EDITORIAL STAFF
E. L. Shaner Editor-in-Chiof
E. C. Kheutzaerg Editor
liu. M. Rooney Inwin H. Such News Edilor Engincering Editor
J. D. Knox
steel Plant Edttor Machine Tool Edtor
Don S. Cadot
Art Editor

ASSOCIATE EDITORS

G. H. Mankove, W. J. Camprell G. W. Binusall, F. H. Binggs, D. B. Wilieln J. C. Sullivan

New York: B. K. Price, L. E. Browne Pittsburgh: R. L. Hantrond
Chicogo: E. F. Ross Detroit: A. H. Allen Washington: L. M. Lamm London: Vincent Delpont

ASSISTANT EDITORS

R. W. Shestac, A. J. Fingulin; Vance Bell, Dolohes K. Blaha

EDITORIAL CORRESPONDENTS

BUSINESS STAFF

G. O. Hays

Business Manager
R. C. Jaenke
C. H. Bailey

Adverting Manager Advertising Service
New York, E. W. Kreutzbeng, K. A. Zolrner
Puitsburgh, S. M. Jasper, B. C. Snell
Chicago, L. C. Pelott, V. W. Volk Cleceland, D. C. Kefer. H. G. Howland Los Angeles, F. J. Fuller
J. W. Zuben

Circulation Manager
MAIN OFFICE
Penton Building, Cleveland 13, Ohio

BRANCH OFFICES

New Iork 17
16 East 43rd St.
Citcago 11 520 North Michigan Ave. Pittsburgh 19
....... 2800 Kopners Building Datrol 2
Washington 4 956 National Press Bldg.
Angeles 4 . . 130 N. New Hampshire Ave. ondon. ... 2 Caxton St., Westminster, S.W. 1
ublibed by The Penton Punlishing Co., Penton
Ide, Cleveland 13, Ohio, E. L. Shaner, President $3{ }^{3}$ Treasuret:G. O. Ohio, E. L. Shaner, President acs, Vire C. Jaenre, Vice Presidenti F. G. Steneral acg, $V_{\text {ire President and Secretary; E. L. Wi Werner, }}^{\text {shimant }}$ seintant Treasurer.
Yember, Audit Bureau of Circulations; Associated mociation Papers, Inc., and National Publishers sher
thee 2nd every Monday. Subscription in the United ad Sont possessions, Canada, Mexico, Cuba, Central South America, one year $\$ 6$: two years $\$ 10$; all

 3toffre at Citered as second class matter at the
it9. if9. Copyright 1945 by the Penton Publishing Co

The Magarine of Mefalworking and Mefalprodueing

VOL. 117, No. 2
July 9, 1945

NEWS

Transition Controls Simplified To Facilitate Reconversion 71
Vinson Calls for Tax Law Revision; Offers 9-Point Economic Charter 73
Government Labor Policy Tested by Strike Wave 74
Army Cuts Back Medium Artillery Ammunition Components Program 75
Biddle Urges Independent Operation of Geneva Plant 76
Renegotiation Shoe Pinches Man in Shop as well as Management 78
Vast Material Needs in Pacific Pose lluge Logistics Task 84
California Factory Employment Down 31 Per Cent from War Peak 93
TECHNICAL
How Hercules Powder Co. Purchases Stainless Steels 100
Steels used in chemical processing meet rigid specifications
X-Ray's Place in Postwar Industrial Era 102
Greuter knowledge of metals afforded by medium to bring expansion
Progressive Heating and Quenching Eliminates Distortion 104
Special induction unit checks brittleness, tarpage in small parts 105
Producing Tapered Roller Bearings at Timken 106
Unique engineering, production program guarantees precision
Tube Fabricating Techniques Show Many Improvements 118
Twenty years' experience reflected in tubing for aircraft parts
Rod Conveyor Eliminates Stock-Piling in Cleaning House 121
Wire mill's transportation problem solved by 110-foot conveyor
FEATURES
67 73
79 80
Instrial Equipment
87 Construction and Enterprise 198
. Is the Editor Views the News

MARKETS
War Production Board Sceks To Clear Mill Books 179
Market Prices and Composites 180
Index to advertisers 210

NEXT WEEK...

Hardenability Band Data for 35 Steels
High-Speed Drilling, Reaming and Tapping
The Tee-Bend Test for Welded Structures
Safe Handling of Organic Solvents
Rod Mill Facilities at Columbia Steel Co.

Economic Shackles

It is to be hoped that the midyear report of Fred M．Vinson，director of War Mobilization and Reconversion，does not reflect final Truman economic policy．It leans too heavily upon the efficacy of government planning．

According to the Vinson program，hope for postwar economic well－being rests on three essentials：1．Increased wages to offset in part the loss of overtime pay and to sustain high mass purchasing power．2．Stabilized prices－not much above present levels．3．Revised taxes to encourage business to expand during the postwar period．

To be absolutely fair to Mr．Vinson，one must admit that he places great em－ phasis upon the importance of private initiative．He says，＂After the war，the Amer－ ican economy must be dynamic，with expanding business，expanding markets，expand－ ing employment and opportunity．．．．This expansion must be brought about by posi－ tive politics on the part of business，agriculture，labor and local，state and federal governments．．．．Especially important are the plans which individual business men are now making for postwar activities．＂

This nod to private enterprise，coupled with the recommendation for tax relief for husiness，would be highly encouraging if it were not for the fact that the Vinson con－ cept of wage and price control may prove to be more destructive than the dependence upon private enterprise and tax assistance prove to be constructive．

The Vinson wage and price program implies regulation．In fact，government fiscal，tax and other policies all are to be keyed to＂full employment．＂This will in－ volve planning to the＂n＂th degree and，if planning by government for postwar is no better than its planning of the domestic economy for war，it will be a hindrance to ＂full employment．＂

One reason why government planning and regulation during the war has not in－ spired confidence in any quarter is that those who direct wage and price regulations frequently overlook the fact that wages should bear some relation to the value of serv－ ices rendered and prices should bear a relation to the value of goods produced．

From the Vinson report，it would seem that if the planners feel it is necessary， they will be permitted to rule that employers pay $\$ 1.50$ for $\$ 1.00$ worth of work or that producers accept 90 cents for a product that is worth $\$ 1.00$ ．

Arbitrary regulation of wages and prices which ignores economic values will not work．Government policy should provide the greatest reasonable freedom for private enterprise to function effectively．That is the only safe formula for postwar economic stability．

TIN PLATE BIGNESS：Just before retir－ ing from office，Attorney General Francis Biddle issued a report on the disposition of the govern－ ment－owned steel plant at Geneva，Utah．

The report stresses the importance of decentral－ izing the American steel industry to curb the domi－ nating influence of eastern producers，states that 20 per cent of tin plate consumption is in the West， reviews the heavy concentration of tin plate pro－ duction in eight integrated companies and of tin
plate consumption in two canmaking companies and recommends a disposal of western government－ owned steel plants that will stimulate production of tin plate on an＂independent＂basis．

One wonders how this can be accomplished． The steel industry has grown up in accordance with federal laws affecting business and in response to certain economic developments which have encour－ aged bigness for certain products，among them tin plate．If through government manipulation，Gen－
eva goes to an "independent," who is able with or without government help to buck the domination of eastern integrated companies, that "independent" in a few years will find itself in exactly the same position of dominance as the present eastern mills. Also, through the normal play of consolidation and acquisition, the concentration of capacity probably will be no less than it is today.
It will be difficult to cut down economic "bigness."

ONE AGENCY ENOUGH: Hemy Wal-

 lace may soon vie with Maury Maverick as the chief benefactor of small business. To date the latter's Smaller War Plants Corp. has been the most vociferous and most effective champion of businesses of modest size. However, there are signs that Mr. Wallace's Small Business Division of the Department of Commerce aspires to a more prominent role in the affairs of small business.Wallace appointed a Small Business Advisory Committee. It was an exceptionally good committee and its report, submitted on May 28, is constructive. If the Small Business Division of the Department of Commerce were to adopt the commiltee's recommendations and were staffed to carry them out intelligently, this division might well become the focal point for aid to small business.
One thing is clear. There is no need for two agencies doing the same work. Cannot SWPC be merged into the Small Business Division? - p. 80

DANGEROUS REBELLION: Something

 is radically wrong when one sees in the current wave of work stoppages so many instances of open rebellion against authority. If this rebellion were solely against WLB, it could be understood. It is the rebellion of strikers against their own union leaders, some of whom are the ablest officials in the labor movement and men of the highest integrity, that should concern the nation now.These acts of insubordination, attended by a reckless disregard for the sanctity of a union contract, prove that the present laws are inadequate. The situation of widespread lawlessness should cause Messrs. Green, Murray and Lewis to check carefully with their brainiest aids to seek a solution, Perhaps they will discover that the three leaders were hasty and ill-advised in attacking the 2B-1H bill so vehemently. Possibly that bill, offered by temperate, liberal sponsors, would help conscientious labor officials to maintain discipline. Certainly it would be preferable to a law dictated by an irate, fed-up public.

SIGNS OF THE TIMES: Last Tuesday morning Henry Ford II proudly drove a moonstone gray two-door sedan off the assembly line at the River Rouge plant of Ford Motor Co. This marked the resumption of passenger car production after a suspension which lasted 1241 days or nearly $31 / 2$ years. Ford output will be about 400 cars in July (pp. 75, 87) and 4000 next month, with production in later months conforming to government controls which now limit Ford assemblies to under 40,000 in the last half. . . . The Ford resumption was the most spectacular indication that the transition from an all-out war economy, scheduled to begin July 1, actually was under way. Some other civilian hard goods are beginning to trickle from manufacturers' plants (p. 71) but the flow will be restricted for some time by the scarcity of materials and the tightness in manpower. . . . Meanwhile the Army continues to cut back the war production program. Last week the military reduced by $\$ 20$ million a month the output of medium artillery ammunition (p. 75), this in addition to a 50 per cent cutback in the artillery shell program announced in the previous week. . . . Donald Richberg, one of the authors of the Hatch-Burton-Ball labor bill, challenged labor leader critics of the bill to debate its merits (p. 74) and offered to post a forfeit of $\$ 1000$ if he does not prove to impartial judges that their attacks have been "unfair, inaccurate and misleading." We would enjoy this debate, if held. ... Case studies of the effectiveness of X-ray examination of metals in correcting production techniques during the war (p .102) indicate that this method will be an important factor in "trouble shooting" in the postwar period. . . . D. Roy Shoults, vice president of sales, Bell Aircraft Corp., believes commercial aviation will be advanced tremendously by wartime experience. He foresees 400 to 500 mph for normal commercial flight (p. 94) with radar aids for all-weather operation. . . . Philip S. Shoemaker again cites reasons why it is good policy (p. 78) to acquaint employes with facts about renegotiation and how it affects their interests. . . . Study of the government's authorization for resuming automobile production shows that on the basis of 1941 production, quotas for General Motors, Chrysler and Ford (p. 87) were trimmed to permit larger assignments for Studebaker, Hudson, Packard, Nash, Willys, Graham-Paige and Crosley.

EDITOR-IN-CHIEF

Special duty trucks gather steel samples for the laboratory.

A truck is unloaded athelaboratory, and immediately starts another round trip.

Plate samples are punched to rough form, then milled. Others are souced, turned, drilled etc. as required.

Mary samples undergo rigid chemical tests.

Metallurgical teses areextremely important for quality con-
trol.

(S

Operator determining physical propertios on one of the many tensile testing machines in the Inland laboratory.

Darting from mill building to mill building-many times a day, and at night-are Inland trucks on special duty, a duty of vital interest to every user of Inland steel.
They are the sample trucks which rush samples of Inland products to the main laboratory where all required tests must be completed, reported and checked against specifications before steel is shipped.

Samples are gathered for the laboratory at semi-finishing mills-pieces from billets, slabs, etc., that will be
tested before the steel is rolled into final form. Also collected are samples of finished products. Depending upon requirements, every piece of stee] delivered to the Inland laboratory undergoes rigid physical, chemical, and metallurgical tests. Many of these tests are special developments by Inland-tests that are fast and extremely accurate.
Yes, Inland daily tests tons and tons of steel to assure every customer that his order will measure up to every requirement.

Bars - Floor Plate - Piling - Plates - Rails - Reinforcing Bars . Sheels Strip - Structurals - Tin Plate - Track Accessories

INLAND STEEL COMPANY

38 S. Dearborn St., Chisago 3, Illinois

ROBABLY nothing could be farther from your thoughts or desires. However, modern manufacturers of Commercial Bodies in their quest for finer Body Sections, are taking advantage of PARISH experience gained in pioneering the development of extra strong, light weight Universal Body Frame Material. PARISH production methods have greatly reduced costs, facilitated fabrication and permit a wide range in design to meet the exacting specifications of our many customers. For the present, war has claimed the greater part of PARISH UNIVERSAL BODY SECTIONS. However, since VE-Day, PARISH materials have become available to Commercial Body Manufacturers in a greater volume than ever before. Why not write us today for further information and assure your plant of PARISH service, from the drawing board to the finished product.

Hundreds of Willow Run bomber plant employes gather around the last Liberator to come off the Ford assembly line to sign their names on the fuselage. That is the 8685 th Liberator the Ford-operated plant has produced in three years

Transition Controls Simplified

Abstract

Many restrictions lifted as country starts switch from all-out war economy to one permitting substantial manufacture of civilian goods. Shortages of critical material and components will continue principal obstacle

THIS MONTH officially ushered in the transition period from an all-out War economy to one in which will be pernitted as much peacetime goods manufacture as is consistent with prosecution of the war against Japan.
The reconversion process already is Well started. First of the postwar automobiles have rolled from the assembly lines. Similarly, other civilian hard goods are beginning to trickle from manofacturers' plants. Munitions cutbacks are releasing an increasing amount of materials, facilities and manpower. A considerable portion of the strict wartime controls over materials and manpower have been lifted or modified. Local manpower officials now have au-
thority to suspend wartime regulations either in communities or individual plants if they decide such action will not interfere with war production.

A revised and simplified priorities system leading to ultimate discontinuance of priorities control for "virtually everything except military requirements" as soon as war-supporting and essential civilian production no longer need general help has been announced by the War Production Board.

War Production Board orders restricting the production of hard goods are either revoked or subject to the "spot authorization" procedure. Production quota limitations of numerous items have been removed.

Only apparent barriers in the way of a substantial volume of civilian goods output are shortages of materials and components, scarcity of labor in certain arcas and of required skills and the unavoidable transitional delays. How formidable these barriers may be cannot yet be judged with accuracy.

WPB estimates third quarter war steel requirements will amount to 15 million tons, compared with 16.1 million tons in each of the first two quartels. Allowing 300,000 tons a quarter as a cushion for losses due to strikes, breakdowns, etc., an indicated $800,0 n 0$ tons of steel will be available for civilian usc.

WPB has ordered a 25 per cent reduction in sheet steel inventories held by war plants, which is expected to make more material available for automobile manufacture. Similar cut was decreed in strip steel stocks to aid manufacturers of household appliances and other items.

However, WPB estimates second quar-
ter CMP steel tonnage carryover to be 1.9 million tons, enough to keep the mills busy for ten days. Prime munitions contracts for which a considerable portion of this was intended, probably 500,000 tons, have been canceled but the steel mills have not yet been notified by the contractors of the cancellations.

WPB officials are hoping and betting that the 15 million ton figure for third quarter war production will be reduced substantially during the period by further cutbacks and that the freed steel will be made available for civilian use. At present, however, they cannot estimate with any certainty the tonnage that will be available.

A suggestion that present controls on components entering into steel production should be maintained until rated orders drop below 85 per cent of productive capacity has been offered to WPB by the Steel Operations and Metallurgical Industry Advisory Committee. The committee listed pig iron, scrap, coke and elements entering into the production of alloy steel among the products on which government restrictions should be maintained until their respective supply situations ease.

In revealing details of the revised and simplified priorities system, WPB Chairman J. A. Krug described the last half of 1945 as a transition period to "give business an opportunity to adjust its operations to the new system" which will go into effect Jan. 1, 1946.

New Priorities System Outlined

The new priorities system will be introduced gradually during the next six months. This transition period is designed to cushion the impact of the transition from a system under which nearly all production has been regulated to a new system under which military requirements will have top priority but civilian business generally will operate both without production restricticns and without affirmative priorities assistance.

Meanwhile the procedures outlined in the new priorities regulation 29 will be instituted gradually. There also will be changes in other WPB regulations and orders and WPB has cautioned that if there should be any inconsistency between PR 29 and other WPB regulations or orders, PR 29 controls "unless the other expressly states the contrary."

Under the new priorities rating system the present AA rating method and the Controlled Materials Plan will be discontimued at the end of 1945 and replaced by a system in which the AAA rating will still be assigned in emergencies as under existing procedures, but a new MM rating will be assigned by military agencies. WPB itself will assign the MM rating only in cases where it clearly is necessary for the war effort or for requirements of similar urgency.
During the transition period, the MM rating will be equivalent to AA-1. The AA ratings also will be retained for cer-

Handmade model of the new Mercury, to be produced by Ford within 60 to 90 days, reveals principally a redesigned front end, making extensive use of ainc die castings. First netu Fords alreadu are rolling from assembly lines. NEA photo
tain materials, if it is not practical to adapt existing controls to the new system.

Beginning Oct. 1, 1945, no more AA ratings will be assigned by WPB or by other agencies except for deliveries to be made before Jan. 1. Before Oct. I, WPB will cancel outstanding AA ratings calling for delivery after the end of 1945, whenever this can be done without interfering with war production or war-supporting activities.

Beginning as soon as possible, the military services will assign MM ratings to orders and contracts placed during the transition period for delivery during or after the transition period. They also may change existing orders with Aid ratings to MM ratings if necessary to assure delivery on schedule.

At the end of 1945, the Controlled Materials Plan and all its regulations will expire automatically, except that part which restricts inventories. However, the delivery of controlled materials during the third and fourth quarters will continue to be regulated by the plan alone and not by ratings.

Other WPB announcements as the transition period started include:

All alloments of materials for third and subsequent quarters that are identified by the CMP allotment symbols $\mathrm{Z}-1$ and $\mathrm{Z}-2$ have been canceled.

An increase of 126,000 units in the truck production ceiling for the last half of 1945 has been approved.

Manufacture of electric irons has been renioved from production control.

Production quota limitations on farm inachinery and equivalent and related pirts have been removed.

Control over manufacture of cast bathtubs and restrictions limiting s have been removed.

Manufacturers of radio equipn and component parts will be permit to convert to civilian production ur" "spot authorization" provided by PR if and when facilities are released recluced military requirements.

Meantwhile, WPB predicted that mb tions production in July will begin show the effects of cutbacks and revised schedules set up for the a front war. May munitions producl totaled $\$ 4.6$ billion, within 1 per of schedules, and the June figure show only a slight drop from May o put.

May production was about 7 per c less than in March. Declines occur: in all major categories except ammus tion. Comparative figures for Mal April and May:

March	(Millions)	
Aircraft $\$ 1,234$		\$1.1
Ships (incl, maint. and repair)	-182	
Guns and Fine Cunirul 269	782	
Ammunition 700°	692	
Combat and Motor Veh. 501	443	
Communication and Electronic equipment		
Other equipment 1,080	338 977	9
Total $\$ 4,953$	\$4,648	5

The latest munitions schedules call a total production in the next 12 mort just short of $\$ 42$ billion. By the sea quarter of next year, output will be do to an annual rate of $\$ 38$ billion, nuly than 35 per cent below the level March.

Vinson Calls for Tax Law Modernization; Offers 9-Point Postwar Economic Charter

WARNING that we must have plans for an early defeat of Japan as well as a late one, Fred M. Vinson, director of War Mobilization and Reconversion, has outlined a "postwar economic charter" calling for modernization of tax laws, high wages, full employment and a longrange public works program.

In his quarterly report to the President and Congress, Mr. Vinson said the American people are "in the pleasant predicament of having to learn to live 50 per cent better than they ever have lived before."

To attain the overall objective of a durable peace, Mr. Vinson suggested :i five point plan:
Meet all requirements of the Pacific war.
Reconvert and expand civilian production as fast as possible, both to increase the supply of goods and provide jobs for those releascd from the armed forces and from war work.
Protect resources as far as possible from the inescapable shock of reconversion.
Provide food and aid that will help the liberated countries to lift themselves to their feet and become self-sustaining.
Work toward a high level economy so America can know the twin peacetime blessings of abundant production and full employment.

Outlines Economic Charter

His nine-point program for the postWar economic charter, phrased in the generalities of a political platform, included the following:
Complete modernization of the tax laws.
A program to help small business.
A fair, vigorous antimonopoly program.

Measures to reduce industrial strife and encourage higher wages.
Breaking down the barriers to foreign
trade. ade
Expansion of social security.
Measures to improve conditions of the famer.
A long-term program of public works.
A fiscal policy aimed at maintaining the economy at or near full employment and co-ordinating all government programs that have either an inflationary or deflationary effect.
Mr. Vinson said he regarded overhaul of the tax structure as "the foundation of our entire program to reach and maintain full employment after the war.
"I believe the following principles should guide us in constructing our tax program:
"1. Taxes should be levied in such a way that they have the least harmful effect on the expansion of business investment and the creation of jobs, be-
cause productive employment is the source of our standard of living, of all income, and of the revenue which the government collects from taxes.
" 2 . Taxes should be levied in such a way that will have the least harmful effect on the maintenance of mass markets and mass purchasing power, because that is the basis of business, labor and agricultural prosperity.
"3. Taxes must be fair among people.
"4. Tax policy should be integrated with a fiscal policy designed to prevent inflation and deflation."

WPB Orders 25 Per Cent
 Cut in Sheet Inventories

To prevent sheet and strip steel from becoming a bottleneck in reconversion to fabricated products on which production restrictions have been lifted, WPB in the first of a series of moves designed to spread available supply among metal-
working industries, has ordered an immediate 25 per cent reduction in permissive inventories. This reduces inventories from 60 to 45 days. WPB in taking other steps to relieve congestion in certain steel products will investigate inventories and purchase order position, notably sheets; will seek more effective use of manufacturers' inventories of idle and excess sheets and strip; increase sheet production with present facilities based on WMC drive for an additional 2000 workers and proposed expenditure of $\$ 50$ million by private industry for new flat-rolled finishing capacity.

WPB estimates reconversion in the next four months will requre about 350 ,000 tons of sheets and strip in gages now in short supply. WPB reveals all hot strip mill units have been returned to sheet production except for manpower limitations or to meet plate requirements which cannot be produced on other than strip mill units due to extra deep drawing and pickling. For finishing flat rolled steel WPB reveals a total of 39 projects involving about $\$ 34$ million have been approved with additional projects costing $\$ 21$ million under consideration.

Present, Past and Pending

- KNUDSEN ELECTED DIRECTOR OF GENERAL MOTORS CORP.

Detrort-Lt. Gen. William S. Knudsen has been elected a director of General Motors Corp. from which he resigned Sept. 3, 1940, to enter government service. Col. Graeme K. Howard has been elected a vice president of the corporation.

CARNEGIE STRIKE COSTS 15,000 -TON OUTPUT LOSS

Chicago-About 15,000 tons of steel ingot production was lost at South Works, Carnegie-Illinois Steel Corp., last week when 1200 cmployes were forced into idleness by a strike of 28 maintenance men.

- WICKWIRE SPENCER APPROVES MERGER PROPOSAL

New Yonk-Wickwire Spencer Steel Co. has accepted in principle the proposal of Colorado Fuel \& Iron Corp., Denver, for merger of the two companies. E. C. Bowers and R. T. Dunlap have been appointed to negotiate a formal merger agreement.

WILLYS-OVERLAND TO START MAKING CIVILIAN JEEPS

Toledo-Willys-Overland Mators Inc. will produce 3000 to 4000 civilian Jeeps a month during the last half of 1945, with volume production scheduled to start in August, according to Charles E. Sorensen, president.

INVESTMENT FIRMS BUY INTEREST IN EQUIPMENT FIRM

Mishawara, Ind.-First York Corp. and Utility Equities Corp., two investment firms, have acquired a substantial interest in American Foundry Equipment Co., this city.

CONTRACT TERMINATIONS OFFSET BY NEW ORDERS AT GE

Schenectady, N. Y.-Termination of war contracts held by General Electric Co., while proceeding at a substantial rate, has left few gaps in the company's overall business because of the large volume of new orders.

FEA REFUSES REQUEST TO SHIP RAILS TO SPAIN

New York-Foreign Economic Administration has rejected a request by private American exporters for authority to ship 100,000 tons of steel rails to Spain.

OPA MERGES IRON AND STEEL, NONFERROUS BRANCHES

Washington-Iron and Steel and the Nonferrous Metals price branches, Office of Price Administration, have been merged into a new Metals Price Branch. Warren M. Huff has been named price executive of the new branch.

Government Labor

Policy Tested by Wave of Strikes

 Major changes thought in making as thousands ofworkers continue idle in some vital war industries.
Labor Department strengthening seen in the offing.
Proposed Industrial Relations Act gains in favor

STRIKES involving thousands of workers continued to plague war production on a broad scale last week. Chief trouble appeared to be in the rubber industry, some 37,000 workers being idle in two major disputes at Akron, O,, one of which was in its third week. But serious work interruptions were also reported in such vital war industries as glass, petroleum and automotive parts. Strikes last week tied up newspaper deliveries in New York city, and were threatened in a number of other lines, including transportation.

Total number of strikers last week was reported down from the preceding week when an estimated 100,000 workers were idle in walkouts throughout the country. Agreements to end a number of major stoppages in Detroit and elsewhere trimmed the total number of strikers, but new stoppages at other points since, to some extent, have offset the trimming.

Current unrest in the ranks of labor is believed but the beginning of a period of acute labor trouble. As war orders are cut back on an increasing scale, accompanying shortening in the hours of work, curtailed take-home pay, and dis-
placement of some workers are thought likely to spark the fuze of labor discord on a rising scale. Since V-E Day strikes have more than doubled in number, and government labor authorities are frankly apprehensive that the situation may get worse before it gets better.
Most of the current difficulties, it is believed, stem from the letdown in morale following the victory in Europe. Union rivalries have played an important role in several major walkouts. However, minor grievances have been so prominent as to tag them with the label of excuses for something more deepseated in labor relations. Basically, it is thought, the walkouts are symptomatic of the fear of idleness and shortened takehome pay expected to accompany the trimming of war production schedules. With public indignation over the interruptions in war production mounting, the nation is looking hopefully to Washington for some move which will clarify

LEWIS B. SCHWELLENBACH
the situation and at the same tinne strengthen the government's position in dealing with labor strife, current and prospective. As a matter of fact, that some major changes in government labor relations policies now are in the making is seen in some quarters, changes which may bear significantly on the whole gorermment program for handling labor matters.
The new secretary of labor, Lewis B. Schwellenbach, has indicated he is planning to revamp his department so as to substantially strengthen it. Not only is he bringing in some new personalities but he has intimated that he plans to make the department a far greater force in government labor relations than it has

SEN. HAROLD H. BURTON

SEN. JOSEPH H. BALL

SEN. CARL A. HATCH
been in recent years. For example, he has promised to bring into the department numerous government boards and agencies set up during the Roosevelt administration to handle labor questions, and which have been acting independently of the Labor Department. These include the National Labor Relations Board, the War Labor Board, the United States Employment Service, and numerous advisory committees in the War Production Board and the War Manpower Commission. The multiplicity of agencies, which often have been in conflict in their rulings on labor matters, has been a source of interminable confusion in recent years. Elimination of some of these "vagrant" bureaus and the centralizing of authority, it is believed by many experts on labor policy, will go a long way toward creation of sound government labor policies which will function more efficiently in the interest of the public at large.

Meanwhile the Federal Industrial Relations Act, sponsored by Senators Carl A. Hatch (Dem., N. Mex.), Harold H. Burton (Rep., O.), and Joseph H. Ball (Rep., Minn.) continues to gain favor. This bill, vigorously denounced by such labor leaders as William Green, Philip Murray and John L. Lewis, in its principal provisions would bar strikes and make arbitration compulsory in disputes affecting public utilities or public services such as milk, coal or oil; would make the Wagner act ban on unfair practices apply to unions as well as management; and would permit a "closed shop" only if 75 per cent of the workers were members of the union, and 60 per cent of them ratified the "closed shop" demand.

Challenges Labor Critics

Last week, Donald Richberg, chairman of the Citizens' Committee to Promote Industrial Peace, which drew up the Hatch-Burton-Ball bill, challenged labor critics of the measure to debate its merits. Mr. Richberg, who has served frequently as counsel for the railway brotherhoods, and was co-author of the Railway Labor Act, the Norris-LaGuardia Act and the National Industrial Recovery Act, all hetpful to organized labor in advancing its cause over the past twenty years, olfered to post a forfeit of $\$ 1000$ if he does not prove to impartial judges that the statements from labor union sources concerning the proposed legislation have been unfair, inaccurate and misleading. He said the labor peace plan can harm no one except those labor leaders who an hold their jobs only by maintaining Warfare between employers and employes.
Union labor views the proposed Fedcral Industrial Relations Act as a frontal attack on the Wagner Labor Disputes Act, the "Magna Charta of labor." On the other hand Senator Ball, one of the bill's sponsors, says the program which the new bill incorporates is necessary to avert danger of a knockdown, drag-out fight between management and labor.

Army Cuts Back Medium Artillery Ammunition Components Program

Abstract

Production of storage cases, cartridge cases, containers, fuzes, primers and boosters reduced approximately $\$ 20$ million monthly. Estimate 7600 workers in 83 plants will be released by September

ANOTHER major step in adjustment of the nation's war production program, reductions of approximately $\$ 20$ million a month in the production of medium artillery ammunition components, was announced last week by the Army.
This follows an Army announcement the week preceding that a 50 per cent overall reduction in the nation's artillery shell program was being put into effect.

The cutbacks announced last week after a two-day meeting in Chicago of Army and plant officials include such ammunition components as storage cases, cartridge cases, containers, fuzes, primers, and boosters.

It was estimated that approximately 7600 workers in 83 plants throughout the nation would be released between now and Sept. 1. Manpower was not affected in 118 other plants represented at the meeting. No estimate was given as to the number of workers affected in subcontractors' plants.
The cutbacks were approved by the Production Readjustment Committee of the War Production Board.

It was explained that while production schedules were cut extensively in all cases, only 25 plants received complete cancellations of their contracts. Most plants, although ordered to produce at reduced rates, will retain large potential capacity in case of future emergency needs by the Army.

Following are plants which are expected to release from 100 to 250 workers between now and Sept. 1:

Air Cooled Motors, Syracuse, N. Y., 135; Bridgeport Brass Co., Indianapolis, Ind., 100 ; Bulova Watch Co., Philadelphia, 136; Chase Brass Co., Waterbury, Conn., 160; Commercial Controls Corp., Rochester, N. Y., 150; Dixie Metal Products, Bessemer, Ala., 206; Franklin Machine \& Foundry, Providence, R. I., 170.

General Aircraft Equipment Co., South Norwalk, Conn., 150; General Outdoor Advertising Co., Jacksonville, Fla., 122; Grenada Industries, Grenada, Miss., 110; Harrison Sheet Steel Co., Chicago, 125; Heywood Wakefield Co., Gardner, Mass., 125; Jamestown Steel Partitions, Jamestown, N. Y., 100; Landis Machine Co., St. Louis, 100.

Line Material Co., East Stroudsburg, Pa., 103; Martin \& Schwartz, Inc., Salisbury, Md., 119; Mullins Mfg. Co., Warren, O., 100; Multiplex Mfg. Co., Berwick, Pa., 214; National Lead Co., Granite

City, Ill., 200; Newark Stove Co., Newark, O., 170; Titan Metal Mfg. Co., Bellefonte, Pa., 100; Tracy Mfg. Co., Pittsburgh, 108.

Following are plants which are expected to release over 250 workers between now and Sept. 1:
Elastic Stop Nut Corp., Lincoln, Neb., 670; Robertshaw Thermostat Co., Youngwood, Pa., 550; Scovill Mfg. Co., Waterbury, Conn., 554; Sunbeam Electric Co., Evansville, Ind., 300; Supreme Knitting Machine Co., Brooklyn, N. Y., 295.

First 1946 Fords Driven Off Rouge Assembly Line

After 1241 days or nearly $31 / 2$ years of suspended passenger car production, the first assemblies of 1946 Fords were driven off the Rouge plant assembly line on schedule last Tuesday morning, the first model being a moonstone gray twodoor sedan, with Henry Ford II at the wheel as lights blazed, cameras clicked and newsreels ground out the event.

Stretched out behind No. 1 along the assembly line in B building were a score or more of other cars in various stages of assembly. Efforts are being made to turn out 15 to 20 cars per day this month, and to step up schedules to better than 4000 next month. Eventually, the younger Mr. Ford told newsmen, the company hopes to push production to 8000 per day. However, the Ford quota for this year is under 40,000 , and if this is not increased it is felt likely over 50,000 more working people will have to be laid off at the plant.

That Ford was able to get production initiated so soon is a tribute to the engineering and mechanical staffs of the company. In the press shop alone, now 90 per cent reconverted, more than 3,000 ,000 tons of heavy machinery, dies and other equipment had to be brought in, removed or relocated.
First passenger car production from the Ford plant will be rushed out to dealers, probably on consignment, but no sales will be possible until prices are determined.
First hand-made models of the Mercury and Lincoln passenger cars also were shown last week and reveal principally redesigned front ends, making extensive use of die castings.

Four new assembly plants will be built throughout the country for Ford.

Biddle Recommends Independent Operation of Geneva Steel Plant

Abstract

Tin plate seen as key to future of western steel industry. Retiring aftorney general believes war-born facilities can be converted to supply half of West's requirements for containers. Hits dominating influence of eastern mills

DECENTRALIZATION of the country's steel industry to end the dominating influence of large eastern producers and the encouragement of independent, competitive operation of the West's war expanded steel capacity was recommended by retiring Attorney General Francis Biddle in a report to Congress on the disposal of surplus steel plants. The report, Mr. Biddle's fourth on the disposition of surplus property, was his swan song; after submitting the report, he relinquished the Department of Justice to Tom C. Clark, President Truman's appointee.

The report holds that the future of large-scale steel production in the western states is dependent principally upon an orderly conversion which would supply one-half the West's demand for tin plate containers. It notes that the inevitable drop in ship production on the West Coast will create a reconversion problem unequalled in the country and adds that "successful continuous steelmaking operations in the West afford the soundest basis for future industrial expansion in that area."

Mr. Biddle's survey shows that 20 per cent of all United States tin plate consumption is in the West, although before the war almost all this market was supplied by the East. It indicates a postwar western tin plate market sufficient to provide a basis for large-scale operations, providing certain requirements are met. He lists these as the most important requirements: "First, that the western steel industry be free from monopolistic control so that it can adopt pricing policies which will permit it to compete aggressively with the eastern mills. Up to the present time, tin plate has not been sold on a competitive basis in the West. A concentration of producers and consumers has resulted in high and rigid prices. The future owners of the newly developed western steel plants should have the opportunity to enter into this market on a competitive basis.
"Second, it is of the utmost importance that the future railway rates reflect the competitive advantages of location and bear logical relationship to transportation costs on raw materials and semifinished products within or into the region.
"These factors are of the utmost importance for the future of the govern-ment-owned steel plant at Geneva, Utah.

The future disposition of this plant with its $1,280,000$ tons of ingots is crucial to the reconversion program in the West. The policies and purposes of those who buy this govemment plant may well be the determining factor in the future of the western steel industry. Everything possible should be dons to assist potential purchasers of the Geneva steel plant to draw plans for its operation.

Favorable Operating Costs Seen

"The conclusion that the western tin plate industry will provide the basis for the continuation of large scale continuous steel production in the West is, of course, dependent upon certain findings as to relative operating costs. All the information now available appears to point toward favorable operating costs for western tin plate production. But potential purchasers of the Geneva Steel plant should have made available to them an adequate appraisal of its operating costs. A cost study of the Geneva Steel plant has been undertaken for the Defense Plant Corp. It is recommended that the results of this study be made available on a widespread basis, and that in the meantime as much interim infor-
mation on the results of the study as pos sible be given to potential purchaseri'

The report points out that tin phe is today almost exclusively produced 6 . large integrated steelmaking companis whose operations extend from ore mix ing to the manufacture of pig iron, i: gots and the rolling of wide variety 0 steel products, in addition to the coa! ing of the finished steel with tin to mak the finished product tin plates. Ind pendent nonintegrated producers of ti plate have virtually been eliminated fro the tin plate business.

As early as 1938,84 per cent of 4 tin plate producing capacity in the Uuit. ed States was in the hands of eight in tegrated steel producing companies an: of this number three concerns controlle about 60 per cent of the capacity. Th analysis shows that with the advent the newer methods of producing tin plati the degree of concentration in the indux try has increased. It is estimated the 95 per cent of the current capacity controlled by the eight integrated cor panies, of which four companies nor control approximately 75 per cent of 4 capacity.

Practically all of the tin plate pr duced is used in the manufacture : containers.
"The container industry is also chr" acterized by a high degree of conce tration of control," the report notes. The American Can Co. and the Continents Can Co. have approximately 85 pa cent of all can sales and control almas the same percentage of the purchases d tin plate from the steel companies. the western area, approximately per cent of the purchases of tin plate i

FAREWELL TO BIDDLE: Department of Justice staff tenders a farewell party to retiring Attorney General Francis Biddle. Mr. Biddle is shown here shaking hands with Tom C. Clark, his successor. NEA photo
estimated to be controlled by three principal producers of containers.
"Historically, tin plate prices have been determined principally by negotiation by the American Can Co., the principal buyer, and the United States Steel Corp., the principal seller. Both the purchasing of tin plate and the selling of cans is normally done under long-term contracts from three to five years' duration, and the price of cans is controlled by the price of tin plate through these contracts. The fact that both the selling and buying of tin plate has been highly concentrated has made for these effective contract control arrangements and has served to eliminate price competition. The elimination of price competition in addition has been furthered by the common use of a basing point system in the sale of tin plate. This basing point system has made for artificially high prices on the West Coast."

