 12 -inch mills. Delivery rezins much more extended on coldwlled than on hot-rolled.
Pitsburgh - Orders are developing n good volume, particularly from thic momotive, railroad and farm equiptent industries. Requirements for altems also are on the upturn, and pld finishers report active demand, with eliveries extended into November. milh most cancellations now out of the my, sellers report most merchant bar fees fall into October and November, though some mills can promise late splember shipment on large rounds. uedric furnace and open-hearth alloys te available in September. In addi-
50 Sn to the Pittsburgh base on coldEdished stainless steel bars, up to late 2y week new bases have recently been sablished at Chicago, Cleveland, Phila-- Anhia, Reading, Pa., and Dunkirk and Fiteryliet, N. Y. New bases on hotdiled stainless bars have also been Code at these points, with the excenno of Cleveland.

teel Plates

Plate Prices, Pago 197

Plate demand is increasing and some ulwervers believe fourth quarter shipdats will be at the best rate for sevritpards still taking some tonnage, with nseilianeous users increasing their deA tand. Some producers are sold for It remainder of the year. Placing of diut Fruit Co. ships will call for Tilles, barges and railroad cars and locoIndis, barges and railroad cars and loc
8.
Nives call for substantial tonnages.
New York - Plate buying is fair, alwogh spotty. Shipyards still specify a
ed
donably good tonnage, with much donably good tonnage, with much int
ont sources is tapering. Jobbers apfor to be pressing for tonnage on order, Hough making far fewer new comThents. Tank fabricators are specifyQ a little heavier than a fortnight or rogo, but have not as yet felt the imat of various civilian requirements and is anticipate. A moderate de3od is coming out from car builders and min railiroads themselves, the latter rocipally for equipment repairs.
Host plate mills now have little to io before November, and some trade ders would not be surprised if plate
pments during the sute Tments during the last quarter averChicago - Pressu,000 tons a month. Chicago - Pressure for steel has now ored plates, and while a week or Tago, this was easiest of all products,
citcations since are finding some catcations since are finding some
uters sald out for the remainder of year. One interest, however, is ob to make lelive November and Debing delivery. Even floor plates are
thall sithe renewed strength. The mall in the renewed strength. The bacers.
Whton - Plate buying by boiler and dognk shops is more active, with dogs of these fabricators substan-

Lial in some instances. Lighter plates are more active than heavier. Oil and gasoline station tank requirements are notably higher while miscellaneous industrial inquiry has increased. Buying by shipyards continues to slacken. For nine additional ships for United Fruit Co., Boston, contracts are being distributed, requiring about 20,000 tons of steel, mainly plates. Railroads are buying sparingly. Wrought iron plates have been advanced $\$ 10$ per ton from 3.80 c to 4.30 c , Pittsburgh.

Pittsburgh - Some improvement is noted in orders for storage tanks, barges, railroad cars, locomotives and heavy construction lines. Miscellaneous requirements for export are an increasing factor in overall improvement in plate demand. The Dravo Corp. is making good progress on the construction of a large drydock for the Navy at its Neville Island yard, scheduled to be completed March 1. Company also has contract for construction of a fleet of five 175-foot coal barges. Order backlogs on both universal and sheared plates generally extend through November, although some eastern mills have openings in October.
Birmingham - Plate production is held at approximately 80 per cent of capacity, in spite of cancellations, a rate expected to continue. Railroad car builders and shipyards are principal consumers of current production.

Philadelphia - While plate demand is irregular and some producers still can book tonnage for shipment within 30 to 45 days some trade leaders expect plate shipments to average 500,000 tons per month in fourth quarter. This would be $1,500,000$ tons for the quarter against 2 million tons for third quarter. Present capacity is estimated at more than 700,000 tons per month compared with the wartime peak of more than 1,100 ,000 tons, when strip mills were counted on for about 550,000 tons per month. Thus shrinkage in demand is being accompanied in part by decline in capacity and there may be further decline soon, depending on decision to suspend all operations at the government-owned plant at Geneva, Utah.

Tubular Goods

Tubular Goods Prices, Page 197

Boston - Demand for merchant steel pipe is well maintained but most tubing is slower. Buying is mainly through distributors, with larger direct shipments subsiding. Most electric weld mills are sold through fourth quarter, with buttweld, including $41 / 2$-inch, in December. Boiler tubes also are in December. Wrought iron pipe is less active but a mild late season flurry involves about 1000 tons of cast iron pipe, which has advanced $\$ 3$ per ton.

Cleveland - Cancellation of pipe orders during the past month has been small, leaving mills with heavy backlogs. This applies to line and merchant pipe and boiler tubes.
Pressure on mills is heavier than before the end of the Japanese war with heavy inquiry from the gas and oil, chemical and public utilities industries. In addition jobbers' stocks are low and must be replenished Mill officials doubt that the industry will be able to meet the expected heavy demand next year from the building industry and ex-
port interests. Even the more conservative estimates place home construction at a million units a year for five years, indicating a market for about 2 million tons of steel a year, a large part of which would be for pipe.
Pittsburgh - Establishment of a basing point at Chicago by National Tube Co. on its price schedule M, covering stainless steel seamless tubing for mechanical and pressure purposes, for the range of sizes and finishes produced there, will result in saving in freight charges of about 37 cents per hundred pounds for consumers in the Chicago and surrounding area. It is also reported that Canton, O., has been established as a basing point on alloy seamless pressure tubing.
Philadelphia - Merchant pipe producers are sold well to the end of the year and some now are placing distributors on a quota basis in an effort to meet demand as equitably as possible.
Pittsburgh - National Tube Co,'s McKeesport, Pa., works now is offering to the trade pipe up to 26 inches in diameter with wall thickness of $5 / 16$ and $9 / 32-\mathrm{in}$.

Wire

Wire Prices, Page 197

Boston - Some wire products, notably fine wire specialties, are being rationed on a monthly basis to consumers, many of whom ask substantially more tonnage than before the war. Buying of spring wire is strong and razor blade steel demand has increased sharply. Rescheduling continues at wire mills, with frequent revisions, but wolume for fourth quarter against postwar orders will be higher than predicted earlier. Gaps left by heavy wire rope cancellations are filling rapidly. Extent of duplicate buying in wire is still in doubt as deliveries in volume and definite promises have not improved sufficiently to bring out the facts. Nails and other merchant products are tight. Some mills quote March delivery on nails. Shipments to the automobile industry are increasing under pressure for material, including valve-spring wire and other specialties. Large lots of music wire spring stock are still offered as surplus.
Pittsburgh-Practically no cancell3tions have developed on merchant wire items and a heavy influx of new orders, exceeding production in most instances, is reported by producers.. With production quotas scheduled to be eliminated Oct. 1, many dealers and consumers are placing orders for substantially larger tonnage than was the practice during the war, when production was restricted. Order backlogs of fencing, barbed wire, nails and other merchant wire items are now in February and March. In some instances backlogs, are more extended than before Japan's collapse. To meet the heavy pent-up demand for these items during the early reconversion period, sellers will have to control closely the distribution to jobbers and dealers. A reduction in dealers' inventories of merchant wire items has occurred in recent weeks, and on the basis of prospective demand and production through the remainder of the year, the likelihood of bolstering inventories during this period is not promising. Increasing number of export inquiries is noted, with a substantially larger tonnage for
barbed wire and fencing involved than under the prewar economy.

Chicago-Little progress is being made in relieving tightness in wire and wire products. In manufacturers' lines, high carbon spring wire is far short of demand. Public utilities and electrical jobbers are buying in larger quantities. Requirements for bale ties are increasing and supply is inadequate. Many distributors are revising their specifications for mails, reducing or eliminating coated types and substituting building types.

Buffalo-Heavy merchant wire orders are filling any gaps left in backlogs because of cancellations. Delivery schedules are being adjusted gradually and there is less confusion. Cushion wire
for automobile seats and furniture is in increased demand.

Tin Plate . . .

Tin Plate Prices, Page 197

Pittsburgh - Substantial increase in demand and production of black plate-is indicated for fourth quarter, when lifting of CMP regulations will permit minlimited output of steel products, with the exception of tin-coated items still controlled according to end uses of pig tin. However, the supply outlook for lig tin has improved with the report that some producing units in the Far East are available for immediate operation. WPB is preparing a report on the tin situation and is likely to amounce its
findings soon. Despite probable increas in pig tin imports in the near future considdrable concern continues over adequacy of prospective tin plate pro duction.
Granite City has been established as basing point on electrolytic tin plates $\$ 4.60$ per hundred pound base box a 0.50 -pound tin and $\$ 4.75$ on 0.75 -poun tin. Bases on 0.25 -pound tin have bee established at $\$ 4.35$ per hundred pous base box at Pittsburgh and Chicag while Granite City base price is $\$ 4.4$

Chicago - Tin plate producers this district are sold out for the mainder of this year. Furthermore, is indefinite when many of the orde already entered for next year can scheduled. Aside from tin, which : mains in limited supply, other facio which serve to limit production a manpower shortage and inadequate to nage of cold-reduced plate.

Rails, Cars . . .

Track Material Prices, Page 197
New York - Car buying is laggin with principal orders involving 50 se enty-ton hopper cars for the Missou Kansas \& Texas and 25 seventy-t covered hoppers for the Texas \& 1 cific, both orders to American Car Foundry Co. Little new inquiry noted, with the railroads apparently in ther sizing up reconversion prospects industry in general before stepping purchases.

Meanwhile several inquiries pending for passenger car equipme including sizable. list for the New Io Central railroad, on which bids we opened late in August. Relatively, the is substantially more interest in passe ger than freight cars, due primarily the complete restriction on coach buil ing for a long period during the in Locomotive buying includes ten 400 horsepower diesel-electric passenger comotives for the Chicago, Burlington Quincy, placed with the Electro-Moti Division, General Npotors Carp., Grange, Ill.

Domestic freight car buying in :

> INLAND 4-WAY FLOOR PLATE

You get greater safety, structural strength, and long life when you install Inland 4-Way Floor Plate.

Its special 4 -way pattern helps prevent slipping and falling by men, and skidding by trucks. It has all the structural strength and long wearing qualities of rolled steel. It naturally will not rot, splinter, warp, or absorb moisture or odors. And, it is easily cleaned.
gust comprised 7240 units, conppar with 3500 in July, and brought the to for the first eight months up to 25,5 Comparisons follow:

	1945	1944	1943
Jan.	7,200	1,020	8,365
Feb.	1,750	13,240	
March	2,500	6,510	1,935
April	1,120	4,519	1,000
May	1,526	1,952	870
June	670	1,150	50
July	3,500	795	4,190
Aug.	7,240	3,900	8,74 6820
Sept.	400	
Oct.		2,425	5,250
Nov.		1,065 16,245	2,919
Total		53,221	41,355

Structural Shapes..