It is estimated that a potential market amounting to approximately 500,000 tons per year will exist in the West for the consumption of tin plate. It is concluded that western steel mills should be able to sell about half of this amount. This conclusion is based upon such relative cost figures as have been obtainable, upon the assumption that competitive freight rates will be established, and that there will be effective competitive pricing in the West. It is believed that in the postwar market eastern tin plate shipped from plants having all-water access to western markets, principally Birningham and Sparrows Point, Md., can provide effective competition for western mills and at the same time opportunity will be afforded for the maintenance and growth of a healthy western steel industry.

Urges Competitive Operation

Throughout the report, Mr. Biddle argues for competitive and independent operation of the Geneva Steel plant. Hie contends that capture of substantial tin plate business is vital to successful operation of integrated continuous rolling facilities in the West, inasmuch as normally more than 40 per cent of the demand for flat-rolled steel in the area is for tin plate.
"It is clear that the prospective tin nlate market is vital to the disposition of the government-owned Geneva plant t which continuous rolling is technologfally logical. The success of continuous operation in the West will stand or fall on tin plate business. On the other hand, if substantial tin plate business is develaped by Ceneva, successful operation that plant can be conservatively forecast."
The report includes a table on possiHe distribution of western steel sales required for the operation of Geneva, Which indicates that if the plant obtains 20 per cent of the amount of the steel usiness done in the West in 1937, opera-
tions at two-thirds of capacity can be achieved.

	Thousands of Net Tons	Per Cent of Western Consumption 1937
Ingot capacity	1,280.0	
Equivalent finished product		
Flat-rolled products	(405.0)	37
Plates	50.0	23
Skelp		
H. R. sheets, strip	90.0	41
C. R. sheets, strip	$10.0{ }^{1}$	35
Galvanized sheets	$55.0{ }^{1}$	36
Tin plate	$200 .{ }^{4}$	43
Other rolled products.	(192.3)	
Rails (over 60 lbs.).		
Heavy shapes	40.0	24
Wire rods, bars	60.0	16
Pipe, tubes	$92.3{ }^{01}$	19
Plain wire		
Other		
Exports		
Tonnage required for utilizing $662 / 3$ per cent of equivalent product capacity		
	597.3	21

- Most favorable prospects for substantial increase.
${ }^{1}$ Production of these products requires additional rolling facilities.

Mr. Biddle contends fuller distribution knowledge and more positive salesmanship of the Geneva property is required to achieve the desired result of stimulating the western industry.
"Practically no stimulation of demand among possible buyers has been attempted. There is a disposition to wait and see what is offered. In the meantime, Geneva may be declared surplus.
"Independent competitive operation is essential. Principal competition can be expected from eastern producers (principal western interests have complementary facilities). Disposal to eastern steel interests, especially those with water access to western ports, would substantially lessen competition and could retard development of western facilities. .
"The government should be prepared to finance the additional rolling facilities required, construction to be begun as soon as possible.
"Disposal by sale to the highest bidder will too severely limit possible purchasers. Careful provision must be made against acquisition of the plant by those having other interests which would be protected by limited operation at Geneva. If satisfactory independent purchasers cannot be found, every effort should be made to secure independent, competitive operation under lease, purchase price to be determined on the basis of actual operating experience over a reasonable period."

Mr. Biddle summarizes the report in 15 conclusions, as follows:

1. Basic steelmaking capacity has been more than doubled in the West since 1938. Most of this increase is accounted for by two new integrated companies-Geneva and Fontana.
2. Prior to the war there were no integrated large-scale steelmaking plants
in the West except for the Colorado Fuel \& Iron Corp, works, east of the Rocky Mountains at Minnequa, Colo. The principal products produced in the West prior to the war were rails, bars, shapes and wire products. In most of these categories western capacity was sufficient for western demand in those sizes for which rolling facilities were available, but for other principal items of steel consumption there was almost complete dependence upon eastern production. Two of the most important of these categories were tubular products and tin plate. (1937 consumption of these items in 11 western states was approximately 480,000 and 450,000 tons respectively.)
3. The great increase in steel productive capacity in the West during war years was occasioned largely by the requirements of the western shipbuilding program. In 1938 western plate capacity was approximately 25,000 tons; in 1944 it was $1,025,000$ tons.
4. Most of the increase in plate capacity is at he government-owned plant at Geneva, Utah, and the government financed plant of the Kaiser Co. at Fontana, Calif. At Geneva, the larger plant (ingot capacity $1,280,000$ tons), plates are produced by continuous operation, so that with the addition of two more stands of rolls, light flat-rolled products by continuous methods would require what in effect would be duplication of much of the present plate rolling facilities.
5. Postwar requirements in the West, even under the most optimistic estimates, could sustain only a small fraction of present western plate making capacity, so that conversion to other products is required for continued operation of the new plants.
6. Continuous production of steel products in the West affords the most promising possibility for utilizing the large investment at Geneva, but such operation must be able to envisage a substantial market for light flat-rolled products (sheets, strip and tin plate).
7. Participation in western tin plate requirements is the key to successful continuous operation in the West. Demand for this product is substantial and has been increasing each year.
8. The relative cost data available, including assembled raw materials and probable transportation costs to principal markets, are favorable, even in comparison to eastern seaboard producers.
9. Early determination of reasonable commercial rates on western rail movement of steel is essential.
10. Market participation will not, however, be achieved without aggressive independent pricing. The tin plate market is concentrated both with respect to production and consumption. Successful operation of Geneva, therefore, requires western tin plate prices which are unattractive to inland, eastefy producers.
(Please turn to Page (106)

Renegotiation Shoe Pinches Man In Shop as Well as Management

> Employment possibilities and payrolls in postwar period hinge on industry's ability to set aside reserves to carry on in lean years. Workers should be informed as to what renegotiation is and how it works

By PH!LIP S. SHOEMAKER*

THREE men in one shop died of pneumonia in a month. Few people paid attention. War strain and the chauge from outdoor living to confining shop work had drained the last of their reserve strength. These men had been overseas in combat units, but they were not counted among the war casualties, for it was now 1920. "No help wanted" signs were appearing on the gates. The war and all the cheering and parades had ended. Only small boys still talked about the war. But the big battle for a living was on!

There were small and large plants that failcd that year. Inventory losses totaling billions wiped out reserves that had been accumulated during the war. Millions of workers walked the streets looking for jobs. This was the industry's first postwar shock.

Cites Industry's 1920 Experience

There was a certain small manufacturing plant in an Ohio city which barely survived. Without fanlare after the armistice the veterans who had been employed previons to their service were in. vited to come back. Likewise the loyal older men who had worked throughout the war were retained, if they needed work. It was a ticklish situation, for there was no backlog of orders. When the genial president of this small corporation was asked "how come" by his banker, he replied that he was building up his "stock." Two lean years later saw all the accumulated profits of the war paid out in payrolls. Deflation had reduced market prices 40 per cent so when an order came in each machine went out at a sizable loss. By 1921 it was necessary to borrow to continue operating. Only guts and a friendly banker pulled that concem through.
It took 19 years for the company to get clear of Lank debt. In 1939 the last note at the bank was paid off. It had been a long, hard struggle, but eminently worthwhile. The stockholders, the shopmen and the banker-the whole community in fact-were bencfitted as was the nation!

In 1942, the management and employes took pride and satisfaction in helping industry retool. In this small plant in the tirst war year was built almost $\$ 2 \frac{1}{2}$ million worth of the most critical machine

[^0]tools required by industry to produce millions of armament parts for the fighting forces.

As a taxpayer it shared the costs of war in proportion to its income, and in cooperation with the government in holding down war profits, it agreed to submit to renegotiation proceedings.

Summarizing the firm's 3 -year operations from Dec. 31, 1941, to Dec. 31.

TERMINATIONS

Commitments canceled by contract terminations during May totalled $\$ 5,100,000,000$, compared with $\$ 1,800,000,000$ in April, Robert H. Hinckley, director of contract settlement, reported last week.
"During May the settlement rate was increased to $\$ 1,700,000$,000 , compared with $\$ 800,000,000$ per month during the third quarter of last year," Mr. Hinckley said. "It is expected that the rate of settlement will rise further between now and September. In August and September, settlements should be above a $\$ 2,000,000,000$ -per-month rate, since by that time claims will have been filed or waived, and settlement reached on a considerable portion of the terminations made in April and May."

1944, renegotiable sales were $\$ 5,250,000$, representing 85 per cent of the total volume. Profits of $\$ 1,207,000$ were earned on renegotiable sales. Income and excess profits taxes covering both war production and the commercial profits were $\$ 1,203,000$. The Price Adjustment Board determined that "excessive profits" existed on renegotiable sales to the extent of $\$ 605,000$. After the revenue department recomputed the taxes each year the company was required to refund sums totaling $\$ 119,000$.

Therefore, after payment of taxes and renegotiation the net profit amounted to $\$ 195,000$. This was a progressive return on its net worth of 18 per cent. The company paid $\$ 30,000$ dividends in the three years, thereby adding $\$ 165,000$ to its ret worth. Working capital was enhanced by $\$ 29,000$ and equipment and
plant assets were increased by $\$ 108,0$. and $\$ 28,000$ was in excess profits refur credit bonds.
As this is not an exceptional case, $\mathrm{b}=$ quite representative of thousands of sms war contractors, it is presented as a ty cal experience. It raises two question How did the Price Adjustment Bow determine that in the respective year X dollars were "excessive profits" ax secondly, how might renegotiation funds adversely affect the employme: situation after the war.

High taxes are the inevitable evil cor panions of war. Some idea of the th picture may be gained from a paragar appearing in Fortune, May, 1945, jsste "The steel industry in 1917 made mo? than three times as much money alte taxes as in 1944 on a little more the half as much as steel." There was no re negotiation in 1917. It is noteworh, that our present excess profits taxes ar scaled as high as 95 per cent of sales.

Every man in a manufacturing plar knows that production cannot be evel measured off by days or months. Ti production key, of course, is the backles and the grouping of items in lots f simultaneous production. Therefore, production does not conveniently fall in: regular, uniform units, sales and its sultant profits will be equally unere Fiscal years are purely for the conve ence of accountants, and of course it tax collector and renegotiators.

Careful Budgeting Necessary

Corporations, partnerships or privat ownership enterprises, like individud have to come up with cash when settin their annual tax liability. This is ak true when making renegotiation refund This takes extremely careful budgefiri because profits are not always visible t cash. To prepare for succeeding cor initments, profits might easily have bef converted into new inventories; in equi? ment (as was the case in the company described) and in accounts receivable. addition to meeting the taxes, part of company's profits must carry the invisbly ear-mark of cash for the "tide-over" "reserve-building" for the inevitable cyd period of depression. And, of cours every good management has payroll 6 serves for a couple of months period: tide over terminations of part or all bab log. Other invisible ear-marks are of placements of worn-out equipment constant expenditures for improvemery of old products and development of ne ones. In short, the lean and hurw. policy of management as regards the hy banding of cash may easily be the ference between a solvent company ${ }^{20}$ a sheriff's sale two years after victor:

The concern which I described has. current average shop payroll of 34 Among the members of the National : sociation of Manufacturers there are 000 companies that employ fewer thit 500 people. The large majority of thes while regarded as "small," are subject? renegotiation. Yet less than half of to
corporate revenue of the country is subject to renegotiation.
The small manufacturer eyes the hotels, railroads, mines and mercantile establishments which arc exempted from renegotiation and in consequence have been able, because of war business, to retire bonds and put away reserves for future usc. He also questions why the "tiny" manufacturer with less than $\$ 500,000$ war production annually is screened out as being too small for the renegotiators to bother with. Yet he must go through the wringer of both renegotiation and taxes with the result that he faces virtual confiscation of his reserves. There is in this uneven burden of war taxation an element of discrimination which is new and univholesome.

The small manulacturer who is subject to renegotiation may have an advantage which should be capitalized. By making known his renegotiation troubles he can let his employes know that for him the war has not been all "beer and skittles." Andrew Carnegie once said that the human side of an organization is the most important aspect of business. Emergencies have a way of unifying men through is spirit of helpfulness. In the approaching postwar period management and men jointly will face an emergency no less grave than the one we are passing through,

The link between the manufacturer and the shopmen is the foreman. He must keep costs in line: he must have accurate knowledge of production. He attends conferences with the management. He can best interpret to his men the nature, the moods, and the trials of their management. He can acquaint them with the current and postwar problems which bear directly upon the ability of the management to survive and continue to provide employment.

Foremen Should Be Well Informed

The foreman is likewise the first operating man with whom GI Joe will work. The more informed he is regarding busiress in general and his company in particular, the more he can impart an understanding of business and industry's problems to the ex-service men who have been out of touch with industry. For example, there is the importance of knowing what renegotiation is and how it works!
Physicians may not confirm this, but businessmen certify that the money nerve is just over the heart. Most small manufacturers in war production found their eamings placed them in at least the 80 per cent tax bracket. It was not until April 28, 1942, when the Renegotiation act was passed they learned that in addition to being taxed, they would be subject the renegotiation. It was well into 1943 before the 1942 annual operations were reviewed and the first determinations on renegotiation announced. To say these manufacturers were surprised at the amount of cash refunds requested Would be an understatement. Manageraents were too stunned at first even to
phone their congressmen! The situation was somewhat like the editor who told his reporter they couldn't put him in jail. "I know," said tlit reporter, "but I'm phoning from there."

With very good reason, these small war contractors sought the required official approval so as to be able to pay their men higher wages. It would have cost the companies nothing, for whatever wage i::creases were approved would have been borne by the government inasmuch as the taxes and renegotiation refunds would have been just that much less. But the wage stabilization board met these requests with little show of enthusiasm, in line with the restraints imposed by Congress to check inflation. To offset pirating of workers by new war industries, whose wage-scales had not yet been established was still another reason, as was the manufacturer's earnest desire to meet the rising cost of living of his men and enable them to accelerate the payments on their home mortgages.

Certainly there is little doubt that renegotiation has disturbed the small manufacturer in war production more than any phase of the war. With a scarcity of office help, it was necessary to prepare comprehensive analyses of the company's operations; then there were repeated visits to the Price Adjustment Board and in some cases travel to Washington all of which consumed much nervous energy and time which could be ill-spared from
plant direction. The large corporations, with full administrative staffs and adequate counsel experienced relatively little pressure from these proceedings.
In determining whether a concern has made "excessive profits," renegotiators say that many other factors besides the rate of profits must be taken into consideration. The principal ones are the volume which is renegotiable, that is, products of business during a fiscal year period whose end-use is directly or indirectly for the war. Other factors are the degree of speed with which companies have met their delivery schedules, the care with which they have used labor and conserved material, the cost at which they have been produced, the inventive and management contributions which they have provided, not only for their production but which they have provided to help other people engaged in the war effort. Also the source of capital which is used in making war products; whether or not a company used government facilities or financing. Another criterion is the general performance of the company in handling its production and the efficiency or lack of it with which its operations have been conducted. The factor of cost of manufacture is the biggest single factor in arriving at an allowable profit. As volume of business increased over the year preceding the rate of allowable profit is lowered. Other indexes are the quality of
(Please turn to Page 196)

TRANSITION TOPICS

RECONVERSION-Simplified priorities system designed to cushion shock of changeover to limited civilian goods production during second half of 1945. Many controls and restrictions lifted. See page 71.
ECONOMIC CHARTER- War Mobilization and Reconversion Director Vinson offers nine-point postwar program. Asks modernization of tax law structure. See page 73.

LABOR-Shift in administration's labor policy may follow wave of strikes in critical industries. Sce page 74.

SURPLUS PLANTS_Competitive, independent ownership of western steel plants recommended by retiring attorney general. Tin plate called key to successful, continuous operation of war-born facilities. See page 76.

SMALL BUSINESS_Commerce Department will attempt to increase assistance to small business. See page 80.
AIRCRAFT-Techrical advances of war period will have profound influence on postwar aviation, particularly in jet propulsion, pilotless planes, rocket power, radar and micro-wave techniques. See page 94.

INDUSTRIAL X-RAY_Place to be taken by X-ray after reconversion of industry will be determined by its record. Efficient use of metals, fewer rejections and lower costs afforded by medium seen as cause for expansion. See page 102.

THERMIT CASTINGS - Thermit welding process, having proved adaptable to production of steel castings, makes available to industry a new source for limited quantities. Sce page 105.

Commerce Department Will Seek To Expand Plans To Aid Small Business

Abstract

Advisory committee recommends department increase assistance to little firms in finance and credit, technical advice and in obtaining tax laws that will not unduly burden them and restrict expansion and employment

A LIVELY contest for the peacetime stewardship of small business is expected to open this fall when the Department of Commerce asks Congress for a larger appropriation to enable it to give increased assistance to the segment of the economy which falls into this category. At present, at least three government agencies are catering to small business, a situation in which exists considerable duplication of effort and personnel.

Most active agency working in behalf of small business is the Smaller War Plants Corp., created by Congress in June, 1942, as a war agency. It was believed at the time there should be more small business participation in war production and to reach this objective it was necessary to set up a new agency with authority to book prime contracts and sublet them to small business, to lend money to small plants going into war production, and render other assistance to small business.

At the time the creation of the Smaller War Plants Corp. was under dis-
cussion there were numerous criticisms that Jesse Jones, then secretary of commerce and federal loan administrator, was failing in both these posts to give sufficient help to small business. In particular, Mr. Jones was accused of a loan policy which helped big business.

As a result of these criticisms, Mr. Jones took two principal actions. The Small Business unit which he had established in December of 1941 in the Bureau of Foreign and Domestic Commerce was expanded into the Small Business Division of the department in the spring of 1944. At the same time, he adopted a more liberal publicity policy at the Reconstruction Finance Corp, and the releases which the RFC handed out laid more emphasis on loans the RFC was making to small business.

The Smaller War Plants Corp. encountered rough sailing at the start of its career. It was a new organization and its policies and methods had to be built from the ground up. It had difficulty in enlisting the services of competent engineers

CARRY ON: A preparatory commission, named as the final official business of the San Francisco conference, plan to carry on the conference work. Members, left to right: Dr. Hsu Mo, Chinese ambassador to Turkey; Dr. Leo Pasvolsky, United States Department of State official and acting chairman of the commission; Alger Hiss, secretary-general of the conference; and Herbert Evatt, chairman of the Australian delegation. NEA photo
and financial men. It made slow progres in winning recognition from the vaiors procurement agencies, as the Army and Navy, which had established their buyivg methods and were reluctant to place on tracts with the SWPC for subcontractiry by the latter.
Eventually, under a lot of needling b: members of Congress, and with additions grants of authority from Congress fror time to time, the SWPC began to mals itself felt. This has been especially the case since energetic Maury Maverick be came its chairman at the start of 1944 From the start, Mr. Maverick has viewee his present job as a crusade, and he has breathed fire night and day against the foes, real or fancied, of small businex In addition to his ability to speak antis write forcefully and colorfully at a mo ment's notice, Mr. Maverick has organ ized a high-powered publicity staff that is the envy of many other governmed agencies. Especially envied is the eas and facility with which Mr. Maverid obtains ever larger grants of authoity from Congress.
Today the SWPC has authority to give technical and other advice to small buss ness in general. It has authority to grast or guarantee loans to small business. books prime contracts from the gover ment and subcontracts them to small bus ness. Its chairman is a vice chairman o the War Production Board, by mandat of Congress, to see to it that small bus ness gets fair treatment from the WPR The SWPC also has specific mandata under the Surplus Property Act and tis Contract Settlement Act to protect smid business, and particularly the interests do World War II veterans, in the administra tion of these acts. The SWPC has a large headquarters staff in Washington to dired its manifold activities; it has regional od fices in Boston, New York, Philadelphia Atlanta, Cleveland, Chicago, Kansas Citr Dallas, Denver, San Francisco, Detroil Minneapolis, Seattle and Los Angeles.

Congress Considering New Proposals

In line with his policy of always plan ning something bigger and better, st Maverick now has a number of requatb befure Congress. He recommends enad ment of a loan insurance plan aimed s encouraging the banks to lend morr money to small business, with SWPC guarantees. He urged a comprehensixx program under which the SWPC woulf seek to increase small business part cipation in export trade. Also, he asks fex a larger appropriation to permit expansied of the SWPC's Technical- Advisory Ser vice which, says Mr. Maverick, "is biggest and best idea developed in tim war."
That was the situation Henry A. Wh. lace encountered when he, on March ! 1945, was appointed to succeed Mr. Joned as secretary of commerce. It botherd him a great deal for Mr. Wallace, on to one hand, had very definite plans for im proving the country's general economit level by encouraging prosperity for $\mathrm{sm} \mathrm{m}^{2}$ business; on the other hand, the Smir

Have you seen the new day coming?

Even in the pre-dawn darkness of war there are signs that it is on the way.... It can be the greatest day the world has ever known.
Already men, materials and American ideals have penetrated to the last wildernesses of the earth. There's a trans-Atlantic flight every 13 minutes of the day and night . . 160,000 miles of air routes being flown by American transport planes... our air strength is double that of the rest of the world combined . . . our manufacturing
productivity half of the world's total capacity. We have what it takes to force prosperity and to enforce peace.
We at Bryant feel that we're part of the new day that's coming. Our record in war links us with great production achievements, from the millionths-of-an-inch precision in the modern airplane engine to the millions of things that we'll help to produce more simply, faster, for less. We urge you to call us in now!

Business Division of the department was being operated on a very skimpy and inadequate basis.

One of the first things Mr. Wallace did was to appoint a Small Business Advisory Committee to study the needs of small business and determine what the government should do about the problem. This committee submitted its report to Mr. Wallace on May 28-and Mr. Wallace was much pleased with it. Since then, the report has received continuous study by department officials; there have been and continue to be numerous conferences on how the department should organize, and what sort of policies it should adopt, to give effect to the Small Business Advisory Committee's recommendations. Not the least of the difficulties facing the deparment is that of meeting the competition of the Smaller War Plants Corp. when it asks Congress for a larger appropriation to enable the department to build up its small business service.

The Small Business Advisory Committee report on which the department now is building its case states unequivocally that the Department of Commerce "is the proper government agency to interpret the small business problem to the government, to recommend a course of acion, and to execute the plan. The facilities of the department appear to be organized along a proper pattern for this objective, but we do not believe that the facilities are adequate to cover the many phases of a desirable program."

The report calls for a planning staff at the policy level to consider the basic problems of small business, such as the ability of small business to compete with big business. This planning staff would study legislative proposals affecting competition, taxation, finance and other basic factors. It would deal primarily with the activities of the Bureau of Foreion and Domestic Commerce, but would work in close contact with Congress, the Treasury Department, Federal Trade Commission, Department of Justice and other government agencies whose activities have a bearing on small business. It also would conduct an educational study.

A digest of the main body of the report follows:
Taxation - The tax system should: 1.-Provide adequate revenue to protect the credit of the United States and safeguard the monetary system; 2.-should nol impose burdens on business which restrict expansion of production and employment, discourage the opening and development of new and small business, affect adversely the competitive position of small as compared to large business, or influence business decisions unduly; 3.should distribute the tax burden equitably among all income levels insofar as that is consistent with objective No. 2; for example, the tax burden must not fall so heavily on any group as substantially to affect incentives to produce or invest or to restrict unduly the demand for consumer goods.

Recommends Revision of Tax Laws

To permit small business to build up adequate liquid working capital, and to obtain immediately funds rightfully theirs under the present tax structure, the report recommends these changes in present tax legislation: 1.-Increase earnings exempt from excess profits tax from $\$ 10,000$ to $\$ 25,000$ effective Jan. 1, 1946; 2.repeal the excess profits tax as of the beginning of the year following cessation of hostilities with Japan; 3.-permit corporations to take their 10 per cent excess profits tax credit for 1944 and subsequent yeurs as a deduction against tax payments for those years; 4.-advance maturity of bonds representing 10 per cent excess profits tax credit for 1941 through 1943 to Jan. 1, 1946; 5.-modify immediately the carry-back provisions to pernit postporiement of current tax payments on the previous year's taxes to the amount of estimated refunds accruing under present provisions as a result of subnormal earnings.
The report recommends speeding up amortization refunds, also a modification of carry-back provisions applying to deficits to make immediately available liquid working capital which would eventually belong to the company under present law.

Management Aid-Where larger busness organizations have the facilities fo investigating, studying and solving the own management problems, the small er operators must look elsewhere fa such aid, the report says. It recommend that the department conduct a large nur ber of specialized studies and pubile reports. In particular there should be "going into business" series of reports

The report recommends that the ds partment reprint for civilian use te series of books prepared by the Army as establishing and operating different kind of business. It also recommends creatio of a new series of books to describe opar ations involved in different kinds of busi ness and manufacturing. It recommend also more frequent and more diversifita census studies.

Finance and Credit - A substar tial demand for long-term funds by smax business is foreseen in the report. In orda that these funds may be forthcoming, the department is asked to sponsor a schem involving government guarantee of long term loans made by private financing in stitutions; a new, special type of lowis interest loan should be developed, to k liquidated in 10 to 15 years, and to bt negotiated without encumbering receiv bles, inventories and other current assets Also, the report recommends, the depart ment should study the extent to which the government should make direct loans small business, the credit problem small business in the export field, th credit problems of returning veterans, adi the problems of small, particularly ner, producers whose liquidity is endangere by payment of taxes.

The Small Business Advisory Cow. mittee which dafafted this program thit now is the major item of new businers for Department of Commerce official comprises: Ivan Allen Sr ., chairman Walter Ringer, vice chairman; Vincent L. Browner, Ernest G. Draper, W. E Harber, Lou E. Holland, E. H. Lane Stacy May, John R. Pinkett, Prentiss M Brown, Ralph Flanders, Eric Johnston A. W. Lutz, Morris S. Rosenthal, Ceorg Rupple and John W. Snyder.

ALL DIESEL UNITS: These diesel-electric locomotives built by General Electric and American Locomotive Co. for the New York, Susquehanna \& Western Railroad
are making that railroad the first in America completely equipped with all diesel-electric units. The Susquehanna line bought 16 of the new locomotives

PRIORITIES-ALLOCATIONS-PRICES

Summaries of revocations of and amendments to orders and regulations; official interpretations and directives, issued by War Production Board and Office of Price Administration

REVOCATIONS

MACHINE TOOLS: Order L-147, which prohibited special electrical specifications for machine tools, except in spectfied circumstances, has been revoked. Manufacture and delivery of machine tools remain subject to all other apnlicable WPB orders and regulations. (L-147)

AMENDMENTS

CONTROLLED MATERIALS: Direction 44 (steel not needed by producers or distributors to fill authorized controlled material orders) to CMP regulation 1 and Direction 5 (disposal of controlled materials procured by a warehouse or distributor for his stock from idle and excess inventories) to CMP regulation 4 have been revoked, since they became obsolete with open-ending of CMP on July 1. (CMP 1, 4)

CAST IRON BATHTUBS: Direction 6 to order L-42 has been revoked. This direction required manufacturers to apply to WPB for authorization to produce cast iron bathtubs; limited sales to purchase orders from the military, for authorized construction projects, and proved by whoc applications had been approved by WPB, and other specified users. (L)-42)

CASKETS: Iron, steel, copper and aluminum now may be used in production of caskets, shipping cases and burial vaults without limitation, Tin, antimony, antimonial lead, lead or zine may be used in production of burial unite only to the extent that such use is not restricted in orders M-43, M-112 and the M-38 serles and the M-11 series. All restrictions in order L-84 on the use of metal in production of metal liners have been deleted, including the necessity to obtain certibcates of essen-
lialify tations for the use of metal liners. Metal limitations also have been removed on production of casket-bandle hardware and casket corners, which are still subject to the restrictions on the number of desigas permitted by L-64.
The order's schedule A specifications on casket designs and dimensions do not apply shipping cases shipping cases made of metal, or of plastic cashete, nor do they apply to any type of shipming case or burial vault made or asRestriction military orders.

Restrictions on painting, coating or staining burial units have been deleted from the
order, while ing the use of chedule B has been added, limiting the use of cotton and rayon fabrics in (L-64)
PLUMBING EQUIPMENT: AA-3 rating assigned to distributors for purchasing plumbing,
beating and tain exceptions, cooking equipment, with cering exceptions, may not be used for purchasing metal bathtubs. (L-79)
LEAD: An increase of 25 per cent in thirdtuarter allocations of lead for automotive batteries over the second-quarter allocations has ben granted. This means that 900,000 more bitteries can be produced in the third quarter, ir a lotal of $4,700,000$. Allocations have been Haterased to 25 per cent of the 1944 use for Hat purpose compared with 20 per cent on
the same basis during the second quarter of战 yame basis du
y-38)
CONSTRUCTION: AA-3 preference rating and allotment symbols H-1, H-2 or H-3 asdimed by Order P-55-c may be used for all be Aational be used in projects approved by cifazly Aonal Housing Agency, except as speeically prohibited or restricted by schedule I and schedule II of the onder. (P-55-c)

INSTRUCTIONS

ELECTRONIC EQUIPMENT: Production, listribution and sale of transformers, resistors, capacitors or other radio components designed for use in equipment not involving the use of vacuum or gaseous tules or designed for use in equipment specifically excluded from order L265 are not subject to the restrictions of that order. Consequently, such components may be manufactured and sold in accordance with Priorities Regulation 1 and other applicable WPB orders and regulations.

PRIORITIES REGULATIONS

CLASS B PRODUCTS: Any class B product marufactured on an authorized production schedule may be sold to Gll any orders received, whether rated or unmted, as long as rated orders are given the precedence required by Priorities Regulation 1 or other applicable regulations or unless a particular WPB order provides otherwise. This is true evon though the CMP-4B application (for controlled materials) was filed with the expectation that all sales would be made on rated orders or on particular orders, and even though all production materials required were obtained by the use of priorities assistance. (PR-1)

PRICE REGULATIONS

CONSUMER GOODS: Seven items of consumer durnble goods have been added to the list of commodities on which manufacturers may apply for price increases in some circumstances involving production at a loss, effective July 4. These items are: Carpenter's planes, compass saws, hand saws, lineman's pliers, toy embossed wooden blocks, wire-tied box springs and wooden domino and checker games. Manufacturers whose ceilings for these items are below the prevailing price for the same items may apply for a price increase in either of the following circumstances:

1. If the applicant's entire manufacturing operation is being conducted at a loss, or will be so within 90 days.
2. If his manufacturing operation as a whole is being conducted at a profit, but the maximum price of the article in question is below his manufacturing and packing cost. Shipping cost, where delivered prices are quoted or where the manufacturer is permitted to pass on to the buyer all or part of the freight cost, may be allowed in this case.

Toy manufacturers nowly entering the field have been made subject again to the requirement that proposed ceiling prices for new products be expressly approved by OPA before sales are made. They have been made subject to the "fourth pricing method" of the consumer durable goods regulation which requires manufacturers, who are unable to fix their own ceiling prices by reference to ceilings of the same or comparable items of their own manufacture, to apply to OPA for a pricie. (No. 188)

Consumers Durable Goods Division, WPB, Reorganized

Consumers Durable Goods Division, War Production Board, has been reorganized to facilitate the output of waressential items and the reconversien to civilian production during the transitional period between V-E and V-J days.

The announcement was made by Stanley E. Adams, director of the division.

Furniture and Household Goods branch and Photographic and Personal Coods branch have been consolidated in a new administrative unit, the Household ard Personal Goods branch, with George D. Morton as chief.
Wendell S. Kuhn has been assigned to head a new Houseware and Personal Goods section of the new branch which includes the following items: Lawn mowers, bicycles and powercycles, office supplies, military insignia, clocks and watches, church goods, houseware, personal goods, sporting goods, food serving equipment and musical instruments.
Winston A. Bryant will take over Mr Morton's former responsibilities as head of the House Furnishings and Morticians Goods section, which is unchanged in its activities. The Metal Furniture section remains under the direction of John L. Rowland, and the Photographic section continues under Lincoln V. Burrows.
Organization of the Electric Goods branch of the division has not been changed, still consisting of the Appliance section and the Lamp and Battery section.

WPB Clarifies Construction Restrictions in Scrap Yards

Amount of construction work that may be done in a metal scrap dealer's plant in a year without War Production Board authorization depends on whether the type of business is industrial or commercial, War Production Board explained recently. If the plant manufactures, processes or assembles goods, the scrap dealer may spend up to $\$ 25,000$ on construction work in a year without WPB authorization, under terms of order L-41. If the type of activity is commercial, the exemption for construction work on the same basis is only $\$ 5000$.
A scrap dealer's plant is considered industrial if it is primarily engaged in such processing operations as baling, pressing or briquetting light iron, cutting up heavy melting steel, breaking up cast iron, detinning cans or smelting nonferrous metals for the purpose of making the scrap available for further use. It, is considered commercial if it is an automobile graveyard where automobiles are taken apart and the parts sold without change; or a yard where items are sorted and cleaned.

Appointment

R. C. Allen of Oglebay-Norton \& Co., Cleveland, has been appointed deputy vice chairman of the Office of Metals and Minerals, War Production Board. Mr. Allen resigned in August, 1942, as deputy director of the Steel Division in charge of raw materials to return to OglebayNorton.

Needs Pose Huge Logistics Task

EQUIPMENT and materiel requirements for waging war in the Pacific are vast and varied. Thousands of supply items already have been transported halfway argund the world to support United States forces driving toward Japan, In many cascs, circumstarces necessitate ingenious use of this material, often for purposes other than that for which it was originally designed. The accompanying Navy photographs indicate the immensity of the Pacific supply problem.

Fig. 2-Stock of derricks at the Guam naval supply depot, ready in be moved wherever needed. The depot carries more than 100,000 items, including all types of fuel, radio and radio parts, ordnance, engines and a complete list of general storekeepers' items

Fig. 3-Pontoon float moves combat aircraft to a carrier

Fig. 4-Portion of the steel storage yard at the Guam naval supply depot. Thousands of tons of sections, mainly plates and shapes, are
available in a range of sizes to meet all the Navy's needs
Fig. 5-Steel landing mat sections are finding numerous uses which
their designers probably did not have in mind. They are widely used for fencing and walkways on coral islands. This view srutus their use to solve the seating problem in an open-air theater on one of the Marshall islands

Fig. 6-Largest sinele requirement in the Pacific uar is fuel and lubricants which are now being shipped to that area at a rate of $1,660,000$ tons monthly. Storing and handling is a major problem. Here is shown a small tank farm

STAND BACK, Paul Bunyan.

m m 110 का tang 18 19n

0ut in the Pacific Northwest country the trees are even taller than the lumberjack's stories. Getting one of these monster Redwoods or Douglas Firs down is a job but nothing like the job of getting it up... and out. They have α machine out there for doing that which makes Paul's blue ox, "Babe", look like a yearling calf. It's a heavy-duty hoisting, towing rig for hooking up to the power take-off of a tractor. It'll pull up to 45.000 pounds at the rate of 79 feet a minute. And
one of the features that enables this mechanical blo ox to handle several times the maximum capacity the tractor itself is the use of large-ball, deep-groo Fafnir Ball Bearings. It takes this Fafnir "balanne design" to take this kind of rough-and-tumble shod

If that's the kind of bearing performance you wo then you want to talk with a Fafnir Field Engineer. Write us in detail today. The Fafnir Bearing Co., New Britain, Connecticut.

Abstract

Ford gets started on new passenger car production. Willys authorized to build 20,000 civilian jeeps over remainder of year. Quotas set by War Production Board trim down large producers, give advantage to smaller builders

STARTING bell has sounded, and by the time this appears in print Ford will have rolled a few 1946 models off assembly lines. July schedule is reliably reported to call for completion of 200 jobs, with around 4000 slated for August, 8000 in September, and 9000 monthly over the balance of the year, assuming it will be necessary to stay within the quota allocation of 39,910 covering the last half of the year. First Fords were slated to be christened Tuesday, July 3, and rush calls were going out to various suppliers for certain final trim parts to be in the Rouge plant for sure on July 2.

A rash of strikes in various Ford departments over the past three weeks, springing principally from the conflicts between AFL and CIO maintenance crews and machinery movers, has not eased the Ford reconversion picture any, but orders Irom R. J. Thomas, president of the UAW-CIO, for all maintenance workers in plants where strikes were in progress to report immediately for work served to clear the air somewhat.

Meanwhile Willys-Overland in Toledo, 0 , is showing the press its civilian jeep model next week Monday, followed by a demonstration at C. E. Sorenson's farm in New Hudson, Mich., on Tuesday. Willys has been given WPB authorization to build 20,000 civilian jeeps over the balance of the year, over and above the company's passenger car quota of 8000 . Company officials believe they can sell even more jeeps than are planned, but must carry along production of the military version, contracts calling for something like 90,000 more of these, running into the last quarter of 1946 . Outwardly the civilian jeep closely resembles the military model, except that the spare tire is mounted in the right side, while the top appears to cover only the front seat.

Ford Has Head Start

With Ford apparently getting the jump on the rest of the industry as far as initial production is concerned, the pressure is now on Chevrolet and Plymouth. Of the two, it is likely Chevrolet will be the next of the Big Three to have assemblies under way. First shipments of parts were scheduled to be in Fisher Body plants on July 2, so it will be unlikely to see any finished bodies ready before the end of the month; whether chassis will be ready to receive them as yet is not clear.
Comparison of 1941 production history percentagewise with new authorizations for passenger car production shows how the larger manufacturers were trimmed down on their quotas to permit larger
assignments to the smaller manufacturers.

	Per Cent 1941	New authori-
Production	zation	

Latest production authorization made by the WPB covers another 100,000 trucks
and commercial cars, bringing revised 1945 totals to over 540,000 , or already twice the total allocation of passenger ciars. While military requirements are included, they constitute only a small portion of the total which is principally in the light and medium truck classifications.

Increase of 20 per cent in third-quarter lead allocations for automotive batteries has been granted by the WPB. This wi.l permit production of 900,000 more storage batteries over the original 3,800 ,000 scheduled for the third quarter.

Detroit Ordnance District has announced the Fisher Body tank contract for M-26 heavy tanks built at the Grand Blanc, Mich., tank arsenal has been rescheduled downward to effect termination in April, 1946. The rescheduling will effect approximately 3000 tank units and spare parts with estimated value of more than $\$ 211$ million, over a period of ten months. However, negotiations are under way which will place additional

INCENDIARY BOMB: K. T. Keller, president, Chrysler Corp., holds a "Tokyo Firefly," a new incendiary bomb which weighs ten pounds and throws off 40 globules of flaming oil. Chrysler has received a contract to produce $7,500,000$ of these bombs at its Evansville, Ind., ordnance plant.