Structural Shape Prices, Page 197
Structural mills are filling sched further ahead as building projects tinue to come out, in spite of short of engineering workers, which del some work. Fabricators in many stances have sufficient work for the mainder of the year.
Pittsburgh - Demand for struct steel items has increased soment
refecting the lifting of WPB building ryylations. Most new inquiries are for sall miscellaneous plant expansion progams, with requirements from this surce not expected to reach full-scale poportions for a couple of months. hrspective heavy volume of municipal rork also will be delayed in getting mder way, due to the time required is completing plans. Railroads are Lready taking increasing tonnage If stuctural items and still further imrovement is anticipated as freight car id locomotive shops step up producbin. Producers are booked into Deember and later on most structural wins and despite indicated increase a production, upturn in construction rork is expected to augment order wexhogs.
Boston-Inquiry for shapes is slightly wre active, with shortage of draftsmen rd estimators retarding openings on sene tonnage. Structural mill schedtes are extended through fourth quary on some sizes, with limited openings T late November and December deTen. This situation tends toward consuance of premium payments permitted Qeastern producer with better delivries, including some from stock: In neral mill schedules contain most of amer rated CMP orders, which are spplemented by increased postwar tonarge.
Birmingham - Structural shapes are heary demand, with cancellations aing little effect. Fabricators report mopects excellent, with bookings reason4 heavy for the remainder of the rar.
Yew York - Structural activity is inwasing, with various new projects com3 out for bids. These include 200 3 for a plant addition for Triangle vaduit \& Cable Co., New Brunswick, J., Tumer Construction Co., Grayas Bldg., New York, general contractor - 100 tons for a mechanical shop illding for Colgate-Palmolive-Peet, rsy City, N. J., same general conatior.
Comptroller McGoldrick has recomodeu that New York City advance 3,89,532 for an immediate construcProgram involving 37 projects. mount waiting for financial assistance Tom the federal government, he said te are projects which could be start4 Immediately by amendment to the 45 capitial budget. He He listed among
tor proiects 11 schools tor projects 11 schools or additions - chbools, $\$ 12,958,700$; three health ters $\$ 282,652$; eight hospital projt $\$ 12,254,059$; one terminal market, 1307,,2il, three sewage treatment ms, $84,214,800$; one sanitation garage, Msono, and four miscellaneous proj\$ $\$ 1,872,000$. Comptroller McGold4 pointed out the list had been preouly approved by the Board of Estiite and that, in fact, almost $\$ 10,000$,Mad already been spent on sites, *s or partial construction of these rijcis. Clereland - Acute shortage of engi45\% draftsmen, etc., is restricting acryins in structural shapes. Some fabxizrs report several months' lag be20 Inquiries and the time they can estimates. While extensive plans - bengy formulated for bridge and -sumiding construction, this work is zepected to get into high gear until ${ }^{4}$ in 1946 .

Reinforcing Bars

Reinforcing Bar Prices, Page 197
New York - Reinforcing steel-buying is headed by the award of 800 tons for a factory building for Schulton Inc., Clifton, N. J., through Walter Kidde Constructors Inc., to Bethlehem Steel Co. Another contract involves 276 tons for the Bell Laboratories, Murray Hill, N. J., awarded through the Mahoney Troast Construction Co., Passaic, N. J., to Truscon Steel Co. Still pending are 500 tons for a hospital building in Hartford, Conn., on which George A. Fuller \& Co. are the general contractors. New inquiry is priacipally in smali lots, although sizable work is in pros-
pect for later in the year.
Seattle-New interest appears in reinforcing bars and less in merchant bars as steel becomes available for other than military purposes. Washington state has placed a 157 -foot reinforced concrete bridge in Lewis county and culverts in Pend Oreille county, requiring 105 tons of steel. Bids are called for Sept. 25 for concrete bridges in Whatcom, Okanogan and Yakima counties, requiring 120 tons of reinforcing steel and a small tonnage of structurals.

Pig Iron . . .

Pig Iron Prices, Page 199
Pig iron supply is tight, with melters

Just off the press-shis 44 -page bulletin is a real contribution to engineering literature and should be in your files. It is an authoritative, well-illustrated treatise which makes clear (d) the mechanics of operation of dynamic adsorptive dehydrators (b) the characteristics which make solid adsorptive dessicants so efficient for the dehydration of air or gases, the drying of liquids, and for industrial control.
A wide variety of both standard and special units is also shown to illustrate how KEMP Dynamic Dryers can be profitably applied to your operations and processes.

KEMP PRODUCTS

Dynamic Dryers (adsorptive dehydrators) Nitrogen Generators = Inert Gas Producers Atmos-Gas Producers - Immersion Heaters

Flame Arrestors for vapor lines, flares, etc. The Industrial Carburetor for premixing gases Submerged Combustion Burners al Burners, and Fire Checks.

increasing requirements as labor becomes slightly more plentiful. Efforts to build inventories for winter meet little success but the effort causes full production to be shipped and reserves at furnaces are not being accumulated. Boston - While small volume of foundry iron is being shipped into this territory by two integrated steelworks furnaces, little additional tonnage is in sight and supply is tight. There seems to be only slight possibility the district furnace will go into blast before winter, thus eliminating that source of supply for emergencies, as was the case last year. Meanwhile Buffalo furnaces are delivering all the iron possible under current conditions and removal of the 30 -day inventory limit may prevent stocking of supply against. winter
needs. Melt tends upwatd slightly, limited by labor shortage. Several larger consumers, notably in the textile machinery field, are subcontracting castings widely.

St. Louis - Supply of pig iron is tighter, due to relining of furmaces and labor shortage. Declining scrap supply also has contributed to increased use of iron. Deliveries are delayed a month and shortage of open railroad cars threatens further delay this winter. Foundries have shifted to civilian production easily and only shortage of molders and common labor prevents enlarged output and consequent heavier melt of iron.

Buffalo - Pig iron melt is increasing as manpower supply improves. Orclers indicate increased foundry operations in.

COLD DRAWN STEEL TUBING

SPIRAL BRAZED
Sizes to $5 /$-jnch Outside Diameter

Low Carbon - Monel
High Carbon - Alloy

SEAMLESS
Sizes to $5 / 8$-inch Outside Diameter
Sizes to $5 / 8$-inch Outside. Diameter

High Carbon - Low Carbon
Monel • Alloy • Stainless

TUBULAR FORMS
Sizes to 4-inches Outside Diameter

Monel - Stainless

Low Carbon

Cold Rolled Strip coiled into Tubular Forms by new method

TUBING COMPANY

MILL: SPRINGFIELD, OHIO
Executive and Sales Offices:
1027 NEWARK AVENUE
ELIZABETH 3, NEW JERSEY
Chicago Office: 221 North La Salfe Street, Chicago, 1, Illinois
fourth quarter. Sellers report supply
tight, with consumer inventories gen erally low. Discretion is used in ship ments to assure material to all mell ers. Consumers are trying to build uf winter stocks but production has no allowed sufficient. Railroad castings pro ducers have substantial backlogs.

Birmingham - Pig iron production was down momentarily over the week end for repairs to a Sloss-Sheffield blas furnace but is back on an 18-stack basis Merchant iron producers see no easing i demand.

Pittsburgh-Indicated steady incress in foundry operations may largely offse reduced demand for pig iron in steelmak ing operations. Foundry interests nol increased demand from the automotive railroad and farm equipment industrie and expect still further gains. The 1 3 blast furnace at the Clairton works Carnegie-Illinois Steel Corp. was bloys in last week after being down for pairs since June 6. At present 44 out 54 units are pouring iron in this di trict, compared with 49 furnaces acti just prior to V-J Day.

Philadelphia - Although sulficie pig iron is available to meet requiremen the greneral undertone is strong as is believed by most proclucers that d mand will increase. Any easing in lib supply, especially at foundries, wou result in increased melt and conside able export demand is pending, Pr ducers generally have opened four quarter books, some earlier than usua i:1 an effort to gage domestic requir ments and obtain a better idea of abiti to handle export tonnage. Disposition all is to make sure they can handle d mestic needs first.

New York - Sentiment in pig ir here is stronger. While there is enous to meet current requirements, the te ing is that within another month ir will be in tight supply. District ir foundries have heavy backlogs and they are able to increase their labor or the next few weeks, as many hope be the case in view of war canceliatio and cutbacks at v-rious plants, th will be able to increase their requir ments.

One Buffalo furnace, which has be down since the early part of the y for repairs, and which, it was thous might be ready to go in blast in Augu is still out. The delay is reported be inability to get certain needed equ ment. However, even should this nace go in blast soon it may not of any immediate help to eastern sumers of foundry iron as another in ti district might promptly be switch over to silvery iron.

Scrap

Scrap Prices, Page 200
Pittsburgh - Leadins consumers still out of the market except for tak in tonnages on old orders. An oc sional car of turnings is moving at cents below ceiling, but this partici grade never has been a significant fac in indicating overall market trends. a few instances consumers refuse to the full springboard on this item. ern mills are paying full springbo and cummission on all grades as are leading consumers just nutside district. WPB is still allocating scr the recent Baltimore $\&$ Ohio railr
list involving only 2000 tons of heary melting steel to Otis Steel Co., Cleveland, aud the 8000 tons of heavy melting steel on Pennsylvania railroad's list slocated to Youngstown Sheet \& Tube Co., Youngstown.
Cleveland-Scrap prices are at ceiling nall grades, though borings and turnhes show some weakness, which is not hilly apparent as supply is small and demand light. Dealers and brokers find difficulty in obtaining sufficient matrial to apply on contracts and all scrap wialable is being taken promptly. In new of the scarcity shipments are off filly 60 per cent from the level of N days ago. Yards have relatively itle stock and mill reserves are light. foundries are seeking more tonnage but te unable to obtain usual supplies of ails and angle bars, which seem to be marcer than for a long time. Electric brace operators also are in the market ler additional scrap but do not find tonnage available.
Boston - Except for machine shop amings steelmaking scrap on limited bying moves at ceiling. Turnings and sired borings and turnings are down \$8, shipping point, with demand bht and production smaller, except atile shop turnings, some of which ue briquetted and used in equipment wilders', foundries. Most shipyard scrap mpears to have been liquidated, al3ough there are scattered lots to be dd. Unprepared steel scrap is flucuting at about $\$ 9$, with supply for rads limited. Strong demand holds cast and other foundry grades.
Detroit - Easing of prices on blast mace grades from ceiling levels by wut \$1 per ton is taken to be more a xlection of the withdrawal of Pittsburgh Valley furnaces from the market an any local condition. Some surplus y developing here as a result of these ryers cancelling tonnages, but it is Ft considered serious, and they are exxated back in the market momentarily, Howed by a return to ceiling prices on xnings and turnings. Weakness is defoping in low-phos plate for electric maces, which is understandable in * face of wholesale cancellations of Lay tonnages allocated for aircraft uses. wwever, this has not developed to the pont where any revision of the pubhed price is indicated.
Priladelphia - Steel scrap prices are Eady at ceilings, except on unprepared merrial, which has declined further. Teen there is sufficient labor to procWhis scrap there may be an easing nt this is not expected unless there is tieak in upward trend in steelmaking. Vew York - Scrap demand continues wisk Bethlehem Steel Co. prinpal buyer, covering for practically all 8.plants. Some export demand is notT with some business in specialties, Tod as axles, concluded for shipment Scuth America.
${ }^{31}$ Louis - Scrap shipments to this san no improvement and are at 2575 per cent less than six weeks ago. hindes of all but cast grades are suffi2hl) however, due to mill cutbacks in furnace repairs. Most melters have recing 45 days supply. Melters are War sho sho orders and cancelling none. - or shoriage gives little hope of im${ }^{3}$ ared supply. Prices remain at ceilexcept for machine shop and short beltigg tumings, which have eased
to $\$ 8.50$ and $\$ 10.50$, respectively, though Chicago orders continue to be filled at the Chicago ceiling of $\$ 10.60$ and $\$ 12.00$. Diminishing supply due to orduance plant closings had maintained prices.

Cincinnati - The iron and steel scrap market is still marking time, but the approach of winter and assurance that steelmaking will be maintained at high level are two factors bringing strength despite rather dilatory demand. Some softness has crept into lighter grades. Good railroad scrap, cast, and some of the specialties, however, are actively sought. Labor problems in yards have not yet been solved.

Buffalo - Additional strength has developed in steel and iron serap as two
consumers broke the deadlock in turnings by purchases at ceiling, offsetting refusal of a leading consumer to accept turnings in current deliveries. Movement is considerable as dealers make shipments against recent substantial contracts. Much tonnage is expected by lake before navigation closes, a cargo of 5000 tons having just arrived, with 2500 tons by barge canal and another on the way.

Steel in Europe

London - (By Radio) - Production of steel in Great Britain is increasing as industry reconverts to civilian work. Export business covers sheets and railroad material for European countries.

Like hydraulic presses of numerous other leading makes, the Stokes 50 -ton completely automatic plastics molding press (illustrated) is equipped with a Ross Oil Cooler.

This particular press is adequately cooled by one of the smallest Ross Standard Coolers -a BCF No. 212. It measures only $14 \times 27 / 8$ inches overall. Yet, the compactness and lightness of weight in no way sacrifice heat transfer efficiency and durability. Performance is guaranteed. A large factor of safety covers peak loads. The design is sturdy.

BULLETIN 5022 offers full details with performance curves. For larger requirements, request also BULLETIN 4922.

ROSS HEATER \& MFG, CO., INC.

Dinmen of Amman Rxpuron \& slarday saviturs comananow
1431 WEST $A V E$.
BUFFALO 13, N. Y.

Light foundries need more pig. iron. Scarcity of semifinished steel is becoming more marked. The sheet market continues its high activity.

Warehouse

Warehouse Prices, Page 198
Buffalo - Although demand for warehouse items is well sustained inventories are improving as a result of better mill shipments. Galvanized and hot-rolled sheets and steel bars are among the tightest items, with deliverics into next year.

Boston - Steel demand for warehouses is slightly heavier, mainly for flat-rolled spot lots for reconversion fillins. Jobbers are short of most sheet grades, strip and wire products. While
there are some mill order revisions, practically all warehouse orders on mill books for delivery this year are firm. A leading alloy distributor has revised specifications with suppliers, replacing considerable NE tonnage with SAE grades.

By-Product Coke Ovens Are Ordered for Lorain Works

Contract for 177 by-product coke ovens to be installed at its Lorain, O., works has been placed by the National Tube Co., U. S. Steel subsidiary, with the Wilputte Coke Oven Corp, New York. The addition will consist of three batteries of 59 ovens capable of produc-
ing 850,000 tons of coke annually. Facilities will include by-product recovens equipment. The project will be com pleted in 18 to 22 months. At presen the Lorain works has 208 by-produc ovens.

Bolivian Tin Prices To Decline Under New Contrac

A new Bolivian tin purchase con tract has been signed, covering deliverie from July l, 1945, to June 30, 1946 with: all: Bolivian producers except the Patino interest, Foreign Economic do ministration announced last week.
Price for the three months endin Sept. 30,1945 , is based on the previou contract price of 63.50 cents a poun for refined tin in the United States an for the three succeeding quarters at 62.0 cents, 60.50 cents and 58.50 cents, re spectively. Half of the Patino tin pri duction for 1945 is being purchased b the United States Commercial Co., govermment agency, under a separat contract and discussions are being hel regarding a similar purchase contract f 1946.

STRUETURAL SHAPES ...

STRUCTURAL STEEL PLACED

2840 tons, axle plant building No, 5, Pontia Mich, for Pontine Motor Division, Gener Motors Corp., to Bethlehem Steel Co, Beî́ lehem, Pa.; bids Aug. 28.
1200 tons, mill building for Lees Cochran Corm Glasgow, Va., to Belmont Iron Works, Edad stone, Pa .
600 tons, plant addition for Merck \& 0 Elkton, Va., to Belmont Iron Works, Ed stone, Pa., through Merritt, Chapman Scott, New York.
600 tons, building for Westinghouse Electre Corp., East Springfield, Mass., to Bethlebe Steel Co., Bethlehem, Pa.; Stone \& Webs Corp., Boston, engineer, contractor.
400 tons, power plant, Chicago, for Sberwi Williams Co., to Hansell-Elcock Co., cago.
300 tons, building for Dehydrated Oran Juice Co., Orlando, Fla., to Ingalls in Works Co., Birmingham, Ala.
300 tons, plant addition for Caloric Gas Sto Works, Topton, Pa., to Bethlehem Steel C Bethlehem, Pa.
160 tons, addition for Merck \& Co., Hathe N. J., to Bethlehem Falbricators, Betileter Pa., through Merritt, Clinpman \& Scots, York.
Unstated tonnage, structural work, crane way, north of building 541 , Navy Yar Philadelphia, to American Bridge Co, Pit burgh, $\$ 15,300$, spec. 17013, Bureau Yards and Docks, Navy Dept.

STRUCTURAL STEEL PENDING

1800 tons, bus service station, Detrol. Great Lakes Greyhound Lines.
1000 tons, four warehouse buildings, vario locations, for Lloyd C. Fry Roofing C Chicago.
900 tons, hox factory, Hinde \& Dauch Pap Co. at Waltham, Mass.
650 tons, repairs to First street bridge, 100 ville, for Illinois Central Failroad; b Sept. 17.
500 tons, warehouse, Chicago, for Lafaye Steel Corp.
500 tons, pilot building, Argo, Ill, for C Products Refining Co.; general contract Ragnar Benson Inc., Chicago; bids Aug, 500 tons, Wynnewood Apartment, Philadelpl St. Mary, Kans., for American Salt Corp., subsidiary of Cudahy Packing Co.
400 tons, warehouse, Memphis, Tenn., for J. E. Dilworth Co.
$: 00$ tons, paint and test building, La Grange, iII., for Electro Motive Division, General Motors Corp; bids Sept. 14.
300 tons, bleach plant, Cloquet, Minn, for . o rthwest Paper Co
178 tons, state bridge over Erie railroad tracks at Warren l'oint, N. J.; bids Oct. 3.
Wo tons, addition to maintennnce shop, New York, New Haven \& Hartford railroad, at Xew Haven, Conn.
150 tons, plate gircler span, route 35 , section 38日, over New York \& Long Branch rail10ad, Morgan, N. J.; bids Sept. 26, state highway commissioner, Trenton, N. J.; work takes approximately 25 tons reinforcing steel. 0 tons, New Jerscy state highway bridge orer New York \& Long Branch railroad, Sayerville, N. J.; bids Sept. $2 G$.
130 tons, state bridge at Templeton, Mass.
100 lons, lighting towers, Braves Field, Boston. 10 tons, two bridges, Arlington Mills, Lawrence, Mass.

REINFORCING BARS

REINFORCING BARS PLACED

0 tons, Schulton Inc., Clifton, N. J., through Halter Kidde Constructors Inc., to Bethlehem Steel Co., Bethlehem, Pa.
Otons, two warehouses for North American Marchouse Co., Linficld, Pa., to American Steel Engineering Co., Philadelphia.
6 tons, addition, Bell Lnboratories, Murray Hill, N. J., through Mahoney Tronst Constriction Co., Passaic, N. J., to Truscon Steel Co., diew York.
18 tons, diagnostical hospital, Elgin, Ill., for U. S. Veterans Administration, to Bethlehem Steel Co., Bethlehem, Pa.; W. E. O'Neil Construction Co., Chicago, contractor; bids Aug. 14.
tons, grain elevator, Reading, \mathbf{O},. for Cooperative G.L.F. Mills Inc., to Truscon Steel $C_{0 .,}$ Youngstown, O.; James Stewart Corp., Chicago, contractor.
118 tons, building 100 , Pullman-Standard Car Uf. Co., Chicago, to Ceco Steel Products Corp., Cicero, Ill.; Sumner S. Sollitt \& Co., Chicago, contractor; bids Aug. 30.

REINFORCING BARS PENDING

wis lons, new plant, Newman-Rudolph Litho Co., Chicago; bids Sept. 13.
58 lons, wire fabric, for Illinois State Highway Conmission; 301 tons, FA route 13 Sec . ${ }^{2-2}$, Lawrence county, I11., and 171 tons, 5 Se. $3-2$, same route; 185 tons, FA route $5 \mathrm{Sec} .20-\mathrm{R}$, Logan county, Ill., and 321 the, Sec. $18-\mathrm{H}$ and $17-\mathrm{R}-1$, same route in Mclean county, Ill.; bids Sept. 14.
\% lons, tumor treatment hospital, Hines, Tll., for U. S. Veterans Administration; bids Segt. 11.
10 tons, bars for road project for state near Eunden, N. J., Route 25, sections 2-D and 3-D.
Itons, bridge, Milan, III., SBI route 3 Sec . ${ }^{17-\mathrm{B},}$ for State Highway Commission; bids Sept 14.

- tons, state bridges in Whatcom, Okanogan थd Yakima counties, Wash; bids to highway cmmission, Olympia, Sept. 25.
. 4 tons, 157 -foot concrete bridge and culNets in Lewis and Pend Oreille counties, Washiugton; general contracts to Rumsey \& C_{2}, Seattle, and Henry Hagman, Cashmere, Hach

RPE

CAST IRON PIPE PLACED
I tons, 8 -inch, Boston, to Warren Foundry
A Pipe Co., Everett, Mass.
is tons, 6, 8 and 12-inch for Boston \& Maine
railroad, to United States Pipe \& Foundry Co., Burlington, N. J.

CAST IRON PIPE PENDING

1000 tons or more, 15,000 feet 12 -inch and 7000 feet 7 -inch Class 150, for Everett, Wash.; second bids opening Sept. 12.
800 tons, 4 to 16 -inch pit-cast, for Navy Yard Annex, South Boston, Mass.
Unstated, 2000 feet 16 -inch steel pipe, for bremerton, Wash.; bids Sept. 12.

RAlLS, CARS

hailhoad cars placed
Canadian Pacific, 75 seventy-ton air-dump cars, to National Steel Car Corp., Hamilton, Ont. Chicago, Burlington \& Quincy, two stainless steel streamlined passenger trains, to Edward G. Budd Mfg. Co., Philadelphia; each train
will consist of four chair cars, a diner, a comlinationt baggage and buffet car and a parlor-lounge car.
Missouri, Kansas \& Texas, 50 seventy-ton rovered hopper cars, to American Car \& Foundry Co., New York.
Texas \& Pacific, 25 seventy-ton covered hopper tars, to American Car \& Foundry Co., New York.

LOCOMOTIVES PLACED

Chicago, Burlington \& Quincy, ten 4000horsepower diesel-electric passenger loconotives, to Electro-Motive Division, General Motors Corp., La Grange, 111.

RAILS PLACED

Southorn Railway System, 40,000 tons, to Ensley, Ala., mill of Tennessee Coal, Iron \& Railroad Co., Birmingham.

For better steel. . and more of it

YOU find Hays Series "OT" Pressure Recorders on many new and modernized open hearth in-

 stallations-and for just one purpose: to make a permanent record of furnace performance. Guesswork is eliminated, man power saved, and rejects cut to the minimum.On the 10 -inch 24 -hour charts you can have a record of two draft values, two pressure values, two differential values or any combination of two of those three values.

Here's a simple practical means to more effective control of steel quality. Better get the facts about it-send for Bulletin 43-586.

CONSTRUCTION AND ENTERPRISE

оніо

BeLLEVUE, O.-Genernl Electric Co., Lamp Works, 1133 East 152nd St., Cleveland, has let contract to Steinle-Wolfe, Inc., Fremont, O., for an addition to cost about $\$ 260,000$.

CLEvELAND-Titan Valve \& Mfg. Co., 9913 Elk Ave., has bought site at East 222 nd St., and Tungsten Hd., Euclid, O., and wild build modern plant to which it will remove.
CLEvELAND United States Compressor Co., 5300 Harvard Ave., his been bought by Harold O. Schott and associates, Cincinnati, who will continue operations with same personnel. Company manufactures air compressors. R. L. Bacher continues as president. CLeveland-Obio Bell Telephone Co., War-
ren H. Chase, chief engineer, 750 Huron Rd., has plans for $\$ 100$ million statewide expansinn, including service to 950,000 new subseribers.
Cleveland - Colonial Refining \& Chemical Co. has been incorporated with $\$ 25,000$ capital to manufacture paints and chemicals. S. A. Lloyd, 1600 Williamson Bldg., is agent. CLEVELAND-H. \& P. Stamping Co. bas been incorporated with $\$ 50,000$ capital and 1000 shares no par value by H. \& P. Mig. Co., 13945 Triskett Rd., Edw. W. Petranek, president.
CLEVELAND-Parma Stamping \& Die Co., Hobert J. Vanstone, president, 5265 West 130th St., is having plans made for a onestory plant building to cost about $\$ 30,000$.