NEA photo
contracts for combat vehicles in the plant, what type it is not revealed.

DOD also discloses reduction in the production of truck cargo bodies at Covered Wagon Co., Mt. Clemens, Mich., covering 1700 bodies valued at $\$ 495,000$ over a period of six months. No labor displacement will occur before September. The company has supplied over 21,000 of these bodies since Pearl Harbor.

Toledo ordnance officers report the Bullet Core Division of Willys-Overland has ceased production of 0.30 and 0.50 caliber ammunition, with the plant equipment retained on a standby basis. Reductions also have been made in schedules for 155 -millimeter shells, affecting 500 , in addition to 400 affected by the bullet core termination.
Michigan leads other states in reconversion construction applications. Out of a national total of $\$ 155$ million approved by the WPB for necessary immediate construction work, plants in this state account for 204 of a total of 754 applications, the automotive industry in the forefront with 193 approved applications involving $\$ 115$ million. Refrigerator manufacturers were second with 44 requests totaling $\$ 4,750,000$.

Ford has announced purchase of a 100 -acre tract of land at St. Louis for construction of an assembly plant with daily capacity of 500 cars. Employment at the new plant, located near the St. Louis airport, will total approximately 3000. About 700,000 square feet of floor space will be provided in the onestory 520×1500-foot structure. Concurrently the company is offering for
sale a 374 -acre tract at the confluence of the Meramec and Mississippi rivers which has been owned for several years and was considered for a time as a site for the new assembly plant.

Other proposed plant expansions include purchase of an additional 40 acres of land by Chrysler Corp. adjacent to its parts buildings at San Leandro, Calif. Verne G. Orr, vice president of Chrysler Motors of Califomia, in a recent talk before the San Leandro Chamber of Commerce, emphasized the difficulty the average citizen will have in purchasing any passenger cars built this year, and said 55,000 units of authorized production would be needed for dealers' samples. Questioned as to what Chrysler proposed to do on the new property, he declined to be specific other than to say, "We certainly aren't going into the truck gardening business."

Parts Price Policy Uncertain

The automotive parts industry advisory committtee met in Washington recently with OPA officials, with no result so far as any tangible indication of OPA's eventual action on parts prices. Session was devoted mainly to exploratory questions, although the committee did vote unanimously against any flat industrywide percentage increase factors as unfair and impractical; and for increase factors to be applied on a company basis, or at the option of the manufacturer, on a product-group of individual product basis with each company. The committee pointed out to OPA that even if the partsmakers did have a suitable price formula today, many could not figure prices until

HELP TO DISABLED: World War II veteran, Ted Jones, right, discharged from the Marines after losing both his lower arms and one leg, finds a job despite his handicaps. He shows how metal tabs on the A. O. Smith Corp.'s rate book, combined with Alnico steel-tipped pencil, magnetizes the pages to facilitate furning them. NEA photo
the OPA had also set its policy for 0 ponents such as steel and gray irr castings, forgings, screw machine path etc. Early action on these basic ilem seems imperative.

Last bomber from the Ford Willow Rr plant was wheeled onto the flight apro June 28. It was No. 8685 and originaty was scheduled to be christened Heni? Ford. However, he preferred to hal his name left off and suggested plar employes autograph the ship insteas The vast bomber plant is now an effis place with some of the equipment morid out and virtually all production operatios suspended.

Latest proposal for utility of the plas has been made by Walter Reuther of th UAW-CIO, who suggests the union self consider the possibility of acquirit the plant under lease for production a prefabricated housing elements. His suly gestion is probably just an effort to "ret dle" Henry J. Kaiser into taking some tion on the suggestion made to him bis R. J. Thomas of the UAW-CIO that 4 organization consider the acquisition Willow Run. Kaiser is known to har extensive plans in the prefabricated howe ing field.

At the moment it does not appear like Ford will conclude arrangements to 2 cupy a part of Willow Run for mans facture of tractors and implements. Tb Ferguson tractor interests have announce: plans to move eventually toward pro duction of $1,000,000$ tractors annually priced at something over $\$ 500$, suppic mented by a line of 60 or more attack able implements. This is no small pots toes as far as manufacturing is concemel but the plan now appears to be to hous this activity in the Ford Highland Pati plant rather than at Willow Run.

Transportation Is Problem

With a fair volume of passenger ci production now perhaps only a fer weeks away, one of the unanswerd questions is how assemblies are to bi moved out to dealers and customers Rail shipment probably will be difficut if not impossible. Driveaway traile have been set aside in storage lots lots since, and even if they were availabi there is the little matter of gasoline. 5 far as is known, there are no OPA pro visions covering allocations of gasolitit to the driveaway of new passenger cars Another problem looming in the ner future is a possible collapse in used car prices, accompanied by reluctancr on the part of dealers to accept trade-ip because of old age and extensive amouth of service and repair such used cars wi require.
Official decision on what amour and degree of plating will be allowe in passenger cars is expected to develop at the auto industry meeting in Washing ton this week. Betting is that for the present nickel will be excluded, forcint platers to use the chrome-on-coppd method which was necessary for ${ }^{2}$ final run of 1942 models.

Beat Competition by beating rust

Use low cost corrosion

Plan your product to be a winner in the face of keen future competition.... by using Harper Everlasting Fastenings-the fastenings that (1) resist rust and corrosion, (2) stand up in the presence of many acids, alkalies and other tough conditions, (3) add years of service life AT LOW COST, (4) can be removed with ordinary tools and used again and again. Every Harper fastening is made of either brass, copper, naval bronze, silicon bronze, Monel or stainless steel (nothing in common steel).

4360 ITEMS

 IN STOCKHarper is known as "Headquarters
for Non-Ferrous and Stainless Fas-
tenings" carries large and complete stocks of 4360 different items and is continually adding others maintains large stocks of metal in bars, rods, wire, sheet and other basic forms from which special fastenings can be quickly made. Write for 1945 Catalog.
THE H. M. HARPER COMPANY 2646 Fletcher Street, Chicago 18, lllinois BRANCH OFFICES: New York City • Philadelphia Los Angeles - Milwaukee - Cincinnati - Houston Representatives in Principal Cilies

W. D. KENNEDY

William D. Kennedy, vice president and manager of Wright Aeronautical Corp.'s Cincinnati, O. plant, has been named vice president and general manager of the corporation with headquarters at Paterson, N. J. Mr. Kennedy, who joined Wright Aeronautical in 1928, succeeds P. B. Taylor, who has resigned as vice president and acting general manager.

$$
-0-
$$

Floyd Rose has resigned as president, Vanadium-Alloys Steel Co., Latrobe, Pa., and has been succeeded by Roy C. McKemna, who will serve as both president and chairman. R. B. George was elected sales vice president; L. D. Bowman, production vice president, and F. P. Underwood, vice president and secretary. J. P. Gill, vice president, was appointed chairman of a newly formed executive committee which includes Messrs. Underwood, George, Bowman and Alexander Nimick. J. Cleveland McKenna was elected a director to fill the unexpired term of Mr. Rose.

William J. Carroll has returned as president to Carroll-McCreary Co. Inc., Brooklyn, N. Y., after serving as a lieutenant commander with the U. S. Navy.

William L. Davis has been elected vice president in charge of operations, United States Steel Supply Co., Chicaro. Mr. Davis has been associated with U. S. Steel subsidiaries for the past 40 years.

Tom M. Girdler, chairman, Republic Steel Corp., Cleveland; Robert I. Ingalls Jr., president, Ingalls Iron Works Co., Birmingham; Charles J. Haines, president, National Cylinder Gas Co., Chicago, have been elected members of the board of directors, Girdler Corp., Louisville, Ky.

$$
-0-
$$

James H. Smith, general manager of the Saginaw, Mich., Malleable Iron Division, General Motors Corp., Detroit, has been named a member of the staff of W. C. Williams Jr., General Motors

G. D. MOOMAW
vice president and group executive in charge of Accessories Division. B. A. DolIens, manager of battery operations, Delco Remy Division, Anderson, Ind., succeeds Mr. Smith as head of Saginaw Malleable.

Calvin Verity, formerly vice chairman and treasurer and a member of the board of directors, Rustless Iron \& Steel Corp., Baltimore, has been elected president succeeding Charles R. Hook, who was both chairman and president. W. W. Sebald was elected first vice president, a new office in the company. G. D. Moomaw, formerly vice president in charge of operations and a director, was elected vice president and general manager. He succeeds C. L. Kingsbury, resigned. George W. Clearwater, assistant treasurer, was elected treasurer.

Conrad A. Goldstrohm has returned to American Chain Division, American Chain \& Cable Co. Inc., Bridgeport, Conn., after serving as chief, Chain Section, Tools Division, War Production Board, Washington. He will make his headquarters at York, Pa.

Irving J. Johnston, research engineer, Hibbing, Minn., has been named concentration engineer, Oliver Iron Mining Co.'s research laboratory, West Duluth, Minn.

Cororge D. Wilson, associated with Latrobe Electric Steel Co. in the Detroit area for 13 years, has been appointed manager of the Detroit district office, Howell Electric Motors Co., Howell, Mich.

Wallace J. Habermas has been named manager of the automotive section, Detroit district, Industrial Products Sales Livision, B. F. Goodrich Co., Akron, O. A. D. Eastman, formerly manager of office and technical personnel, Salary Persnnnel Division, has been named director of personnel service, succeeding C. V. Molesworth, resigned. Earl R. Kambrich,
formerly in the Dayton, O ., office has been transferred to the Los Angeles dir tuct as a sales representative. He is surceeded by John W. Oakes, who has bee a member of the new products deprt ment with headquarters in Akron. R.L Custer has been transferred to industri' products sales.

- 0 -

David F. Beard has been named nax ager of advertising and public relations Aluminum Division, Reynolds Methis Co., Louisville, Ky. Donald G. Dunn his been appointed manager of marketing re search.

$$
-0-
$$

Henry G. Schmidt, chairman of tex board, North American Coal Corp Cleveland, was elected president chief executive officer. O. C. Larre resigned as president.
T. A. Ives has been appointed engineer, Pittsburgh Steamship Co. Cleveland, succeeding the late Earl Rat tray.

$$
-\mathrm{O}-
$$

Verne R. Martin has been appointei general sales manager, Maytag Co., New ten, Iowa. Associated with the com pany 20 years, he recently had been sistant manager, Kansas City branch.

- 0 -

Dr. William E. Wickenden, presides Case School of Applied Science, Cleit land, was elected president, Americe Institute of Electrical Engineers, Ne York. S. H. Mortensen, chief electric engineer, Allis-Chalmers Mfg. Co., 12 waukee, was awarded the institute Lamme medal.

Lester H. Roemer, assistant sales ㅁap ager, R. K. LeBlond Machine Tool Ca Cincinnati, recently was named No York district manager for that company.

Gerard F. Norton has been named ger eral inanager of the engineering depari ment, Crawford, Callan \& Co., Ne York, import and export merchants. N Norton will handle the export of machio ery and industrial equipment to all 18 eign markets.

$$
-0 \text { - }
$$

J. W. Ashby has returned to the C lumbur, O., plant, Surface Combusbix Corp., Toledo, O., as manager of appcation engineering. Mr. Ashby has bee serving as Pacific Coast manager of ei gineering, Janitrol Aircraft Division. Als returning to Columbus from Los Angela is G. P. Mandel. Burton M. Sharpe F places Mr. Mandel as aircraft applito tion engineer on the West Coast.
A. W. Fraser, Chicago district mp agcr, Worthington Pump \& Machiner Coñ., Harrison, N. J., has been appoit ed war damare inspector and general Eb ropean manager for the company, headquarters in Paris. Mr. Fraser he succeeded as Chicago district ma ager by W. C. Chalk, who has been ${ }^{20}$
sistant district manager for the past eight years. J. B. Laramy, a member of the Chicago executive staff, has been named assistant district manager.
R. C. Cosgrove, vice president and general manager, Manufacturing Division, Crosley, Corp., Cincinnati, O., has been re-elected president, Radio Manufacturers' Association for the coming year.
0. R. Pendy has been promoted to assistant chief mechanical officer with headquarters at Cleveland, for the New York, Chicago \& St. Louis Railroid. Mr. Pendy formerly was general roundhouse forernan at Conneaut, O .

Harold E. Piggott, formerly in charge of purchases, has been promoted to assistan! sales manager, Dockson Corp., Detroit. Vincent D. Tappero, plant manayser, has assumed the additional duties of director of purchases; Robert Nelson, formerly general shop foreman, has been promoted to production manager.
I. T. Dalecke, assistant director of Fisher Body's aircraft section and former r sident manager of its Cleveland bomber plant, has been named general factory manager of Fisher Body assembly plents. H. D. Burnside, general factory naanager, Fisher Body's B-25 and D-17 bomber programs, succeeds Mr. Dalecke as assistant director of the aircraft section under George C. Paterson, general manufacturing manager.

Pennsylvania Salt Mfg. Co., Philadelphia, has added the following to its research and development staff: Dr. C. E. Inman, formerly with Hooker Electrochemical Co., Niagara Falls, N. Y.; H. S. Fisher, of Aluminum Co. of America, Pitte burgh; O. T. Aepli, Attapulgus Clay r_{1}, Philadelphia, and E. P. Street, a recent graduate of Yalc University.

$$
-0
$$

Thomas J. Bannan, president, Western Gear Works, Seattle and Los Angeles, and its associate, Pacific Gear \& Tool Works, San Francisco, recently was elected vice president, American Gear ManuFacturers' Association, Wilkinsburg, Pa.

David S. Hammerman, executive vice prcsident, Detecto Scales Inc., Brooklyn, N. Yo, recently was elected a director.

Col. T. B. Holliday, has been appointed chief, Engineering Division's equipment laboratory, Amy Air Forces, Wright Field, Dayton, O. He succeeds Col. S. R. Stewart.
F. L. Alexander has been appointed assistant national director, Kelite Products, Inc., Los Angeles, to supervise the company's new plant in Dallas, Texas, as well as all regional offices in the SouthWestern Division. Other appointments include: Earl Lester, divisional manager

DAN BECK
in charge of all service engineers in the Southwestern Division; Roy South, plant superintendent; and F. J. Oxspring, plant foreman.

Dan Beck, for the past 14 years an executive with Dodge Division, Chrysler Corp., Detroit, has opened olfices in Detroit to operate the Executives Selection \& Training Institute. The service is designed to supplement hiring and promoting procedures of business and industry.
T. Verhoef has been appointed Seattle manager, Broderick \& Bascom Rope Co., St. Louis, succeeding E. B. Drisko, resigned. Mr. Verhoef has been with the organization 18 years and has been in charge of operations the past eight years.

Arthur H. Suckow, chief metallurgist, Symington-Gould Corp., Rochester, N. Y., has been elected chairman of the Western New York Chapter, American Foundrymen's Association, Chicago. Other officers elected are: Henry C. Winte, vice chairman; Martin W. Pohlman, treasurer and Leo A. Merryman, secretary.

Donald S. Russell recently was named director of contracts, Bell Aircraft Corp., Buffalo.

$$
-0-
$$

J. P. Skehan has been promoted to assistant sales manager for sheet and Vuepak materials, Monsanto Chemical Co.'s Plastics Division, with headquarters at Springfield, Mass. He succeeds S. A. Bell who resigned to join Columbia Protektosite Co., Carlstadt, N. J.

John F. Collyer, president, B. F. Goodrich Co., Akron, O., has been named a member of the executive committee, International Chamber of Commerce.

Milwaukee Association of Purchasing Agents at its recent annual meeting elected the following officers: Lyall C. Stilp, Kimberly-Clark Corp., Neenah, Wis., president; Edward L. Block, Unit

R. R. STRATTON

Drop Forge Division, Fuller Mfg. Co., Milwaukee, vice president; Fred Syburg, Chain Belt Co., Milwaukee, secretary; Clifford H. Dawley, Ampco Metal Inc., Milwaukee, treasurer. Directors: Ray W. Brick, Carnation Co., Oconomowoc, Wis.; E. L. Janke, Joseph T. Ryerson \& Son Inc., Milwaukee; J. M. Hamilton, Dumore Co., Racine, Wis.; Howell W. Pritchard, Kearney-Trecker Products Corp., Milwaukee; N. A. Schowalter, West Bend Aluminum Co., West Bend, Wis.
R. R. Stratton has become sales manager, Davies Can Co., Cleveland, resigning as district manager, Smaller War Plants Corp. Before entering government service three years ago, Mr. Stratton served Ford Motor Co. in several exccutive positions.

William B. McGorum recently was named district sales manager, New York sales district, ACF-Brill Motors Co.

Robert M. Honegger has been named general manager of the Farrel-Birmingham Co.'s gear plant, Buffalo. He succeeds Lester D. Chirgwin, who, in March, 1945, was elected vice president in charge of manufacturing in the four FarrelBirmingham plants.

- $0-$

Clarence W. Newman, director of research, Virginia State Chamber of Commerce, Richmond, Va., has been appointed industrial analyst, Chesapeake \& Ohio Railway, and will make his headquarters at Huntington, W. Va.
D. C. Prescott has been appointed to the sales staff, Baldwin Locomotive Works, Philadelphia, for the North Central district, with headquarters in Chicago. Mr. Prescott formerly was mechanical engineer at Omaha, Nebr., for the Union Pacific Railroad.

Robert Gregg, president, Tennessee Coal, Iron \& Railroad Co., Birmingham; Robert Strickland, president, Trust Co. of Georgia, Atlanta; Cecil Woods, presi-

JOHN F. HUTSON
Who was named Chirago district sales manager, Railway Sales Division, National Malleable \& Steel Casfings Co., Clevelund, as noted in STEEL, July 2, p. 78
dent, Volunteer Life Insurance Co., Chattanooga, Tenn.; and George J. Pecaro, plant manager at Meridian, Miss., Flintkote Co., New York, have been named trustees of the Southern Research Institute, Birmingham.

Wilbur R. Manock, secretary and treasurer, IHorton Steel Works Ltd., Ft. Erie, Ont., Canada, has been elected president, succeeding the late George Terry Horton.

Chauncey L. Baker, for the past 20 years industrial relations manager, Lackawanna plant, Lackawanna, N. Y., of Bethlehem Steel Co., Bethlehem, Pa., is retiring. He is succeeded by John E. Jacobs, assistant to the general manager, who will also continue in that capacity.

-0-

W. C. Snyder Jr., has resigned as vice president and director, Blaw-Knox Co.; Pittsburgh, and as president, Lewis Foundry \& Machine Division, BlawKnox Co, to accept the position of president and general manager, Conti-

S. RILEY WILLIAMS

Who has been appointed director of infernational business, Warthington Pump \& Machinery Corp., Harrison, N. J., as noted in STEEL, July 2, p. 77.
nental Foundry \& Machine Co., East Chicago, Ind. He succeeds G. N. Herman who has retired because of ill-health. Frank E. Walling, vice president, Lewis Foundry \& Machine Division, has been acting manager of that company.

- 0 -

Col. Nelson S. Talbott has been named administrative assistant to the chief of engineering and procurement, Air Technical Service Command, Wright Field, Dayton, O., and Col. Robert L. Finkenstaedt, Chicago, has been named commanding officer of the newly-formed Central District, A. T. S. C., with headquarters in Chicago.

$-0-$

Electric Metal Makers Guild Inc. has elected the following officers for the coming year: President, J. A. deBondy, superintendent of melting, Manitoba Steel Foundries Ltd., Selkirk, Manitoba, Canada; vice president, J. E. Arthur, superintendent of melting, Crucible Steel Co. of America, Park works, Pittsburgh; and secretary-treasurer, D. L. Clark, super-

G. S. CRANE

Who has been elected president, Cutler-ht mer Inc., Milwaukee, succeeding F. R. Bow chairman of the board, as noted in SII July 2, p. 76.
intendent of melting, Simonds Saw Steel Co. at Lockport, N. Y.
A. S. Knoizen, Franklin, Pa., receri was elected a director, Reliance Electu \& Engineering Co., Cleveland. He i places John D. Fackler, who resigned a member of the board but remains legal counsel. Mr. Knoizen is execult vice president, Joy Mfg. Co., Franklin

James J. Mellon, president, Clark C troller Co., Cleveland, has resigned accept a confidential assignment " the United States government. W. Williams, former vice president, serve as president until a successor elected.

$$
-0-
$$

P. D. Corkum, superintendent Racine, Wis., plant of Massey-Harris C since 1938, has been transferred to company's Toronto, Ont., factory. Robe Johnson has been appointed superinter ent, Tractor Division, and Robert L. BC son will succeed Mr. Johnson as supettendent of the tank plant.

OBITUARIES

Donald L. McCubbin, 55, manager of the Cincinnati steel service plant, Joseph T, Ryerson \& Son Inc., died June 29 in that city. Mr. McCubbin had been associated with the company 30 years.
B. G. Erskine, 62, chairman of the board and former president, Sylvania Electric Products Inc., New York, died at his home at Emporium, Pi., recently.

Max Spillman, 64, a consulting engineer with the Centrifugal Pump Division, Worthington Pump \& Machinery Co., Harrisom, N. J., died recently at his home in Clifton, N. I. For bis outstanding work in pump engineering, National

Association of Manufacturers awarded him its Pioneer medal in 1940.

- 0 -

John B. Strauch, 75 , St. Louis, died at his home in that city. Mr. Strauch served as president and later as chairman of the board, National Bearing Metals Corp. until the company became a division of American Brake Shoe Co.

$$
-\mathrm{O}-
$$

Roland R. Ware, 61, president, Clarage Fan Co., Kalamazoo, Mich., died recently.

- 0 -

Eugene A. McBride, 57, plant manader, Thompson Products Inc., and its subsidiary, Thompson Aircraft Products Co., Cleveland, for 16 years, died June 28.

William Walter, 82, founder and former president, Walter Motor Truck

Co., Ridgewood, Long Island, and pioneer in the automobile industry, recently at his home in New York.

Raymond IV. Towne, 49, assistant S. retary and first assistant to the vice pro dent, Worthington Pump \& Machirt Corp. at the company's Wellsville, N . plant, died June 25.

-0 -

Benjamin Briscoe, 78, automobile p neer and former president, Maswe Briscoe Motor Co. which later bectir part of the Chrysler Corp,, died June at his home near Dunnellon, Fla.

$$
-0-
$$

Froterick C. Renner, 44, general ager of sales, Organic Chemicals Divis? Monsanto Chemical Co., St. Louis, June 26 in St. Louis.

California Factory Employment Down 31 Per Cent from War Peak

Abstract

Number of workers drops 34,700 in May. Reduction largely due to order cutbacks in aircraft plants. Survey shows one out of every four laid-off workers in San Francisco area returning to postwar homes

SAN FRANCISCO

FACTORY employment in Califormia continues its downward trend. During May, production workers in durable and nondurable lines declined another 34,700 to a total of about 670,000 at the end of the month. Since the peak of employment in 1943, this represents a decline of 31 per cent.
Order cutbacks in aircraft plants were the biggest cause of the May reduction, that industry reporting a decline of 14,900 workers to a total of 141,200 on May 31. Since April, 1943, peak payrolls in aircraft manufacturing plants have been cut 103,500 , or 42 per cent.
Private shipyards, which had a further decline of 3700 employes in May, now have 45 per cent fewer workers than at the peak. The heaviest reductions are still to come, however, within a month or two.
There are now 49,000 iron and steel workers in Califormia, down 9000 , or 18 per cent, from the wartime peak.

Although California's economic structure has not been upset by these steady reductions in employment, the state may begin to face a serious problem during the next six to 12 months.
In commenting on this prospect, Col. Alexander F. Heron, director of the State Reconstruction and Reemployment Commission, said:
"So far there has been no real distress due to unemployment. There are about 2200 persoms drawing unemployment insurance in the San Francisco area, replesenting an increase of only about 530 during the last month. This indicates that we have a sponge situation. That is, workers as they drop out are so far by no means going into breadlines, but are heing absorbed in many ways."

During the war, a large number of industrial facilities were established in the West, such as the new steel plants, alumimum and magnesium mills and several hundreds of fabricating factories of various kinds. All over the country similar expansion has occurred, of course. The postwar result will be that competition for markets will be much keener than in the past because of increase in the capacity to produce things the public uses. West of the main pegs on which the West has been hanging its hopes for a postwar industrial economy (by using the war-built plants) has been the prospect that a large number of workers who migrated to the Coast during the war
would live on in the West after the war. This resultant increase in permanent population, it was hoped, would form the basis for a sharply expanded market for things the West could produce in competition for the same things produced in the East.

Undoubtedly a certain proportion of the in-migrants will stay on after the war. But, on the basis of current trends, many more already are leaving than had been anticipated. Independent surveys show that in the San Francisco bay area about one out of every four laid-off workers has been going back home. When the families of these out-migrants are taken into consideration, that means much of the war-gained population already has been lost. As cutbacks increase the ratio of out-migration probably will increase.

Kenworth Motor Truck To Build Plant at Renton, Wash.

Construction by Kenworth Motor Truck Corp. of the largest, most modern truck and bus manufacturing plant west
of the Mississippi will begin immediately, Paul Pigott, president, announced in Seattle last week.

The factory will be built in Renton, Wash., on property owned by Pacific Car \& Foundry Co. at an estimated cost of $\$ 250,000$ to $\$ 300,000$. It and other units will provide 200,000 square feet of floor area.

When the new plant is completed, Kenworth will move its operations from Senttle to Renton, where integrated production will be established in conjunction with the large, modern machine shop and foundry of Pacific Car \& Foundry Co.

Kenworth operations will continue under the direction of John Holmstrom, general manager, and will employ the present personnel of Kenworth, together with the personnel of the body building shop at Pacific Car \& Foundry Co.

In addition to the building in Renton, Kenworth is planning to establish a large factory distribution branch in downtown Seattle to handle service, parts and new truck sales.
In January of this year, Pacific Car \& Foundry Co. acquired a controlling interest in Kenworth and new officers were named. In addition to Messrs. Pigott and Holmstrom, these include Ferdinand Schmitz, president and general manager of Everett Pacific Shipbuilding \& Dry Dock Co., who was named a Kenworth vice president; Vernon A. Smith, who continued in his former position as vice president and sales manager; John Cannon, secretary-treasurer, now on military leave; Kenneth Worthington and F. D. Pittsburgh, assistant secretary-treasurer.

SECRET REVEALED: An $\$ 18$ million secretly built Army port on isolated Excursion inlet, Alaska, and used only 11 months will be dismantled for salvage by 700 prisoners of war, first to be sent outside the U.S. NEA photo

WING TIPS
Technical advancements of war period will have profound influence in postwar aviation, particularly in jet propulsion, pilotless aircraft, rocket power and all-weather operations made possible by radar and micro-wave techniques

DURING the years immediately ahead -and probably sooner than many thinkaviation will be influenced profoundly by a series of technical developments rapidly advanced by the war. Among these are jet propulsion and the gas turbine, pilotless aircraft and guided missiles, rocket power, all-weather operations made possible by radar and microwave techniques and the practical development of helicopters.

This is the opinion of D. Roy Shoults, vice president of sales, Bell Aircraft Corp., Buffalo, expressed recently before the American Society of Mechanical Engineers at Chicago.
"To put the matter into perspective, it might be said that modern aircraft progress can be characterized as the conquest of the third and fourth dimensions; the third dimension, altitude, the fourth dimension, speed," said Mr. Shoults.
"Future progress in airplane development and utilization will be in connection with increases in speed, altitude performance and effective utilization of load carrying capacity and availability at high speeds, high altitudes or long ranges.
"To consider the first factor of speed as affecting future design, according to
tine Bell official, we would expect progress by:
" 1 . Increases of propulsive power per unit of weight or size of power plant or unit of fuel consumed.
" 2 . Increasing effectiveness of wing design, including various means of extending wing surfaces for assistance in landing or takeoff such as now provided by various flap designs.
" 3 . Cleaning up the airplane from an aerodynamic standpoint to reduce the parasitic drag to an absolute minimum by smoothing up surfaces, removing projections and eliminating configurations which cause air flow interference.
"Further progress in high speed flight leads one to the consideration of socalled critical speeds or discussions of mach numbers. Mach number is an expression of the ratio of velocity of air flow to the velocity of sound at a particular point. A mach number of 1.0 i:dicates that the air flow velocity is equal to the velocity of sound.
"For velocities at or near mach number 1.0, the air in front of an object moving in the atmosphere is compressed and subsequently flows around the object with considerable loss. This results in high drag and consequently extremely high values of power are required to produce

ACCURATE: A new measuring instrument having a precision never yet demanded by industry was described by Gerard M. Foley, research physicist of Battelle Memorial Institute, Columbus, O., before the Chicago section of the American Society of Mechanical Engineers. An unusual type of electrical micrometer, the instrument measures movements or changes in position as small as one-tenth millionth of an inch
such velocities," Mr. Shoults explain?
"As the speed of sound is proportion to the square root of the absolute tex perature it is lower at high altitude than at sea level and consequently 0 pressibility and critical mach numx difficulties are usually encountered fit in flight in the frigid atmosphere at hif altitude.
"Future research in high speed flizt will most certainly emphasize methods reducing the ill effects of compressiti ity. With propeller driven aircraft vector velocity of the propeller tip free air is considerably greater than absolute speed of the aireraft throught air, consequently the propeller tip enter the compressibility range with conix quent loss of propulsive efficiency beffe the rest of the structure suffers serious from compressibility. This is one of 4 reasons that jet propelled power plasis have been so effective in increasing maximum speeds of today's fighter craft.
"Another characteristic of jet prop" sion power plants favorable to high sper flight is that the power plant is esse tially a constant thrust device rather the a constant horsepower one as is the ventional engine. As the speed of figis is increased the horsepower availa ${ }^{2}$ h from a given jet power plant increas substantially in proportion to aircri speed and at speeds of $400-500 \mathrm{~m}$ the jet propulsion plant produces mes horsepower for a given space or weif than can conventional piston type engig driving propellers. As speeds incrase above this range the effectiveness of \downarrow jet plant increases in proportion.'
The Cermans in their V-I weap have shown the possibility of utilizatic of unusual thermodynamic cycles tit specific uses, and Mr. Shoults expresse. confidence future developments will in crease the utility of the resonant jet tr action engines. Such engines will is doubtedly be of greatest use for militur? purposes where cheapness and expend bility are of greater importance than loi specific fuel consumption and long lit

Rockets Excite Interest

"The rocket type power plants," said, "after years of experimentation, 2 now exciting terrific interest as a rex of the terrifying success that the Ger mans realized in their V-2 weapon.
"In the further development of vate, commercial or military flying, order to maintain the maximum utiliz of the service, proxtess must and will b made in 'all weather' operation."

Of first importance in this conne tion is the development of radio aids : permit the pilot to take off and lasi with assurance and safety under substar tially zero-zero conditions. Develof ments of the micro-wave and radar tect niques will, within a few years, pemi complete blind flight including takeaf and landings and will probably go fu ther to the point of automatically ${ }^{2}$

July 9, 1945
trolling the airplane during the landing under zero visibility conditions. Much standardization work will necessarily need to be done in this connection so that the aids used are at least nationwide and probably worldwide in availability.

As air speeds increase to the 400-500 mph category for normal commercial operation, Mr. Shoults said, radar aids will be doubly necessary even under good weather conditions for the visibility over or near most of our large cities is only a few miles by reason of the high smoke content in the atmosphere. The 500 mph aircraft must begin to slow down 25 to 30 miles before landing even if approaching at low altitude. Traffic control in airport regions will necessarily be improved to control the approach of such flights with minimized delays and adequate safety.

The other major factor in "all weather" flying is the problem of ice accumulation on the aircraft.

Commercial aircraft transports have been and will be developed to almost any maximum size that the traffic will justify. It is believed that there is no fundamental design limitations which would prevent the successful construction cf a million pound aireraft. In recent years aircraft weights have doubled from 90,000 to 60,000 pounds and doubled again to the $1 / 8$ th million pound size as exemplified by the $B-29$ and are now being again doubled to $1 / 4$-million pounds gross weight in commercial aircraft as recentiy amnounced.

New Aircraft Electrical System Provides Greater Power, Saving in Weight and Wire

TWICE the electrical power of the B29 with 20 per cent less weight of motors and a saving of more than 2000 pounds in wire have been worked out in the electrical system of a newer and much larger airplane than the $\mathrm{B}-29$, by $\mathrm{Col} . \mathrm{T}$. B. Holliday, AAF engineer at Wright Field, O., who recently was appointed chief of the engineering division's equipment laboratory there. Secret of the development, according to information from the Air Technical Service Command, is a change to 400 -cycle high-frequency alternating current, permitting a reduction in the amount of "iron" needed for a given horsepower.

Colonel Holliday has pioneered the use of electric motors to drive aircraft accessories. He established specifications by which weight of motors, generators and wire was reduced importantly, making possible the operation of generators at high altitudes. Number of electric motors in a pursuit plane has been increased from none to 11 , while more than 140 have been installed in the large bombers. Output of generators has been increased by 1600 per cent.

It is not entirely clear what the "newer and larger plane than the $\mathrm{B}-29^{\prime \prime}$ is, but it is possibly a reference to the B-36, ultralong-range bomber designed by Con-

SPEED DEGREASING: Master or "banjo" connecting rods for Pratt \& Whitney aviation engines in basket of dual degreasing elevator devised by engineers of the Buffalo plant of Chevrolet Motor Division of General Motors Corp. to facilitate handling and control rate of travel through degreasing vapors
solidated Vultee and in the planning stage since early in the war. Peacetime versiua of this huge ship doubtless is the Cors. solidated Model 37 transport, pictura of which have been released, with announcement it would be furnished to Pan-American Airways after the war As now drawn up, it is a six-engine, 20 passenger transport with speed of 300 . 400 miles per hour, and twelve timues larger than the DC-3 airline transpoth now in use.

In a military version, the six pusher-type engines conceivably could develop something like 18,000 combined horsepower. and sufficient gasoline might be carried to provide close to 10,000 -mile operating range. Although no announcement has been made, it is considered possible a: least the military model shortly will be ready for testing, particularly in view d the fact many of the specifications of the Model 37 are stated to be "restricted by military necessity."

Latest news flash from Consolidated os the Model 37 relates to the possible use of helium gas instead of air in the giant tires on the liner. Air required to fll 2 the tires would weigh 180 pounds, agains 26 pounds of helium. Further the comp pany has computed the 160 -ton plane will weigh 745 pounds less at 25,000 fer altitude because of the diminished pull of gravity.

Wright Aeronautical To Release Educational Film

"Power House of Aviation," a nelts educational film produced around the Wright Cyclone 18 aircraft engine, will be released soon for showing to ap propriate groups throughout the countr: Starting with a brief review of the history of the Wright Aeronautical Coip the picture takes the audience on a per sonally conducted tour through the plants, and shows how the most modem high-production machine tools and processes have been sucessfully applied to the ultra-precision work demanded by these engines. In contrast with these ner methods, some of the earlier processel are shown to enable the andience th appreciate the advances made in manu facturing methods during the war years

Methods of producing both the cas and forged cylinder heads, as well as numerous other parts, are shown in some detail, together with the various steps of assembly, inspection, and test. The closing scenes show Cyclones in ac tion on all the different fronts, installed in such famous fighting ships as the Boeing Fortress and Superfortress, is the Martin Mars, the Lockheed Car stellation, and other planes of the Amm! Air Forces.

Weatherhead
THE FEATHERHEAD COMPANX, CIEVELAND 8, OHIO Plents: Cleveland, Columbin Citr, Ind., Los Aozeles Cunsda-St. Thomen, Ontario

New uses are being found daily for the application of our improved industrial hose lines on machinery of all kinds. We manufacture hose assemblies of all types to withstand pressures up to 10,000 P.S.I. They can be equipped with either permanent crimped ends or with re-usable, quickattachable hose ends. For information or literature write or phone any Weatherhead branch office.

Barium Acquires Control of Erie Bolt \& Nut Co.

Purchase is additional step in Barium's program to widen its activities in correlated lines of production

BARIUM Steel Corp., Canton, O., has acquired control of the Erie Bolt \& Nut Co., Erie, Pa., through the former's wholly owned subsidiary, Clyde Iron Works Inc., Duluth.

Acquisition of Erie Bolt \& Nut Co. is another step in the postwar program of Barium Steel to broaden its activities in correlated lines of production. Negotiations are pending for further expansion through acquisition or merger with other companies.

Erie Bolt \& Nut Co. is a supplier of special alloy bolts, studs, and related products to manufacturers of railroad and farm equipment, airplane producers, construction companies, gasoline plants, machinery, rubber, and other businesses. Its present management and personnel will be retained.

The Erie company is operating at capacity. While a large part of its activity is presently devoted to supplying demands of the Army and Navy its machinery and operating facilities require no reconversion or interruption for manufacture of peacetime products. Through the Barium and Clyde organizations the demand on Erie Bolt \& Nut will be augmented considerably. The Clyde Iron Works Inc., full control of which was obtained by Barium Steel last September, is one of the principal producers of whirleys, hoists, and similar machinery, with agencies in foreign countries as well as in the leading cities of America.
With acquisition of Erie Bolt \& Nut Co. the Barium Steel Corp. now operates three plants producing important steel products. The Barium forging plant at Canton has originated and produced several die and piston rod steels and last year expanded facilities by purchase and lease of additional equipment. Clyde Iron Works Inc. produces equipment for industrial, contracting, railroad, oil and mining, logging and naval lines.

Jorgensen Co. Constructs Additional Steel Warehouse

Earle M. Jorgensen Co., steel distributor, has completed foundations for an additional warehouse, its fourth in Los Angeles. The new structure, 80×300 feet, will be devoted exclusively to handling plates and is designed especially for that purpose.

"INSULATING" WELDING GLOVES: Novel safety device of GrahamPaige Motors Corp., Detroit, is this mitt-dryer designed to protect employes welding amphibian tanks. Perspiration, with its high salt content, is a good conductor of electricity and increases the danger of serious shock to workers handling electrical equipment. To eliminate the hazard, welding gloves now are dried rapidly by slipping them over narrow chimneys protruding from a metal cabinet which contains a heater and fan

BRIEFS

Paragraph mentions of developments of inferest and signifi cance within the metalworking industry

Allegheny Ludlum Steel Corp., Brackenridge, Pa., has issued its first news letter that will be sent quarterly to stockholders.

- 0 -

Pullman-Standard Car Mfg. Co., Chicago, announced that the Distinguished Service to Safety award of the National Safety Council has been won for all of its 12 plants.

-0-

Society of Automotive Engineers Inc., 29 West 39th Street, New York 18, is cistributing its 1945 handbook.

Thomas Machine Mfg. Co., Pittsburgh, has appointed the following as sales
agencies: Northern Machinery \& Supp.? Co., Minneapolis; Richard Ives Co., Denver; J. M. Grisley, Salt Lake City, Utaitl Dawson Machinery Co., Seattle; Harron Rickard \& McCone Co., San Francisc and Los Angeles; C. J. Harter Machinet Co., Houston and Dallas, Tex.; Robet R. Stephens Machinery Có., St. Louis George E. Zweifel \& Co., Portland Oreg.; Bryant Machinery \& Engineerimb Co., Milwaukee; and Noland Co., Nasto ville, Tenn.
-0-
General Motors Corp.'s Electro-Motit Division, LaGrange, Ill., has leased 126_{1} 000 square feet of the Defense Plart Corp.'s aluminum sheet plant at McCook

Ill, and will use it for fabricating operations.

$$
-0-
$$

Wilson Welder \& Metals Co. Inc., New York, has appointed Graybar Electric Co. exclusive distributor of Wilson electrodes in areas served by Graybar's Cincinnati, Cleveland and Pittsburgh offices.

$$
-0-
$$

Baltimore \& Ohio Railroad has applied to the U. S. Corps of Engineers for permission to construct coal and ore docks, piers and bulkheads and for dredging on the south shore of Maumee Bay, Lake Erie, O., outside and east of Toledo, and outside and west of Harbor View, O .

Baldwin Locomotive Works, Philadelphia, will open a headquarters in Paris in September to provide coverage for Baldwin's heavy machinery in France and its colonies, Belgium, and Holland. Thomas Butts will direct the office.
H. K. Porter Co. Inc., Pittsburgh, has moved its Rochester, N. Y., offices to Buffalo. W. A. Coyle, former assistant combustion engineer with Republic Steel Corp. at Buffalo, will be district manager for the Porter company.

Sprague Electric Co., North Adams, Mass., has received the Air Technical Command's Approved Quality Control rating indicating the firm's inspection organization can be entrusted with full responsibility in assuring that products meet all requirements of the Army Air Forces.

$$
-0-
$$

Ekco Products Co., Chicago, has purchased a five-story building at 31 Madison Avenue, New York, and will remodel it to provide show rooms and offices for Ekco executives in the latter city.
-

Robert H. Clark Co., 9330 Santa Monica Boulevard, Beverly Hills, Calif., will build an addition to its plant to provide for an increase in production of cutting tools and tool holders. A new catalog of the company's products is now available.

Sterling Engine Co., Buffalo, has received orders for $\$ 2$ million worth of diesel engines to drive electrical generating plants in rehabilitation work abroad and to propel diesel-electric cars for westerm railroads.

- 0

Central States Steel Inc., Kansas City, Mo., has leased a warehouse at 637 Schmidt Road, Davenport, Iowa, where the company will open a wholesale warehouse for steel and wire products.

Nox-Rust Corp., Chicago, has opened the following new sales offices: Buffalo, 1200 Niagara Street, with C. R. Craig in dharge; Philadelphia, Meadow \& Wolf Streets, with L. J. LaBarge of Commercial Warehouse Co. in charge; Water-
bury, Conn., 531 Bank Street, with G. R. Angrave in charge; and Cleveland, 14511 Woodworth Avenue, with T. C. White in charge.

Westinghouso Electric Corp., Pittsburgh, has presented to Arthur E. Marsh, Madison, N. J., \$3063, highest award the firm ever made under its suggestion system. Mr. March's suggestion reduced by 62 per cent the quantity of gold alloy wire needed to solder electronic tube parts.

$$
-\mathrm{O}-
$$

Gray Foundry Inc., Poultney, Vt., has taken over the American Pipe Bending Machine Co. Inc., Boston, and entire operations will be conducted from Poultney.

$$
-0-
$$

Pipo Machinery Co., Cleveland, announced that Ho:ner B. "Tex" Johnson, 549 West Washington Boulevard, Chicago, will represent it exclusively in the Chicago-Milwaukee area.

$$
-0-1
$$

Fowler Mfg. Co. is located in its new factory, 2545 S. E. Gladstone Street, Portland 2, Oreg.

ASTM Names Bell Telephone Engineer as New President

New officers have been chosen for the American Society for Testing Materials, Philadelphia.

President is J. R. Townsend, materials engineer, Bell Telephone Laboratories Inc., New York, and vice president is
T. A. Boyd, head of the fuel department, Research Laboratories Division, General Motors Corp., Detroit. Members of the executive committee are: John H . Freeman Jr., technical manager, American Brass Co., Waterbury, Conn.; L. J. Markwardt, assistant director, U. S. Forest Products Laboratory, Madison, Wis.; Carlton H. Rose, chemist, National Lead Co., Research Laboratories, Brooklyn, N. Y.; L. P. Spalding, chief research engineer, North American Aviation Inc., Inglewood, Calif.; and William A. Zinzow, chief physicist, Bakelite Corp., Bloomfield, N. J.

Las Vegas Plant Expects Increase in Production

The Pneumatic Tool Division of Steel Conversion Corp., Las Vegas, Nev., is producing more than 800 units a day and in the next three months the output will rise to about 2400 units dxily.

Facilities are also avialable now at the Las Vegas plant for general repair of custom industrial tools. G. A. Duemling, president, said a larger building will bo built soon on the company's property, and by the end of the year the company will be employing more than 200 men. Mr. Duemling contemplates establishing other plants to give the West complete service on custom tools.
Steel Conversion Corp. is not affiliated with the Steel Ccnversion \& Supply Co., Pittsburgh, but is using the same patents and processes.

HONORED: Dr. Charles E. Skinner, center, founder of Westinghouse Electric Corp.'s research laboratories, Pittsburgh, was honored on his eightieth birthday. Discussing research advances with him are F. D. Newbury, left, Westinghouse vice president, and Dr. L. W. Chubb, laboratories director

How the Fercules Pouder Co. PURCHASES STAINLESS

Development of Satisfactory Working Specifications and tests for steels for use in chemical processing are described

OUR experiences in the purchase of the so-called stainless steels stem from a short terse set of specifications which over the years has evolved into the following:

Weak Mised Acid Corrosion Test: "This material shall passivate, with a total loss not exceeding 0.25 grams per square inch when tested in boiling weak mixed acid, in accordance with Hercules Powder Co. Method C-38-2."
Boiling 65 Per Cent Nitric Acid Test: "Nonaustenitic materials (similar to Types 430,442 , and 445) shall have a corrosion rate not greater than $0.075-\mathrm{in}$. per year and austenitic materials (similar to Types $304,316,317,347$) not greater than $0.040-\mathrm{in}$. per year, when tested in boiling 65 per cent nitric acid in accordance with Hercules Powder Co. Method C-38-1."

The demand in these short specifications makes clear the conditions under which the material is to operate and leaves nothing to luck or chance, nor do they demand the ultimate of skill and dexterity in checking them. The resultant experiences in meeting these specifications have not been cloaked in heroics. Our requests for high quality under these conditions have been met with calm judgment, co-operative effort and careful study of changing operating conditions. The result is a consistent improvement in materials, as shown on

By W. L. HEWES
Assistant Director of Purchases Hercules Powder Co. Inc. Wilmington, Del.

our test report cards, a few of which are exhibited in Tables I and II.

We are obtaining with less frequency, poor tests as shown in Table III.

We do not reject material on first test but subject it to a second and occasionally a third test. If the final results confirm the first test, even then the material is not immediately rejected but the plant demands are scanned very carefully to find a place for the material where the corrosive conditions are less severe than that for which the material was purchased.

The above tests are reported here merely to indicate the wide field of material used.

All our orders for alloy material for
critical corrosive conditions are purchased under specifications which both mills and warehouses have shown an anxiety to meet. The conditions have been met firmly and successfully withoul the fanfare of advertisement.

However, from a purchasing viewpoint. the recent advertising of the chemical industry is a challenge to the steel in. dustry to display to the purchasing and consuming public what is undoubtedly going on quietly behind the scenes in the development of improved steels sought by the chemical industry for production. Many of these improved chemical production processes were heretofore thought to be impossible or limited is use because of the lack of advanced types of steels to limit the corrosive actions of the new chemical products.

Early in the History of alloy produc. tion, steel mills were handicapped by the tonnage principle so long prevailing in the industry. It was difficult for a stee
(Please turn to Page 134)

Fig. 1—One of eight KA 2 SMO Type 316 stainless steel tanks 96 in. outside diameter, $11 \mathrm{ft} 7 \mathrm{~F}_{\mathrm{s}} \mathrm{in}$. high and $1 / 2-\mathrm{in}$. thick fabricated by Edge Moor Iron Works, Wilmington, Del.
Fig. 2-Here one of 20 Type 430 stainless steel tanks is being fabricated by Edge Moor Iron Works. Tank is 96 in . outside diameter, 25 ft long, with walls $3 / 8-\mathrm{in}$. thick. As this material requires unusual care to prevent cracks, it was annealed at $1425^{\circ} \mathrm{F}$ and furnace cooled
Fig. 3-Three sections and top cap of a Type 430 stainless steel tower made from $5 / 8$-in. thick stock. Each section is 13 ft long, 64 in . in diameter. Fabriricated by Downington Iron Works, Downington, Pa.

STEELS

Fig. 4-Closeup of a riveted section of one of the units in Fig. 3. These two views are regarded as good examples of riveted work in stainless steel

TABLE I-WEAK MIXED ACID CORHOSION TEST
Penetra-

Total			Penetra- tion After	
2	4	8	12	(Inch)

12 Sheets 24 ga. $36 \times 91^{\prime \prime}$ Type 316 Ka 2 SMO No. 1 white finish (For general plant use)
$9=-1$ Pc. 1*' ${ }^{\prime \prime}$ Chrome
Tubing 18-8 Type 302
(For compressor room)
4-8" Kn2SMO Gate
Yalves (For boiling tub house)
$50 \mathrm{lbs} . \mathrm{sh}^{\prime \prime}$ dia. chrome Electrodes (For general plant use)
$50-y^{\prime \prime} \times 11 / 3^{\prime \prime} \mathrm{Rd}$. Hd. Rivets Type 304 18-8\% Chrome (For boiling tub house)
I Har $2 \frac{1}{4 \prime \prime}$ Dia, x $6^{\prime} \times 1^{\prime \prime}$ Lg. Ka2SMO, Type 316
Stainless Steel (For paddle arms-tub house) 100 Pcs. $24^{\prime \prime} \times 14^{\prime \prime} \times$ 每 $^{\prime \prime}$ Stainless Steel Washers $\begin{array}{lllllll} & \text { (For boiling tub house) } & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.00000\end{array}$

TABLE II-STRAIGHT NITRIC ACID TEST

Inches Penetration Per Year According To First Second Third
12-Hour Bail 12-Hour Boil 12-Hour Boil
4-1" No. 111 18-8 Chrome
Flanged Gate Valves
$\begin{array}{lllll}\text { (For ammonia oxidlation) } & \ldots & 0.044 & 0.048 & 0.036\end{array}$ $64.76 \mathrm{lbs} .(7$ spools) Type 304 Stainless Steel Wire (For making carboy wires)
$0.0134 \quad 0.0284$
0.0105 1-1" O.D. Type 430 Senmless Tubing
(For acid plant)
0.035
0.025
0.039

TABLE III-WEAK MIXED ACID CORROSION TEST
(Sample of unsatisfactory test results)

INCREASED knowledge and a growing realization of the usefulness of the potent force, X-ray, have taken all the mystery out of at least one aspect, and today industry is aware that it has a tool at its disposal which will tell "volumes" about otherwise hidden secrets of many products. Roentgen in 1895 could hardly have suspected that one day his laboratory achievernent would be an accepted means of proving soundness of repairs to parts which would otherwise be scrapped, of developing casting techniques, determining proper pouring temperatures, eliminating excess metal through efficient design, proving accurate placement and bonding of inserts, or of performing any of a number of other important functions.

Use of X-ray as an inspection device, especially in connection with shell casings and loaded shells, has received wide publicity, but little has been written on
> inspection medium's relatively brief history replete with achieve ments. More efficient use of metals, fewer rejections, and lower costs through proper design make strong argument for
> X-ray expansion in next few years
its potentialities as a production tool in the all-important postwar era. It would seem that in this respect it will prove most valuable.

Importance of efficient and rapid war production has led to installation of Xray equipment or radium in hundreds of plants, and management has been given an opportunity to observe at first hand how really effective X-rays can be in helping to turn out faultless products of war. Many of these same plants can be counted on to continue and expand their use of that equipment as an aid to
the production of consumer good
The Rochester, N. Y., plant of Delo Appliance, a division of General Motor is one of many that have found X-a 2 boon to production. Electrical appl ances they make for aircraft and othe war products must be right. Delco 1 , ploys X-ray extensively as a developmed aid for new products in its own plar and for those of its suppliers, and as constant accurate check. on the qualih of regular production.

Consider the case of an aircraft electro cal appliance which required a new typ

Fig. 1-Radiographic inspection of this simple bearing housing revealed defects in sample at right. Blowholes and porosity have been eliminated in sample at left

Fig. 2-Imperfect distributor molding at left is distinguished easily from acceptable one on right by radiography. Badly bent insert in left-hand view could arc with adjoining insert, preventing proper functioning of distributor

Fig. 3-Closeups of typical flaw (before welding, left) in $40-\mathrm{lb}$ casting of flywheel housing, and after welding, right, as shown radiographically

Fig. 4-Radiograph of defective cast aluminum housing which led to improved casting technique

Fig. 5-Four stages of improvement in castings following experiments to reduce grain size and porosity by controlling pouring temperature. Radiographs of exhibits a, b and c proved temperatures were too high. Sample 5d, accepted, was poured at $1250^{\circ} \mathrm{F}$

Fig. 6-An early attempt at alloy steel supercharger diaphragm was X-rayed (left) and resulted in sound castings of type shown at right
of housing. Plans called for a housing of cast aluminum containing several inserts in the form of bronze bearings, copper tubes, laminated soft iron field parts, and several brass strips. Blueprints for the housing were released to a foundry which developed what appeared to be a satisfactory technique and began delivery of castings to Delco, who radiographed them as a part of its standard Procedure. Some of the initial lot were rejected for flaws. The foundry made thanges in its technique and began delivery of improved castings, but some irtegularities continued. Delco radioRraphed all castings received every day for a period of 3 weeks while the foundry continued to make changes suggested by
(Please turn to Page 156)

Hardening such small parts as spacers has been exasperating to the metallurgist and production personnel in many shops for years because of inability to keep down brittleness and prevent warpage. Loss from these two evils in one shop recently reached as high as 80 per cent on some batches. A little insignificant job at the best, but one very necessary in assembly, it couldn't be neglected. Even when time was taken to slip them on long carriage bolts and pull them down tight with an end plate and nut before placing them in the draw furnace, the loss of warpage was out of reason.
Finally it was suggested that a way out might be found by way of a small electric induction heater. The manufacturer had told us very little about the machine when he sold it to us. This left me free to try anything, which after all does have its ad-

ported rigiuly on the rear edge of te tank itself. Down its sharply sloping la? and below the upper edge of the tat level, a slit of just the width and lenge io allow the heating coil of four tur of the $1 / 8-\mathrm{in}$. copper tubing to sin halfway through (see diagram) allow a clear space for the spacer to t slid down the face of the stand, throus the heating coil and on into the quend ing solution below. Strips of insulatis material were bolted into place to gue the part through the coil without toud ing it and at the same time hold: against the face of the stand. The quenc level in the tank was brought up to in. below the heating coil.
Spacers were slid through by hand th means of asbestos cord at various speed and checked for rockwell C reading until it was determined that proper hart ness and evenness of readings were d tainable without warpage, even after be ing drawn while lying loose in the fin nace. This latter check was made prove to ourselves that the general effal of the treatment did not introduce is ternal stresses that reacted in the sam way as they did in an overhardened p drawn back. In actual practice it i" proposed to treat up to proper hardne and eliminate the draw entirely.

Automatic Feed Developed

From here on our job was to refine improve the stand; develop an automati feeding system for the spacers whes speed could be varied evenly through range applicable to all types and sizes spacers that might be treated; and culate the quenching solution around $上$. part being quenched.
The guides on the stand were mad adjustable by assembling the bolts hol: ing them in slots that allowed spacers! various diameters to be accommodate. The heating coil slot was lengthened fo insertion of heating coils of various dian eters.
In regard to the automatic fced, , proximately 2 in. below the quenc level a rubber covered shaft was mounte on spring supports across the pathwi followed by the spacers. The end of 1 shaft extending over the edge of b stand carried a grooved pulley and ws thus belted to a fractional horseporiz direct current variable speed motor ir which a reduction gear had been bui ${ }^{2}$ By this means a slow variable speed m: tion was obtained.
Before starting the operation enous spacers are introduced to fill the guice clown into the roller. Then the heater turned on, the variable speed mot started. Then the operator keeps guides filled. By adjusting the mot speed, the proper movement is easily ${ }^{\frac{d}{5}}$ termined to give a rockwell C readim (if 50 to 60 . The first spacer through i caught and fed back through again.
The inlet for the quenching solubit is introduced through the sidewalls? the tank by means of tubes extending ? s.cle so that the flow circulates the way from both sides over the front and ban of the spacer at the quenching level, thi
(Please turn to Page 162)

Grind Helices to Order

To produce the plunger helice controlling amount of fuel delivered by injection pumps to extreme accuracy necessary, helices are ground in specially designed machine using a Norton grinding wheel $3 / 4 \times 1 / 16 \times 5 / 32$-in., oporated at $40,000 \mathrm{rpm}$ by an air turbine spindle. Unique micrometer type gage with high optical magnification is employed to measure accuracy of operation.

New Rustproofing Material

A phosphate type of finish for iron and steel, providing protection from rust as well as a base for organic finishes, has been developed by Du-Lite Chemical Corp. With an oil dip, it is a satisfactory finish by itself for many applications. As a paint lacquer base, the crystalline surface of the microscopically porous coat afords such a strong "grip" that chipping or peeling is said to be almost impossible. The finish meets Army specifications for its type, and was developed under a company fellowship at Syracuse University.

Coating for Zinc

The Bonderizing process, best known as a paint base coating for iron, steel and zinc surfaces, also may serve to protect zinc-coated products and zinc-base die castings from corrosion where no paint is applied. This treatment results in the conversion of their surface to an insoluble phosphate coating that substantially retards the development of the white salts of zinc corrosion on such products. The finish becomes an

Engineering
 阳

integral part of the surface through chemical reaction with the metal. It forms equally well in recesses and holes and on flat surfaces. The process is unaffected by heat used to remove moisture or to dry paint.

Smallest Unit of "Nothing"

Dehydration of blood plasma, penicillin and foods provided the know-how for vastly increased industrial applications of high-vacuum by which liquids are "boiled" at temperatures as low as freezing. In air pressures that approach the absolute vacuum of interstellar space, heavy-molecule oils are fractionally distilled, magnesium is extracted from ore, and lenses are glareproofed by molecular bombardment. These new high-vacuums are pulled by recently developed diffusion pumps, operating in tandem with compound roughing units of mechanical pumps or steam jet evactors. In multiple stages, this

PLUG GAGE RACK: Cleaning and oiling of large plug gages, which must be free of all dirt and grit before being inserted into chambers to be checked, is solved at one stroke by storing gages on oil soaked felt strips between dividers of the rack shown here. One or two turns on the felt prevents rust and cleans the gage, according to Westinghouse Electric Corp.
equipment can reduce air pressure to below 1 micron (one-thousandth of a millimeter). By using vapors such as those of mercury to entrain the remaining air molecules, a diffusion pump further decreases pressure to (a hundredthousandth) 0.00001 -micron. Process Industries Quarterly.

Lilliputian Tubing

Research on an important material for the government has made possible the development by North American Philips Co. Inc. of an ultra-thin-wall seamless tubing in various cliameters, with wall thickness ranging from 0.0001 to $0.001-$ in. The tubing can be made of gold, silver, copper, nickel, chromium and other metals. It is uniform in thickness and absolutely air-tight. Possible fields of application are as yet unexplored, but its suitability for use in delicate instruments and high-frequency radio circuits has been suggested.

Improves Thermocouple

Heat resisting stainless steel soon will replace another material in the secondary protecting tube of platinum thermocouple assemblies manufactured by Brown Instrument Co., Philadelphia. It is said the change will result in longer service life for the protecting tube assembly by eliminating freezing of tube and checking oxidation; also it will facilitate easy removal of assembly for inspection. Thermocouple assemblies are used with two-hole silica block for glass tank crowns.

Thermit Castings

The thermit welding process now has been adapted to the production of steel castings. As in making thermit welds, finely divided aluminum and iron oxide are ignited in a crucible. The molten metal then is poured into a mold after cooling somewhat from the peak temperature of $4000^{\circ} \mathrm{F}$. A typical steel analyzed C 0.25 , Mn 0.68 , Si 0.11 , Al 0.60 , S $0.02-0.04$ and P 0.02-0.04.

Fig. 1-Tapered roller bearing as made by Timken consists of inner race (cone), outer race (cup), rollers and cage

Fig. 2-Sectional diagram showing how extensions of tapered contacting surfaces meet on bearing axis. thus obtaining true rolling motion

Fig. 3-Section through bearing shows how tapered surfaces provide wedge action that absorbs axial loads as well as radial loads, in turn enabling the bearing to carry loads from any direction

ROLLER BEARINGS At Timken

DURING the early 90 's when Henry Timken was a blacksmith in St. Louis, Mo., he developed the unique, highly efficient, tapered roller bearing which today bears his name. As he made his business grow from a tiny smithy to a 4 -story carriage factory, he had seen that cminges should have better bearings. He was among the first to equip carriages with bearings of any kind, and quickly turned from ball bearings to the more efficient tapered roller bearing he had patented.
As a result, the Timken Roller Bearing Co, was founded in 1898 by Henry H. and William R., the hard-working sons of the first Henry Timken. In 1904 the business was moved to Canton, O., for reasons of transportation and supply. By 1922, it had grown by 200 times, showing an annual output of 22 ,350,000 bearings as compared with 120 ,000 in 1902.

Today, production facilities covering more than $2,000,000$ square feet of Hoor space at Canton, Gambrinus, Columbus, Wooster and Mt. Vernon, O., have a still greater output. Canton plants alone have over 13 miles of standard gage railroad track. In 1916 the company built ite own steel mill to furnish the special high-grade electric-furnace alloy steel required for Timken bearings, a plant today rated one of the world's largest producers of high-quality electric-furnace steel.

Excellent Performance: Wherever a precision bearing is wanted to handle heavy loads at high speeds, there you will usually find a Timken tapered roller bearing. In fact, they unquestionably dominate anti-friction bearings in automotive and railroad fields as well as in all types of industrial machinery. They are standard equipment in a majority of all makes of cars, trucks and busses. Railroad cars and locomotives, steel-mill roll necks, machine-tool spindles, oil-field machinery, compressor crankshafts, paper making machines are but a few of industry's tough jobs taken over by Timken bearings. The use of these bearings has so revolutionized previous ideas of bearing performance that it is well worth
while to briefly examine the mechanical principles that have made possible this exceptional performance.
Load-Carrying Ability: An outstanding characteristic of the tapered roller bearing is its ability to carry bolh heavy thrust and radial loads. In relerring to Fizs. 1, 2 and 3, the arrangement of the tapered rollers between tapered inner and outer races is such that the thrust (axial) loads are transformed to a balanced radial load on each of the rollers within the bearing and absorbed by the tapered surfaces in the same manner that a wedge transforms a force applied lengthwise into a force acting at right angles to the surfaces in contact.

True rolling action (Fig. 2) is obtained l.etween rolls and raceways, since lines produced coincident with the faces of the rollers and races all meet at a common point on the axis of the bearing.

Pressure between roll and raceway is distributed uniformly over the entire length of each roller. The line contact which withstands the combination of radial and thrust loads (instead of point contact, as with ball bearings) accounts for the tremendous capacity of tapered roller bearings. Each roller is positively aligned with respect to a rib on the inner race and therefore is made to carry its proper share of the load. See Fig. 4. To

Fig. 4-Shoulders on inner race keep rollers positioned lengthwise so they divide the load equally, thus extending life

Fig. 5-Section through steel mill roll neck hearing before redesign

Fig. 6-Note how redesigned bearing has same outer diameter, yet its larger bore permits a neck stress of only 65% of former value. Also this new bearing has a rating that will give double the estimated life of the bearing in Fig. 5

Fig. 7-Great range in size of bearings is indicated here. Girl holds 8 -oz, $3 / 8$-in. bore unit alongside $9,500-l b, 51$-in. outside diameter steel mill roll neck bearing

ubtain this correct load distribution, the rollers are properly spaced around the cone by the cage, Fig. 1.

With initial load distribution accurately provided for, minimum deformation of the roll occurs. Translated into terms of bearing life and bearing performance, this means greater precision, greater rigidity with less wear and consequently longer life of bearing and the machine parts that it supports. Machine tool manufacturers have found that the extremely rigid mountings made possible by these bearings permit machining practices said to be impossible with any other type of mounting.

Controlling Wear: Thus, the design inherently reduces wear to a minimum. Further control of wear is obtained by heat treating the cup (outer race), cone (inner race) and rolls. An extremely hard surface ($60-62$ rockwell C) is produced by case hardening, a process that at the same time retains a tough elastic inner core.
Timken bearings are rated on the basis of a 3000 -hour working life. If 100 bearings are loaded at rated capacity, their average life will be five times this figure, or 15,000 hours. Bearings will last ten times longer at one-half than at full load.

Fig. 8-Setup for reading spectrograph charts in the metallurgical laboratory
Fig. 9-Large outer races are machined on boring mills and other heavy equipment. This is a typical setup

Fig. 10-Automatic 4 or 6 -spindle screw machines make small races
Fig. 11-Large races are carburized in pit type furnaces as shown here

Likewise, their life will be only onetenth normal if the load is doubled. The above relationship of under and overloading holds for practically any type of anti-friction bearing and to a certain degree applies to life expectancy on gears and many machine tool mechanisms, report Timken engineers.

Continued Improvement: For many years, the company has maintained a large research staff with the most modern facilities for the purpose of devising and developing further improvements. Typical of these efforts toward continual improvement is the new line of bearings for steel mill roll necks. Here the problem was to rearrange the proportions of present bearings to pack increased bearing capacity into a limited space.

Paul Haager, assistant chief engineer, Industrial Division, explains the limits. "The maximum outside diameter of a bearing for a specific mill roll size is
obviously restricted by the outside diar eter of the mill roll and the clearanci provided. Maximum bearing width limited since stress on the roll neck creases directly with bearing width. $\mathbb{1}$ neek stress for a given load also vanis inversely as the cube of the bearing bon Thus the inside diameter of the beariz must be as large as possible and st provide the necessary capacity."

In making the redesign, all bearim roll proportions were analyzed and th most satisfactory proportions worked o for a specific job. After this analys was completed for a single size bearira it was possible to lay out a comple line of roll neck bearings for all miv sizes ranging up to $60-\mathrm{in}$. mills.

Steel mill type bearings so redesigno have ratings up to 40 per cent higte than bearings supplied on the previou design. Proportions in these new bey ings provide more internal bearing

idity, better distribution of load to the rollers within the bearing, and greater mill rigidity-in turn leading to greater precision in rolling.
Figs. 5 and 6, showing sections through old and new designs respective$l y$, reveal the change in proportion. The new bearing, Fig. 6, has a rating that will double the estimated life of the bearing, yet it has the same outside diameter as the old bearing, Fig. 5. Larger bore of the new bearing means that neck stress is only 65 per cent of that with old bearing.

Wide Range In Size, Style, Application: Timken tapered roller. bearings are made in an amazing number of sizes and types for an almost endless variety of
applications. Sizes range from the small unit the girl in Fig. 7 is holding in her hand up to the large bearing alongside of her for back-up rolls on a steel mill. The small unit has a $3 / 8-\mathrm{in}$. bore, a 1 -in. outside diameter, is $3 / 8-\mathrm{in}$. wide, weighs 8 oz , has a single row of rolls with a capacity of 250 lb at 50 rpm . The large bearing has four rows of rolls, measures 36 in . wide, 51 in . outside diameter, has a $351 / 2-\mathrm{in}$. bore. It weighs $9,500 \mathrm{lb}$ and has a radial load capacity of $4,000,000 \mathrm{lb}$ at normal mill speeds.
An idea of the great variation in types and sizes can be had from the fact that 3500 different ones are cataloged, divided into approximately 63 different classes for industrial machinery and into
many other classes for automotive and railroad equipment.

Materials: Since analysis and metal structures also greatly affect bearing performance, all Timken bearings are made from high-quality nickel-alloy steels produced in the company's electric furnaces at Canton. Bearings up to $6-\mathrm{in}$. bore, $10-$ in. outside diameter are made from SAE4620 stock; larger sizes from SAE-3312, a steel somewhat tougher and more shock resistant, with $33 / 4$ to $4^{1 / 4}$ per cent nickel, $1 \frac{1}{2}$ per cent molybdenum. Stock is case carburizing type, since all bearing parts except the cage are carburized to produce an extremely hard case for maximum wear resistance.

All Timken tapered roller bearings

Fig. 12-Races are heated for hardening in rotary furmaces like the unit at fight, then to avoid distortion are quenched in special dies in machines such as shown at lett Fig. 13-Finish grinding by skilled operators comes before final checking
Fig. 14-Quantity of small races being Magnaflux tested for hidden flaws
Fig. 15-Special setup for gaging cones (inner races) employs tapered surface of race to magnify radial dimensions. See text for detailed explanation

consists essentially of four elements: -inner race, desiguated as the cone because of its shape
-outer race, which fits around the cone and roller assembly and is called the cup
-tapered rollers which roll between cup and cone
-cage which serves as a retainer to make assembled rollers and cone a single easily handled unit; also it maintains proper spacing between rollers.

Production of Races: For bearings above 10 in . outside diameter, both inner and outer races are made of forgings. Smaller size bearings have races made from seamless tubing. Fig. 8 is

Fig. 16-Outer races (cups) are gaged here in a setup similar to that shown in Fig. 15

Fig. 17-Upsetters make tapered rollers by cold forming heavy wire stock

Fig. 18-Centerless grinding from two to six times, depending upon size and precision, is done in units like this in production of rollers. Note automatic hopper feed

Fig. 19-Overall view of automatic gaging machine for separating rollers into groups meeting close dimensional tolerance ranges
a view in the metallurgical control lab oratory showing an operator reading dep sity of lines on a spectrographic plate, part of the system for checking the per centage of various elements in the stobefore it is approved for use in manv facturing.

Large races are machined on tund lathes or boring mills such as the oxs shown in Fig. 9. Small races are har dled on 4 or 6 -spindle automatic scret machines. Fig. 10 reveals the worti ing head of one of these large automat ics. Small parts then are case carbly rized in rotary carburizing furnaces large races being loaded into racks carburized in vertical pit-type units : in Fig. 11.

Then races are hardened by reher ing in rotary furnaces and quenching : oil while clamped in dies, Fig. 12. The dies are so designed as to control flot of oil to produce fast uniform coolith action on the part, thus avoiding 45 tendency towards distortion.

Now the parts are ready for finlies machining which is done by grinding Timken has one of the largest grindid departments in the world, using dif proximately $\$ 500,000$ worth of grindise wheels yearly. More than $\$ 20,000$

How to

 IMPROVE YOUR PRODUCTS and LOWER UNIT COSTS

Over 200 parts in this temperafure contral instrument were precision formed, blanked, slamped and machined from Carpenter Staindess Steels. For easy-to-fabricate Stainless specify Carpenter for your new or redesigned products.

REJECTS CUT 50% ON PRECISION INSTRUMENT PARTS WITH CARPENTER STAINLESS

When a manufacturer can improve his product and lower unit costs at one and the same time, his methods bear investigating. Here's the story of a control instrument manufacturer who did just that by switching to uniform, easy-working Carpenter Stainless Steels.
In the first place, parts for temperature control instruments like this must be precision-made to give accurate readings. Second, they must be long wearing to provide years of trouble-free service. Third, they must be corrosion resistant to keep functioning in the face of corrosive industrial fumes and dust.
All signs pointed to Stainless Steel. But ordinary Stainless wouldn't do. It had to be Stainless that would machine, blank, and form easily and economically, lot after lot.

You can imagine how pleased the manufacturer was when he found that easy-working Carpenter Stainless Steels not only filled the bill on every count, but cut rejects in half!

It just reaffirms a point we've been constantly stressing; you can do it better at lower cost with Carpenter Stainless Steels. Keep this in mind when you plan your new or redesigned products. And remember your nearby Carpenter representative can give you experienced help in selecting the right Stainless for the job.

FOR SHORT CUTS to making finer products at less cost, send for your copy of "Working Data for Carpenter Stainless Steels". A note on your company letterhead, indicating your title is all that's necessary.

Fig. 20-Closeup of automatic gaging head diagrammed schematically in Fig. 21. Operation is detailed in text

spent each year for diamonds used in aressing the wheels frequently to assure the smooth operation required for the finished parts. While many of these grinding operations are handled on automatic machines, much still depends upon
skilled operators like the one in Fig. 13. Running surfaces of cones, cups and rollers of precision type bearings are finished to a surface smoothness down to 5-6 microinches.

Special Gaging Setups: Timken is very proud of the precision standards it main-
tains in its bearings. While it is ? difficult to set up standards, maintairy them is not done without effort. It 35 per cent of all employes devote the full time to inspection, and many \& ing machines of almost unbeliers (Please turn to Page 164)

Milling New method features complete automatic cycle after loading through combined hydraulic and electronic control of cutter head

 FGRGED GYIINDER HEADS

 FGRGED GYIINDER HEADS}

MILLING circular, partial and dome fins on a forged aluminum airplane cylinder head is performed by a special machine which will handle in two operations the milling of the same number of fins which formerly required four machines and four separate operations. Milling of circular and partial fins is done in one operation. Milling of dome fins requires a change in cams, cutter and work-holding fixture on the machine shown in the accompanying illustration.

A combination of electronic and hydraulic controls is employed. Feature of this machine, made by Sundstrand Machine Tool Co., Rockford, Ill., is the arrangement for controlling cutter load. The path followed by the cutter is very
irregular and constantly changing in shape and depth for each successive fin. With the automatic electronic feed control, the fragile cutter is kept loaded to full capacity. If the cut becomes light, the rate of feed increases; and if the cut becomes heavy, the rate of feed decreases. Rate of feed varies automatically within a range of 6 to 60 ipm , with the actual rate depending upon depth ef cut and horsepower consumed.

A complete automatic cycle is followed after loading. Operator merely presses control buttons and the pivot arm which carries both cutter and cam roller rapidly travels down to within $1 / 8-$ in. of the start of the cut. The shaft which carries master cam and work part
then starts to rotate. The pivot ar feeds the cutter into the part until it cam roller contacts the cam. Cam tha controls path of the cutter until a 100 plete fin has been cut. The pivot ars hydraulically actuated, then moves cs ter away from part and cam roller and from master cam-the shaft carryit cams and work part rotates back, high speed, to its starting position. Ts cam carrier and work carrier slides 歫 are indexed laterally so that the nis cam is in position under the cam rol: and the work part is in position for ct ting the next fin.

Cutting and indexing cycle descriti continues automatically until the last 5 has been cut, after which the cam

rier slide and the work holding slide return to starting position, and the machine automatically stops.

Irregular path of the cutter is controlled by a set of cams, one cam for each fin to be cut. Cutter head and cam follower roller both are mounted on a single casting which pivots on widely spaced bearings, providing direct cam control to cutter head. Master cams and work
part are mounted on one splined shaft, thus eliminating the possibility of error between rotation of cams and rotation of part. Work part is rotated through its feed and rapid traverse cycle by an electrically controlled mechanical feed box. Linear index of cams from station-tostation is through a positive index plate and lead screw.

Work is totally enclosed during cutting cycle. With a completely automat-
ic cycle, the operator can run one more machines if so desired. There no waste motion or cutting of air und the irregular cutting as adjustments positive and the cutter can be set 1 rapid approach to within $1 / 8-\mathrm{in}$. of eac fin. Either individual or a central ant system may be used.

By combining several operations, ax siderable floor space has been saved or the old method of machining.

since demonstrated its adaptability as an all-purpose fastener for both aircraft and non-aircraft applications.

The Carlso fastener consists of two parts, a stud and a receptacle, shown in Fig. 1. The former has a squared shank on which two opposed sides are serrated, while the latter is of spring clip design and engages the serrations in the manner of a ratchet to secure the stud in place. As the serrations run the full length of the stud and the receptacle is extremely flexible, it is possible to use one length of stud for all applications as against anywhere from 30 to 40 lengths required with fasteners of the crosspin type. Likewise, this permits starting the studs with the two pieces out

A LIGHTWEIGHT, self-aligning, spring-lock fastener of unique design which is believed to offer many advantages over other types has been developed by Carl P. Sorenson, chief standards engineer of Glenn L. Martin Co.

Known as the Carlso, after its inventor, the new fastener originally was designed to overcome difficulties in attaching aircraft cowlings, but has
of alignment and letting them align themselves as the studs are driven home.

To fasten a cowling with the new fastener, it is first brought into approximate visual alignment. As there is no cross pin, the stud can be removed to permit visual installation, although a horseshoe washer may be used to keep the stud in the dimpled hole when desired. Then the studs
are started one at a time. After all studs have been started in their respective positions, they are then driven home with a screw driver, as in Fig. 2. A single sharp tap suffices for each stud. In this. way it is pos. sible to draw the cowling evenly and surely into place similarly to the manner in which a cylinder block is tightened. Misalignment of sheets does not interfere with operation of the fastener, for it is self-adjusting.

To remove a cowling fastened with the new Martin device, it is only nee essary to turn the studs a quarter turn to either side to disengage them, as illustrated in Fig. 3. But, while studs are easily disengaged when desired, it is impossible for them to loosen due: to vibration.