REDUCE TURNINGS 10 CHIPS for Campact Starage!

The AMERICAN RING TURNINGS CRUSHER reduces metul turnings bulk by $\mathbf{3 0 \%}$ to $\mathbf{8 0} \%$

 according to chip size
- Saves time and labor

- Saves shipping space
- Reclaims more cutting oil

No. 2400

- For better briquetting

The reduction of lurnings bulk to chips for easy hondling and compact storage and for betier prices is a sound operation when done rapidy and economically. American King Tuning Crushers areespecially builh for this purpose. Their excluSive fechures assure low operating costy fast output and rouble free operation: Tumings reduction is done with a mini= mum of power by Americon's Shredder Rings whith reduce turnings by centrifugel force at right angles to a horizontol shofir Capacities from 1 to 8 tans per hour.

Only American Ring Crushera offer the shredder ring action of reducing turnings by splitting reducing turnings by splting in uniform chiph and no cloggingShiform chipa and no clozging. Shredder rings revalve reely at terrific centrifugal foree and delect, unharmed, in contact with tramp metal. No shear pins or conventional bafety
require attention.

Write for Informational Literature and Specifications

CLEVELAND-Transformer Engineering Corp. Fulton Rd., will build a one-story machin shop 100×100 feet at Brookpark Rd.
COSHOCTON, O. General Electric Co., Pilt field, Mass., plans erection of a plastics plan here at cost of over $\$ 4$ million.
DAYTON, O.-General Motors Frigidaire, Di vision, General Motors Bldg., Detroit, plar an 880 -foot addition to plant No. 4 Moraine City, to cost about $\$ 1,532,000$.

ELYRIA, O.-Elyria Foundry Co. will build plant addition for use as a core room.
LIMA, O.-Lennox Fumace Co., 651 Non Baxter 8t,, has let contract to H. U. Tuth Construction Co., Elm and Central Sts., a one-story 70×235-foot plant addition cost about $\$ 50,000$.
SANDUSKY, O.-Procter \& Gamble Co., C cinnati, will build soap products plant here West Market and Pearl Sts., to cost about million.
WARREN, O.-City, City Hall, will vole November election on $\$ 200,000$ bond isr for a municipal incinerator plant. W. Harvey, City Hall, is city engineer,
WILLOUGHBY, O.-Ohio Rubber Co., B Hur Ave., plans a one-story 150×480-10 coal storage addition costing $\$ 350,000$; on story 44×92-foot bailerhouse addition, cluding coal slides, conveyor, power boil and ash-handling system, costing $\$ 190,00$

MASSACHUSETTS

EVERETT, MASS.-Monsanto Chemical O 1700 South Second St., St. Louis, plans plant here for manufacture of a chemic product at its Merriman plant, estimated cost $\$ 450,000$.
INDIAN ORCHARD, MASS.-Monsanto Chen ical Co., Monsanto Ave., plans a power pla addition including boiler, to cost over $\$ 50$ 000.

WALTHAM, MASS.-Public works departoen City Hall, has plans by J. R. Worcester Co 79 Milk St., Boston, for a rubbish and retudisposal incinerator. Whitman \& Howan 89 Broad St., Boston, are engineers.

CONNECTICUT

BRIDGEPORT, CONN.-Henico Plastics D vision of Bryant Electric Co., 1421 State has plans for in manufacturing building add tion costing $\$ 300,000$.
WALLINGFORD, CONN.-Wardens burgesses, Town Hall, are having plans mac for a sewage disposal plant to cos! abo $\$ 200,000$.

RHODE ISLAND

PROVIDENCE, R. I.-New Method Platir Co., 112 Elm street, has plans by Barker Turoff, 1022 Grosvenor Bldg., for a thr story 62×80-foot plant on Allens Ave., cost $\$ 40,000$, including equipment.
PROVIDENCE, R. I.-Genser Mfg. Co., Waldo St., has let contract to josept Flynn, 112 Lenox Ave., for a one-siuis 60 60 -foot boiler plant and chimnes, to about $\$ 40,000$.

VERMONT

ST. ALBANS, VT.-National Carbon Co ., IDC Box 6087, Cleveland, has let contract Gillmore-Carmichael, Olson Co., Dex 11 Cleveland, for a one-story $160 \times 500-13$ factory building, to cost about $\$ 300,00$

NEW YORK

BUFFALO-Hinde \& Dauch Paper Co, bought site for erection of a plant addition cost about $\$ 150,000$.
SCHENECTADY, N. Y.-American Iocoul tive Co., Erie Blvd, will build a tool buil ing costing phout $\$ 300,000$. J. L. Otte beimer, 373 State St., Albany, N. Y., is evs neer.
SYRACUSE, N. Y. - General Electric C

NOW!

This New

 Low-Cost Aid For WELDING共领Cost records prove it! The PGH WP- 2 Welding Positioner speeds up welding - cuts costs on all kinds of jobs. It's the most versatile - the easiest to operate positioner - is available now at a cost that will surprise you! Get all the facts ... see how the P\&H WP. 2 will fit in your welding picture -to save all along the line.

- 2,500-pound capacity
- Surprisingly low cost
- Yersatile - handles all kinds of jobs
- Simpla and easy to operate
- Manual, handwheel for power table turning
- Easy-working telescopic elevation
- Hydraulic power table tiling
- Large table area - with handy slots
- No exposed gearing
- Portable or column-in-floor mounting - Plus many other time, money-saving features

Write for tree bulleHARNISCHEECERE

for 40 Years

ADependable Source For Parts Like These RMIICS STAMPIICS

M. D. HUBBARD SPRING COMPANY

[^7]
NOW BEING DONE IN America's leading INDUSTRIAL PLANTS

In a few minutesIn your own plantDAMAGED GALVANIZED SURFACES

Repaired Good As

 New!
AMCO bonds perfectly - and PERMANENTLY

 COSTS ONLY $2 \not \subset$ TO COVER A SQUARE FOOT-absolutely guaranteed!Used by such firms as: Dupont, Electric Boat Co., Swift \& Co., U. S. Navy Yards, New York Shipbuilding Co., Jos. P. Cattie \& Son, Hanlon-Gregory Galvanizing Co., American Car \& Foundry, and many others.
Equal in strength and corrosion resistance to the original hot-dipped galvanized surface. Meets U. S. Army \& Navy specifications, including the 600 hour 20% salt spray test. Easily applied by unskilled labor. Bonds perfectly to base metal without damage to surrounding galvanizing. One dollar's worth can save you equipment worth thousands of dollars!

Permanently repairs damage caused by welding, forming, bending, fabricating, riveting, threading, abrasion, assembly.

AMCO

GALVANIZING COMPOUND

American Solder \& Flux Co.

2153 E. Norris St., Philadelphia 25, Pa.
Please mail us Bullerin 52 which gives full details on the use of Amco Galvanizing Compound.
Individual

Company

Street
City
State.

Rive Rd., Schenectady, N. Y., has plans by Giffels \& Vallett Inc., Marquette Bldg., Decroit, for superstructure for industrial development, to cost about $\$ 8$ million.

NEW JERSEY

LINDEN, N. J.-Standard Oil Co. of New Jersey, 30 Rockfeller Plaza, New York, has let contract to George A. Fuller Co., 597 Madison Ave., New York, for a research center of eight buildings, estimated to cost about $\$ 8$ million.
NEW BRUNSWICK, N. J.-Triangle Conduit \& Cable Co. Inc., Jerscy Ave., New Brunswick, fias let contract to Tumer Construction Co., 420 Lexington Ave., New York, for a one-story 100×325-foot plant addition at Jersey and Triangle Aves., to cost about $\$ 275,000$. Alexander D. Crossett \& Associates, 512 Fifth Ave., New York, are architects.

PENNSYLVANIA

ALbION, PA.-Hays Mfg. Co., 801 West Twelfth St., will build a one-story foundry for gray iron castings manufacture, at cost of about $\$ 40,000$.
CORRY, PA.-Corry-Jamestown Mfg. Corp., 36 North First Ave., plans alterations and additions to cost about $\$ 51,000$.
ERIE, PA.-Merwin Mfg. Co., William Decker, president, 1819 German street, is rebuilding steel stmmings plant recently burned, at cast of $\$ 50.000$ or more.
MEADVILLE, PA.-Palmer Bros. Tool \& Forge Co. will build a tool shop addition costing about $\$ 20,000$.
PITTSHURGH-lleppenstall Co., 4620 Hatficld St., will build a two-story research laboratory at Hatfield and 46 h Sts., costing abotit $\$ 170,000$.
SHARON, PA.-Mercer Tube Co. has plans for a one-story plant building 75×175 fect. to cost about $\$ 75,000$.

MICHIGAN

DETIROIT - Micromatic Hone Corp., 8100 Schoolcraft Ave., will build a one-story plant addition for grinding machine parts, to cost about $\$ 175,000$.
Detroit - Packard Motor Car Co., East Grand Blvd., plans a structural steel motor plant addition costing about $\$ 200,000$.
FLINT, MICH.-Chevrolet Motor Co., Flint, will build a 73×875-foot plant addition costing about $\$ 400,000$.

PONTIAC, MICH.-Pontiac Division, General Motors Corp., will build a plant addition for axle manufacture, costing about $\$ 200,000$.

ILLINOIS

FREEPORT, ILL.-City, City Hall, is having plans made for a one-story water softening plant to cost about $\$ 140,000$. Consoer, Towasend \& Associates, 211 North Wacker Dr., Chicago, are engineers.

INDIANA

FORT WAYNE, IND.-Spicer Mfg. Co., 4100 Bennett St., Toledo, O., has let contract to Wermuth Inc., 1036 St. Marys St., for a onestory 400×500-foot factory building, $50 \times$ 100 -foot cafeteria and 50×300-foot office building, estimated to cost $\$ 1,250,000$. Bentley \& Sons, 201 Belmont St., Toledo, O., are engineers.
FORT WAYNE, IND.-Wayue Pump Co., Tecumseh St., has let contract to Buesching \& Buesching, 1426 St. Joe St., for a one-story 40×80-foot shop building, to cost about $\$ 40,000$.
KOKOMO, IND.-Delco Radio Division, General Motors Corp., Home avenue apd Belt Linc, plans a two-story plant costing over $\$ 100,000$.

MARYLAND

RELAY, MD.-J. E. Scagram Sons, Seventh

Sticet Hd., Louisville, Ky., have let contract to Baltimore Contrnctors, 711 South Central Ave., Baltimore, for a four-story boiler plant 54×195 feet, to cost over $\$ 200,000$.

VIRGINIA

ELkTON, VA.-Merck \& Co., Inc., 126 East Lincoln Ave., Raliway, N. J., has let contract to Merritt-Chapman \& Scott Corp., 17 Battery Pl., New York, for additions to Stoncwall plant, to cost about $\$ 3$ million.