This fastener, in a number 7 size, is completely interchangeable with AN228 and AN232 fasteners as far as the drilling and dimpling of the sheets on which it is mounted is concerned. With a single receptacle it can withstand loads in excess of 900 lb , and this can be increased further by stacking that is, by nesting two or three receptacles to engage a single stud, as in Fig. 4.

In addition to cowling attachment and similar aircraft applications, other uses for which the new fastener is suggested range from attaching auto mobile crank cases and auxiliant freight car doors to inspection plates, heating and ventilating ducts, grain storage bins, and portable sheet metal buildings.

Fastener is easily and cheaply fabr ricated because no cross pin is necessary and one stud length may be standardized on for all purposes.

WELDED tubing has made tremendous strides over the past 20 years. Developed originally as a light gage mechanical tube with a wall thickness of about $1 / 16$-in. or less for such uses as bedsteads and automobile exhaust pipes, its use has gradually expanded until there is practically no field of use for tubing where welded tube has not been given approval. In achieving this acceptance, welded tube has been put through extensive tests and trial installations and has proven its efficiency and durability beyond any question in the mind of the user. The outstanding example is the millions of feet of boiler tubing now in use.

The method of manufacture is essentially simple. The raw material, which is flat-rolled stock sheared to very accurate width, is formed cold into a butted tube and the edges butt-ivelded by a continuous process. Obviously, there are several major advantages to a tube made in such a manner, as the surface both inside and outside is that of a rolled product and therefore free from defects. Generally, no further operations are necessary except for the standard finishing eperations such as straightening, cutting to length, inspection, etc., unless special tolerances or especially high physical properties are required, in which event the tube is given a cold draw pass to obtain these properties.

As a further improvement in welding technique, we have developed an electric nondestructive method of testing to which every foot of tubing is subjected.

Engine Mounts

Welded tubing is used extensively for airplane engine mounts either in the X 4130 or 8630 analysis. These mounts must withstand not only the tremendous loads of teasion, compression and torque generated by powerful engine units, but in addition, must be designed to provide for shock loads caused by landing, with the weight of the engine far forward of the wing's leading edge.

The tubing is made from cold rolled steel which has been annealed because experience has proven that the softer the raw material, the simpler the welding technique. Weldability also is improved by heat treatment prior to final normalizing operation. After welding, all tubes are normalized at about 1650$1700^{\circ} \mathrm{F}$. This heat treatment results in complete recrystallization of the weld area, making it uniform with the rest of the tubing, and in addition, results in physical properties which conform to the requirements of various applicable specifications - 75,000 psi minimum yield point and 95,000 psi minimum tensile strength.

After normalizing, the tubing is given a tempering or stress relieving operation at 800 to $1000^{\circ} \mathrm{F}$, depending upon size and chemistry of the individual heat. The normalizing operation is done in a continuous controlled-atmosphere furnace so that no scale is raised on the tube and original cold-rolled surface of the raw material is retained. The tempering
or blueing operation also is accomplished in the continuous furnace immediately following the normalizing section. There is no scale except for a very thin blue oxide coating which is hardly measurable and does not interfere with any subsequent assembly operations. The tempering operation also accomplishes a two-fold purpose: It relieves any internal stresses resulting from the normalizing treatment and further increases the yield

FABRICATING TECHNIQUES

Precisely fabricated tubular parts will be within reach of most designers for peacetime manufacturing because producers and fabricators are emerging from war experience well equipped to surmount technical difficulties

By J. S. ADELSON
Chief Metallurgical Engineer
and
PARK HILL
Chief Pracess and Inspection Engineer Steel \& Tubes Division Republic Steel Corp.

Cleveland
point and may even result in increased ductility.

After heat treatment, tubing is straightened, given the electric nondestructive test, checked in the laboratory to insure conformance to physical requirements, oiled, and cut to the proper length.

First operation in the assembly of the motor mount is forming the ring. This is done cold in a rolling machine which insures accurate dimensions in contour. The ring then is completed by welding the open ends. This welding operation and subsequent welding operations may be either are or acetylene. General practice is to use a low carbon rod as filler metal since it has been found that suff:-
cient alloy is picked up from the tubim in the welding operation to insure amf strength in the joint.

Second operation is to weld the lug which are usually steel forgings, to 4 ring. Since these must be aligned 4 curately, the ring is straightened afte the lugs are welded to it. Heat trem ment to relieve stresses may be of plied during various steps of the at sembly to insure freedom from stresse which might result in cracks.
In a Glenn L. Martin Engincerim Lecture, prepared by John J. Buchle? it is pointed out that, although finishe assemblies are held to close dimensiox it is impossible to keep them to th tolerances required without some chining. Dimensions then can be he? to tolerances as close as plus or mina $0.005-\mathrm{in}$. by drilling, reaming, counta boring and countersinking. All of thes uperations on the finished mount are pa formed by a radial drill which requira two special fixtures.
Completed unit is subjected to Magu Hux inspection for cracks, laps, seure inclusions, and other welding defat This operation is applied primarily a check on the assembly welding opera tions, since tubing already has bee checked for quality by the much mo sensitive tube-testing equipment.

Aircraft Intake Tubes

Due to severity of fabrication oper tions, close tolerances, physical requit. ments of finished parts and rigid inge tion, production of aircraft engine int tubes presents a very difficult proble
Tubing is made from low carbon sta to Aeronautical Material Specificat 5053. To successfully meet the requin ments, the tubing must have (1) soin homogeneous steel free from laminatic scams, blisters, jiggers, scale marks, ei (2) maximum ductility; (3) freedom inside and outside from scratches, drel marks, shears, waves, dents, and must be free from steel particles 2 abrasives, rusts and oxides; (4) abiiz to stand considerable reduction of are and (5) close size and wall thickrit tolerances.

The problem as to whether these quirements could be met in a relatirio large diameter, light wall tube ($23 / 8$ in $29 / 16 \mathrm{in}$. by 20 gage) offered a challenge to the welded tube manul turers when it was presented to then the early days of the war.

Starting with specially selected closely controlled, cold-rolled steeh, was found that many operations were quired to produce satisfactory tub Welding, heat treating, straightening nondestructive electric testing requil special equipment and supertisis Furthermore, the idea of absolute clea ness required a general educational paign.

Some of the problerns involved are:
-Bending tubing $29 / 16 \mathrm{in}$. outs diameter by $0.035-\mathrm{in}$. wall thickness
(Please turn to Page 174)

WRENCH SOCKETS MADE FROM

STEEL that is STRONG but not "STUBBORN"

- Machining wrench sockets was a tough production problem. That was before SulfiteTreated Alloy Steel was used. Now, machining operations are much faster and easier with far fewer rejections of the finished product.

With no sacrifice of strength, SulfiteTreatment removes the "stubbornness" from steel, giving it "magic machinability." Labor and material costs are slashed, tool life is tremendously extended and production increases.

Sulfite-Treated Steel is metallurgy's latest answer to machining problems. Developed by our metallurgists, it is one more example of Wisconsin Steel's leadership in the manufacture of high-grade alloy and special steels.

Whatever your machining problems, you owe it to yourself to investigate the special qualities of Sulfite-Treated Steel. Our sales and metallurgical staffs are at your service. They will be glad to show you how SulfiteTreated Steel may be applied to your product.

WISCONSIN STEEL COMPANY
WI
S
C
O N
S IN
SULFITE-TREATED STEEL

For Increased

 Melting Capacity
\star Standard Lectromelt furnaces customarily melt down their rated capacity of cold charge within one hour's time when operating on single slag basic practice or on acid practice. Most Lectromelt furnaces have poured heats considerably in excess of their sated hourly capacities to meet special requirements, when necessary. In addition, the top-charge feature permirs quick charging by means of dropbottom bucket, thus losing little time between heats.

Increased production demands for quality steels and irons are readily met by Lectromelt users. Write for information about our top-charge furnaces, available in sizes ranging from 100 tons down to 250 pounds.

MOORE-RAPID

FURNACES

* * *

PITTSBURGH LECTROMELT
 PITTSBURGH LECTROMELT

 FURNACE CORPORATION PITTSBURGH 30 , PENNA.

ELIMINATES STOCK-PILING IN CLEANING HOUSE

Abstract

Installation of 110-foot chain conveyor at eastern wire mill reduces obstructions and solves transportation problem between storage and cleaning departments. Conveyor is brought to rest by limit switch and is set in motion by operator of cleaning house crane. Coils are moved in upright position

A SPECLALLY designed and constructed conveyor is easing the burden of materials handling between the rod storage and cleaning departments of the recently Constructed wire mill of the American Stee \& Wire Co., at Worcester, Mass. In_{m} addition, due to ease of control of the movement of the conveyor, no stockpiling of material in the cleaning house awaiting processing is necessary, with
attendant elimination of confusion and reduction in the number of obstructions. Hot-rolled rods used at the Worcester wire mill are shipped from the rod mill to the rod storage building of the wire mill in standard railroad cars. They are unloaded by a crane equipped with an open-end hairpin hook, lifting loads of approximately 3000 lb and placing them in bins in such a way as to enable
crane operator to remove pin loads as a unit. To meet cleaning department demands, rods taken from bins are placed on conveyor at loading section end.
The conveyor, built by the Chain Belt Co., Milwaukee, is composed of two endless chains running horizontally and parallel, a few inches below floor level from the rod storage building to the

Fig. 1-Unloading end of conveyor showing yoke for handling rods in and out of picklers
Fig. 2-Elevation of conveyor showing loading, patenting and unloading sections

cleaning department, a distance of 110 ft . The two chains are connected by 4 -in. diameter pipes welded to links spaced 18 in . apart. The conveyor is a full 7 ft in width.

When carrying the load, the chains ride on 6 -in. diameter wheels with $1-\mathrm{in}$. flanges and set in a foot from each edge of conveyor. Rollers are spaced 18-in. apart from center to center and ride on rails whose centers are $4 \mathrm{ft} 61 / 2 \mathrm{in}$. apjart.

On the top side of the conveyor is another set of $6-\mathrm{in}$. rollers, on which it rides below the floor line after passing over the end sprocket reel and travels in the reverse direction on the return trip. Inasmuch as the only load these rollers carry is the weight of the conveyor, it is necessary to have them set at intervals of only 3 ft or attached to every second link of the chains. The latter set of rollers are placed at the extreme edges of the conveyor and ride on rails $7 \frac{1}{2} \mathrm{ft}$ apart. The absence of a heavy load permitted the clesigners to place the rollers in this position, where they do not interfere with loading.

The coils of rod must be maintained in an almost vertical position to enable the crane operator to insert the cleaning

Fig. 3-Method of handling rod
coils at unloading section

yoke when removing them to bequ cleaning operations. For this purpose rail was installed running the full lengh of one side of the conveyor at a height α 2 ft above the floor level. The rod colb rest against the rail and slide along t it as the conveyor moves, being held it an almost upright position.

The conveyor is moved by a pair d sprockets at the cleaning house end. The sprockets are driven by a 15 hp motor giving the conveyor a speed of 24.6 fp As a pinload of rods reaches a prede termined spot in the cleaning house, contacts a limit switch arm, stopping the drive motor. The load then can be ir moved by the cleaning crane. The crans operator moves another pin of rods into position simply by pressing a buttos starting the drive motor.

The working parts of the unit are se into the floor so that all that is visibl? at the floor line are the links of the chains, their connecting pipes and retur rollers, in addition to the rail and guide plates. Total depth of the unit below the floor line is 6 ft 8 in . Takeup sprockets are equipped with set screws by menss of which tension on the conveyor line may be satisfactorily adjusted.

Production and Inspection Jigs and Fixtures Made from Set of 150 Precision Components Forming a

UNIVERSAL ASSEMBLY

QUICK and accurate assembly of a wide variety of production and inspection jigs and fixtures is said to be provided by a set of 150 precision components, including master location plates that can be assembled to conform to any layout by means of special locking clamps and screws; and combinations of drill jig bushings, drill bushing adapters and lock screws mounted on the location plate according to specified center distances of holes to be drilled.

Locating pins are inserted in drill bushings before final locking of the unit of location plates and bushings. With a vernier caliper set for hole center-to-center distance plus one-half the diameters of the respective locating pins, measurements are made over the pins of any pair of bushings. A light tapping of one bushing plate permits locating to the final thousandth or less.

To assure uniform location on a run of castings or work pieces, adjusting blocks and screws are provided which may be positioned appropriately around the outside of the whole assembly.

The Micro-King Borlocator, made by Steel Tools Inc., Cleveland, may be used for inspection fixtures as well as production jigs. A master assembly of bushings and pins set up as a multiple plug gage will permit inspections of center hole locations. Relationship of hole location to outer edges of work pieces may be checked by the adjusting or positioning blocks.
Location plates are chrome plated and precision made in straight, parallel, and square shapes. They may be assembled end to end, side by side, or end to side. To assure accuracy and rigidity, interlocking plate grooves incorporate a half-wedge in cross-section so that mating of two plates forms a full wedge. Thus, contact area of any two locked plates is under compression.

Locating plates are mated or fastened together by locking clamps and screws. Clamps are designed so that as screws are tightened the clamping action exerts only compression, with no tendency towards a lateral shift. Therefore, accuracy of adjustment is not upset by
final clamping action after exact pos tioning of one location plate in rels. tion to another.

Location plate holes are at uniformb fixed and accurate center positions and accommodate drill bushing adapters, 2 lowing a variety of bushing outside diaw eters and wall thicknesses to be 66 commodated at each hole position. An assortment of location plates with dif ferent bushing adapter hole sizes ame spacings is included with the standari set. Hole center distances provide are said to be appropriate to mant simple jobs where one location plate ? used for locating a series of holes.

Two location plates can be clampo together and displaced laterally to pro vide an infinite number of hole cente distances. Location plates are availabir with any hole size or center distancos To insure that sufficient holes for locking and clamping are available, regardless jig assembly intricacy, an adequate num. ber of tapped holes are provided for botw bushing adapter lock screws and location plate clamping screws.

Grinding Questions Answered

By Allen Steele, Manager, Dayton Grinding Wheel Division Simonds Worden White Company

This series of questions and answers is presented as a practical aid in the solution of many of the more common grinding problems. Readers are invited to send in their own grinding questions, without obligation of any sort. All questions will be answered by mail or in this column. No identities will be revealed if published.

18a. "We have a centerless job on a soft steel bar $2^{\prime \prime}$ in diameter and $30 / 2^{\prime}$ long. We had been using a wheel with a 4" face, 60 grain, medium hardness, and it did a good job. To increase production, we recently switched to a wheel with $8^{\prime \prime}$ face, same grain and grade, but we are having trouble with chatter. How can this be remedied?"
A. As you did not make any mention of the blade, we are of the o-inion that you possibly overlooked reducing the top angle of blade when you changed from a $4^{\prime \prime}$ to an 8^{\prime} faced wheel and that this is the probable cause of the chatter. Assuming that the top angle of the blade was about 30 degrees with the $4^{\prime \prime}$ faced wheel, it should be no more than 20 to 25 degrees with the $8^{\prime \prime}$ face. The reason for this is that the side pressure against the blade increases with the width of the grinding wheel, for quite obviously an $8^{\prime \prime}$ faced wheel will exert a much greater pressure against the blade than a wheel with a $4^{\prime \prime}$ face. And when this pressure is too great, it tends to squeeze the work up and out of contact with the blade. By reducing the hade angle as suggested, the squeezing pressure is reduced and thus the cause of the chatter is eliminated.

19

a. 'I enjoy reading your 'Grinding Questions Answered' very much. I have learned something from every series you've published. Do you have Dayton wheels for grinding carbide $^{\text {tippod }}$ tipped tools on a bench stand grinder that uses $7^{\prime \prime}$ wheels?"
A. For the rougning operation in grinding carbide tipped tools we recommend
our C-60 G-14-V-14 (old marking 960 $\mathrm{G}-2 \mathrm{~V}$). For the finishing operation- $\mathrm{C}-120$ G-14-V-14 (old marking $9120 \mathrm{G}-2-\mathrm{V}$). I hope we may add your name to the long list of shops which now use these wheels.

20Q. "On thread grinding jobs when is it best to use a wheel with a vitrified bond? When is it best to use a resinoid bond?"
A. There are a number of factors which may go to determine the selection of the grinding wheel bond for thread grinding. As a general rule a wheel with a vitrified bond is chosen where close tolerances are required in either the form or lead, for internal grinding, and in the case of worms where several cuts are taken with a light feed.

As for wheels with a resinoid bond, these are generally chosen for high production jobs, i.e., where the parts can be finished with a minimum of cuts, where the work speed is high, and where extremely close tolerances are not required.

21

Q. "Is it a sign of improperly adjusted work guides when work finishes up with a 'barrel shape' in throughfeed centerless grindingp"
A. In throughfeed centerless grinding, "barrel shaped" work can be caused by both the front guides and the rear guides being deflected towards the regulating wheel-or the latter may have a convex face.

22

 a. "Are the stones in diamond dressing and truing tools always the same in respect to quality and shape?"A. No, diamonds in dressing and truing tools differ in both type and shape according to the use which is made of them. For small external wheels of fine grain and hard grade, $1 / 4$ to $11 / 4$ carat octahedron shaped Brazilian stones are usually employed. For softer wheels octahedron shaped grey or brown stones can be used. Smaller grey and brown stones- $1 / \sqrt{6}$ to $3 / 4$ carat-with long natural points, are used for small internal wheels. Wheels used for thread and hob grinding call for stones that are long with natural points or sharp splinters. Gear grinding wheels demand the finest and most carefully selected brown or Brazilian octahedron shaped stones.

23

 a. "After a wheel has once been balanced on a precision job, what is the technical reason for re-balancing it as its diameter wears smaller?"A. Although the modern grinding wheel is a precision tool and in the light of present knowledge is as "near-perfect" as we know how to make it, there are points of unequal density in all wheels. Because of this, a wheel may get out-of-balance as it wears down. Hence, the necessity for rebalancing it as its diameter becomes smaller.

READY NOW... a guide to better grinding!

101 "Answers" to everyday grinding problems-indexed for quick, easy reference - will be sent FREE to anyone interested in befter grinding practices. Just fill in and mail coupon below. SIMONDS WORDEN WHITE CO,, DAYTON 7, OHIO.

DAYTON GRINDING WHEELS

SIMONDS WORDEN WHITE CO., 714 Negley Place, Dayton 7, Ohio

Flease send me Free Booklet "101 Grinding Questions Answered' Name.
Firm
Address
City
Zone State \qquad
COPYRIGHTT 194S SIMONDS WORDEN WHITE CO.
July 9, 1945

INDUSTRIAL EQUIPMENT

Roughness Meter

To enable control of the surface finish of high explosive caliber shells, Physicists Research Co., Ann Arbor, Mich., announces type CP roughness meter. It provides measurements of

average roughness on extremely coarse surfaces such as shells. Readings of the meter are directly in microinches of average roughness of the surface being measured. Meter and scale selector provide full scale ranges of 300,1000 and 3000 microinches.

Tracer is designed for hand operation and built for use on rough shell surfaces. It has a blunt diamond point for tracing the surface. Diamond point is automatically self-adjusting to any curvature from $1 \frac{1}{2} \mathrm{in}$. OD to flat.

Oiltight Pushbuttons

Designed primarily for group mounting on machinery or control enclosures, a new line of class 9001 , type T oiltight pushbuttons is introduced by Industrial Controller Division, Square D Co., 4041 North Richards street, Milwaukee 12. While oiltightness is the principal feature of this line, there are several other advantages. Although this type unit is more compact and can be mounted on

closer centers than previous types, there is no sacrifice of accessibility. All terminal screws can be reached with a screw driver without going in at an angle.

To install it, the unit is inserted through the panel and prevented from turning by a dowel. After the legend plate is slipped on, a thread ring firmly clamps the unit into position. As the
operating mechanism and contact block are separate units, it is possible to obtain a combination to cover a wide range of circuit requirements with a limited stock of three types of operators and four types of contact blocks.

Plastic Molding Press

A newly designed molding machine which is a combination compression and transfer molding press is offered by French Oil Mill Machinery Co., Piqua, O. It is a self-contained unit with hydraulic pumping equipment built into the bed of the machine. Each unit is complete with a fully automatic cycle controller covering various types of molding. Tim-

ing intervals and changes from one type of molding to another can be changed and adjusted instantly.

Presses are fast acting and are used in connection with high frequency preheating units to obtain maximum production speeds. The idle closing speed is 300 ipm . The 100 ton press is powered with a 5 hp motor and the 200 press with a $7 \not / 2 \mathrm{hp}$ motor.

Ignition Transformers

Three new $115 \mathrm{v}, 400$ cycle ignition transformers, designed to provide a high voltage for igniting fuel in gasoline-fired, aircraft-cabin heaters and deicers are announced by General Electric Co., Schenectady, N. Y. Units are shielded and filtered to minimize radio interference over all wave bands from 110 kc to 200 megacycles.

Two of the transformers, with an output capacity of 6000 v each, are of
single-secondary type. Third has : double secondary, rated 6000/6000 for heaters with dual ignition or fis two separate heaters with single ignitir: systems. Units are housed in plated stai cases and all coils are embedded in 1

specially developed high melting poit moisture resistant insulating compounc They will operate over a wide range ambient temperatures from minus $70 t$ 140 F at altitudes from sea level t $45,000 \mathrm{ft}$.

Reset Type Starters

Two new manual reset type starte for 100 w fluorescent lamps, designate as COP-6 and COP-64, are announced Sylvania Electric Products Inc., Saler Mass. COP-6 is a two-contact state while COP-64 is provided with fo. contacts for use in fixtures designed fo another type of starting circuit. A pus button manual reset facilitates nomi lamp operation when faulty lamps of replaced.

Splined Type Nut

For use in wood, plastics, leather, har rubber or other material where it necessary to anchor a nut for attachitu accessories, a new Rivnut of the spline

type is announced by B. F. Goodin. Co., Akron, O. In this nut, splines be neath the countersunk head supply ro sistance to torque, while the bulge "upset" which forms below the end splines furnishes tension resistance Splined Rivnut is locked, into place tivi ways. Internal threads left intact with in the shank take an attachment scre for installation of accessories. It can by installed with same type tools regulath used for heading conventional types

Double-Barrelled

SHORT-CUT

Briggs and Stratton tells how to cut costs improve quality with

тоссо

MACHINE

WITH TOCCO

Part: Engine gear and shaft.
Pitch diam. of gear $2^{\prime \prime}$, face $5 / 8^{\prime \prime}$. One of 18 parts which are hardened by Briggs \& Stratton Corp. on one TOCCO machine. Short-cut No. 1. Formerly hardened gear blank to machinable limit (32 R.C.) and cut teeth when hard . . . Now cut teeth in soft gear blank and TOCCO-harden teeth to 40-45 R.C. . . . Results: Gear-cutting is faster because metal is soft. Gear life is increased because of greater hardness.
Short-cut No. 2. Formerly press-fitted gear on shaft as separate operation . . . Now TOCCO shrink fits gear on shaft simultaneously with TOCCO-Hardening of gear . . . Result: Eliminates an operation.

TOCCO does the entire hardening and shrinkfitting operation in 15 seconds. Absence of scale and distortion makes the part perfectly accurate and uniform . . . ready for assembly.

The TOCCO machine, clean, compact and devoid of radiant heat and hot gases, is located in the center of the machine shop handy to machining operations.
TOCCO Engineers will gladly help you develop similar improvements in your metal working production. "Results with TOCCO," Bul. 14, free on request.

THE OHIO CRANKSHAFT COMPANY. Cleveland 1, Ohio

Rivnuts in metal. These must be adjusted, however, to accommodate the longer shank of splined type. Like other types, it is being made in three regular sizes, $6-32,8-32$ and 10-32 in aluminum or brass.

Reverse Current Relay

Originally designed for use on auxiliary engine-driven power generators in Army tanks and bombing planes, type 9100 reverse current relay is offered

by R-B-M Mfg. Co., Division of Essex Wire Corp., Logansport, Ind. It is effective for any "tough" low voltage dc application.

The design of the device incorporates a magnetic latch which prevents accidental closing of armature and contacts due to vibration or heavy shock. Contacts are rated at 100 amp at 30 v de maximum. Dimensions are: Width, 4 1/16 in.; depth, 3 7/16-in.; height, 2 1/16-in.; weight, approximately 1.6 lb .

Air Trimmer Condenser

Comar Electric Co., 2701 Belmont avenue, Chicago 18, announces a new air trimmer condenser. The unit is available

either single or dual and has a ceramic mounting base with brass plates and mounting studs, cadmium, silver or nickel plated as required. Capacities range from 5 to 140 magnetomotive force with the following standard air gaps: $0.012,0.015$, $0.019,0.030$ and 0.045 .

Oscillator or Amplifier

Amperex 233 is specially suited for use as a Class C oscillator or amplifier for generating radio frequency power at frequencies up to 30 Mc . Use of two grid arms makes neutralization more con vonient in the amplifier connection. They also permit cooler operation of the grid when the tube is used at higher fre-
quencies either in a self-excited oscillator or power amplifier.

General characteristics include: Filame.t voltage, 24 v ; current, 70 amp ; thermionic emission, 16 amp ; amplification factor, 52. Direct interelectrode capacitance: Grid to plate 24 uuf; grid to filament, 22 uuf; plate to filament, 1.5 uuf. This unit is offered by Amperex Electronic Corp. Inc., 79 Washington street, Brooklyn 1, N. Y.

Hole Checker

A new method of gaging the inside diameter of a large bearing housing to vary close tolerances is shown by the illustrated application of the hole checker offered by American Gauge Co., 172 Bayard street, Dayton 1, O. A special sizing plug was developed with the upper part of the plug finished to exact radius of inside bearing housing. Lower part carries the gag-

ing head which is calibrated for high and low limits of accuracy. Contact point is highly polished norbide.

By using this type sizing plug, work can be checked for size, taper and out-of-round condition on large diameters. The hole checker is air operated and set with high and low limit master ring gages. Tolerance is $0.0005-\mathrm{in}$.

Self-Contained Oven

Designed for laboratory and pilot plant use, a compact and self-contained oven is introduced by Industrial Oven Engineering Co., 11621 Detroit avenue, Cleveland 2. Sizes of oven working space range from $3 \times 3 \times 3 \mathrm{ft}$ to $6 \times 6 \times 6 \mathrm{ft}$, in increments of 1 ft and special sizes are furnished to specification. Temperatures range up to $900^{\circ} \mathrm{F}$ with a differential of plus or minus 2°. This type of oven is usually furnished with electrical heating equipment, but is designed to use any type of fuel. In each case, the heating
equipment is contained within the ove shell.

Oven is designed particularly for pre cision experimental work in drying, bal. ing, evaporating, polymerizing, agius and heat treating, especially in cass where highly volatile solvents are used

Tool Holder

Shearcut Tool Co., Bellingham, Wash, announces a new type boring and cutting tool holder for use with their boring and turning tools. It is made in five sizes 15 accommodate lathes and screw madline from 10 to 36 in. swing. Each tool holde

is provided with three boring bars, ont which is arranged for turning in the smaller sizes. In the larger sizes har bars are arranged for tuming as well a boring.

The device is boxed and complee with three boring bars, six Shearcutte bits, three wrenches for the cutter be holding screws and wrenches for borif? bar holder. Working, operating, and 5 grinding instructions are enclosed wib each tool holder.

Rivet Remover

A new tool to remove rivets quidf without enlarging the hole or distortins the skin is offered by Topflight Tool Co. Towson 4, Md. The defective rivet instantly removed and a new rivet d the same size installed without distortion

of the sheet. Guides, chucks, drills art eliminated. A two way bucking bat provided with each rivet remover.
Standard models remove $1 / 8$ and $5 / 8$ in. rivets. Special models are availabt for any size rivet. The remover : attached to a standard automatic nive gun. The pulsating action operates the rivet removing tool without effort on the part of the operator.

Power Control Tube

A new $15,000 \mathrm{v}$ thyratron power 0^{n} trol tube providing split cycle contul of high power for heating uiits and 5° dio transmitters is announced by Lamf Division, Westinghouse Electric Cort Bloomfield, N. J. For electronic equif ment designers, the thyratron WL-6? makes possible smooth and instantare

Looking for ways to improve your Product?

FLEXIBLE METAL HOSE and TUBING

Would you like to make your product more convenient, safe or economical to install or operate?

Then look into the possibilities offered by American Flexible Metal Hose and Tubing.
Sturdy, leakproof connections of this material lave improved literally thousands of types of products and equipment...from heavy machinery to small accessories. Illustrated are three examples . . . on each, flexible metal tubing is used to excellent advantage, yet for an entirely different purpose.

Find out where flexible connections in your product or equipment could better compensate for movement of parts, vibration and misalignment ... or where gases, liquids or steam could be conveyed more easily or safely.

Flexible metal assemblies are usually easy to order and install. If your needs are unusual, our Technical Department can probably help.

AMERICAN METAL HOSE BRANCH OF THE AMERICAN BRASS COMPANY

General Offices: Waterbury 88, Connecricut Subsidiary of Anaconda Copper Mining Company In Canada: Anaconda American Brass Ltd., New Toronto, Ont.

Keep Faith With Your Fighters and Yourselfl Buy War Bonds for Keeps

YOU DRAW THE SHAPE ...

PAGE CAN DRAW THE WIRE

Certainly page is now drawing wire in many shapes-triangles, rectangles, octagons, hexagons, keystones, ovals, half-rounds, many other hard-to-describe special shapes. If you have use for shaped wire in the manufacture of your product, you are not limited to standard shapes. You draw the shape-page can draw the wire.

Yes, and page will go further than that. From years of experience, page has learned much about the economical application of shaped wire to manufacture. PAGE offers you the benefit of this experience in finding ways to cut your production costs through the use of shaped wire.

For wire or information about wire - get in touch with Page!

Specifically, PAGE Shaped Wire is made in sectional areas to $.250^{\prime \prime}$ square-widths to $3 / 8^{\prime \prime}$ of carbon or stainless steels. AMERICAN CHAIN \& CABLE
ous power control from 0 to 100 pa cent load; simplified automatic la: control; high speed automatic overloe protection; low space and weight ret quirements and low power requirements The grid-controlled mercury vapor retibi

fier tube is designed to combine the high voltage characteristics of a keratron, control qualities of a thyratron and efficiency of a phanotron.

Elevating Ladder Tower

A new Multi-Purpose elevating ladder tower is announced by Universal Fittinger \& Scaffolding Co., Zelienople, Pa. The tower is elevated and extended by : hand-operated winch, self-locking at ar? extended height. It has a 360° turning radius for manual or automatic operation and has a variable inclination from 4 to 75°.

The ladder is made in three sections locked in place by continuous steel guider operating on sleeve type bronze roly benrings. The standard tower opens s. a 35 ft 2 in , maximum working heig when at a 75° angle, with a minimum working height of 22 ft 8 in . When at 45° angle. Fully extended height of wal itself is 38 ft . There is a 5 ft 10 in . lap df the middle section of the ladder over tre

This heavy con tour milling op eration on a 1248 Milwaukee Simplex Milling Machine illustrates the rigidity of the machine itself. Using a rise and sall fixture the helical plain mill ing culters re. moved $1 /$ inch 2 $3 / 16$ inches of stock from a steel forging. Ample culter support is provided by the outer arm brace and the four arbor supports.

For SPEFD PRyGISION PROFIT

Often called "production type milling machines", the Milwaukee Simplex Series machines are designed for strength, compactness, and rigidity to withstand the strain of continuous quantity production.

Over-all view of the Milwawkee Simplex machine used on the above milling operations.

Spindle construction is such as to provide greater range without sacrifice of rigidity, Basically designed for climb milling, this machine is equipped with an adjustable nut and ground screw to eliminate backlash in both directions of the table. Workpieces, ordinarily difficult to hold, are milled at faster feeds, with smoother finish and increased cutter life.

Write for new descriptive Bulletin B20 giving complete details on the Milwaukee Simplex and Duplex Series of Milling Machines.

In the middle thirties salt tablets were a novel idea. Today practically all leading industrial plants wouldn't think of eliminating either salt tablets or first aid stations. Both are essential - the one to help prevent accidents, the other to repair them. When workers sweat, their bodies lose essential salt. This loss causes Heat-Fag, inalertness, fatigue, heat prostrations. Accidents increase. Production goes down.
Morton's Salt Tablets at every drinking fountain provide an easy, simple, effective way to restore this vital salt lost through sweat. The cost is less than a cent a man per week.
In salt tablets, as with other grades and types of salt, Morton is the recognized leader. Order Morton's Salt Tablets and Dispensers from your distributor or directly from this advertisement. Write for free folder today . . . Morton Salt Company, 310 S. Michigan Ave., Chicago 4, Illinois.

[^1]MORTON'S SALT TABLETS
Morton's Salt Tablels are available either plain or with dextrose.
Case of 9,000, 10 -grain salt tablets
Salt Dextrose Toblets, case
of 9,000
lower section. Top section has a 41 8 in. overlap on center section. A folding $24 \times 30 \mathrm{in}$. work platform is at top of ladder tower with an adjustabi tubular guard rail. A trap door pemin easy access to work platform.

Tap Holders

Releasing type tap holders, announct by Champion Sales Co., 2832 Eas Grand boulevard, Detroit 14, pení production tapping to aircraft lim? on both automatics and turret lathes Because of the design, rigidity, posilit: drive and precision construction these tap holders, first thread out always a full thread. Release point accurate and tap rotates freely on it

lease, giving positive depth contro Blind holes can be bottomed with mit mum risk of tap breakage; and tap with drawn without damage to threads.

All working parts are made of steel, heat treated and finished to thousandths limits. Multiple jaw cluis design gives positive drive and instix release and minimizes wear. Desigh for use on automatic machines and t ret lathes, these holders can be used practically any type of tapping machir

This tool was developed by Z \& Machine Products Inc., Cleveland. Th are available for right and left hr tapping, in sizes for $1 / 4$ to $1 \frac{1}{2}-\mathrm{in}$. taps

Safety Guards

New safety guards offered by Writ Austin Co., 354 West Woodbridge stre Detroit 26, are completely transparent allow full view of the machine and without hindrance to any kind of ope tion. Sparks, metallic particles, splast liquids and the like are curtained b: invisible, chip proof barrier.

Guards are made from a heavy? plastic material which is as clear

MORTON'S SALTTABLETS

WHAT can we do about Johnny and the thousands of other boys who are returning from war disabled. who have already sacrificed so much? Must these boys sacrifice also the heritage for which indeed they fought . . . the right to be independent, free; the right to prepare for and work at a good American job of their own choosing? That's what these lads most want! Not soppy sympathy! Not the dole!

Unquestionably, this is the nation's No. 1 obligation. It cannot be solely a government obligation. It is the prime responsibility of every industrial and business executive in every company large and small, in towns big and little, to give these boys their chance to become self-supporting citizens, proud to be able to take full advantage of their American heritage.

Like a good many other concerns, CooperBessemer conducts a special, carefully-planned apprenticeship and employment program for disabled veterans, enabling these boys to become full-fledged "journeymen" with a well-rounded background of specialized study and training. First in Ohio to adopt such a plan, we have had ample time to prove that it works out to mutual advantage. To put it mildly, the boys are eager . hungry for success . . and exceptionally capable.

Perhaps a detailed explanation of our successful plan would be helpful to you in shaping up a program exactly suited to your own particular conditions. It is yours for the asking. In any case, you can, if you will, help Johnny to forget his gun.

The inset above shows a group of handicapped war veterans in classroom study at Cooper-Bessemer's Mount Vernon, Ohio, plant. These boys, discharged from Crile Hospital at Brecksville, Ohio, and other U. S. Veterans Administration Hospitals, also receive actual shop practice as part of progressive apprenticeship and employment program.
$\star \star \star$
Additional information on this subject, covering proposed programs and successful experience in many types of industry, may of course be obtained from various sources such as the Retraining and Reemployment Administration, local and state Veterans Service Committees, War Apprenticeship Training Service, the Disabled Veteran Rehabilitation Committee of the Associated Business Papers in New York City, and others.

"Our BAKER TRUCKS have proven that they can "take it" and DO THE JOB AT LESS COST"

window glass but has toughness and high resiliency. Its properties enable it th be sawed or drilled as easily as wood yet molded into practically any shape of

contour. Guards are available in stard ard sizes and can be supplied in size a shape to fit any machine.

Spindle Machine

A spindle machine which can be us. either with a wide variety of millis cutters to machine wood and soft metid or with various sizes of abrasive sleesy as a spindle sander, has been develope by Kindt-Collins Co., 12651 Elmwot

avenue, Cleveland 11. Its spindle oss lates for sanding work and is nonosciliing for milling work.

The machine is particularly useful duplicating small or large quantities any given piece of wood or metal and used with various special fixtures. I: standard milling cutters of rain shapes, diameters and tapers, and ab sive sleeves ranging from $1 / 4$ to 1 in. diameter, attached to spindle by me of collets. Spindle speeds are 3500,5 and 7000 pm , developed by a $\frac{1 / 2}{1}$ 3500 rpm motor. Spindle tilts to 45°. controls and adjustment handles accessible and degrees for tilting the b. are marked $5 / 32-\mathrm{in}$. apart on a polisi plate.

A Aded together, the working years of a faithful group of 369 National Carbon Company employees exceed 70 centuries of unforgettable experiences! And muforgotten manufacturing experience . . . with "Natienal" carbon and "Acheson" graphite electrodes for electric furnaces. These loyal workers have been associated with us from 15 to 35 years each.
Now in its 60 th year, National Carbon looks at the record of this group, and the many hundred others who have contributed so much to its history.
Some have improved plant machinery, or perfected its use. Others have developed formulas to yield
stronger electrodes, or to give them lower electric resistance. Still others have helped customers use electrodes more effectively. A complete list of such achievements would be long indeed!
We truly believe that this unmatched manufacturing experience, extending over six decades, is of urmost importance to the quality of furnace electrodes ... one of "the five essential things you never see" in them but which are basic to our products. The other "unseen" essentials are: Selection of raw materials, manufacturing control, customer service, and continuing research. Your inquiries are cordially invired.

The registered trade-marks "National" and "Acheson"
iod the "Nation Iod the "National" and "Acheson" Seals distinguish Noducts of National Carbon Company, Inc.

REMOVES WELDING FUMES At the Source!

No longer need your employees inhale welding fumes. A Ruemelin Fume Collector solves the problem, quickly and efficiently. It produces a powerful suction that draws out noxious gases, smoke and heat at the source. Guards employee health, resulting in less welder fatigue, therefore greater plant output. Has many exclusive features: (1) Clears shop air with minimum loss of building heat. (2) Exhaust snout can be positioned instantly and conveniently. (3) Covers maximum welding territory, vertically, horizontally and by circle swing. (4) Shipped completely assembled, easy to install. Thousands of Ruemelin Fume Collectors now serving war industries everywhere. 9 ft . and 15 ft . sizes available.

We gladly offer engineering service for your fume collector installation. Write for Bulletin 37-C.

RUEMELIN MFG.co.

3889 NORTH PALMER STREET
MILWAUKEE 12, WISCONSIN, U.S. A.

MANUFACTURERS AND ENGINEERS

SAND BLAST AND DUST COLLECTING EQUIPMENT, WELDING FUME COLLECTORS

Purchasing Stainless Steel
(Continued from Page 100)
man to appreciate the market for a his priced, low-tonnage product when was accustomed to think in terms of hif tonnage.

In our first purchase of chrome alle steel pipe, we encountered this difficuly We found it to influence our subsequer purchases greatly. A tube mill, afte some discussion, accepted our order to a sizable amount of pipe, indicating, how ever, a fairly long delivery, which und the circumstances was to be expected Within the time condition on the orde the mill informed us that the pipe ma run and samples could be taken as quired by the order. With that origine order, we initiated a practice of orda ing each length of pipe or tubing $1 / 4 / 10$ in. longer than the use required 50 to provide coupons from each length ba inspection of test.

Also, in the early orders, we inspecte all pipe and tubing to determine physical condition of the material, pro viding inspectors who would be prese at the mill tests and who actually amined for production imperfectice such as out of roundness.

In the Order under Discussion, the If tests proved satisfactory and the was instructed to take and submit th samples. After being subjected to σ accelerated tests, the pipe proved to of high quality and the mill was structed to ship. We were elated wi the success and apparent ease of pr duction on this, our initial order, in the of the predicted difficulties indicate by other represeatatives of the steel : dustry.

Two weeks went by and no shippit papers arrived. A wire brought information that the order was not $c l=$ pleted. Puzzled by the reply in vio of the known facts, we sent a represenb tive to the mill. Within a few hot he reported that he found the pipe the finishing department being laboo ously polished inside and out. Wbe asked for an explanation, the mill o plained that any product which ran on a dollar a pound should look the pu The polishing operation was immed ately abandoned as we wanted pipe 2 not hand rails. This was our introds tion to the influence of the tonres principle of the steel mills on chrom alloy production.

It has been a long journey from tho days but now it can be pointed to wi pride that at least one of the tube 10 . has a research laboratory where conditioning and careful handling plat: important a part in critical analyt and cherical composition of the tube as the microbe fighting laboratories the food industry.

Our first experience with what wos? be called in the chemical or food indo try a "microbe-infected steel" was ? with an early production of plates. first plates run in this particular while not entirely satisfactory in : mill test due to the tendency toward

100 Years Waking strong the thinge that make Cmerica strong

COLD-FORGED . . . on bolt-making machinery . . .

for strength, accuracy, appearance and economy

The same method that is used so succossully to manufacture RB\&W EM-限E Bolts was used to produce these Pacial parts . . . with maximum strengch, xacracy and appearance, and at lowest ${ }^{6}$ st.
Cold-forging on RB\&W equipment inauses tensile strength, incensifying the min while preserving the flow lines of temetal . . and provides an auromatic mpection of the material. Headed parts florned with extreme accuracy, for 4 modern machinery is operated to 7 close tolerances. Threads are perAppearance is unmistakably that ${ }^{12}$ quality product.

Costs are lower, because RB\&W's equipment operates at very high speeds, and, in cold-forging, the scrap waste is virtually eliminated.

THE LONGEST EXPERIENCE IN AUTOMATIC COLD-FORGING

This is RB\&W's lo0th year. The history of this company is also the history of automatic cold-forging, for it introduced the original automatic coldheading machine and has since pioneered in many respects to improve the quality and lower the costs of fasteners and other parts which can be cold-forged
In planning new parts, consider the
many metal shapes which can be produced by cold-forging and also that RB\&W's experience and facilities make it your logical source of supply. At present, wartime commitments have monopolized those facilities; meanwhile, keep in mind the advantages of this method.

RBEM

Russell, Burdsall\& Ward Bolt and Nut Company Factories af: Port Chester, N. Y., Coraapolis, Pa., Rock folls, III. Sales affices at: Philadelphia, Detrait, Chicago, Chattanooga, los Angeles, Portland, Seatfle ... with the industry's most complete, easiest-to-use cotalog.

Mrrereso ofyerr ie

uneven gage, running particularly hea! in the center sections, gave an othermis satisfactory physical and accelerated ts: and was released to the fabricator. 1 those days, we were in the habit d ordering sheet and plate also in larga dimensions than required to accommss date the procurement of samples fo physical as well as corrosion tests. \mathbb{T} heavier gage increased the price on the invoices on a per pound basis but w were not inclined to be unreasonabi: on that score, figuring we in turn wee faced with corrosive conditions and the heavier gage would result in longer life

Much to our surprise, the first piea of apparatus placed in operation quick developed the holes from what we late learned to call a "tubercular" condition We hurried out to the mill to consw with the company's operating departmet. A long discussion developed nothing, z a close check of manufacturing pro cedure indicated high quality mateni should result. Late that following afte noon, we all went into the mill to d serve the rolling of a few plates for or order.

The mill had an old, badly rusted corrugated iron roof through many hole in which the slanting rays of the afle noon sun shone to throw an eerie lid on the somber interior. The dirt tha was deep in iron oxides, finely divide by years of constant tramping and eva step and every movement of material x equipment stirred up clouds of this dis to which was added larger pieces shate loose from the roof with each jarice pass through the rolls. These partick passed down through the spotlight the sun's rays in swift, erratic cours their final resting place to be on 4 floor or the hot plates in process.

All in the little party that afternoo quickly became conscious of this dange ous atmospheric influence on the precious plates passing backward ${ }^{2}$ forward through the rolls.

Probably we shall wait a long lif until high cost alloy steel will be stb jected to the great care exercised in products of the food and chemical it dustries. Today, however, we are be coming aware that alloy steel is almis as susceptible to dirt-laden air as * products of the latter industries.

For a Number of Years, we continu the practice established with our inilis orders, purchasing directly frons steel companies the alloy steel require for fabrication of our apparatus ${ }^{25}$ equipment. This included ever, thit down to the last plate, sheet, bar, bo nut, washer, rivet and welding rod. practice has since been abandoned, we found it a necessary precaution th for many reasons.

Uniformity in analysis was importic in those days before the adoption standard compositions for given types? steels and the lack of unifornits operating conditions in the few mills production. The producing comparis were critical of our seeming over-avid to obtain uniform steel. It required considerable amount of educational env.

How To Avoid Misapplication of Aluminum Permanent-Mold-Castings

WRITE FOR COPY OF TECHNICAL

 REFERENCE BOOKLET PMC 45Does Your Fufure Depend on the Use of Aluminum Alloy Advantages Whish Aluminum Alloy Permonent-Mold-Castings offer You

Suggestions for Designing Parts For Aluminum Permancmp-Mfold-Casfing Techniques

A Permold Engineering and Metallurgical Review brings you:

1 Sound engineering experience (24 years) in utilizing aluminum alloys, and in developing perma. nent-mold-casting techniques, to meet a wide range of service sequirements.
7 Design suggestions, resulting from hundreds of 4 applications of permanent-mold-castings, to guide you in obraining unusual savings available through the use of high strength aluminum alloys and lighter weight sections.

7 Recommendations covering correct combinations of \checkmark physical properties required to meet given service conditions; and how to utilize the excellent physical properties and hear treatment porenti alities of aluminum alloys to protect your product against failute.
AEtimates of cost-reducing possibilities which may 4 be realized through the use of permanent-mold. castings and metal from re-melt sources.
$\overline{5}$ Technical facts resulting from comparisons of 4 materials, processes, and costs usually overlooked and unappreciated except by those of broad specialized experience in the highly skilled art of permanent-mold-casting on a mass production basis.

3pitfalls of misa penalize de velopment work will find in this new technical reference booklet on permanent-mold-castings useful and reliable information on how to obtain the utmost of every advantage available in permanent-moldcastings. Practical suggestions for designing parts for aluminum permanent-mold-casting techniques, plus a brief treatise on aluminum alloys that are suitable for permanent-mold-castings, provide guidance for design engineers, metallurgists, production and management executives who must determine when, where, and how to employ permanent-mold-castings and to obtain lowest piece price for each part at the point of assembly. This booklet presents 27 years of accumulated engineering and metallurgical experience and 24 years of permanent-mold-casting experience that is also available through a Permold Engineer or Metallurgist. Ask a Permold Engineer to bring you a copy of this booklet or write for your copy today.

on our part to acquaint the many in viduals in the several companies nis our problems in corrosion.

Occasionally, it was necessary to ste all over again when one company wodl drop out of the field and a new one wout enter. A fabricator would follow is usual practice in steel purchasing a: buy his list of materials for any prite job from several production or warehows sources of plates, sheets, bars, etc. Mt reports on chemical and physical tex were not then in general use.

Steel companies were critical of 1 credit of fabricators from whom the were accustomed to accept orders tons of steel at a few cents per pouli but hesitated to grant credit to the saty fabricators for large quantities of maz rial that was higher priced and criticu! examined.
We, in turn, found it expedient to sure final delivery of satisfactory $3 x$ highly priced equipment to follor through all phases of production ax fabrication. Our orders on the nit were based on bills of material $t=$ nished by the fabricator, but the be den of responsibility for the delivery : satisfactory material to the fabricalu rested with ourselves.

In the Handling of highly expensin material, this arrangement was agreedil to the fabricator. The fraternizatio thereby set up between producer, fabr cator, and consumer brought an appr ciation of each other's proble.as the contributed to the education of intereste. parties and the development of the nor high quality of metal and furthered th feeling of mutual respect prevailing t the several industries.

In the education of the fabricator the necessity of observing our demad for quality production, we originalh went so far as to fumish the early ricators with lock boxes in which tb welding rod for our job was carried exa morning from the tool room to the if: by our resident inspector, and he, turn, locked the box at the end of day's work, put the key in his pode and returned the box to the tool roon for safe keeping. The box itself 15 marked with the job number. The nill in turn, maintained a constant contar with the fabricator to assist him with fabricating difficulties.
As the old timers will recall, we als were much plagued in those early div. when riveting was still in general prob tice, upon coming into the shop in morning, to find the rivet heads popper off our tanks like so many buttons \bar{u} in vest enclosing an oversized chest.

All material except the rivets later welding rod) for a given job colw be obtained from the steel companit where uniformity of production coub be controlled. Unfortunately, rivets 10 to be obtained from a separate soumt When we succeeded in obtaining tis co-operation of the rivet producing \cos panies (fortunately they were not lous following) by placing their orders turn for bar stock with the same ${ }^{10}$ trolled production and even furnishin?

A few years ago, a certain exporter faced the situation of leather hides arriving in China seriously damaged from fungus.
Various methods of protection were tried - until one day he hit upon FIBREEN. This important industrial paper not only prevented fungus from developing in transit - but also created other typical FIBREEN savings. Crating was eliminated, cargo space lessened, weight cut down, freight charges lowered, and claims reduced.
And in spite of exposure to rain, heat, salc air, humidity, and rough handling, FIBREEN was resold and used for protecting other materials stored on the China Coast. Hundreds of manufacturers are finding in FIBREEN the answer to many of their shipping problems. It is enabling them to save time, material, freight, and handling charges, as well as give their products unmatched protection. Why not investigate its possibilities in your business.

bar stock to them on our own orden our headaches ceased.
Later, as the art of welding advancu and became under the codes an accepp. able procedure in fabrication, we hed less trouble with the quality of the weld rod as we early insisted on its prodiw tion by the same source as the balanat of the material to be fabricated. Oï greatest difficulty from the latter pro cedure was to educate the welders int a conscientious observance of the nus that like materials should be welder with like rod. Of course, welders couk weld metals with a dissimilar rod ax took righteous pride in the fact. Tha were not long getting the idea but wut the steel companies' metallurgists ad the consumer learned the value of stree relieving, X-raying and other attenders procedures, development of satisfactor welding methods was hesitant and bad. ward.
Here, again, problems of heavy cap ital invest.nent were bravely faced t the fabricator confronted by the dk mands of code construction for stres relieving. The installation of X-ris equipment and the erection of furnass by the fabricators to meet the new de mand occasionally cost more than onit inal capital investment in the compary

Research by the Steel Companies ds developed steels which could be suf cessfully welded without the necessith of stress relieving. The use of thes steels is limited only by the severity a the corrosive action of the product to be used in the vessels.

The chemical companies in their de mands for steels to meet their corrosir and erosive problems, realized earie than other industries the value of stree ing purity of products in selling cars paigns for new materials placed on $1 \times$ market, both as entirely new materixis and as competition for older establishe markets. Corrosion of equipment wis recognized as a source of impurity.

Reverting back to our old probleer in the purchase of pipe and tubing, ease with which our first order for pip was produced gave us no hint of 4 subsequent problems which did develas in the production of this important 啊 terial in the construction of modern cher ical plants.

Due to low yields and high cost ${ }^{\text {a }}$ production, our first source of supp? soon abandoned the production of seari less alloy pipe and tube.

It should be mentioned here that " and other consumers of this commodir were slow in contributing to the dere? opment of welded seam pipe, mair because of the slow development the art of welding.

We were constantly in the field at time seeking a new source for the pr duction of seamless tubing and persistency was soon rewarded. Anoth firm became interested in our requif ments and for a time. produced high satisfactory pipe and tubing. Howe it was much discouraged, as was previous source of supply, by the teme ency of the pipe and tubing to bur

Will Continue to Increase Production-Lower Costs!

Today, in hundreds of war plants, under all sorts of conditions, HYDRATROL LATHES (Large Hollow Spindle

row, on the peacetime production line, HYDRATROL LATHES will continue to increase production-improve work, cut costs. Let us show you how HYDRATROL LATHES can solve your present machining problems and at the same time prepare your plant for efficient, profitable peacetime production.

FIVE SIZES - $18^{\prime \prime}$ TO 36" Small. . . . $18^{\prime \prime}$ up to $71 / 4^{\prime \prime}$ Hole Medium 24" up to $12^{\prime \prime}$ Hole Large $27^{\prime \prime}$ up to $13^{\prime \prime}$ Hole Large $30^{\prime \prime}$ up to $14^{\prime \prime}$ Hole Large . . . $36^{\prime \prime}$ up to 16 1/2" Hole (Standard type lathes, $16^{\prime \prime}$ to $36^{\prime \prime}$)

[^2]In ordering your permanent mold aluminum castings from Acme you supply the blueprint, and Acme does the rest. Your casting is poured in an Acme mold that is made from an Acme pattern. You can rely upon an Acme mold to have proper gating and risering, permitting pouring at correct temperatures. Acme's centralized responsibility is particularly important in permanent mold work, where one mold may affect the quality of thousands of castings.

Acme made tools and patterns even before it made castings. And today, Acme engineering experience unites with advanced foundry practice to give you the finest possible results. For permanent mold castings with finer grain, greater strength, and maximum dimensional accuracy-and machined ready for assembly-secure the facts on Acme Castings today. Recommendations and quotations submitted promptly.

ThE long lasting accuracy of Logan lathes is due in large part to the construction of the Logan Lathe bed The extra heavy, sturdy ribbed, special analysis castings are alloyed to obtain the finest lathe bed characteristics, and oredesigned for sections of even thickness to reduce internal strains. How these rugged castings are planed, aged, milled, machine scraped, finishmilled, precision ground, and checked is 100 complex a story of accurate and effient workmanship to be fully told here. The important aging period Which follows the rough cut, for example, allows more than adequate time hor maximum development of any
latent tendencies to distortion. In milling, nine formed cutters perform nine heavy milling cuts simultaneously in a single pass to bring the ways to within $.0015^{\prime \prime}$ of finished specifications. Then the mechanical scraping, the finish milling, and the final precision grind bring the ways to within $.0005^{\prime \prime}$ of parallelism over their entire operating area. It is care like this, not only in making the bed, but in building the complete machine, that makes the Logan Lathe dependably accurate in the tool room and in high-speed production. Ask your Logan dealer, or write direct for catalog information E SpECIFICATIONS zommon to all Logan Lathes on all models of Logan Lathes,

Featuring new standards of volumetric and mechanical efficiency, PESCO Hydraulic Hand Pumps will do a better job wherever small quantities of fluid are to be pumped at high pressure. Unusually compact and lightweight, these precision pumps are self-lubricating . . . built with spring-laden ball check valves for uni-direction fluid flow, and needle bearings to minimize operating torque.

In addition to these pumps, PESCO design and manufacturing skill extends through a complete line of air, fuel and hydraulic pumps . . . precision equipment that opens the way for more efficient use of Pressurized Power and controlled liquid flow. Descriptive literature available. Write, specifying the equipment in which you are interested. PESCO Products Co., (division Borg-Warner) 11610 Euclid Avenue, Cleveland 6, Ohio.

HELPFUL LTEBATURE

1. Molten Metal Pumps

Ruthman Machinery Co. 4 -page illustrated folder "Another "First' by Ruthman!" describes Gusher molten metal pumps which handle lead, babbitt, solder, zinc and other alloys at temperatures up to 1000 degrees Fahr. and reduce accident hnzard

2. Material Handling Units

Hevolvator Co.-Mlustrated broadside "The Att of Piling for Modern Industry" covers line of portable elevators and accessories for moving, lifting, piling and stacking various types of raw material and finished products.

3. Synthetic Resin Products

Hesistollex Corp,-16-page illustrated catalog presents information on properties, characteristics and specifications of products made from compar solventproof vinyl resin. Articles covered include various types of hose, tubing, end fitings, industrial gloves, work aprons, mechanical molded goods, coatings, adhesives and paints.

4. Arc Welding Electrodes

Reld-Avery Co.-24-page illustrated booklet "Raco Arc Welding Electrodes" gives appllcations, welding procedure, welding codes, physical properties of weld metal, recommended current ranges and sizes of electrodes and welding rods for varlous types of work.

5. Automatic Control

Recves Pulley Co.-0-page illustrated folder No. G-452 describes automatic hydraulic controls for symchronization of different machines and of separate sections of single machine, and maintenance of constant tension, uniform peripheral and winding speeds, uniform pressure, veight, liquid level, temperature and other vanable elements.

6. Traveling Cranes

Meading Chain \& Block Corp.-16-page illnstrated bulletin "The Why and How of Fater Production" contains data on traveling crines and unit parts such as crane trolleys, tod construction, gear cases, bridge drives and cabs. Ilustrations show cranes in use in various plants.

7. Electrostatic Coating

Happer J. Ransburg Co.-8-page fllustrated booklet "Ransburg Electrostatic Painting Processes" describes electrostatic process for sprayshon dipping, coating and detearing. Parts are ciple.

8. Engineering Data

libhlo Testing Machine Div., American MaNo. A-989 atals, Inc. - 4-page engineering chart No. A-989 includes tables on percentage reduction of area for tensile test specimens, hardtass conversion chart for hardened steels, and tanging circle dimensions, with diameters raging from 0.001 to 1.000 inch in increments version inch. Formulas and hardness conversion date are iacluded.

9. Collets \& Stock Pushers

Sheffer Collet Co.-20-page illustrated loose leaf catalog No. 45 gives specifications and pricer of line of collets and stock pushers. Intame end is conveniently arranged by makers 10 and type of machine.

10. Castings

Mecharite Research Institute of America, tote-12 12 -page illustrated bulletin No. 22 is This in "Stories of Meehanite in Industry." Castings collection of articles about Meehanite Callings which have appeared in various trade cublications
11. Lighting Equipment
bytratedia Electric Products Inc.- 8 -page ilmotrated "Lightiag Products" bulletin contains counrabensive information about industrial, cormercial, portable and inspection types of Escent 1 fitures. Data are given on fluordeecthenps, starters and lamp holders. Also descibed are incandescent lamps and fixtures.

12. Magnesium Castings

Superior Bearing Bronze Co.- 4 -page illus lustrated "Lighting Products" bulletin contains facts for design engineers on design and application of products employing this metal. Comparative properties of magnesium and other structural metals are tabulated.

13. Air Compressors

Sullivan Machinery Co. 42 -page full-color brochure "Modern Industrial Compressors" describes machines for fumishing compressed air for industry's heaviest demands. Complete details of machines and production facilities of company are outlined. Various types and sizes of compressors are described.

14. Finishing Method

Sturgis Products Co. B-page illustrated folder presents details of Roto-Finish mechanical de-burring and finishing process for metal parts. This method can be used for grinding, de-burring, polishing, honing and coloring. Typical machmes developed for application of process are described.

15. Turret Lathes

South Bend Lathe Works-12-page illustrated bulletin No. 901 presents specifications and other information on series 900 and series 1000 South Bend turret lathes. These machine tools are designed for high speed machining of small chucking and bar work requiring close tolerances. They are especially adapted to second operations.

16. Plastics \& Stampings

Standard Products Co.-16-page illustrated bulletin "Standard Products" explains facilities of company in engineering and production of molded and extruded plastics and rubber parts, metal stampings, war materiel and window channel. Typical parts produced are shown.

17. Coolers

Ross Heater \& Mfg. Co.-24-page illustrated bulletin No. 5322 covers types CP and CF coolers designed for continuous service for lubricating, cutting, quenching and transformer oil, hydraulic presses, engine jacket water, refrigerant emulsions, small vapor condensors and oil pump systems, Performance charts and dimension tables are included.

18. Rotary Pumps

Geo. D. Roper Corp.-32-page illustrated booklet "How to Solve Pumping Problems" contains discussion of steps to follow in selection of rotary pumps. General information and numerous technical data tables complete the publication.

19. Melting Furnaces

W. S. Rockwell Co.-4-page illustrated bulletin No. 411 covers oil or gas fired stationary and tilting type crucible melting furnaces for aluminum, brass, bronze, copper, gold, monel metal, nickel, silver and other nonferrous metals. Reverberatory melting furnaces are also covered.

20. Milling Cutter Checker

Michigan Tool Co.-A-page illustrated bulletin No. 471-44 shows features and applications of Model No. 471 hob and milling cutter resharpening checker which utilizes two standard indicator assemblies. Dismeters up to 10 inches and spread between centers of 16 inches can be handled.

21. Resistance Welding

Sciaky Bros. - 8-page illustrated bulletin 204-A describes this company's "three phase to single phase" system for welding heavy gages. Technical discussion is based on article from Steel. Four models of welders are shown and characteristics and uses are briefly covered.

Wh.5x Cune
 FRPMIT No, 8

 (8menorjud Crevelsen C
BUSINESS REPLY CARD
 No Postago Stamp Necessary if Malled in the Jnited Etetes

4a POSEAGEWIILBEPBIDBY一
STEEL
Penton Building
Readors' Servlee Deph. CLEVELAND 13, OHIO

STEEL
7-9-45
1213 West Third St., Cleveland 13, Ohio

Please have liferature circled af lefl sent to me.

1	11	21	31	41
2	12	22	32	42
3	13	23	33	43
4	14	24	34	44
5	15	25	35	45
6	16	26	36	46
7	17	27	37	47
8	18	28	38	48
9	19	29	39	49
10	20	30	40	50

NAME TIITER
COMPANY
PRODUCTS
MANUFACTURED

ADDRESS

CTTY AND STATE
NAME

22. Bearing Selection

Shafer Bearing Corp.-8-page illustrated bulletin No. 852 is entitled, "How to Select the Correct Bearing in Machine Design." Line type selection charts simplify choice of single or double row bearings for given speed, radial and thrust load, and operating conditions.

23. Rebuilt Machine Tools

Simmons Machine Tool Corp--60-page illustrated bulletin "The Simmons Way" shows company's facilities for engineered machine tool rebuilding. Modernizing of machine tools with Micro-speed drive and power rapid traverse is discussed. Designing and building of special purpose machines are described.

24. Acetylene Generator

Sight Feed Generator Co.-18-page illustrated bulletin 44-G describes Sight Feed acetylene generators for making welding and cutting gas as required. Simple and safe in operation, equipment requires only carbide and water. Typical installations are shown.

25. Phosphor Bronze

Seymour Mfg. Co.-8-page illustrated booklet presents sizes, specilications, tempers, tolerances, properties and uses of grades A, B, C, D and special free-turning phosphor bronze in sheet, rod and wire forms. Phosphor bronze welding rod is also covered.

26. Centrifugal Castings

Shenango-Penn Mold Co.-8-page illustrated bulletin No. 143 discusses advantages of ferrous and nonferrous centrifugal castings and presents chart of characteristics and applications of numerous types. Methods of manufacture are described and pictuxes of typical castings are included.

27. Metal Products

Schneider Metal Mfg. Co.-24-page illustrated booklet "The Schneider Way to Better Designed, Engineered, Fabricated Metal Products" discusses complete service available for fabrication of metal merchandising displays, sign erection equipment, industrial metal products and various types of component parts.

28. Dust \& Fume Collector

Claude B. Schneible Co.-4-page illustrated folder No. 145 deals with type EC Multi-Wash dust and fume collector consisting of MultiWash collector tower, Multi-Louvre dewntering tank, Wear-Proof pump for recirculating cleansing liquid and suction fan. This model is portable and self-contained.

29. Rust Prevention

Shell Oil Co.-40-page illustrated bulletin discusses subject of rust prevention through use of Shell Ensis contings. Typical problems are outlined and their solutions given. Features, range of application and types of rust prevention products are also described. Other data on protective coatings are included.

30. Convection Furnaces

Surface Combustion-4-page illustrated bulletin No. SC-122 is entitled, "Convection Heating in Surface Combustion Fumaces." Typical models and their application are described. Table gives Rockwell hardness versus drawing teroperatures for SAE steels and their NE substitutes.

31. Honing

Micromatic Hone Corp- 8 -page illustrated form No. AR-67 describes machine tools, fixtures, tools and abrasives which are used to generate finished surfaces in cylindrical parts. Specifications are given on new vertical Hydrohoner, as well as on Micromatic honing machines and tools.

32. Wire Working Machines

F. B. Shuster Mfg. Co.-4-page illustrated bulletin describes wire straightening and cutting machines with capacities of sy-inch to tt-inch. Various models are shown and mechanical advantages are discussed.

33. Refractories

Richard C. Remmey Son Co.-52-page illustrated catalog contains valunble information concerning use of refractory products, refractory shapes and standard shapes, and includes estimating sheets and general information. Specifications, sizes and engincering data of use in applying refractory products are covered.

STEEL

7-9-45
1213 West Third St., Cleveland 13, Ohio

34. Boring Machines

Stokerunit Corp-12-page illustrated altlog on "Simplex Precision Boring Machim" discusses advantages, operation, design and 0 . erating features, and olectrical equipment en ployed in this machine tool. Speciffcations in tabulated for various sizes and models.

35. Portable Electric Sander

Sterling Tool Products Co.-4-page illustratod bulletin No. S-203 describes model 1000 able electric sander which features Orbii motion. Abrasive grits are driven in th-ind orbits against work at rate of 5000 cycles pa minute.

36. Gas \& Oil Burners

Peabody Engineering Corp. 4 -page ithe trated bulletin No. 902 describes type M com bined gas and oil bumers which are availht in full range of sizes and are suitable for het ing boilers, industrial furnaces, power boiled and oil refinery furnaces. Fuel may be naturd refined or manufactured gas.

37. Threading Equipment

Murchey Machine \& Tool Co. - A2-page lustrated reference manual contains engineent and operating data on company's line of thread ing equipment. Die heads, taps, thread n? tems, conversion data and other informatio are included.

38. Manufacturing Locations

Dept. of Commerce, Commonwealth Pennsylvania-24-page illustrated bulletin "L Your Business Grow in Pennsylvanin" explis factors which state offers to business eatee prises. Power, raw material, taxes, skilled b bor, transportation and other ndvantages an listed.

39. Flexible Metal Tubing

Pennsylvania Flexible Metallic Tubing $\mathrm{C}_{0}-$ Hlustrated bulletins No. 90-C and No. 91 car Penflex Weld high pressure flexible all-me tubing and Penflex interlocked flexible met tar and asphalt hose, respectively. Appllat tions. design variations and specifications at listed.

40. Cutting Oils

Sun Oil Co.-64-page illustrated boolk "Cutting and Grinding Facts" describes wit ous types of Sunoco emulsifying cutting ois Case studies in various plants covering work, milling, hobbing, drilling, grinding, pi* threading, lubrication and cold rolling the quoted.

41. Protective Coatings

Quigley Co.-6-page illustrated bulletin Me 379 describes Triple-A Mill White and Dain White finishes. First is light reffecting coatrid which is adaptable for use in factories, watr houses, industrial and other buildings. Glas semi-gloss, flat and enamel undercoat types available. Dairy White produces bard, wis loss finish and under normal conditions dry in 4 hours.

42. Steel Fabrication

Stacey Bros. Gas Construction Co. -44 illustrated bulletin No. G-45 presents compr hensive picture story of fabrication and eros tion of gas holders, storage tanks, process vessels and other structures. Production a? erection facilities of company are showd action.

43. Carbide Tools

Spe-D-Cut Tool Co.-28-page illustrated alog No. R-20 on carbide-tipped cutting to gives details on line of tool bits, boring tom router bits, milling cutters, fy cutters, centers and special tools. Engineering data a included to aid in proper use of carbide-tipgo cutting tools.

44. Malleable Castings

Saginaw Malleable Iron Div., General No tors Corp. 48 -page illustrated booklet titled ".. this is the story of our part ${ }^{\prime}$ the war" shows typical parts produced, pany facilities and personnel, and compan scenes of processes in World War I sint il

SCHLOEMANN EXTRUSION PRESSES have Super-Standard Features

With capacities ranging from 850 to 5000 tons, Schloemann Presses are designed to extrude all extrudable shapes, in all metals that lend themselves to this process. This, of course, is standard. But Schloemann exceeds the standard in several exclusive and highly important respects.

For instance, the patented method of supporting platen and container holder permits thermal expansion in all directions without losing alignment with those parts of the machine that remain cold.

Three-phase induction heating of the container affords ample and uniform heat under close control, a fearure of urmost importance to long container life and quality of the extruded product.

Independent movement of mandrel from press stem enables the piercing of billers that have been cast solid. This avoids the oxidized skin encountered with hollow cast billets and provides rubing with smooch internal surfaces.

These and other super-standard features set up a definite Schloemann advantage. Their tangible results are economy in operating and maintenance costs, greater flexibility and diversity, convenience and long life.

If you have a problem or special need, or if there is a size or type of extrusion in which you are especially interested, Schloemann Engineers offer their fullest assistance.

SCHLOEMANN ENGINEERING CORPORATION

1105 Empire Bldg.
Pittsburgh 22, Pa.
parison to the volume of work done s the shops. We did have some loss which were embarrassing as only particular material required for the ${ }^{0}$, had been processed, making it necessan to produce more material or take : chance in obtaining material of litr composition from another source.
Some difficulty was encountered it this respect but it was never insurmout. able. No ill-feeling occurred on either side and almost all the firms who passed through these trying times with us an still fabricating for us, our mutual ar miration and esteem unaltered. All d these firms have contributed commend able accomplishments in the production of capital equipment for the ordnano plants. Their work has been a valubht contribution to the war program.
Back again to our experience in fabicating Van Stone type joint alloy pipe We had ordered large quantities d pipe, confident that the pipe fabricator would have a minimum of difficulty.
With the Delivery of the first piph the fabricator, after several unsuccesis ful attempts to Van Stone, refused b proceed with the order, largely becaus he was handling material which wz not his own. A visit to his plant and study of the problem showed that tur pipe would split in several places of the flange when the flange was rollei beyond a certain point. We determine to experinent by cutting a number is 18 -in. lengths and after a few trials, tablished that incipient cracks in the end cut on this pipe, caused partly the condition of the cutting tool, opene up in the flanging operation. Afte experimenting with about 100 pieces b. using different cutting methods, van! ing the heating and speeds in the flang ing operation, we were much discou: aged with the limited results and fore saw the destruction of all our expensin pipe in our futile experiments. II had only four or five successful flange out of the hundred to reward us iun our work. We found several of thes cracked open in the next day or 50 .

About this time someone, not the ricator or his men, as they had wili drawn from the job in order to redue charges against the job, had the happ: thought that if we would machine the cut end, we would work out the halt cracks. This was done on several piexe and every operation resulted in a pat fect expansion. We held up the prow cedure for several days to detemix whether they would develop cracks the result of this cold working. Ib machining procedure solved our problent on this early pipe but subsequently in tube companies leamed of better pifx production methods, and, with the w. of a disk cutter, they improved the hax of cut, giving better yields in the co. working operation.

Our first experience with the difs cutter nearly wrecked our growing tath in alloy pipe and tube production. Wh the first samples cut from pipe with new cutter were delivered, the sample showed an extremely poor accelerate

to IRIUID IUPAID'S Exira Rust Profection...

There is no question ahout Red Lead's acceptance throughout industry as the standard priming paint for making metal LAST.
One important reason is its ability to keep metal surfaces in a "passive" or rustinhibiting state. Authorities agree that metal protective paint should be rust-inhibitive to give satisfactory performance.
Time-potential curves, such as the one at right, are used to express rust-inhibitive properties of paint and thus indicate its effectiveness of protection. They show the effect of Red Lead on the potential of steel in the presence of moisture or water.
For example, a stecl panel whose potential is positive, relative to hydrogen, is considered to be in a passive or non-corroding state. A negative potential indcates corrosion activity or rusting. The graph shows clearly the rust-inhibitive eflect of Red Lead paint on steel as contrasted with the rapid and continuous rust-
ing of unpinted or unpainted steel.
Note that in this test a Red Lead paint film which had weathered 5 years was just as effective in preventing rust as one which had dried for only 10 days.
Syecly RED LEAD for All Metal Protective Paints The ralue of Red Lead as a rust preventive is most fully realized in a paint where it is the only pigment used. However, its rust-resistant properties are so pronounced
that it also paint. No mproves any multiple pigment Noint. matter what price you pay,
you'll get a better metal paint if it contains Red Lead.

*Proof That Red Lead Keeps Metal Passive

In the above test a piece of unpainted steel was immersed in water. Iron, going into solution, reacted with oxygen in the water to form rust. This unrestrained corroding state is indicated by a rapidly developed and maintained negative potential (see above graph). However, when steel panels painted with Red Lead were immersed un-
der the same conditions, ferric and lead salts formed directly next to the metal. This action at once stifled corrosion by preventing the iron from going into solution, thus keeping the steel surface passive. The result is shown in the graph curves above, where a quickly rising positive potential remains constant throughout the test.

Write for New Booklet-"Red Lead in Corrosion Resistant Paints" is an up-to-date, authoritative guide for those responsible for specifying and formulating paint for structural iron and steel. It describes in detail the scientific reasons why Red Lead gives superior protection. It also includes typical specification formulas ... ranging from Red Lead-Linsced Oil paints to Red Lead-Mixed Pigment-Varnish types. If you haven't received your copy, address nearest branch listed at right.
All types of metal-protective paints are constantly being tested under all conditions at National Lead's many proving grounds. The benefit of our extensive experience with Red

Lead paints for both underwater and atmospheric use is available through our technical staff.

NATIONAL LEAD COMPANY: New York 6. Buffalo 3, Checago 80. CInciunati 3. Cloveland 13, St. Louls 1, San Francisco 10, Boston 6 (Notional-Boston Lead Co.) ; Plttsburgh 30 (Natlonal Lead \& Oll Co. of Penna.) ; Phlladelphia 7 (John T. Lewis \& liron. Co.) : Charleston 25. W. Va. (Evans Lead Division).

IDUTMCIH BOY

IRPID HPAD

The Youngstown Welding \& Engineering Company makes welded tubing of the proper type material to best withstand your corrosion conditions. It is available in odd or standard sizes, in limited quantities or carload lots. It will meet your requirements for pressure and uniformity. Special equipment with low setup charges permits production of special tubing for individual needs at a practical cost.

FITTINGS AND FABRICATED PIPING

A complete line of Weldco fittings is available. Weldco's well-equipped plant is in position to fabricate the entire pipe assembly you require.

THE YOUNGSTOWN WELDING \& ENGINEERING CO.

3711 OAKWOOD AVE. YOUNGSTOWN, OHIO

SEND FOR LITERATURE

test. We had not known about the installation of the new cutter. By tho time, mill experiences with the sciem tific production of alloy pipe and tubr ing were such that with the manulac. turer's record available and ladle analy. sis, results of accelerated tests on the coupons could be confidently predicted In this lot of tubes, nothing was wrong with the composition, physical characteristics or manufacturer's record of production. Yet several sets of samples tak. en from both ends of the tubes gate extremely poor test results and the mil checked with our tests, as by that time we had co-ordinated the test method of our laboratories and those of the milk

While studying the problem, a casual examination of an untested coupon indi: cated a bluish tint on both faces of the coupon, indicating heating on supposedly cold-worked surface. An examination of the other fresh coupons showed the same blue tint. A change in the speed of the cutting disk and the speed d. the cut piece through the cutter, imme. diately solved the difficulty and this lx of pipe passed without further trouble

We were bothered in the early stage of pipe production by the appearance od small clean holes in the pipe after it had been in use for a short time. Here, again our experience with contamination if the rolling of plate stood us in gad stead. An improvement in the drawis, dies and a step-up in the production d alloy pipe and tubing warranted confou ing the use of drawing benches to pio duction of alloy pipe and tubing alome thereby eliminating infinitesimal lig carbon steel slivers from the dies. Thls eliminated the development of the holes mentioned above.

Our Own Ideas regarding pipe and tubing are changing rapidly with de development of the art of welding. Fw a long time, we hesitated to use weldex seam tubing. We have kept abread of the developments in this field, tryipg out small lots here and there in ow plants and our experiences are india: ing locations where this type of tubity can be used. Many situations will cor tinue to call for seamless tube in $2 x$ unabated volume.