WISCONSIN

MILWAUKEE-Marquette Cement Mfg. Co., 150 South Dearborn St., Chicago, plans a 25×92-font reinforced concrete cement storage buibding with eight silos, to cost about $\$ 250,000$.
LA CROSSE, WIS.- Northern States Power Co., 122 Fifth Ave., plans a power plant to cost about $\$ 1,285,000$
WAUWATOSA, WIS.-Westerm Metal Specialty Cc., 3043 North 30th St., Milwaukee, has let contract to W. W. Oeflein Co. Inc., 5345 North Hopkins St, Milwaukee, for a one-story 200×425-foot plant, to cost about $\$ 138,000$. H. L. Mesmer, 231 Wisconsin Ave., Milwaukee, is architect.

minnesota

HOPKINS, MINN,-Superior Separator Co., C. G. Gray, president, 1179 Fifteenth Ave., S.E., has let contract to HI. N. Leighton Co., 716 South Seventh St., Minneapolis, for a onestory 90×340-foot factory portion and two story 40×100-foot office portion, estimated to cost about $\$ 100,000$. C. W. Farnham, 7028 Oak Grove Blvd., is architect.
INTERNATIONAL FALLS, MINN.-Minnesota \& Ontario Paper Co., Minneapolis, Donald D. Davis, president, is building a twostory research laboratory 95×140 feet, to house laboratories and research facililies for paper, pulp and insulation and space for pilot plants.
MINNEAPOLIS-Midwestern Metal Products Co., 3232 East 40 th St., manufacturer of tools and metal stampings, has let contract for a one-story plant addition.
MINNEAPOLIS - American Refrigerator \& Machine Co., 615 North Third St., has let contract to L. Pavlo, 6413 19th Ave., for a one-story 140×162-foot plant and warehouse at 2700 University Ave., N.E., to cost about $\$ 50,000$. Long \& Thorsov, 1200 Second Ave., S., are architects. (Noted Sept. 10.)
MOORHEAD, MINN.-Minn-Kota Foundry Mfg. Co., 201 North Second St., Fargo, N. Dak,, has let contract to J. E. Krieg \& Son, 1920 Front St., Fargo, for a part one-story 60×150-foot and part two-story 80×120 foot foundry, to cost about $\$ 50,000$. A. R. Melander, 603 Alworth Bldg., Duluth, is architect.
ST. CLOUD, MINN-Franklin Transformer Mfg. Co., Sinneapolis, manufacturer of battery chargers and testers, welders, motors and other electrical equipment, has bought former Pan Motor Co. plant for manufacture of frozen food cabinets and other houschold equipment. Guy L. Pugh is president.
WILLMAA, MINN.-City, E. H. Brogren, clerk, will open bids Oct. 8 for steam generating unit in extension to municipal power plant. Pfeifer \& Sclultz, Wesley Temple Bldg., Minneapolis, are engincers.
WORTHINGTON, MINN.-City, G. S. Thompson, clerk, has let contract to Power Service Corp., Wesley Temple Bldg., Minneapolis, for extensions and improvements to municipal power plant, on bid of $\$ 405,700$. Ralph D Thomas \& Associates, 1200 Second Ave. South, are engineers.

KANSAS

KANSAS CITY, KANS.-Oliver Corp., manufacturer of agricultural machinery will let contract soon for one-story branch plant 200×356 feet, to cost about $\$ 300,000$.
KANSAS CITY, KANS.-Colgate-Palmolive-

Peet Co. plans six-story plant aulutu
75×120 feet. Albert Kahn Inc., Marqueth Bldg., Detroit is architect and enginee Cost is estimated at $\$ 1$ million.
Kansas CITY, KANS.-Cities Service Gas C Oklahomn City, Okla., plans 31 miles 20 -inch domestic gas line at cost of $\$ 700,000$ also expansion and improvement of cos pressor station at Welda, Kans., at cost $\$ 200,000$.
MULLINVILLE, KANs. - Northern Nalur Gas Co., Omaha, Nebr., plans natural 8 compressor station here, to cost over $\$ 10$ 000.

VICHITA, KANS.-Wichita Wire Products 0 has let contract for a one-story plant 40 70 feet.

TEXAS

BUAKBURNETT, TEX.-City, City Hall, ph sewage disposal plant costing $\$ 35,000$ a sewer collection lines costing. $\$ 40,000$. J. Ward, Harvey-Snider Bldg., Wichita Fa Tex., is engineer.

CALIFORNIA

BURBANK, CALIF. - Johnson Aircraft lo Fort Worth, Tex., will build an aircralt tory' near Burbank for production of row civilian sports planes. R. S. Johnson is pre dent.
BURBANK, CALIF.-Coast Sheet Metal Wot has building permit for a concrete st luilding 75×138 fect at 59 East Ora Grove Ave., to cost about $\$ 24,000$.
LOS ANGELES - Ace Plating Works, Crocker St., has let contract to Robert Stewart, 4346 Allott Ave., Sherman Ua Los Angeles, for a factory and wareho building at 719 Towne Ave.; 50×110 to cost about $\$ 16,000$.
POMONA, CALIF,-Pomona Machine Wor 163 East Commercial St., has building p mit for a plant addition covering 2700 squ feet.
SOUTH GATE, CALIF.-General Motors Co 2700 Tweedy Ave., has awarded conu estimated at $\$ 1,500,000$ to Swinerton \& berg, 605 West Olympic Blvd., Los Anse for plant reconversion to motor car ma ture.
VENICE, CALIF.-Aero Components, West Century Blyd., has let contract to Wright, 6238 San Vicente Blvd., Los Abo for a plant addition 50×100 feet.

OREGON

PORTLAND, OREG,-Northwest Sales distributor of metal conduits, wite and e trical equipment, has low bid of 335 , from Charles Shoblom for a $100 \times 100-2$ reinforced concrete warehouse building.
SALEM, OREG.-State highway commiss plans survey for proposed steel bridge 0 Willamette river at Independence, Orob cost an estimated $\$ 600,000$.
SALEM, OREG.-Oregon Pulp \& Paper Co. let contract to Donald M. Drake, Portis Oreg., for rebuilding of bumed plant " loss of about $\$ 200,000$. Shapes and reinfo ing steel will be involved.
SPRINGFIELD, OREG. - Willamette Vis Wood Chemical Co., through F. j. Tw industrial engineer, has rejected bids and readvertise for steel and copper pipe.

WASHINGTON

BELLINGHAM, WASH.-Bellingham Works has received priorities for a prop $\$ 280,000$ cold storage plant. Hovin Ulrich, architects, are preparing pians. frigerating equipment is understood io $C 0$ been awarded to York Ice Machinery York, Pa.
EVERETT, WASH, American Ice Storage Co., M. A. Lewis, manager, ing plans made for an add.

1. B. EQUIPMENT PERFORMS FAITHFULLY IN SCORES OF INDUSTRIES

INDUSTRIAL BROWNHOIST CORP., BAY CITY, MICH. District Offices: New York, Philadelphia, Cleveland, Chicago Agencies: Detroit, Birmingham, Houston, Denver, Los Angeles, San Francisco, Seattle, Vancouver, B.C., Winnipeg, Canadian

Brownhoist Ltd., Montreal, Quebec.

The three I.B. High-lift Electric Car Dumpers (left) installed at a Great Lakes coal dock typify the engineering and construction superiority that has made the name, Industrial Brownhoist, one of the most respected of manufacturers of heavyduty material handling equipment. These giant dumpers empty sixty 120 -ton capacity coal cars per hour-one a minute!-easily, cleanly, at low cost. - An important feature of I.B. gasoline and Diesel Locomotive Cranes-(below) known the world over for dependable low-cost performance with magnet, hook, or bucket-is the patented Monitor-type cab which permits 360° visibility. Regardless of your material handling needs, get the facts first from I.B.

MECHAMICAL POWER PRESSES

HORN . RECLINABLE . STRAIGHT SIDE
ROLL AND DIAL FEEDS.DOUBLE ACTION DOUBLE CRANK • PUNCHING . TOGGLE

Our Specialty: Patent Percussion Power Presses
ZEH \& HAHNEMANN CO.
56 Avenue A.
Newark, N. J.

FOR SMOOTH-RUNNING Precision Drives Drallosisical INY OUANTITY

$\mathrm{I}_{\text {Tprosk }}^{\text {T doesn't pay to skimp on gears, racks or }}$ 1 sprockets-the best always pay in the long are of the finest, being accurately cut to specifications and rigidly gauged, inspected and tested, to offer greatest mechanical efficiency. Why not send your next order to "Indus. srial" and note the difference! Catalog and

INDUSTRIAL GFAR MFG. CO. 4545 VAN BUREN STREET CHICAGO 24, ILLINOIS

(1) H: 由RTCLS with

EADY-POWER
THE GAS-ELECTRIC POWER PLANT FOR ELECTRIC TRUCK OPERATION
${ }^{\text {Tw }}$ READY-POWER ${ }^{\text {ca }}$
ing grand river avenue - detroit 8, michican

BOSS Bolts and BOSS Lock Nuts have been specified consistently for more than a third of a century by car builders, locomotive build-
 ers, and by railroads.

BOSS makes a complete line of standard bolts and nuts-and the economical, dependable BOSS Lock Nuts.

> BOSS Bolt \& Nut Company 3403 West Fexty-Seventh St. Chieage DIVIsion or

THE LOCK NUT CORP. OI AMERICA

TAYLOR-WHARTON IRON Aso STEEL COMPANY HIGH BRIOEE, N. J. \& EASTCN, PA.
CyInder Sales Offlec: 110 tast 4zad SI. New Yorh 17, N. Y.

CUT GEARS

All Types and Sizes
Baldwin Roller Chain and Sprockets
Heat Treated Alloy Steel Gears to Customer's Specifications
Special Gears and Special Gear Units
PITTSBURGH GEAR \& MACHINE CO.
2680-2700 Smallman St., Pittrburgh, Pa.

THE SIMONDS GEAR \& MFG. CO.

\& SIN...NG . TGH 25 TH STREET, PITTSBURCH, PA.

ON ALL＂ONE AT A TIME＂ PRESS OPERATIONS

because：

1．Fragile parts breakage eliminated．
2．Operations uniform onee pressure is sel．
3．Stops rejections due to irregular pressure． 4．Operator simply inserts wark－presses control－removes purt．
5．No＂breaking－in＂for inexperienced help． 6．No production lag due to operator fatigue．

Air－Hydraulic presses，with Con－ trolled Pressure，give Efficient，Eco－ nomical and Dependable perform－ ance．

FOR COMPLETE DETAILS－WRITE

JACKSON，MICHIGAN

夫 \star 大 \star 大 大 \star

use headed and threaded fastenens for economy and rellabluth

Alloy Steed BOLTS • IUTIS STUDS

Every standard alloy steel fabricated into bolis，nuts，studs and many special fasten－ ings．Accurately made in standard dimen－ sions or to meet your specifications．

MANUFACTURING GOMPANY

 327 Pine Street．Pawtucket，R．I． 4fciene 3 the place to solve your solt problems

Eliminate arched-over and plugged bins, hoppers and chutes-assure a steady, free flow of material.

The vibrator shown above is facilitating the flow of ore through an 8 ft . by 24 ft . chute, made of $13 / 8^{\prime \prime}$ plate.

SYNTRON

"Vibra-Flow"

VIBRATORY FEEDERS

Provide rheostat control of flow of ore, sinter, chemicals, etc., to ball mills, crushers, driers, belt conveyors.

Capacities of from OUNCES to 500 TONS per hour.

Write for illustrated folders SYNTRON CO.

ENGINEERED TO THE JOB .. PRECISION MADE FOR EXACTING PERFORMANCE

MHSTEKTVKM

HIGH-SPEED

*Mastercased CUTTINGTOOLS

Weet the Challenge

* Mastercasimg.

 That's our improved super-heat-treating process which adds to the life of Materform cutting tools ...will multiply your production...will divide your costs per cut. Want proof? Write, wite or phone for name of nearest-to-you factory representa: tive,., or without the slightent obligation, send specifico tions for ostimates and completo information
MASTERFORM TOOL CO.