In the early use of chrome alloy m: terials, they were not recognized by 2 ? code or state law as suitable for pree sure vessels and, therefore, it was neetes sary to obtain special approval of tip insurance companies and State Boart of Pressure Vessel Inspectors for state in which they were to be usch for each piece of equipment.

Later the ASME Code for unfred pressure vessels recognized this use these austenitic steels, which has 10,3 considerable extent simplified our prot lems.

Manufacturer's records of comples chemical and physical tests are funnisist along with the material supplied on of orders.

Our purchases of alloy castings wer sinilarly fraught with problems. For ! long time, however, our early purchasi of castings were absolutely free of ant

Mass Precision and "ghot" tolerances

"Ghost" tolerances hover near the zero mark-these are tolerances in "quartertenths" and "millionths". To obtain such accuracy requires the proper machines, correct processes, skilled workmen, and gages to show the results.
Nichols has all the factors necessary to produce parts to "ghost" tolerancesand something more. It has the knowledge (based on 40 years' experience) to produce these parts in volume, at low cost. In short, Nichols can manufacture "mass precision" assemblies for you that can be priced to meet competition. When your work calls for "ghost" tolerances, call for Nichols.
A free copy of "Mass Precision" is yours for the asking.
W. H. NICHOLS \& SONS, 48 WOERD AVE,, WALTHAM 54, MASSACHUSETTS

A FTER V-DAY, reconversion notwithstanding, thousands of metal-working factories will turn out the same products they made during and before the War. The products will be chips.

To the experienced eye, chips are valuable indicators of machining performance. Cutting fluids are a vital consideration in developing properly formed chips-not just to "cool" the tool and workpiece, but to prevent welding of metal to tool and to lubricate heavily loaded areas. So interrelated are the factors of metal-cutting operations that slight changes in the composition of cutting fluids alone can radically alter the shape and direction of chips.
Stuart men know how to make properly balanced cutting fluids-and how to apply them for top results. Through them, 80 years of experience is yours for the asking.
The 60-page Stuart booklet, "Cutting Fluids for Better Machining," contains interesting facts about chips and cutting fluids. Write D. A. Stuart Oil Co., Limited, $27351 / 2$ So. Troy St., Chicago 23, Illinois.

LIMITED
ESTABLISHED 1865
Stocks in Principal Metal-Working Centers
difficulty and our demands slowly roie to a point where we were spending sereral thousand dollars a year and obtaining beautiful tests in comparison with a succession of headaches accumulated as our demands for other alloy items developed.

Suddenly our latest deliveries of castings began to go bad but the old castings still held up. Our experience by that time was such that we instantly guessed that the mill had changed its methods of production and we confidently approached the company, firm in a belief that a co-operative effort would overcome the problem quickly.

To our amazement our supplier refused to listen to us, pointing to theis long experience with alloy castings and blindly claiming a change in our operating procedure must have developed the difficulty. We were confident that could not be the answer, as our production was on absolute chemical contol and the slightest deviation in procedure would instantly show up in the plant laboratory. Nevertheless, we conducted a careful check at our plant and found no change in our procedure.

This was reported back to our supplier who adamantly maintained the same attitude and even refused us admission to his plant on the ground that their method of production of certail other alloys was a closely guarded secret and a view of the production of out castings would disclose that operation to experienced eyes.

There was nothing to do but grant the demand of the foundry to complete out orders while we conducted our own investigation. In the meantime we wert getting desperate for castings. We made our own analysis of the castings and had them checked by professional labora. tories.

The Result Confirmed Our Suspicions -the nickel content in the latter straighl 18 per cent castings in which we were accuctomed to specify no nickel showed a strong measureable quantity of thir metal. We called this situation to the foundry's attention but received only : curt reply.

We could only look for another soure of castings. Fortunately, during the negotiations, we had been approached by a new firm entering into the alloy casting field. Its appearance and our subsequen: satisfactory experience with its produa took a tremendous burden from orf shoulders.
The above difficulties are reported only to show both sides of our experience in contributing to the development of 17 industry. It was the only dark spot.

The production of alloy metals doubtedly is still a new industry, althous identified with the steel industry. Thi demands for alloys are now so large that specialists who have not been trained in the old school of tonnage production must be attracted to this field.

We are convinced that these mee look ing into the future without prejudice ${ }^{2 a p}$ foresee an alloy production mill coirt parable in its technique with the air cor

he head on a Walker-Turner Metal-Cutting
Radial Machine can be quickly set to cut at any angle. Cuts wide metal shapes. Will dado, trench, miter, even operate with motor in verfical position.
Patented Walker-Turner Geared Motor is shockproof, gets shaft closer to work, makes deep cuts with smaller blades than in conventional motors. Blade feeds through work with shorter cutting arc and less frictional heat. Operator gets clear view of work, no interference from overhanging arm. Write today for complete information.

WALKER-TURNER COMPANY, INC., Plainfield, New Jersey

ELECTRO-COATED ZINC, COPPER, HICKEL AMD BRASS . . HOT DIPPED TIN AND SOLDER . . LACQUER COATED IM COLORS . . UNCOATED PRECISION STRIP, CARBON AND alloy specialties.

When it comes to making a choice of materials for your product, don't overlook precoated cold rolled strip steel. ThomaStrip is available with coatings of zinc, copper, brass, nickel, tin, solder, and lacquer in color. These precoated finishes solve your plating and finishing problems and often entirely eliminate plating in fabricating plants. Crackproof and peelproof finishes speed production and provide uniform coatings on inside and out of complicated parts. Write for literature today.
ditioned, clean, scientifically controlled plants of the food and dairy industries. In these plants science can reduce the cost of production materially below those of today. These men should know that with each 1 cent per pound reduction in selling price of alloy steel, the field will be remarkably increased and at no sacrifice to the carbon steel industry.

They will be convinced, for instance, that the bridge built of carbon steel will be as outmoded in future engineering, ${ }^{2}$ the wooden covered bridges which setved the railways and highways are todas:
Our one criticism based on experienct is the slowness with which the art d producing the alloy tube developed. This branch lagged behind the advances made in other materials. The reason is the refusal of the early entrants in the field to proceed further after losses had been accumulated. The result was that each ucceeding entrant, lacking the experience gained by the previous casualty, started farther down the ladder than was necessary. Now, however, like similar condi tions in many other fields of endeavor the pipe industry promises to run ahead of scientific advance in other classes d material.

Many other experiences could be entmerated if space would permit, for in stance, our early discouragement when our chrome alloy plates under certain acids, changed to a condition similar to black rubber and the co-operation of interested steel mills to solve this prob. lem.

Our plants and personnel always have urged the steel industry to observe orf use of alloy steels, and the results we have obtained. Through these contacts. all have co-operated with enthusiasm in the standardization of accelerated testa

Our admiration is added to that of other laymen outside the steel industry for the tremendous energy and vast scope of an industry which is based on a prod. uct selling for a few cents a pound at the mills. We can be sure such an industry will develop steels selling at economiad prices, which will eventually widen 战 scope of operations.

Trench Knife Performs Variety of Jobs

A utilitarian trench knife, manufac tured by Imperial Knife Co., Providence R. I., is made so that it fits over muzats of a carbine rille for use as a bayonet and also can be used to open cans, pull naik whittle wood, and do many odd jobs.

Knife is made of finely tempered steel and is formed, ground, heat treateri and honed to a razor-like edge. After ${ }^{3}$ final polishing, blade is Parkerized to re sist corrosive effects of all kinds weather, according to a recent issue d The Parkerizer, published by Parker Rus Proof Co., Detroit 11. Finish both pro tects blade from rust and also remoro gleam that might attract enemy attention in combat. Blade is provided with ? handle composed of leather rings tigid? pressed together on shaft.

The reversible feature of this Jeffrey Heavy Duty Hammer Crusher saves 50\% of the time ordinarily required to turn hammers in one-way crushers.

REVERSIBLE HAMMER CRUSHER Saves time, more economical and better sized product where coal is prepared for making metallurgical coke. Capacities up to 300 T.P.H.

Get Ready for Reconversion Production

"AIRGRIP'S" Two-Fisted Gripping Power果性
 Eliminates Slow, Costly Manual Chucking

Reconversion - and returning competition - will demand every possible cost-cutting help. "Airgrip" Chucks cut machining costs-save time spent laboriously releasing chuck by hand, reduce sel-up time.
Also, "AIRGRIp'S" two-fisted action provides double gripping power . . . air plus a two-way cam-wedge action.
 Locks jaws mechanically when gripping externally or internally. Even if air supply fails, cam-wedge locking power holds work securely, prevents accidents.
To push output up . . . to push production costs down equip your lathes with "AIRGRIP" Chucks.

"AIRGRIP" Revolving Air Cylinders

 Cut maintenance costs! "AIRGRIP" Revolving Air Cylinders operate for years without attention-wear is automatically taken up by air pressure within cylinder. No manual adjustments. Patented double ball bearings permit speeds formerly impossible.
"AIRGRIP" Non-Rolating Cylinders

For conirelled lift or grip, purh or pult, use "ARGRIP" DuelActlon ders. No skilled laber dors, Nostmediaber opart o thero there end of cylinder con beremoved Piston poctinge permiten packinglypaphitev reated require no odisimont wior outamatically tokion
up by air presura. OTHER ANKER-HOLTH COST REDUCERS include Air Operated Collets, Arbors, Mandrels, Drill Press Chucks, 2. and 3-Jaw Finger and Compensating Chucks, Revolving Air Cylinders, Lubricating Assemblies, 3- or 4 -way Air Valves (hand or foot operated), etc. Also Hydraulic Power Units and Fittings.

Write, mentioning Products on wbich you desize Bulletins

Anker-Holth

MFG. COMPANY

X-Ray in Postwar Era

(Continued from Page 103)
the radiographs. After the 8 -week period, co-operation between Delco and the foundry resulted in an improved casting technique which reduced reject to less than 2 per cent.

It is a safe guess that without X-ray this process of improvements would have consumed a very much longer period of time. A reproduction of a typical X-ry picture of the troublesome housing is shown in Fig. 4.

In another case, a simple aluminua bearing housing was ordered from 1 foundry, and all deliveries were radir graphically inspected upon their receiph Blow holes and porosity were discovered Delco returned the faulty parts and senl along sample radiograplıs. By makini an analysis of the problem from the information supplied by the radiography this foundry successfully changed its technique, and within a surprisingly short time the rejection rate dropped to less than 1 per cent. Obviously, much mors important than the value of such a sinpit rough casting is the amount of irreplacet able time saved by Delco in machining only perfect castings. Radiographs good and bad samples of this part ap pear in right and left halves, respectivet of Fig. 1.

Castings for Electric Motors

In another case, Delco required cor siderable quantities of small aluminim motor shaft housing castings which he to be supplied with 3 -piece metal insett If the inserts were not properly locter and soundly bonded to the casting metal electric motors for which parts were in tended could not perform properly. Im perfections here could be very costly, x they could not possibly be determinet until after the motor was complete assembled and tested.

Of the first lot of inserts delivered the foundry, a high percentage were if jected because the inserts were not proti erly aligned or completely bonded to base metal. Many changes in techrigw were tried, radiographed, and studied the foundry. Problems were finally ore come, and rejection rate on the improra castings is now less than 5 per ceHere is a case where a part so simi that 140 of them can be X-rayed on 17×14 film might nevertheless har proved a very serious production both neck without the help of Roentgen's it

Delco also finds X-ray useful inc. nection with its own production plastic products, such as aircraft 6 tributors with copper inserts. In 2 are shown radiographs of boih ib perfect (a) and acceptable (b) distrob tor moldings. The distributor pictur on the left probably would not funde properly because one of its inserts bent so badly that it might are 4. one of the inserts on its left. If de had not become apparent until fina' sembly, valuable machining hours wo have been wasted.
i \uparrow Oberdorfer Foundries at $=$ Syracuit

what to do... when a Big Bortha breaks

When a drop hammer, forging press or similarsized giant in the factory production line stops its work due to a broken frame or other part, the resultant loss to output and profits is serious. But how different the picture can be when Thermit welding is called on to avert a shutdown and effects a speedy, permanent emergency repair job!
Thermit welding is being used to great advantage to reclaim damaged heavy parts such as axles, machine frames, crankshafts, hot strip rolls, crab couplings, tube rolls, pinions, gears and other heavy tonnage parts.
The Thermit weld is as strong as a forging of the same cross-section and the dense, sound weld
requires no stress relieving. No preliminary machining is necessary. Thermit welding can be done in your own plant by your own crew, after instruction by an M \& T supervisor, or at one of the M \& T plants.
In addition to repair work, Thermit welding is widely used for the fabrication of large units from smaller castings, forgings, or flame-cut shapes. This saves time, money and handling of very large units. For complete information on the Thermit welding process write today for booklet, "Thermit Welding", to Metal \& Thermit Corporation, 120 Broadway, New York 5, N. Y. Albany, Chicago, Pittsburgh, So. San Francisco, Toronto.

"Penola Prescriptions"

THE PROBLEM...In a mill rolling stainless steel, oil is used as a roll lubricant. After cold rolling, the steel is annealed. Considerable effort is required to remove all the oil from the sheets before annealing. This additional process is necessary because oil left on the sheets forms a hard deposit that stains and is difficult to remove.

THE DIAGNOSIS... A lubricant which would eliminate the cleaning process, would speed up production, and result in a substantial money saving. This lubricant must provide all the required protection against friction, but must also leave no damaging residue.

THE PRESCRIPTION... amazing feature however-possessed by no other lubricant, save those in the Caloria group-is that it disappears completely when it evaporates. Spraying Caloria 50 on the stainless sheets during the rolling process entirely eliminates costly and timewasting cleaning.
N. Y., have found that X-ray picture have enabled them to convert scrap pars that would be worth only $\$ 840 \mathrm{pa}$ month to sound castings having a value of $\$ 35,000$ by welding imperfect 40 - d flywheel housing castings of compliated design for which no perfect casting technique yet has been developed. Evee with the most careful methods, faw occurred in this part, causing 12 per cett rejections.

More serious than the scrap loss wz the time loss, since deliveries were rip idly falling behind requirements. Fi 3 a is a close-up of a typical flaw ai marked. Fig. 3b shows how area ap peared after repair weld was made Here radiography, as proof of sound. ness, accounted for the salvaging monthly of $\$ 35,000$ worth of parts, enablint the foundry to meet delivery require ments and, in addition, to increase i. yield and pass on to its customer a 2 per cent savings.

In another case, Oberdorfer was 3 proached by a builder of gasoline enging who had designed a new style crankax with many desirable qualities. It w simpler in design, lighter in weight, ar. could be machined rapidly and econom ically. Several other foundrymen wh the builder felt could do the job als were contacted. Most of them belieres that the casting had such features that would be impossible to produce ans suggested design changes; but sino such changes would have eliminate. many of the advantages offered by th original, the builder persuaded two the foundrymen to have a try at it

Radiographs Eliminate Defects

After trying for 3 weeks, one foundry man gave up. Oberdorfer was mectin with better success but was having cos siderable trouble with bad shrinket in the manifold exhaust ports. By mal ing radiographs of successive castion for study and analysis, they were to eliminate defect after defect as the occurred. A standard trouble-free pa casting technique finally was worked o. and delivery of sound castings was star ed. The engine builder found that cas ings met requirements and that machinime and performance were entirely satisfai tory. As a result, Oberdorfer was ght an order for all the crankcases require instead of a portion as had been ont inally intended.

Radiography can be helpful in deliz mining proper pouring temperatures : diecasting as shown by the follow: case history. A foundry was deliverth large quantities of castings that looke good and appeared sound but, as a , sult of irregularities uncovered durite machining, were being rejected in quar tities amounting to 45 per cent of p. duction.

These rejects not only cut the yik of the foundry to a very low figure, caused serious delays in meeting debio ery schedules. Careful investigation the returned rejects by the chief meb lurgist determined that the reasons the rejections were enlarged grain :

ENGINEERING

Postwar competition among manufacturers in the metal-working industry will put a high premium on production economy. Because effective heat treatment is so important in determining production costs and product quality in many instances, heat treating procetses and equipment merit the closest scrutiny today.
The principal characteristic of the design of a Holcroft
 Heat Treating Furnace is that it combines combustion and metallurgical engineering with more than 30 years of experience in this one specialized field.

Of this combination, experience is the more important for it is the best assurance that the furnace, when put into commission, will do just what is expected of it and operate at a minimum cost.

Before carrying your postwar plans any farther, consult with Holcroft engineers on your heat treating procedure.

Leaders in Building and Designing Electric and Combustion Furnaces, Kilns and Ovens

CHICACO-C. H. Marlin, 1355 Paoples Gas Bldg. CANADA-Walkar Metal Products, Ltid, Walkerville, Ont.
 heated in this EF Rotary,

The above EF Oil Fired Rotary.

Heats $35,000 \mathrm{lbs}$. per Hour

The small EF Eletric Rotary below
Hardens 250 lbs. per Hour-Scale Free!
Of N our files are the designs and complete records covering the thousands of EF Rotary and other continuous and batch type furnaces we have built-the re sult of over 25 years of practical furnace building experience.
Products ranging from small balls for bearings to strucrural shapes 90 feet long are being handled in EF furnaces.
This experience is available to you in helping solve your particular furnace problems.
We solicit your inquiries - no furvace is too large or too unusual.
and porosity caused by imperfect pouring temperatures. The foundrymen fet that the importance of the pouring tem. perature was overemphasized and point ed to the apparent soundness of the castings which were being produced Experimental melts were poured at temtperatures of $1250,1350,1450$, and 1550 F , respectively, and radiographed The latter three were increasingly grainy and porous as shown by the rat diographs (Figs. 5a, b, c and d) and only the melt poured at 1250 F was sat. isfactory. This temperature was adopted as standard and rejections dropped to less than 15 per cent, increasing monthly acceptances by $200,000 \mathrm{lb}$ of production.

Now consider a case in an alloy sted casting foundry. In 1943, the Cooper Alloy Foundry Co. of Hillside, N. J, was offered a contract for turbine-type supercharger diaphragms, with an initial

"Steel Expansion for War" Available in Book Form

Report prepared by W. A. Hauck of the Steel Division, War Production Board, has been reprinted in the fom of a 192-page book with 148 illus. trations of principal steel industry projects. Included are details on capacities, costs, reconversion and other factors involving ore transportation, ferroalloy, refractory, blast furnace, other facilities constructed to meet the enormous demands of war. A limited number of copies of "Stecl Expansion for War" are available at $\$ 2$ each, postpaid, from the Book Department, STEEL, 1213 West Third street, Cleveland 13.
production requirement of ten per day The requirements on this part are ex tremely rigid. Even though centrifugalif cast, parts were permeated with porosith and so bad that none could be delivered

Changes could not be made easily it the gating practice because of the ces trifugal technique, and the casting do sign precluded significant changes : pouring temperatures. Moreover, metal had to be hot enough to glou through the thin vanes in the flange Experimentation was begun with diflee ent sand compositions, mold cleanimi and venting practices, and the successi: radiographs, made as improvements pel sisted, soon resulted in sound casting The difference between an early attemf and the present product is shown ? Figs. 6a and 6b. Well over a hundre of these critical parts are now produces. daily with rejections less than one-hu of 1 per cent-through X-ray.

The 1000 -plus users of industrim X-ray are finding that it solves mm! more problems than those concente solely with inspection. Its continuta use through the postwar years shoulo mean structurally sound and safe, efilo ently produced products.

Quneryate

polarss co.relateo facluties

FOR MANUFACTURE OF PRODUCTS AND ASSEMBLIES FOR POSTWAR PRODUCTION

Looking ahead to the time when materials and manpower can again be devoted to industrial production, we list below some of the specialized features of Pollak facilities.
Pollak has ample equipment in these specialized departments for coordinated operations
to turn out complete products and assemblies.
Pollak also has engineering and research facilities for designing and building complete products preparatory for production, when our plants are released from war work.

FACILITY NO. 1

BLANKING-STAMPING-DRAWING

Complete facilities in these departments, ranging from very small precision work to medium heavy work in carbon steel, stain!ess sfeel, brass, bronze, Monel Metal, Inconel, aluminum and the stronger aluminum alloys. Maximum depth of draw 111/2 inches; maximum diameter of shallow stamping about 45 inches.

FACILITY NO. 3

WELDING AND BRAZING
Specializing in and equipped for lorge production in welding and brazing by oxy-acetylene, oxy-hydrogen and electric arc processes, particularly in the more difficult alloys.

These Pollak facilities are operated in conjunction with other manufacturing departments such as Spinning, Electrical Work, Heat Treating, Assembly and Plating. These individual Pollak facilities are operated as a unit and ordinarily they are available only for work of a nature which will keep this operation in balance. However, this limitation is not always applicable.

Arlington, New Jersey

Include

BRANDT in Your Postwar Plans!

Whether you'll return to your old product, or enter an entirely new field after the war, you will more than likely need the services of an experienced metal-fabricating plant. That's where Brandt can help you!
The Brandt $81 / 2$-acre plant houses the most modern equipment for shearing, rolling, forming, welding . . . completely fabricating ferrous, nonferrous and alloy metals to your specifications. Machine capacities range from the lightest gauge sheet up to and including $11 / 4^{\prime \prime}$ mild steel or $3 / 4^{\prime \prime}$ armor plate. At the present time our production ranges from small, formed units to huge fabricated assemblies.
Our designers and engineers will welcome the opportunity to assist in planning the details and specifications of your product. Naturally your plans will be held in strictest confidence. So if there is a fabrication or design problem in your postwar plans, we invite you to discuss it with

BRANDT of alifinove

Charles T. Brandt, Inc., 1702 Ridgely Street Baltimore 30, Maryland

BRANDT of Baltimore - Craftsmen in Metal Since 1890

Progressive Heating

(Concluded from Page 104)

guaranteeing uniform temperature drop.
The time per spacer in treatment w. found to range from 3 to 6 sec which means from 600 to 1200 per hour of continuous operation. Actually we have in stop at intervals of approximately 50 spacers and remove the treated parts from the quench. But the output was increased tremendously over the old method, the evils of brittleness and warpage stoppe' an operation eliminated, and the job madk ideal for a woman operator.

Head Stock Spindle Turns Large Bolts

A head stock spindle, shown in illustrs: tion, has been developed at General Electric's Pittsfield Works to turn large bolts of the body-bound type. Handling time, both in and out of the lathe, has been reduced 50 per cent. Both ends of

bolts are centered, and, when they are placed in the lathe, a drive force is obtained by contact with two $7 / 8-16$-in. set screws. Regardless of how bolts are turned, it is necessary to center both ends for grinding. This method eliminates the slow, conventional method of holding bolts in a chuck, increasing production.

Bronze Electrode Used with AC, DC Currents

A coated special bronze alloy elec trode, EutecTrode 28, has been de veloped by Eutectic Welding Alloys co 40 Worth street, New York 13, for use arc welding bronze, brass and copper It is shielded with flux coating, making suitable for use either on ac or dc current Electrode deposits dense and tough mod that is a good color match to mos. bronze, and is said to give welded atch substantially the same corrosion resitit ance as various base metals possess. also may be used for welding copper ab brass or joining these metals to stee cast iron, or nickel alloys, and for ore laying steel or cast iron to provide bearing surface. Electrode is available? $1 / 8-\mathrm{in}$. and $\frac{1}{6}-\mathrm{in}$. diameters with a ligit green tip. Procedure sheet on prope use and application of EutecTrode may be obtained from Dept. A-2 of br company.

NORFLEX POLISHING WHEELS

Many finishing, de-burring and polishing jobs on welds can be done better and more economically with NORFLEX* Polishing Wheels-a new Norton development.

Available in three types to meet varying conditions and requirements they all have the common characteristics of leaving smooth, uniform finishes. In all three types the abrasive is uniformly impregnated throughout the wheels from periphery to hole. Also common to all three is the flexible type of bond which supports and holds the abrasive particles in place.

The ability of NORFLEX Polishing Wheels to meet a wide range of conditions is due to the available choice of cushioning materials in the bond: Fiber Resinoid, Type F; Resilient Rubber, Type R; and Cork Resinoid, Type C. Your Norton abrasive engineer or Norton distributor will give you the complete story.

NORTON COMPANY, WORCESTER 6, MASS.
*Trade-Mark Distribufors in All Principal Cities
W-1013A

FOR THE LONG GRIND AHEAD

 IT'S EXPERIENCE THAT COUNTS
. . intricate brazing-jobs made casy
When the last Jap lays down his gun, American industry will begin settling back to competitive production. No longer will it be production for production's sake. The business will go to those manufacturers who have learned a faster, better way of doing things, and who can apply their wartime lessons to the peace-time years ahead.

Grinding-out small parts by the thousands, yet holding to amazingly close tolerances, is an Ace war-time accomplishment that offers real competitive and performance advantages. Here you will find the experienced operators, the up-to-the-minute machines and equipment, and the responsibility of intelligent management to handle your parts from rough stock to finished piece.

If you have any small parts and assemblies calling for stamping, machining, heat-treating, and grinding, it will pay you to consult with Ace. Send sketch, blueprint, or sample for quotations.

GRINDING CAPACITY NOW OPEN

The Idler-Shaft, the Rotor-Shaft, and the Clutch-Bushing shown above are typical of Ace grindingoperations. They involve internal, external, thread, and centerless grinding to $.0002^{\text {m }}$ tolerances. Ace makes these parts by the thousands, and a modern, well-equipped inspection department assures uniform accuracy of each picce.

ace manufacturing corporation

for Precision Parts

1249 E. ERIE AVENUE, PHILADELPHIA 24, PA.

Tapered Bearings

(Continued from Page 112) accuracy have been designed and built especially for this wark.

So close are the limits maintained that gages for checking angles of cups, cones and rollers are measured on a machine capable of measuring to a single second of arc-one millionth part of a complete circle.

An important step in the inspection of finished cones and cups is the Magnaflux test, Fig. 14. Here the parts are strongly magnetized and a solution carrying small iron particles in suspension is run over the parts, revealing any minute surface or subsurface defects. Even cracks too small for the eye to see become clearly evident.

After demagnetizing to prevent any metal particles from being attracted into the bearing when assembled, the races are gaged for selective assembly; that is, cones slightly oversized on the outside diameter are matched with undersized rollers so that the entire assembly meets the strict standards set up for dimensional accuracy. Similarly, undersized cones are matched with oversized rollers. Parts are assigned an index number according to the group of tolerance limits into which the part happens to fall. Then when selective assembly matches the parts by corresponding groups, a correct bearing assembly results.

Fig. 15 shows one of the special gaging setups employed for sizing cones. Fig. 16 shows a similar setup used in checking cups. Both machines employ the tapered working surfaces to multiply the indications, thus enabling standard dial gages to check diameters with extreme accuracy.

In Fig. 15, the operator places a cone over the lower fixture. A foot-operated treadle then raises the fixture vertically so the tapered surface of the cone engages a master mating surface held stationary in the upper part of the tester. It is easy to see that an undersized cone will go into the master part farther than a correctly sized one. And this measure of displacement from normal position is used to operate a dial gage through a leverage system which mechanically multiplies the movement to still further increase the accuracy of the check.

On this particular setup, the dial is marked uniformly from zero to 12 . The limits allowed any cone falling within the range from $53 / 4$ to $81 / 4$ to be passed as O.K.

Fig. 16 shows a similar setup for checking cups. Here the cup is placed over a master mating part on the lower portion of the fixture while a flat plate is moved down against the edge of the cup. A dial gage set to measure axial movement from normal here indicates variations in diameter by utilizing the tapered working sufface, as in the setup in Fig. 15.

But the unit in Fig. 16 is also arranged to check uniformity of taper as well. The lower fixture is arranged so

> BUSHINGS, SLEEVES, ROLLS AND OTHER HARDENED PARTS

Machines can be improved and their manufacturing cost reduced by use of tool steel tubing for tubular and ringshaped parts. The milling machine headstock shown above has a main spindle sleeve bearing (lower left) made of tool steel tubing, providing several advantages over the previously used bronze bearing. Write for details.

> FREE DATA ON TOOL STEEL TUBING APPLICATIONS WRITE TODAY for your FREE cOpy

IMMEDIATE SHIPMENT FROM STOCK

Carbon and Alloy Steels, H. R, and C.D. Ball Bearing Steel. Aircraft Steels Boller Tubes Chisels Cold Finished Steels Cumberland Ground Shafts Drill Rod High Speed Tool Bits Shim Steel. Spring Steels. Tool Steels Tool Steel Tubing Welding Rod

THE BISSETT STEEL 60.

Strong aluminum alloys, available through Alcoa, cover a wide range of mechanical properties.

Designs of peacetime equipment are already feeling the effects of wartime experience with these high strength alloys. The transportation industry, for example, plans to use them to lower weight, increase
speed, reduce power consumption, or get greater payloads.

Data on forming, fabricating and heattreating these materials are available through Alcoa's engineers. For such information, call our nearest office or write Aluminum Company of America, 2112 Gulf Building, Pittsburgh 19, Pennsylvania.

Smaller . . . easier to handle . . . finer groin struelure . . . more adaptable to the varied requirements of foundry operation. That's the new HannaTen ingot, produced in all grades of Hanna iron. Take advanfage of this importont development to aftain more uniform distribution in the melt, to assure more accurate control of composition. It's another great Hanna "first."
The Hanna Furnace Corporation MERCHANT PIG IRON DIVISION OF NATIONAL STEEL CORPORATION
Bulialo - Dalroit - New York - Philaddghia - Boston - Chicago

> FINISHED Steel WEIGHTS Trutamatically RECORDED

TTHE accurale recording of finished 1 product weights is a highly important steel mill operation. The illustration shows two Sireeter-Amet Type B units. The one in front automatically records the weights of flat sheets as received from the flying shear. The rear unit records weights of sheets in
bundles preparatory to shipment. In both installations, weights are automatically printed in clear type. . . providing accurate, dependable records for all departments concerned. Streeter-Amet recorders serve all branches of the steel industry. Write for an engineering bulletin.

STREETER-AMET COMPANY

4103 NORTH RAVENSWOOD AVENUE CHICAGO 13, ILIINO:S Aulomatic Weighers, Recorders, 5cales and

Services. Founded 1888.
that it can move differentially with the upper contact. Then as the fixture is revolved with the cup in contact, any variation in taper will show up as difference in reading of the two dial indicators which are mounted in the lower fixture to read this differential movement.

Production Of Rollers: The same steel employed in the races of a bearing is also used in making the rollers. However, it comes from the mill in the form of wire cold drawn from the hot-rolled rod. Smaller sizes of rollers up to $1 / 4$ in. in diameter are made on mechanical upsetters, Fig. 17, which work the stock cold to the desired shape. Larger sized rollers are machined from bar stock.

Wire size is chosen so that the upsetter reduces the wire on the small end of the roller and upsets it at the large end.
After being carburized and hardened, rollers are finish ground in centerless grinders like that in Fig. 18. Rollers are ground from two to six times, depending upon size and precision wanted. Rollers are then gaged automatically for selective assembly in specially designed units that divide them into groups according to size. In the broadest tolerance range, each group will cover a range variation of one-fourth of a thousandth of an inch. Usually there are eight groups, four above and four below the nominal dimension. But 12 to 16 may be employed for ultra-precision bearings wherein each group covers a size range of only $0.0001(1 / 10,000)-\mathrm{in}$. or less.

Such extreme precision is essential for proper operation of the bearing, for the load will not be carried uniformly by the rollers unless they are exactly identical in size. That is why they must be matched so closely. Then too, this close grouping enables the rollers to be matched with cups and cones in the various tolerance groups so that the completely assembled bearings will come out exactly to size.

As an example of how these tolerance groups are set up, the nominal diameter of a tapered roller at the midpoint along its length may be 0.50000 -inch. For a particular type of bearing where maximum precision is not required, the groups may cover a total range of plus or minus $1 / 1000-\mathrm{in}$. divided into eight groups, each covering one-fourth of a thousandth of an inch as follows:

Above:

$0.50000-0.50025$	$0.500000-0.49975$
$0.50025-0.50050$	$0.49975-0.49950$
$0.50050-0.50075$	$0.49950-0.49925$
$0.50075-0.50100$	$0.49925-0.49900$

Of course, ultra precision bearings will have tolerance groups with ranges covering one-tenth of a thousandth, or less.

Automatic Gaging Machine: The device that automatically checks the rollers and separates them into the tolerance groups is most interesting. It works at great speed, yet is so accurate that if all the rollers that have been separated into a single group are re-run through the machine, less than 5 per cent of them will go to the groups on either side. And this is unavoidable since that number

PERMITE PERMANENT MOLD ALUMINUM CASTINGS CUTTIME...CUTLABOR...CUTCOSTS

\star Do you know that multiple-operation machining on aluminum castings is perfectly feasible - when Permite Permanent Mold Castings are being worked? The permanent metal mold makes castings accurate to $\pm .01^{\prime \prime}$. And all castings are dimensionally uniform, since every casting comes from the same mold. That is why you can use automatic machines with Permite Permanent Mold Castings - why you may be able to run the whole finishing job with one setting of the machine.
Illustration shows a 6 -spindle Acme Gridley Automatic, on which Permite Permanent Mold Aluminum Cast Master Brake Pistons are being machined at the rate of 1200 per hour.
Permite Permanent Mold Castings save time-labor-and overhead. You have less metal to remove. Greater tensile strength often permits thinner cross sections, giving you less weight in the finished part. Recommendations and estimates submitted without obligation.

ALUMINUM INDUSTRIES, Inc. CINCINNATI 25, OHIO
Detrolt: 809 New Center Building
Chleago: 616 South Michigan Avenue
New York: 9 Rockefeller Plaza
Atlanta: 413 Grant Bullding

PERMITE

Highly systematized, progressive assembly of Wisconsin heary-duty air-cooled engines keeps them coming off the production line in a steady, uninterrupted stream. Every operation is handled by a thoroughly trained workman who performs his specialized job with speed and skill.

The picture shows a run of Model VE-4, V-type, 4-cylinder engines going through ... for power destinations on many types equipment. Perhaps one of these heavy-duty engines has been reserved for service on your equipment.
of rollers in a single group may easily have dimensions right on the limit line.

Thus if all rollers in first group at left above are re-run, some of them may actually be 0.50024 or 0.50025 and these may go either into the first or second group since they are right on the di viding point.
As can be seen in the background in Fig. 19, there are row upon row of these gaging machines, all working automatically. The operator need only keep the hopper loaded. From the gaging head, the rollers slide down a chute. Solenoid operated trap doors in this slide are controlled by the gaging head. As the rolles slides down the chute, it encounters one of the trap doors which allows it to drop down a tube leading to one of the dust tight containers in which the individual tolerance groups are collected for selective assembly.

The sloping slide and the tubes leading to the individual containers can be seen clearly in Fig. 19. Note just above each container is an S-shaped casting in the lower end of the tube feeding it. These slow down the falling roller as it traverses the " S " so it will not strike other rollers in the container with possible damage to its highly finished working surface.

Gaging Head: Principle of operation of the gaging head, while simple, is extremely ingenious. Fig. 21 shows in simplified schematic form how the tapered surface of the roller is employed to mechanically amplify the diameter reading, similar to the cup and cone gaging setups. The holding device at A feeds the roller B into gaging ring D having a mating tapered surface at C that engages the tapered surface of the roller. It is evident that a roller with smaller nominal diameter at its midpoint will travel into the gaging ring farther than one with a larger diameter.
But A always advances the roller to the same fixed position. So any variation in amount of engagement with the gage ring D will show up by moving D to a different position, since D is free to slide between the guides H and H^{\prime} and is held against the roller B by a spring, not shown. Thus, the position of D can be used to measure the diameter of the roller.
This is done by mechanically linking the gage ring D with an electrical contacting reed F so F is made to engage one of the contacts at G, according to the position of D. These contacts in turn operate electric solenoids connected to trap doors in the chute down which the roller is discharged immediately after registering in the head. The whole system is carefully calibrated and maintained so that its accuracy is extremely high.
To prevent the reed F from engaging two contacts when the roller gages exactly on the dividing line between two tolerance groups, the reed end is shaped to a knife edge and a mechanism is incorporated to move it radially into the electric contacts through a series of other knife edges which separate the contacts. Thus, the reed cannot con-

$400 k$
 $f_{\text {or }}$ this

TRADE MARK

... It's Your Key to Greater Press Value

Because purchasing a hydraulic press is a major investment for even a large company, the trade mark is a vital key in making sure the investment is a sound one.

At Birdsboro, we like to think of the trade mark as symbolic of trained engineers constantly at work improving the designs of Birdsboro high speed presses to make them produce more parts per hour . . . to make them safer, easier to use . . . to make them cost less to maintain. Thousands of satisfied users in the aircraft and allied industries testify to our success in providing greater press value per dollar invested.
So look for this when you're in the market for hydraulic presses. We'll be glad to put our experience to work on your next hydraulic press problem.

BIRDSBORO STEEL FOUNDRY AND MACHINE COMPANY • BIRDSBORO, PA.

TODD OFFERS STEEL SERVICE

TO THE MANUFACTURING INDUSTRY

The same TODD Service which has been recognized as outstanding, during this wartime emergency is now available in even greater capacity than ever before. TODD has just completed this new warehouse to assist you in solving the problems of STEEL SUPPLY arising from continued war needs plus reconversion. This warehouse has a capacity second to none in the country and is equipped to do square or circle shearing from sheets $1 / 4^{\prime \prime}$ or lighter. The name TODD is symbolic of Service.

May we serve you?

TODD STEEL CORP.

376 Mi.0l. NRW AVEWCIE

MICHIGAN
tact more than a single point at a time.
Of course, diagram Fig. 21 is simplified for sake of illustrating the action. The actual machine employs a somewhat more complicated arrangement. Let's follow through the operation on the machine as illustrated in the close-up, Fig. 20. The tapered rollers are placed in a hopper fitted with a feed mechanism that sends them down the flexible tube A_{1} Fig. 20, where the escapement and feed mechanism B causes the rollers to drop between two parallel knife edges C spaced just far enough apart to catch the big end of the roller, thus positioning them point down. At this point, any undersize rollers fall through the knife edges and down the chute D into separate containers.