2538 IRVING PARK ROAD • CHICAGO 18, ILL.
OHTSFAMDING ENGINEERIHG SERVICE AHD CRAFTSMAMSHIR

GRINDING WHEELS AND THEIR USES

Second Edition - Second Printing

Second Edition, completely revised. Spansored by the Grinding Wheel Manufacturars Association. 436 poges. 29 chapters, 5 appondices, 436 illustrations and fig. ures. Fully indexad. Price $\$ 3.00$ Postpaid. (Pplus odditional 9e for stare sales tax on orders for delivery In Ohio)

By Johnson Heywood

- The New book of "XNOW HOW" that "TELLS HOW"-a practical vio ume for overy man interested in mood ern erinding methodi and application.

Today's production with a promium on "Know How". deponds on weo that can do a lob, or know where k find out how to do it.
"Grindiny Wheels and Thair Unea" covers the entire field of rindiay. atudy of the twentr-nino ionafion beads will show how broad to 100 m really is.

Shop executives can turn to this Shop execubive calp on overyday book for practical belp on ovezhise grindiny problems; grinding operstrars, en operators, or apprentice operaden in use it to good advantage. Stuand ooltrade and techajenl achools and eat leges ean proft from the operatr, fort perience of angineers. datignork, in this mea end employes as set forth in new voluma.

This 436 pare book, with 99 chapThis 436 page book, Fith and figures ters and 486 illustrations and its lind is the only up-to-date book on tablen on the market today, Fifteen and 4 of Wheel Recommendations and detil other appendices provide work.
that every operator must hove.

ORDER YOUR COPY TODAY!-Orders will be filled the mone day received, Order your copv now and have thin valasble handbook readv for immediate reference.
STEEL - bOOK DEPT. - PENTON BLDG. CLEVELAND. 0.

Better
Shiring Performance

The plating and finishing of springs involves many considerations which may affect spring action-unless carefully handlad. A special Plating Department at Raymond's rounds out a complete spring service offering a wide choice of finishes under the experienced judgment and control of specialists in this field. Zinc, cadmium, nickel, copper-dip, Houghto-black-these are some of the finishes which can add life to springs which work under corrosive conditions. Ask Raymond engineers when and how thoy should be used.

RAYMOND MANUFACTURINGCO. division of associated spring corporation CORRY, PENNSYLVANIA WIRE FORMS SMALL STAMPINGS

Est. 1903
1667 W. Lafayetfe Blvd.

IMMEDIATE DELIVERY

ALLOY and CARBON GRADES
AS ROLLED, ANNEALED and HEAT TREATED MACHINERY STEELS
COLD FINISHED and HOT ROLLED
TOOL STEELS
HIGH SPEED and CARBON GRADES
DRILL ROD-TOOL BITS-FLAT GROUND STOCK
SPECIAL PLATES-FLAME CUTTING BROACH TYPE HACK SAWS

BENEDICT-MILLER, ING.
M. J. Phona: Markel 3-five - N. Y. Phoze: REclor 2-275t 216 CLIFFORD ST., NEWARK 5, M.IJ.

LOY ROUND F FLAT SHAPES
 WIRE
 All sizes and finishes

ALSO WIRESCREEN CLOTH
THE SENECA WIRE \& MFG. CO.
FOSTORIA, OHIO

Steel Makers Since 1871

STRIP STEEL

Hot Rolled-Cold Rolled Special Carbon-Alloys

The STANLEY WORKS
New Britain, Bridgeport, Conn. - Hamilton, Ont.

QUALITY STEELS

TOOL STEELS - TOOL STEEL TUBING - DRILL ROD
FINE SPRING STEELS-BAND SAW STEELS
STEEL CONYEYOR BELTING STEEL SPECIALTIES SANDVIK STEEL, INC.
new york - cleveland - chicago - los angebs

MEETTHEBOYS who boy

 and sell good used or surplus machinery You'll find them all in STEEL's "Used and Rebuilt Equipment" section, week affer week. * Your advertisement will reach them, too. Rates are very reasonable write today toSTEEL, Penton Building, Cleveland 13, Ohio

USED and REBULIT EQUIPMENT

To MATERIALS

We BUY and SELL

New Surplus Pipe and Tubes Steel Buildings Tanks
Valves and Fittings Plates, Bars and Structural Steel

IOS. GREENSPON'S SON PIPE CORP. Hational Stock Yards, St. Clair County, III.

FOR SALE
ALLOY STEEL
ROURD, HEX, SQUARE BARS
New York and Plttsburgh Warehouse Stocks
L. B. FOSTER CO. 9 Park Place, New Yark 7 Phone-Barelay 7-2111
P. D. Box 1647, Pittsburgh 30 Phone-Walnut 3390 Michigan Distributor: C. J. GLASGOW COMPANY 2009 Fenkell Ave., Detrolt 3 Phone-Townsend 8-1172

WANTED

ONE SUTTON STRAIGHTENING MACHINE TO STRAIGHTEN TUBNGGUP TO $2^{\prime \prime}$ DIAMETER. ADDRESS BOX 202, STEEL, PENTON BLDG., CLEVELA'ND 13, O.

FOR SALE

1- Metal Alligator Shears

Address Box 335

StEL, Penton Bldg., Cleveland 13, O.

Use This Section

When you have machinery or equipment you want to sell-Stwer can help you. For rates, write Stemi, Penton Bldg., Cleveland.

FOR SALE 2-6-ton heroult furnaces

With 2500 K. V. A., three phase transformers.

Address Box 168
STEEL, Penton Bldg., Cleveland 13, 0.

DEEP CUT PRICES TOOL STEEL
 HIGH SPEED STEEL AND ALLOYS
 All types and sizes
 in original Mill lengths Phone, wire or write Sonken-Galamba Gorp.
 Kansas City 18, Kans.

WANTED

6 ft. Rodial Drill.
$6 \times$ S Shear-Vertical or Guillotine type with short knife 18" to 20".
Autamatic Screw Machines.
Furnish complete information and photo. graphs.
BENKART STEEL \& SUPPLY CO.
2017 Preble Ave., N.S., Plttsburgh 12

FOR SALE

HEROULT ELECTRIC MELTING FURNACE Rated 2 tons per hour. 1500 KVA Transformer with $13,200 \mathrm{~V}$ primary. Modem controls. Can be inspected in operation. Address Eax 182
STEEL, Penton BIdg., Cleveland 13, 0.

ROLLING MILLS and EQUIPMENT

FRANK B. FOSTER

Coble Adders "roste" Pithburgh

[^8]
WANTED TO BUY

1 PRESS BRAKE, 1000 ton Capacity, actual working length of Die Surface 10^{\prime} to $14^{\prime \prime}$. Want to use machine for Multiple Punching. Approx. 50 HP 220/440 V Motor.
1 MULTIPLE DRILL PRESS, 12 Spindlefor straight line drilling and counter sinking, capacity $7 \mathrm{~s}^{\prime \prime}$. Spindle Heads to have $3^{\prime \prime}$ minimum Drill centers.
1 SHAPER, 24" Standard Rapid Traverse Shaper.
1 PLANER, "Open Side", $36^{\prime \prime} \times 36^{\prime \prime}$ or $48^{\prime \prime} \times 48^{\prime \prime} \times 12^{\prime}$ to 18^{\prime}. Rapid Traverse. 2 Rail heads, 1 extra side head. Forced feed lubrication to Vees. Forced Feed lubrication to bearings. Dial feed.
1 PLATE SHEAR, $1^{\prime \prime} \times 10^{\prime} 0^{\prime \prime}, 24^{\prime \prime}$ throat. Must be 1 "capacity at least $24^{\prime \prime}$ throat40 or 50 HP Motor $220 / 440 \mathrm{~V}$.
1 BAR SHEAR, Power Driven Bar Shear, capable of cutting $11 / 2^{\prime \prime}$ Round Bars, Capable of cutting $6 \times 3 / 4$ Flat Bars.
1 DOUBLE END ANGLE SHEAR, Power Driven, Capacity $6 \times 6 \times 3 / 4$.
1 SINGLE ANGLE SHEAR, Power Driven, Capacity $3 \times 2 \times 1 / 4$.
! POWER HACK SAW, $18^{\prime \prime} \times 18^{\prime \prime}$ Capacity, will consider only late model.
2 THREADING MACHINES: $1-5 / 16^{\prime \prime}$ to 11/4"
$1-11 / 6^{\prime \prime}$ to $21 / 6^{\prime \prime}$
LATHE, $16^{\prime \prime}$ or $18^{\prime \prime}$ Swing-16' Bed. Should take approx. $12^{\prime} 0^{\prime \prime}$ between centers with tail stock flush.
1 RADIAL DRILL, 5^{\prime} Arm, $13^{\prime \prime}$ to $15^{\prime \prime}$ Dia. Column.
AIR COMPRESSOR, Water or Air Cooled. Actual air delivery at 100 lb . Approx. 400 to 500 cu . ft .
3 DRILL PRESSES, Sliding head upright:

$$
\begin{aligned}
& 1-12^{\prime \prime} \\
& 1-18^{\prime \prime} \\
& 1-24^{\prime \prime}
\end{aligned}
$$

SPOT WELDER, For welding up to and including $1 / 4^{\prime \prime}$ thick.
1 AIRCO No. 40 TRAVOGRAPH, (Machine Cutting Torch) for single and four torch operation-with magnetic tracer.
2 BAR SHEARS, for cutting reinforcing bars-Flat knife $10^{\prime \prime}$ long, $10^{\prime \prime}$ to 12" throat-Capacity 2 bars $11 / 4^{\prime \prime}$ square or $3-1 \frac{1}{8^{\prime \prime}}$ round.
Only late models will be considered, and all mochines must be in first class operating condition.
Reply as quickly as possible giving full information on any unit you have to offer. If possible, furnish descriptive literature or photographs.

Send Replies Direct To:

Paper, Calmenson \& Company 975 E. 7th St. \quad St. Paul 6, Minn. ATTEN: Plant Superintendent

EQUIPMENT . . . MATERIALS

RAILS
 NEW AND
 RELAYing

TRACK ACCESSORIES from 5 Warahousas

- PROMPT SHIPMENTS
- FRBRCATMNG PAGILILES
- TRACEAGE SPECEALISTS

EVERYTHIFQ FROM ONE SOURCE
L. B. FOSTER GOMPANY PITTSEURGH
chicago
NEW YORK
SAN FRAMCISCO

FOR SALE

MANUYACTURERS' SURPLUS
87,000 lb. 93 ${ }^{\circ}$ Round sak Xiso C.D.
ANNEALED STEEL BAR Contact
E. A. Steinhauser or L. F. Johneon BOWSER, INC.
Fort Wayne, Ind. Fhone: Harisen 2541

RAILWAY EQUIPMENT AND ACCESSORIES

We can furnith ruils, upikes, bolta, angle bers, locomotivas, crunes and ather rall way matarinl.

Witta, wotre or phond for priose
SONKEN-GALAMBA CORP. 108 N. 2d St Kanses Clty, Kame

BLOWERS-FANS

 EXHAUSTERS"Lungs for industry"

REBUILT and GUARANTE

Prompt Shipments from a Large sla All Types - All Makes - All Sizes And We Really Rebuild 'Em. General Blower Co. CHCACO, ILL. 514 N. Daerborn Sl. MORTON CROVE, iLL B604 Sorit A No.

CONTRACT WORK

WAMTED

MILWAUKEE CONCERN ANXIOUS TO SECURE SOURCE OF SUPPLY FOR SMALL GRAY IRON CASTINGS. SUBSTANTIAL VOLUME ASSURED FOR SEVERAL YEARS. PREFER FOUNDRY WITHIN RADIUS OF 300 MILES FROM MILWAUKEE. WRITE BOX 198, STEEL, PENTON BLDG., CLEVELAND $13,0$.

NOTE: PURCHASING AGENTS. COMPLETE METAL MANUFACTURER LOCATED IN OHIO SEEKING POST WAR PRODUCTS
Have complete tool room, plating, painting, welding and heat treating facilities. Turret Lathes, screw machines, drill presses, punch presses, precision grinders, engine lathes, and milling machines. EXPERIENCED SUPERVISION AND PERSONNEL FULLY EQUIPPED TO MANUFACTURE COMPLETE ASSEMblies or detall parts.

Address Box 167, STEEL, Penton Bldg. Cleveland 13, 0.

Send your Inquities for
SPECIAL ENGIMEERING WORK to the

SLITTING

Capacity Now Available

UNATED TUBE CORPORATION

Phone: MElrose 3020
CLEVELAND, OHIO

MANUFACTURERS FOR INDUSTR SINCE 1875

SPECIAL MACHINES JIGS FIXTURES
PRODUCTION WORK

Complete Facilities to Serve You

American Type Founders, Inc. Cowdrey Machine Division Fitchburg, Mass.

SPECIAL MANUFAGTUREN: TO INDUSTRY...Since 1903

Metal Specialties comprised of STAMPINGS, FORMING, WELDING SPINNING, MACHINING. All Metia or Combined with Non-Metal Materilals
large scale production
OR PARTS AND DEVELOPMENT ONLY
GERDING BROS
SETHIRDVINE ST. - CINCINNATI 2 OHIO
EXCESS CAPACTTY AVATAABLE
Large and heavy machine work. The gily? Co., Norristown, Pa.

WANTED TO BUY

If you have excess stocks of steel resulting from contract terminations or change in specifications - we will buy for cash at very little loss to you.
-

LARGE STOCKS OF

SURPLUS STEEL

SHEETS - BARS - PLATES STRIP - STRUCTURALS
 SHAPES - RAILS

We have for sale large stocks of suriplus steot on which we can make immediate delivery.

ROBINSON BROTHERS \& CO.

135 SO. LASALLE ST. CHICAGO

FISHER BUILDING DETROIT

[^9]
CLASSIFIED

Four Top Flight

 Engineering Jobs OpenProgressive, high-ranking manufacturer has unusual opportunities for several qualified engineers in Chicago Plant.
Because of our greatly expanded program of production and development. over pre-war operations, we have important and immediate openings for the following wellpaid positions:

Chief Engineer
 Design Engineer
 Combustion Engineer Research Engineer

If you believe you have the experience background, cooperative ability, are ambitious for a permanent future with a gas range manufacturer of 75 years established reputation - write your qualifications in detail to-

CRIBBEN AND SEXTON CO.

700 No. Sacramento Blvd. Chicago, 12, Illinois

Dept. FD

Wanted CHIEF IHSPECTOR

Man experienced in inspection of all lypes of precision gears Musl be familiar with all types of checlong equipment and well grounded in gear culting. Write fully giving details of experience, education and salary requirements.

Address Box 136
STEEL, Penton Bldg., Cleveland 13, 0.

[^10]
COST ENGINEER

Industrial Engineer acquainted with cost estimating and pricing of machined and fabricated metal and electrical products is needed by Chicago area firm. Solid understanding of engineering and costs coupled with ability to organize and manage will secure opportunity to set up and head entire department. Send full details of training and experience and two references. Letter will be held in strictest confidence.

Address Box 205,
STEEL, Penton Bldg., Cleveland 13, 0.

ASSISTANT CHIEF ENGINEER

For a large midwestern industrial plant. Graduate mechanical engineer, experienced in plant layout and plant maintenance, including buildings, steam and power, with executive ability to direct his own crews as well as outside contractors. Splendid opportunity for the right man. Address Box 175
STEEL, Penton Bldg., Cleveland 13,0 .

CHIEF ENGINEER: TO TAKE COMPLETE charge of all design and detailing for structural steel shop located in the deep South. Applicant must have creative ability and be interested in original design. Please reply giving full information as to educntion, experience, age ete. to Box 204, STEEL, Penton Bldg., Cleveland 13, O.

MECHANICAL OR ELECTRICAL ENGINEER

 -To serve as the plant engincer for a mill in Western Penna. producing hot and cold rolled stainless and alloy strip. Apply by letter stating stainless and alloy strip. Apply by education, experience and exped salary. age, education, 149 , STEEL, Penton Bldg., Cleveland 13,0 .METALLURGIST-FOR MILL IN WESTERN Penma. producing hot and cold rolled stainless and alloy strip. Apply by letter stating age education, experience. and cxnecterd snlary. Address Box 147, STEEL. Penton Bldg., Cleveland 13, O.

WANTED: CONSTRUCTION SUPERINTEN-dent-General Foreman-Carpenter Foreman. Give references and salary requirement. Address Orval Wessner, P. O. Box 2057, Milwaukee, Wis.

WANTED: FINISHING ROOM SUPERINTENdent. Southwestern Steel Foundry. Address Box 190, STEEL Penton Bldg., Cleveland 13, 0.

PRACTICAL BOLT MAKER HOT HEADING UPSETTER EXPERIENCE

Wanted by small, well established New York City job shop for supervising maintenance of dies and tools. Must have practical thorough experience on Hot heading (upsetters) also familiar with Landis Head Threading Machines. Give full qualifications, experience, age and solory expected. Address Box 200, STEEL, Pen. ton Bldg., Cleveland 13, 0.

DRAFTSMEN

Large steel company in Pittsburgh area ha several opportunities for draftsmen with hig school or college education and experience in the following areas: design of steel mill and steel foundry products; railroad trac accessories; layout and design of steel mills blast furnaces, open hearth furnaces, and power plants; design of fnbricated concret bars; layout of electric power and contro equipment; general mechanical design an layout. Please submit details, statement a experience and education, inexpensive photo graph, and required minimum earnings Address Box 142, STEEL, Penton Bldg. Cleveland 13, 0.

WANTED-CARBIDE TECKINICIAN, WE known eastern company with established outlet has excellent opportunity for Chied nician to develop carbide line, especialy wear resistant applications. Fundamental proc ing equipment installed. Company also intercs in cast tool developments, precision and cents gal castings, with particular reference to spe heat resisting applications, such as gas turbls State age, cducation, experience, salary des and draft status. Address Box 903, STEEL, PC Bldg., Cleveland 13, 0 .

STRUCTURAL STEEL DRAFTSMAN Florida structural steel fabricating plant, med size, has permanent position for drst Chié Dr tural steel draftsman possessing man qualifications includimg speed and sood si Pleasant working conditions and good State age, experience, business relerences. desi cational background and compeusat Fioridi
Write P, O, Box 2579 . Jacksonville, Write P. O. Box 2579. Jacksonville, Floriai

INDUSTRIAL ENGINEER-FOR MILL Western Penna. producing hot and cold : stainless and alloy strip. To be in charge of departinent being created. Apply by ietter sula departinent being created. Apply expected sa age education, experience, Penton Bldg., Cl land 13, 0 .

SHOP SUPERINTENDEMT: COMPZE charge of shop employing approximately 200 in the fabrication of structural steel and lineous iron. located in the South. Please ed pertinent information in your initial reply. 18 Box 206, STEEL, Penton Bldg., Cleveland

[^11]
CLASSIFIED

Help Wanted

DESIGNERS
 AND DRAFTSMEN

FOR
BLAST FURNACE
AND
STEEL PLANT DESIGN
Qualified for Mechanical, Strucfural, Platework, or Concrete.

Hourly rate with overtime.

ARTHUR G. McKEE CO.
2300 Chester Avenue Cleveland, Ohio

Wanted

ASSISTANT GENERAL MANAGER

Man experienced in all phases of precision gear cutting in small wellequipped plant. Excellent opportunity for man with all-around gear experience. Write fullyigiving details of experience, education and salary requirements.

Address Box 137
STEEL, Penton Bldg., Cleveland 13, 0.

Positions Wanted

ACTORY MANAGER FOR METAL STAMP. of and machine products industry. An efficient ageressive orgauizer with sound business judgwent. 25 years of broad technical, executive, and aministrative experience in all elements of prodthemelopment, economical production and terrai factory operntions. Finishing an excellent ir production record in September. American, Cletel Address Box 152, STEEL, Penton Bldg.. leveland 13, 0.

CIEF CHEAIST AND METALLURGIST. manufacturing company having metallurcical, College processing and finishing problems. colege education. Twelve years experience indang heat treating and lahorators subervision hod 13 Bor 192, STEEL, Penton Bldg., Cleveand $13,0$.

TELE SALESMAN. AGE 35. INTELLIGENT, to Doble. Specialized tuling. 17 years with To Clevehnd warehouses buying and selling. Frallout agent or exclusive $\$ 7200$ minimum. anton Bldg., Cleve. Address Box 203, STEEL - Bidg., Cleveland 13, 0.

LPPEDITER. FORMER FOUNDRY SUPT. mosed in expediting castings, checking pathetrone gensral followup, in or out of town. idrane 13, 194, STEEL, Penton Bldg., Cleve--14. 0

TDELY KNOWN SALES REPRESENTATIVE beratced in line of mechanical equipment for steel hots and blast furnaces. Address Box 207, TIEI Penton Bldg., Cleveland 13,0 .

Representatives Wanted

- WANTED SALES REPRESENTATIVES

Distributor, fabricator and manufacturer of steel pipe and tubular products desires aggressive and qualified sales representatives now calling on industrial and manufacturing plants in following areas-Ohio, Pennsylvania, Indiana, Michigan including Detroit, Southern Ohio and Kentucky, including Cincinnati, Prefer sales representative now handling other steel lines. Commission arrangement. Furnish full details regarding other lines handled, territory covered and references.

Address Box 183,
STEEL, Penton Bldg.,
Cleveland 13, 0 .

WANTED AMBITIOUS REPRESENTATIVES

Exceptional opportunity to sell nationally advertised AAA products approved and used by all metal industries and metal users as well as large and small manufacturers for fabrication, salvage and reclamation. Territory-Several producing territories open. Exclusive franchise. High commission. Qualifications: Technical or welding background desirable. Sales experience indispensable. If you are a hard worker and have ability, our Regional Manager will show you fine results of other representatives. Send outline of technical and sales activities to:

Regional Manager,
EUTECTIC welding alloy co.
40 Worth Street
NEW YORK 13, N. Y.

REPRESENTATIVES WANTED

electric welded steel tube manuFACTURER REQUIRES SERVICES OF EX. PERIENCED REPRESENTATIVES NOW CALLING ON USERS OF TUEING. ON COMMISSION ARRANGEMENT. ADDRESS BOX 195, STEEL, PENTON BLDG., CLEVELAND 13, 0.

Employment Service

SALARIED POSITIONS $\$ 2,500-\$ 25,000$, POSTwar plans are creating lifetime opportunities now. This thoroughly oreanized confidential service of 35 years' recognized standing and reputation carries on preliminary negotiations for supervisory, technical and executive positions of the calibre indicated, through a procedure individualized to each client's requirements. Several weeks are required to negotiate and each individual must finance the cost of his own campaign. Retaining fee protected hy refund provision. Identity covered and present position protected. lilan now dress for details. R. W. RIXBY, INC., 110 Delward BIdg., Buffalo 2, N. Y.

Opportunities

IMMEDIATELY AVAILABLE

 COMPLETE CHARCOAL IRON BLAST FURNACEAND CHEMICAL PLANT NOW OPERATING

Plant is complete with modern Distillation Units, Boiler Plant, Power Plant, Charcoal Iron Blast Furnace, Locomotives, Tank Cars, etc. Excellent plant location with ample wood supply and abundant experienced operating personnel. Your serious interest is solicited.

Address Box 199, STEEL, Penton Bldg., Cleveland 13, 0.

Accounts Wanted

Wanted MILL REPRESENTATIOH

Twenty five years in active contact with Industrial, Automotive and Railroad Accounts in Illinois, Indiana, Iowa, Michigan and Wisconsin. Interested in representing manufacturers of cold drawn steel bars, sheets and tubing, both seamless and welded-alloy, carbon and stainless grades.

$$
\text { Address Box } 143
$$

STEEL, 520 N. Michigan Ave., Chicago 11

Let us Hand'e Your Problems
 WELDING ENGINEERING
 in
 Design - Tooling - Methods - Production Address Box 189
 STEEL, Penton Bldg., Clevaland 13, 0.

PHILADELPHIA MANUFAETURERS ${ }^{3}$ REPREsentative with intact sales engineering organization, will consider bandling additional quality products (for industrial manufacturers) in Eastern Pennsylvania, Southern New Jersey, etc., on a straight commission, exclusive territory basis. References exchanged. Address Box 170, STEEL. Penton Bldg., Cleveland 13, O.

Acme Aluminum Alloys, Inc
Adams, R. P., Co., Ine.
Aetna-Standard Engineering Co
Inside Front Cover
Agaloy Tubing Co
206
Aldrich Pump Co., The
Alliance Machine Co., The
Allis-Chalmers Mfg . Co.
American. Agile Ccrp.
American Air Filter Co., Inc.
American Bridge Co.
American Chain \& Cable, Page Steal \& Wire Division
American Chain \& Cable, Wright Manu facturing Division
American Foundry Equipment Co.
American Gas Association
American Magnesium Corporation
American Petrometal Corp.
American Photocopy Equipment Co.
American Pulverizer Ca.
American Shear Knife Co
American Solder \& Flux Co.
Anaconda Wire \& Cable Co.
Arcos Corporation
Associated Engineers, Inc.
Atlas Car \& Mfg. Co., The
Atlas Drop Forge Co.

B

Bedford Foundry \& Machine Co.
Belmont Iron Works
184
Benedict-Miller, Inc.
Bethlehem Steal Co.
Beyer Machine Co., Air-Hydraulics Division 217
Birdsboro Steel Foundry \& Machine Co. 191
Bissett Steel Co The 190
Bixby, R. W., Inc. 190

Blow-Knox Co. 225

Bohn Aluminum \& Brass Corp.
Boss Bolt \& Nut Co.
31
....... 215
Brewer Electric Mfg. Co. 219
Bridgewater Screw Praduçs Co. 222
Buffalo Bolt Co
Buffalo Wire Works Co., Inc.
Bullard Co., The

Cadman, A. W., Mfg. Co.
Corpenter Steel Co., The 129
Chisago Screw Co., The 180
Chicago Wheel \& Mfg. Co. 157
Claveland-Cliffs Iron Co., The 157

Cleveland Crane \& Engineering Co.
Cleveland Pneumatic Tool Co., The
Cleveland Tramrail Division, Claveland Crane \& Engineering Co.
\qquad

Columbia Steel Co.
Cono Automatic Machine Co., Ine. 59

Crane Co.
Cunningham, M. E., Co 139 39

Cutlor-Hammer, Inc. Back Cover

DeWalt Products
Differential Steel Car Co
194
149
Dufin lron Co.........
Dulien Steal Products, Inc.
136

Eberhardt-Denver Co. ...
Electric Controller \& Mfg. Co., The 133
Erdle Perforating Co., The
218
Erie Foundry Co.
165
Erie Steel Construction Co. 138

Fairbanks, Morse \& Co.
80
Fate-Rool-Heath Co., The 55
Federal Machine \& Welder Co., The34, 35
Ferry Cop \& Sel Screw Co., The 69
Fitzsimons Co., The
Foster, Frank B.

1. 222

4 12

206

14

2
9

82

72
\qquad
\qquadJohnson Steel \& Wire Co., Inc.184
Jones \& Laughlin Steel Corp. 144, 145
Jones, W. A., Foundry \& Machine Co. 73

Kemp, C. M., Mfg. Co., The 205

Kinnear Mfg. Co., The
Lamson \& Sessions Co., The 40, 11
Landis Tool Co.
Lincoln Electric Co., The
Lindberg Engineering Co. 155
Lovejoy Flexible Coupling Co. 216

Macklin Co.
Macwhyte Co.
Mallory, P. R., \& Co., Inc. 18
Master Electric Co., The ... Inside Back Cover
Masterform Toal Co
218
Mathews Conveyer Co.154

Mesta Machine Co.

Michigan Steel Tube Products Co. 135
Mid-States Equipment Corp. 190
Mir-O-Col Alloy Co.
Monarch Steel Co.
Morgan Construction Co.82

National Acme Co., The

National City Bank of Cleyeland 152
National Fireproofing Corp. 216
National Steel Corporation
New Britain Machine Co., The
New Haven Railroad, The
Nilson, A. H., Machine Co.
Nox-Rust Corp.

Ohio Locomotive Crane Co.
Ohio Steel Foundry Co., The
Oster Manufacturing Co., The

Page Steel \& Wire Division American Chain \& Cable
Pawtucket Manufacturing Co. 217
Pennsylvania Salt Manufacturing Co.217

Pesco Products Co. 74
Philco Corp., Storage Battery Division 111
Pittsburgh Commercial Heat Treating Co.
Pittsburgh Gear \& Machine Co.
Pittsburgher Hotel
217

Pittsburgher Hotel \cdot............................. 217
Plymouth Locomotive Works
Pressed Sieel Car Co., Inc.

Raymond Manufacturing Co.
Ready-Power Co., The
Reeves Steel \& Manufacturing Co.
Reid-Avery Co., The
Reid Brothers Co., Ine.
Reliance Electrie \& Engineering Co.
Republie Drill \& Tool Co.
Republic Steel Corporalion
Robinson Bros. \& Co
Rockford Machine Tool Co.
Ross Heater \& Mfg. Co., Inc.
R-S Products Corporation
Russell, Burdsall \& Ward Bolt \& Nut Co.
Rustless Iron \& Steel Corp.25, 26,
Ryerson, Joseph T., \& Son, Inc.
Sandvik Steel, Inc.
Sciaky Bros.
Seneca Wire \& Mfg. Co., The
Shell Oil Co., Inc.
Shenango Furnace Co., The
Simonds Gear \& Mfg. Co., The
Sinclair Refining Co.
Snyder Tool \& Engineering Co
Snyder, W. P., \& Co.
Sacany-Vacuum Oil Co., Inc.
Sonken-Galamba Corp.
221, 2
Stanley Works, The
Steel Founders' Society
Stokerunit Corp.
Syntron Co
Taylor-Wharton Iron \& Steel Co.
Toylor-Wilson Mfg. Co.
Taylor-Winfield Corporation, The
Texas Co., The .
Thomas Steal Ca., The
Titanium Alloy Manufacturing Co.
Triplex Screw Co., The
Union Steel Castings Division of Blaw-Knox Co.
United Autographic Register Co.
United Chromium, Inc.
United Engineering \& Foundry Co.
United States Graphite Co., The
United States Steel Corp., Subsidiaries
29.

United States Rubber Co.
United States Steel Export Co. .
United States Steel Supply Co.
Universal Engineering Co.
V
Vascoloy-Ramet Corp.
Yickers, Inc.

w

Warner \& Swasey Co.
Warren City Manufacturing Co.
Washburn Wire Ca.
Wean Engineering Co., Inc., The ... Front Co
Wellman Bronze \& Aluminum Co., The
Westinghouse Electric Corporation
West Penn Machinery Co.
Whitcomb Locomotive Co., The
Whitehead Stamping Co.
Wickes Brothers
Wickwire Spencer Steel Co.
Willson Products, Inc.
Wolverine Tube Division Columet \& Hecia
Consolidated Copper Co
Worth Steel Co.
Wright Manufacturing Division, Ameritan Chain \& Cable
Y
Youngslown Sheet \& Tube Co., The
Z
Zeh \& Hahnemann Co.

Table of Contents, Poge 31
Clossified Advertisers, Pages 221, 222, 2
224,225

[^0]: 1319 Wabansia Ave.,
 P. O. Box MM-BRUnswiek 2000

 Bush \& Wicomico Sis.a
 P. O. Box 2036-GILmore 3100
 ${ }^{3} \mathrm{ON}(34) 176$ Lincoln St., Allsion, P. O. Box 42 STAdium 9400

[^1]: Fhed A: Pawsey, 63, chief engineer, Locomutive Crane Co., Bucyrus,

[^2]: (Please turn to Page 176)

[^3]: (3) BRING VICIORY SOONER BUY MORE WAR BONDS

[^4]: COLD FINISHED BARS - AIRCRAFT STRIP STEEL - COLD ROLLED STRIP STEEL - STEEL BALLS COLD ROLLED SHIM STEEL - SHEET STEEL • ROUND EDGE FLAT WIRE - FEELER GAUGE EMPERED AND ANNEALED SPRING STEEL GROUND WIRES CDRILLROD

[^5]: *Add 0.25 for acid open-hearth; 0.50 electrlc. Cold-Finished Carbon Bars: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, base $20,000-$ 39.999 lbs., 2.75 c : Detrolt 2.80 c : Toledo 2.90 c (Keystone Drawn Steel Co. may sell outside its usual market area on Proc. Div., Treasury Dept. contracts at 2.65 c , Spring City, Pa., Dluz frelght on hot-rolled bars from Fittsburgh to Spring City, New Ensland Drawn Steel Co may sell outside New England on WPB direc-

[^6]: - Basing point cities with guotations representing mill prices, plus ware house spread

 NOTE-All prices fixed by Office of Price Administration in Amendments Nos. 10 to 33 to Revised Price Schedule No. 49. Deliveries outside abo cities computed in accordance with regulations.

[^7]: 4O CENTRAL AVENUE - PONTIAC 12, MICHIGAN

[^8]: HAMMERS, 3-B \& 4-B Nazal MD LATHE, Turret 24^{\prime} Grobolt, $6-1 / 4^{2}$ hole.
 SHAPER, $3 \sigma^{\circ}$ Norton Draw Cut.

 GTRAIGHTENER PLATE, $110^{\prime} x 1-1 / 4^{\prime \prime} H A J$. GIRAIGHT PNER, MACHINERY COMPANY 1208 House Bldg. Pitisburgh 22, Pa.

[^9]: Send Us Your Inquiries For What You Need

[^10]: ENGINEERING DRAFTSMAN. OLD, NATIONally famous steel plate fahricator serving oil refineries and allied industries requires services of experienced steel niate detailars. Permamant job under large expansion pmaram. Give complete personal and experience record. Address

 WANTED: SALESMAN BY LARGE TUBDNG manufncturer of both scamless and welded in carbon, alloy and stainless steels. Must have Mechanical or Metallurgical Engineering college degree, or suitahle alloy steel field sales experience. Give full details with application. Apply Box 181, STEEL, Penton BIdg., Cleveland 13, 0.

 WANTED-EXPERIENCED
 ESTMMATOR-
 General Construction Work. Give references and salary requirement. Address Orval Wessner, P. O. Box 2057, Milwaukee, Wis.

[^11]: INDUSTRIAL FURNACE ERECTING ED neer wanted for inspector of heat resisting foundry located in middle west with yood war business. Give full qualificatimns in application along with salary desired. th Box 208, STEEL, Penton Bldg., Cleveland

 DRAFTSMEN - DESIGNERS, LAYO Checkers, and Detailers experienced an Checkers, and both mechanical and structur machinery, Apply or write to The Finguec perience. Apply or write to Encerivg Comp Alliance, Ohio.