As escapement B feeds an additional roller to the knife edges C, the lead roller already there is dropped down another flexible tube line E, from which point it is fed into the gaging ring at F. This action causes the slide carrying the gaging ring to assume a position depending upon the size of the roller, as was explained above in connection with the schematic, Fig. 21.

Through a mechanical linkage, this operates the reed G (Fig. 20) which selects a contact at H , causing one of the solenoids L to operate one of the trap doors in the chute \mathbf{R} down which the roller is dropped as soon as the reed has made its contact selection. The trap door diverts the roller to the container holding other rollers of that same tolerance group. Rollers now go to assembly.

Production of Cages: In the assembled bearing, the rollers are properly spaced around the periphery by means of a cage which also confines the rollers so the entire set of rollers and inner race can be handled and installed on a machine as a single unit.

Cages are made from plain-carbon deep-drawing steel which has been cold rolled, annealed, pickled and oiled, Fairly thick stock is used. Cages are blanked, perforated and formed to exact shape desired. The edges which contact the rollers in the cage slots are then "winged" in press dies to exactly conform to the curvature and taper of the rolls, thus assuring minimum friction and long life with minimum wear.

Much of this press work is done on high-speed automatic presses. Use is made of the special graphitic steels perfected by Timken engineers for dies On a typical job, perforating slots in these cages, graphitic steel dies turned out 300,000 pieces where a set of high grade tool steel dies produced only 10,000-a 30-to-1 performance ratio in favor of the Timken steel. Too, the finished product had a much better appearance due to less pickup and galling in the dies.

Cages are drawn to relieve stresses and are Parkerized to produce an excellent surface for holding lubricant and reducing wear.

Assembly of Bearings: With inner and outer races, rollers and cages accounted for, we are ready to see how they are

WE MAKE 'EM LARGE OR SMALL!

Here is a striking example of the different size slings made by Macwhyte

SMALL SLING: Type No. 5, Macwhyte ATLAS 8-part, $1 / 6-\mathrm{in}$., Braided, 3 feet long. Weight -1 lb . Breaking strength -3.86 tons.
Safe load with safety factor of $5-.77$ ton.
Combined safe working load for two -1.54 tons.

Macwhyte Slings Made in All Sizes to Meet Your Lifting Needs!
 SEND FOR SLING LITERATURE!

Whatever the load, you can get the right size Macwhyte Sling to handle it quickly, easily, safely. We can make one sling or any number of identical slings for you.
Many companies have adopted Macwhyte Slings as standard sling equipment. They anticipate their needs and place blanket orders, with shipments at regular intervals, insuring delivery of slings when they are required.

Buy more War Bonds - hold what you have!

You can avoid production delays by ordering Macwhyte custom-built Slings in time to meet your needs. Ask for recommendations, prices and delivery. Mail your request for more information on your company letterhead. We will send you complete catalog and pictorial literature.

MACWHYTE COMPANY

2912 FOURTEENTH AVENUE, KENOSHA, WISCONSIN Manufacturers of the CORRECT wire rope for your equipment Left-\& -Right Lay Braided Slings . Aircraft Tie-Rods Aircraft Cable - "Safe-Lock'" Swaged Terminals Manufactured under U.S. and Foreign Patents
Mill Depots: New York. Pittsburgh. Chicago Ft. Worth . Portland Seattle. San Francisco. Distributors throughout the U.S.A.

$\mathfrak{C}-\mathbb{E}$ POSITIONERS

Production Set-up like this forecasts a new "shop practice"

By welding on C-F Positioners, some manufacturers far out-produced all estimates of "passible" "War Production". Not only did this methad increase out-put, it saved material and increased strength and quality while lowering the cost per unit. Under post-war compatition automatic welding on C-F Positioners is certain to become standard manufacturing practice for many products. It is a new method that permits downhand welding of all sides and angles from a single set-up. A method you should know and understand.
Write for Bulletin WP-22
CULLEN-FRIESTEDT CO.
1308 S. KILBOURN AVE.
CHICAGO 23, ILL.

$7^{\prime} 0^{\prime \prime}$ Size. Billet—21/s" $\times 24^{\prime \prime} \times 44^{\prime \prime}$. Billets per hour-221. Pounds per hour -1768. Used with $\# 3$ Maxipress.

Write for informafive technical bulletins.

GHORGP J. Hfatin company

 PITTSBURCH, PA.assembled. Fig. 22 shows a typical setup. Here the cages are fed down to the operating station from a sloping bin at extreme left. Rollers are fed down into bearing from an overhead hopper which automatically loads a vertical tube, in turn carrying the rollers to the assembling fixture.

This loading tube is centered above the fixture and its top is fitted with a universal connection so it may easily be swung over any point of the bearing periphery and there is aligned automatically. A small S-shaped strip mounted on the table just back of the fixtur provides a rest point for the discharge end of loading tube when not in use.

Setup works as follows: Operates places the cage in a fixture resembling an outer bearing race; then removes discharge end of loading tube from rest point to periphery of race. As operator revolves cage by hand, rollers fall out end of tube into their slots in the cage, With cage filled, operator sets discharge end of loading tube back on the rest

Authors of the

Bug-Bomb Article

Co-authors of the interesting article on production of "bug bombs" used to spray insecticide, which appeared in STEEL for June 25, Page 118, aro P. W. Kohler and E. W. Ditsler, East Springfield, Mass. Works, Westinghouse Electric Corp. Due to an unfortunate oversight, the names of the authors were omitted when this issue of STEEL went to press.
point, inserts an inner race or cone picks up the cage with rollers and cone and places them in the open station of the automatic 2 -station closing machine at right in Fig. 22

As the machine table revolves, it carries the wark under a die head and automatically raises the work to force the cone into position and close the cage in around the rollers, completing the assembly. Machine then ejects the as sembly from the dies and an arm pushes it off onto the continuous belt conveyor seen in the foreground, Fig. 22.

After a series of inspection operations the bearings are cleaned and slushed wiul a rust preventive. Unit is then packed and is ready to ship.
One of the interesting inspection of erations is the noise test. Every bear ing is run at high speed (for a short time) and in a setup like that shown in Fig. 23. This is done in specially soundproofed cells. To a trained ear, the sound of a running bearing tells much about the bearing. Thus, the operator can quickly detect an imperfect unit.
It is this unusual care in inspection, coupled with effective design and tho use of hundreds of special machines found nowhere else that accounts tor the outstanding performance of Timken tapered roller bearings.

SAYS THE MAN IN THE HELMET©e Here's something really hot! The new three-purpose AIRCO No. 315 Electrode... (AWS Classification E6020)
"I use it for conventional fillet, deep fillet, and deep groove welding. It's a honey for all three jobs.

atl fake planty wivice and has a high burn-of rote and fafer deposition, which malien ifideal for decp-fillet walding, The arelinstady and fotcoful and the e fime spraying actions with wery low spoltar tose:

 315 tan be sind with $A C$ and wih DC itraight of Teyarse polarily. You tan use for any for that. colls for a 6020 or 6030 elstiredést

"Pasces are dexply convox at the ratat with acod wahep and no undincutting at the face. Penetration

解anieal propatitey, and wold that will pari rigid X-Roy xamination.

This new electrode is a molable oddition to the famous line of Airco electrodes. Whatever your weiding need, there's of quality* proved Airco alectrode for every requiremont. Gatolog No. 120 describes the contpleta line, Write for a trae copy to your local Airce office, or to Dept. S. Address Air Recuction, General Offices: 60 Eosi $42 \mathrm{~d} \mathrm{St}_{\text {t, }}$ Naw York $17_{i} \mathrm{~N}, \mathrm{Y}$. In lexas, Magnolla Airco Gas Products Company, General Offices Houston 1. Texas.

Weld with

Hobarl's performance alone will prove to you that it is the most outstanding arc welder on the market today. However, don't stop the comparison with performance . . . because Hobart "Simplified" Arc Welding has many more time and money saving advantages. Try its MultiRange Dual Control and exclusive Remote Control that gives you the correct welding heat lor every type of electrode and for every application. Don't overlook its liberal design and quality construction for severest use and long life.
hosart brothers co.
BOX ST-751, TROY, OHIO

hobart's "are Welding Design Service" is yours for the asking! FREEI

Tube Fabrication

(Concluded from Page 118)

to 90 degrees on centerline radii as small is. $3^{1 / 2} \mathrm{in}$.

- Multiple bends, flaring, flanging, expatuing, ecc. to tolerances 50 per cent と. (ser than previous commercial practice 11 the industry.
- Makng suort radius bends with practically no reduction of the inside diameter in the bend area and freedom from wrinkles, waves, scratches and minor tabricating marks.
On some of tiese parts, it is impossible to locate from either end of the tube after the first operation. Therefore, the first bend must be made to almost zero tolera..ces and all subsequent locating is hom this point.
to prevent rust between operations, parts must be oiled, and in ordinary atmospheres enougn dust and grit will accumulate to prevent further fabrication without cleaning. Oi the more severe mandrel-bending operations, a very heavy iubricating medium is required and meass had to be developed to keep this medium free from steel particles, grit, etc.

If the inside diameter and wall thickness could be held to dimensional tolerance of $0.001-\mathrm{in}$. or if the fabricator could segregate tubes into lots having these dimensional tolerances and build a complete set of tools for each lot, the mandrel bending operation would be relatively simple. Either of these possibilities are, of course, commercially impractical and a satisfactory solution has been largely due to the ingenious tooling on the part of the fabricator plus unusual quality control on the part of the tube manufacturer.
Tooling for other operations, such as flanging, flaring, beading, expanding, spacing, indenting chamfering, etc., has required either new art or tools made to tolerances previously unheard of in tube fabricating work.

Aircraft Exhaust Header

From the production of the cold rolled, stainless steel to the final operation on the fabricated aircraft exhaust header, consideration has to be given to the elimination of all minor defects, normally not considered harmful in tubular products. It is the primary unit in removing exhaust gases from a very large aircraft motor and hot spots must be guarded against regardless of costs. This tubular part, $21 / 2 \mathrm{in}$. outside diameter by $0.049-\mathrm{in}$. wall thickness, made of 18-8 stabilized stainless, has proved to be another difficult fabricating job. After several years, its production is still limited to one tube producer, one fabricating subcontractor and one prime contractor.

Length of part before flanging is 10.90 in., plus $0.031-\mathrm{in}$. minus zero, face plate measurement. This means that any variation in degree of perpendicularity of faces is included in length tolerarce. There are two bends in close proximity on a $4.219-\mathrm{in}$. centerline radius. The distance of straight tube on the short end is only $0.668-\mathrm{in}$. Tolerance on the out-
side diameter of the ends is plus or minus $0.005-\mathrm{in}$.

These extremely close limits give some indication of the difficulties the fabrical. ing subcontractor faced. Special automatic hydraulically operated equipment had to be designed and built for the sizing and facing operations. On the two mandrel bends it was found that standard hydraw lic benders could be used with specially designed tools. Dies, mandrels, wipe blocks, following blocks, etc., were ds signed to maintain full cross-sectiond area in the bends. Normally this can accomplished by a conventional ballizf operation after the bends. By this, is meant pushing a series of hardened balk through the part while it is held in ter die.

However, due to the tendency of stairless steel to gall, and the requirement o freedom from internal marks or surfact defects, it was decided to attempt ic maintain the required sectional area a the benders. After design of several set of experimental tools, this was ac complished.

Bearing pressures in the hydraul: bender were found to be above anything previously encountered and had to be compensated for. Again, elimination d all steel particles, minute cutting bum and grit and abrasives of all kinds becam of paramount importance. It was found that even though the chemistry, physicad properties, wall thickness and size tolerances of the tubing were closely controlle by the tube producers, there was enougt variation from one lot to another-a lin being that part of one heat, welded, heal treated, etc., at one time-that each lod has to be kept separate through all fabricating operations and specially ad justed for on six of the operations.

In the prime contractor's plant, the finishing operations such as the welding on of fittings and collars, flanging, etcare of a somewhat conventional nature but due to dimensional and visual require, ments, they are extremely difficult and require familiarity with the best stainles practices.

Films Aid in

Selecting Plastics

Technical film (No. I) entitled "Bake lite Plastics-Selecting the Right Themp setting Molding Material" considers tw question of how to select proper themot setting molding plastics to suit the prow uct. Technical film (No. 2), "Bakelifi Plastics-Product Design and Molding Technique for Thermosetting Plastics. presents fundamental principles for orr rect mold design and molding techniqu for parts manufactured from themiv setting materials. Films are intended t guide in understanding proper uses d thermosetting plastics and to serve in training engineering students and plan. personnel. Sixteen-millimeter prints 2 ? available without cost from Technies Film Library, Bakelite Corp., Unit Union Carbide and Carbon Corp., Madison avenue, Naw York 17.

BRIGGS PREPARES FOR

s626,000,000 IN WAR BUSINESS

51.7% FOR WAGES $\$ 323,610,000$
2.16\% FOR DIVIDENDS $\$ 13,520,000$
34.32\% TO SUPPLIERS $\$ 214,850,000$
1.34% FOR DEPRECIATION $\$ 8,390,000$
8.89\%IFOR TAXES $\$ 55,650,000$. 88% FOR RECONVERSION $\$ 5,500,000$

L71\% LEFT IN BUSINESS $\$ 4,450,000$

Briggs has just completed $\$ 626,000,000$ worth of war business1941 through May 31, 1945 -consisting principally of large aircraft assemblies, heavy bomber turrets and heavy and medium tank hulls. Its employment rose from 23,000 to 36,565 in the same period, and it added almost a million square feet of floor space ${ }^{2}$ its manufacturing operations. Still on its books and in production are many more war orders.

Changes in War Requirements Free Space for Peacetime Work

Now, however, due to changes in war requirements, facilities devoted to war work have been decreased about 20%, thus permitting the Company to continue to be able to meet its war contraccls, and at the same time to begin to prepare for peacetime body manufacturing.

New Foundry Established In Cleveland

The reduction in war work also permits Briggs to make postwar plans in other fields. For some time the Company has been experimenting with plaster molds. Beginning with April of last year, it put into operation on war work a large new foundry in Cleveland, Ohio, using plaster molds exclusively and licensed under what is known as the "Capaco Castings Process." This nill soon be available for making intricate and fine castings for peacetime manufacturing.

Plans Laid for Postwar
 Plumbing Ware Market

Briggs is also planning to re-enter the plumbing ware market on a large scale. On Septermber 30, 1944 the John Douglas Com-
pany of Cincinnati, Ohio, was purchased-one of the country's oldest independent manufacturers of plumbing ware and plumbing fixtures. In securing this Company, Briggs has added enough plumbing ware facilities to what it already has so that it will be able, in the postwar market, to offer a complete line of plumbing ware for practically all purposes.

1944 Profits After
 Taxes Were $\$ 5,307,161.10$

Briggs' profits after taxes in 1944 and after provision for renegotiation of war contracts, costs of plant reconversion, and other costs arising from the war, were $\$ 5,307,161.10$, as compared with $\$ 5,239,350.74$ in 1943.
The consolidated financial position of the Company and its domestic subsidiaries on December 31, 1944 showed current assets of $\$ 82,647,409.64$ and current liabilities of $\$ 54,303,994.08$, as compared with current assets of $\$ 99,657,442.40$ and current liabilities of $\$ 73,985,660.70$ in 1943.
The Company paid a $\$ 2.00$ dividend per share of stock in 1944 , the same as in 1942 and 1943.

To Spend $\$ 10,000,000$

On Reconversion

Briggs' future plans call for the expenditure of approximately $\$ 10,000,000$ for reconversion, re-equipping and new machinery. However, the Company believes that its principal job must continue to be production for war until final victory has been achieved in the Pacific. Until that time, the needs of the Armed Forces will always come first.

BRIGGS MANUFACTURING COMPANY - DETROIT 14, MICHIGAN

IN WARTIME:

BODIES FOR BOMBERS. FIGHTERS, TANKSANDAMBULANCES, AND BOMBER TURRETS.

IN PEACETIME:

BODIES FOR PASSENGER CARS AND TRUCKS, PLUMBING WARE, AND NONFERROUS CASTINGS.

Strikes May Accentuate Production Downtrend

INDUSTRIAL activity, including steel ingot production which rose 2 percentage points, appeared well sustained in the latest week but there are indications that this display of firmness in the overall industrial picture is only a brief respite in the general slowing down of operations accompanying adjustment of the economy from a two-front to a one-front war basis.
The decline in the various production indexes as cutbacks and terminations of war contracts become increasingly apparent is apt to become even more precipitate from strikes. Most of the recent labor disturbances have arisen as malignant growths from abnormal wartime employment conditions and the coddling of labor by the federal government in the last decade. As the nation continues to adjust from a twofront to a one-front war and later to peacetime it is possible that strikes in increasing numbers will plague industry as labor seeks to maintain high take-home wages despite reduced working hours. Appeals to workers' patriotism to stay on the job are likely to become less effective as the war goes into its closing phases and reconversion grows apace.

Although industries will proceed with reconversion as rapidly as possible they cannot maintain overall productivity while reconverting. Even after a plant is reconverted it may face production difficulties, for others on whom it depends for materials or parts still may be on war work. Thus with cutbacks and reconversion already bringing industrial production down from the high mark of the two-front war period, a wave of strikes could accentuate the drop.

LIVING COSTS-While labor is trying to maintain high take-home pay it gets additional strength for its arguments from the U. S. Department of Labor report that the cost of living in May was higher

Statistics of Class I Railroads

	Net Operating Income			Ton-Miles Revenue Freight		
	1945	1944	1943	1945	1944	1943
		(million			(billion	
Jan.	\$78.0	\$84.9	\$105.3	56.8	60.5	55.1
Feb.	73.2	84.5	105.8	55.3	59.3	54.4
March	99.9	92.5	129.7	62.9	62.7	61.2
April	91.9	87.7	128.7	61.6	60.4	59.1
May		98.5	129.5	63.4	64.0	62.1
June		99.8	109.0		62.0	58.0
July		98.6	127.8		62.8	68.7
Aug.		101.4	132.3		64.5	65.1
Sept.		89.1	110.3		61.0	62.5
Oct.		97.3	113.1		63.5	65.0
Nov.		91.6	96.4		59.4	59.9
Dec.		69.8	76.9		57.3	60.6
Ave.		\$93.1	\$113.5		61.5	60.6

FIGURES THIS WEEK

INDUSTRY

Steel Ingot Output (per cent of capacity)
Electric Power Distributed (million kilowatt hours)
Bituminous Coal Production (daily av.- 1000 tons)
Petroleum Production (daily av.- 1000 bbls.)
Construction Volume (ENR-unit $\$ 1,000,000$).
Automobile and Truck Output (Ward's-number units) - Dates on request.

TRADE

Commercial Steel Castings f (Net tons in thousands)

	Orders		Production	
	1945	1944	1945	1944
Jan.	210.2	187.7	157.2	159.8
Feb.	214.4	173.6	148.2	161.4
Mar.	203.2	182.6	186.9	174.6
Apr.		175.1		155.8
May	.	177.0	...	161.8
June	...	181.8	.	157.4
July	169.9		131.9
Aug.		171.3		154.9
Sept.		129.8		144.5
Oct.		146.1		150.7
Nov.		120.7		146.4
Dec.		138.7		144.2
Total		159.5		153.6

Foreign Trade
Bureau of Foreign and Domestic Commerce
(Unit Value- $\$ 1,000,000$)

	1945	1944	1943	1945	1844	1943
lens.	900	1,124	780	334	300	228
Feb,	882	1,088	719	824	813	234
Mer.	881	1,197	988	324	359	249
$A_{p r,}$	1,023	1,182	980	365	959	258
May	1,004	1,419	1,085	365	886	281
Juse		1,271	1,002		330	295
Juy		1,198	1,262		293	300
Aug.		1,207	1,204		302	315
Sept.		1,199	1,235		280	285
Oct, Nov,		1,140	1,195		827	329
Nor, Dec,		1,184	1,074		822	317
ec,		934	1,244		836	281
Total		4,102	2,716		07	69

INANCE

Bank Clearings (Dun \& Bradstreet-millions)
Federal Gross Debt (billions).
Bond Volume, NYSE (millions)
Stocks Sales, NYSE (thousands)
Stocks Sales, NYSE (thousands)
Loans and Investments (billions)
United States Gov't. Obligations Held (millions) \ddagger
${ }^{\dagger}$ Member banks, Federal Reserve System.

RICES

Latest
Latest
Period
$\$ 12,721$
$\$ 256.9$
$\$ 46.0$
11,324
$\$ 63.0$
$\$ 46,334$
Prior
Week
$\$ 15,061$
$\$ 250.4$
$\$ 56.3$
10,088
$\$ 58.9$
$\$ 43,676$
$\$ 58.27$
105.9
118.6
102.0

$\$ 58.27$	$\$ 58.27$	$\$ 56.73$
106.0	105.9	103.7
119.0	118.5	113.2
102.0	102.1	101.1

There is a Westinghouse speed reduction unit for most applications

TYPE A GEARMOTOR -Single-recuction torit Gear ratios $122,1.50$, $1.84,2.24,2.73,3.37,4.37$, $5.00,6.25$. Available with single-phase, polyphase, and firect current motors.

TYPE C GEARMOICR Double - reduction unit Gear ratios: 7.61, 9.21, $11.3,14.0,17.5,20.8,25.7$. Available with singlephase, polyphase, and direct current motors.

TYPE E CEARMOTOR-Double-reduction unit. Gear ratios: 31.2. 38.9. $47.3,52.7,58.3$, Available with single-phase, poly phase, and direct cument motars.

In the last few years, machine drive have taken a terrific peak-load punish ment. So it's natural that reconversion will require many replacements with modern economical drives.

When drives require speed reduction... and four out of five do... use a gearmotor. Specifying gearmotors simplifies ordering and delivery...saves installation expense because the complete drive is in one "package".

Westinghouse offers a complete line of gearmotors for speed-reduction drives up to 75 hp , and a complete line of similar speed reducing units for drives up to 1000 hp. Call your Westinghouse Office for information, or write Westinghouse Electric Corp., P. O. Box 868, Pittsburgh 30, Pa

WPB Seeks To Clear Mill Books of Duplicate Orders

Users urged to cancel steel released by cutbacks Effort to provide material for civilian products . . . Unrated orders increasing

SEEKING to improve the situation existing on steel mill order books War Production Board has asked producers to repurt principal orders on their books to the end that duplicate contracts may be detected.
It has been apparent for some time that makers of civilian products have placed orders for the same steel with several mills, in the hope that they may obtain a place on rolling schedules. This has obscured the real situation and may have infated backlogs materially. WPB hopes this action may make it possible to eliminate some duplications and give a truer picture of essential demand.
At the same time Washington is exerting heavy bressure on consumers who have received cutbacks, to cancel released tonnage. This is especially the case in sheets, which are in strong spot demand for drums and containers and other military needs, in addition to rated and unrated civilian programs scheduled for thrid and fourth quarter. To some extent bars are in a similar position. It is also reported that consideration is being given to revocation of Direction 70, Regulation 1, which permits manufacturers of civilian goods to divert tomages released by military cutbacks to civilian requirements of like character. At present such diversion is subject to approval by WPB and it is proposed now that further steps be taken to the extent that tonage be cancelled.
Although rated tonnage is declining, volume of unrated steel is increasing. In June some producers of diversified products received substantially heavier bookings than in May and in spite of cancellations attained a balance close to or exceeding shipments. In some products, notably sheets and pipe, the latter in special demand for bombs, total volume of validated and unralidated orders, even after cutbacks, has been well in excess
of shipments. However, unrated orders in general can not be firmly scheduled, because of priority of CMP tonnage and therefore are not reflected in delivery promises.

Major cutbacks have been in shells, but so far these have not caused much mill order cancellations and in any case they would not affect schedules much before fourth quarter. Chicago Ordnance District has announced a cutback in medium artillery ammunition components of about $\$ 20$ million per month, involving storage and cartridge cases, containers, fuzes, primers and boosters. This appears to apply mainly to future schedules. It is understood this involves a number of contracts on which production has not yet started. Contractors under production are little affected.

Steelmaking operations last week dropped $31 / 2$ points to $881 / 2$ per cent, mainly due to strikes, in addition to some holiday observance. Cleveland receded 17 points to 76 per cent of capacity, Buffalo dropped 14 points to 79 per cent, Detroit 3 points to 80 , Wheeling 10 points to $80 \% / 2$, Pittsburgh 1 point to 87, eastern Pennsylvania 4 points to 86 and Chicago 1 point to $94 / 2$ per cent. Cincinnati advanced 2 points to 91 and New England 1 point to 85 . Rates were un changed at Birmingham, 95 , St. Louis, 75 and Youngstown 90 per cent.
Increasing strength appears in steelmaking scrap, with melters taking all offerings at ceiling prices and borings and turnings advancing steadily, now being generally only slightly below ceilings. Shipments are being made freely on contracts. Supply is good, but delay is experienced in yard preparation, because of continued labor shortage. No relief has appeared in cast scrap, demand for which is strong, because of tightness of pig iron.

With several blast furnace stacks being blown out for repairs the pig iron situation has tightened and production is no more than needed to meet demand.
Average composite prices of steel and iron products are steady at ceilings, finished steel at $\$ 58.27$, semifinished steel at $\$ 37.80$, steelmaking pig iron at $\$ 24.05$ and steelmaking scrap at $\$ 19.17$.

COMPOSITE MARKET AVERAGES

				One Month Ago June, 1945	Three Months Ago April, 1945	One Year Ago July, 1944	
Finished Steel	${ }_{\$ 58.27}$	${ }^{\text {June }} \mathbf{5 8 . 2 7}$	${ }^{\text {June }} \mathbf{\$ 5 8 . 2 7}$	\$58.27	\$57.55	\$56.73	\$56.70
Semifinished Steel	37.80	37.80	37.80	36.45	36.00	${ }^{36.00}$	38.00
Steelmaking Pig Iron	24.05	24.05	24.05	24.05	23.55	23.05	22.05
Steelmaking Scrap .	19.17	19.17	19.17	19.07	19.17	19.17	18.65

Finished Steel Composite:-Average of industry-wide prices on sheets, strips, bars, plates, shapes, wire nails, tin plate, standard and line pipe. Semifinished steel Composite:-Average of industry-wide prices Bufalo Chicas, sheet bars. skelp and wire rods. Steelmaking Plg roin Composite:-Average of basic pig iron prices at Bethlehem, Birminglam, Bufalo, town. Steelworks Scrap Composite
steel, net tons; others, gross tons.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Averge for Last Month, Three Montlis and One Year Ago

Finished Material
Steel bars, Pittsburgh
Stel bars, Chicaro
Steel brs: Philadelphia
Shapes, Pitshurch
Shapes, Philadelphia
Shapes, Chicago
Plates, Pittshurch
Plates, Philadelphia
Plates, Chicaco
Plates, Chicaco
Sheets, hot-rolled, Pittsburgh Sheets, hot-rollod, Pitsburgh
Sheets, cold-rolled, Pittburgh Shects, cold-rolled, Pittshurgh Sheets, No. 24 galv. Pitt
Sheets, hot-roiled. Gary Sheets, hot-roiled. Gary, Sheets, cold-rolled, Gary
Sleets, No. 24 galv., Gary Sleets, No, 24 galv., Gary
Bright bess., basic wire, Pittsburgh Tin plate, per base box, Pittsburgh Wire mails, l'ittshurgh

July 7,	Iune,	April,	July,
1945	1945	1945	1944
2.25 c	2.25 c	2.15 c	2.15 c
2.25	2.25	2.15	2.15
2.57	2.57	3.47	2.47
2.10	2.10	2.10	2.10
2.215	2.215	3.215	2.215
2.10	2.10	2.10	2.10
2.25	2.25	2.20	2.10
2.30	2.30	2.25	2.15
2.25	2.25	2.20	2.10
2.20	2.20	2.20	2.10
3.05	3.05	3.05	3.05
3.70	3.70	3.65	3.50
2.00	2.20	2.20	2.10
3.05	3.05	3.05	3.05
3.70	3.70	3.65	3.50
2.75	2.75	2.60	2.60
$\$ 5.00$	$\$ 5.00$	$\$ 5.00$	$\$ 5.00$
2.90	2.90	2.80	2.55

Semifinished Material

Shect hars, Pitlsburgh, Clyicaro Slals, Pittibureh, Chicago Rerolling billets, pittsburgh
Wire rods, No. 5 io yu-inch, Pitts.

Pis Iron

Bessemer, del. Pittsburgh $\$$
Basic, Valley
Basic, eastern del. Philadelphia ...
No. 2 fdry., del. Pitts., N.\&xS. Sides. .
July 7,
1945
20.19

No. 2 fdry., del. Phila.
Malleable, Chicago
Lake Sup, charcoal, del, Chicago
Fray forge, del Pittsburgh
Scrap
Heavy metting steel. No. 1 Pittsburgh $\$ 0$

$\$ 20.00$
18.75
18.75
22.25
20.00

$\$ 20.00$	$\$ 20.0$
18.75	18.75
18.45	18.75
22.25	22.9
20.00	20.0

[^3] $\$ 26.19 \quad \$ 26.19 \quad \$ 26.19$

Rails for ro!ling, Cliseago
Cohe
Conmellsville, furnace, ovens.
Comnellsville, furnace, ovens
Connellsville, foundry ovens
Chicago, by-product fdry; alel.

$\$ 7.50$	$\$ 7.50$	$\$ 7.00$
8.25	8.25	7.75
13.35	13.35	13.35

STEEL, IRON RAW MATERIAL, FUEL AND METALS PRICES
Following are maximum prices established by OPA Schedule No. 6 issure April 16, 1941, revised June 20, 1941, Feb. 4, 1942 and May 21 , 1945. The scheclule covers all iron or steel ingots, all semifinished iron or steel products, all finished bot-rolled, cold-rolled iron or stecl produd and any iron or steel product which is further fnished by galvanizing, plating, coating, drnwing, extruding, etc., although only principai esizr lished basing points for selected products are named specifcally. Second and off-grade products are also covered. Exceptions applying to indre vidual companies are noted in the table. Finished steel quoted in cents per pound.

Semifinished Steel

Gross ton basis except wire rods, skelp.
Carbon Steel Incats: F.a.b. mill base, rerolling
qual., stand. analysls, \$31.00. may quote carbon steel Ingots at $\$ 33$ gross tom, 1.o.b. mill Kaiser Co. Inc., \$43, 1.o.b Paclfle ports.)
Alloy Steel Ingots: Pittsburgh, Chicago, Buffalo, Bethlehem, Canton, Massilion; unerop., $\$ 45$. Rerolling Blllets, Blooms, Glabs: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, Sparrows Polnt. Blrmingham, Youngstawn, $\$ 36$; Detroit, Polnt. Blrmingham, Youngstawn, \$36; Detroit,
del. \$38; Duluth (bil) \$38; Pac. Ports, (bil) del. \$38: Duluth (bil) \$38: Pac. Ports, (bil)
$\$ 48$. Andrews Steel Co., carbon slabs $\$ 41$; S48. (Andrews Steel Co. carbon slabs $\$ 41$;
Continental Steel Corp., billets $\$ 34$, Kokomo, Continental Steel Corp., billets \$34, Kokomo, to Acme Steel Co.: Northwestern Steel \& Wire
Co., $\$ 41$. Sterling, II.; Laclede Steel Co. \$34, Co., \$41. Sterling, Hl.; Laclede Steel Co. \$34, Alton or Madison, Ill.: Wheeling Steel Corp $\$ 36$ base, billets for iend-lease, $\$ 34$, Ports mouth, O_{-1} on slabs on WPB directives. Gran Ite City Steel Co. $\$ 47.50$ Eross ton slabs from D.P.C. mill. Geneva Steel Co., Kalser Co. Inc. \$5S.64, Pac. ports.)
Forging Quallty Blooms, Slabs, Billetr: Pitts burgh. Chicago, Gary, Cleveland, Buffalo Birmingham, Youngstown, \$42. Detroit, del $\$ 44$: Duluth, billets, $\$ 44$; forg. bll. f.o.b. Pac ports. 554.
(Andrews Steel Co. may quote carbon forging billets $\$ 50$ eross ton at establlshed basing points; Follansbee Steel Corp., $\$ 49.50$ 1.o.b. Toronto, O. Geneva Steel Co, Faiser Co. Inc., \$64.64, Pactic ports.)
Open Hearth ElaelI Steel: Pittsburgh Chicego, Gary, Cleveland, Buffalo, Younestown, Birmingham, base 1000 tons one size and section; 3-12 in., $\$ 52 ; 12-18 \mathrm{in} .$, excl., $\$ 54.00$; 18 in . and over $\$ 55$. Add $\$ 2.00$ del. Detroit; $\$ 3.00$ del. Eastern Mich. (ESalser Co. Inc., \$76.64, f.o.b. Los Angeles).

Allos RHItt, Slabs, Blooms: P4ttsburgh, Chi cago, Buffalo, Bethlehem, Canton, Massilion, \$54; del. Detroit \$56. Eastern Mich. 557 .
Slieet Bars: Pittsburgh, Chicago, Cleveland, Buffalo, Canton, Sparrows Polnt, Younzstown. Butal (Wheeling Steel Corp. $\$ 37$ on lend-lease \$36. (Wheeling Steel Corp. $\$ 37$ on lend-lease sheet bars, 538 Portsmouth, O., on WPB di rectives; Empire Sheet \& Tin Plate Co., Mans field. O., carbon gheet bars, $\$ 39,1.0 . b, \mathrm{mll}$.) Gkeld: Plttsburgh, Chicaso, Sparrows Point Youngstown, Coatesville, lb., 1.90 c .

WIre Rods: Pittsburgh, Chlengo, Cleveland, Birmingham. No. 5- in. Inclusive, per 100 lbs.. $\$ 2,15$. Do., over ${ }^{32}$, $17-1 \mathrm{in}$., incl., $\$ 2.30$; Galveston, base, 2.25 c and 2.40 c , respectively. Worcester add $\$ 0.10$; Paclfic Dorts $\$ 0.50$. (Pittsburgh Steel Co., $\$ 0.20$ higher.)

Bars

Hot-Rolled Carbon Bars and Bar-Slxe Shapes under $3^{\prime \prime}$: Plttsburgh, Chlcago, Gary, Cleveand, Buffalo, BIrmingham bage 20 tons one size, $2.25 c$; Duluth, base $2.35 c$: Mahoning Valey 2.321/2c: Detroit, del. 2.35c; Eastern Mich. $2.40 \mathrm{c}:$ New York del. 2.59c; Phila. del. 2.57 c ; Gulf Ports, dock 2,62c: Pac. ports, dock 2.90c. (Calumet Steel Divlsion, Borg-Warner Corp., and Joslyn Mfs. \& Supply Co. May quote 2.35c, Chicago base; Sheffield Steel Corp., 2.75c, f.a.b. St. Louls.)

Rail Sicel Bars: Same prices as for hot-rolled carbon bars except base is 5 tons.
(Sweet's Steel Co., WLliamsport, Pa., may quote rail steel merchant bars 2.33 c i.o.b. mill.)
Hot-Rolled Alloy Bars: Pletsburgh, Chicago, Canton, Massillon, Buffalo, Bethlehem, base 20 tons one slze, 2.70 c ; Detrolt, del., 2.80 c .
(Texas Steel Co, may use Chicazo base price as maximum f.o.b. Fort Worth, Tex., price on sales outside Texts, Oklahoma.

Series	O-H)	Series
1300.	$\$ 0.10$	4100

340020	3.20	
4000.	$0.45-0.55$	6145 or $6152 \ldots . . .0 .95$

[^4]tives at 2.65c. Mansfleld, Mass., plus frelt on hot-rolled bars from Buffalo to Mansieleal Cold-Finished Alloy Bars: Pittsburgh, Cnicagis Gary, Cleveland, Buffalo, base 3.35 c ; Detran del. 3.45 c ; Eastern Mlch. 3.50c.
Reinforcing Bars (New Bllet): Pittsourt Chlcago, Gary, Cleveland, Birmingham, Spal rows Point, Buffalo, Ycungstrown, base 2.15 bi Detroit del 2.25 c ; Eastern Mich. and Toees 2.30 c ; Gulf ports, dock 2.50c; Pacific ports dock 2.55 c .

Reinforcin $\begin{gathered}\text { Bars (Rall Steel) : Pittsburgh, Cti }\end{gathered}$ cago, Gary, Cleveland, Birmingham, Yount town, Buffalo base 2.15c; Detroit, del. 2.2. Eastern Mich. and Toledo 2.30c; Gulf pord dock 2.50 c .
Iron Bars: Single refined, Pitts. 4.40c; doubi reflned 5.40c; Pittsburch, staybolt, 5.75 c ; Ten Haute, single ref., 5.00 c , double ref., 6.25 c .

Sheets, Strip

Hot-Rolled Sheets: Pittsburgh, Chicago, Gar. Cleveland, Blrmingham, Buffalo, Youngitomb Sparrows Pt., Middletown, base 2.20c: Grane City, base 2.30 c ; Detrolt del. 2.30 c ; Estern Mich 235 c : Phila, del. 2.37 c ; New Yorik de 2.44 c . Pacific ports 2.75 c .
(Andrews Steel Co. may quote hot-rolled shets for shipment to Detrolt and the Detroit arei for shipment to Dion on the Middletown, P , base, Alan Woa 35 c a hot carbon sheets, nearest eastern basing polntil hot carbon sheets, nearest eastern basing Clett Cold-Rolled Sheets: Plttsburgh, Chlcago, land, Gary, Burfalo, Youngstown, Mid
base, 3.05 c ; Granite City, base 3.15 c : Detri base, 3.05 c ; Granite City, base 3.15 c : Mo © e
del. 3.15 c ; Eastern Mich. 3.20 c ; New Yo 3.39 c ; Phila del. 3.37 c ; Pacine ports 3 Galvanized Shects, No. 24: Pittsburgh, cago, Gary, BIrmingham, Buffalo, YoungstonSparrows Polnt, Milddetown, base 3.70 c ; Grai Ite Clty, base 3.80 c ; New York del. 3.92 Phila. del 3.87 c ; Pacife ports 4.25 c .
Andrews Steel Co. may quote galvanize sheets 3.75 C at established basing points.) Corrucated Galv. Sheets: Pittaburgh, Chicsir Gary, Birmingham, 29 gage, Der square Colvert Sheets: Pittsburgh, Chicugo, Birmingham, 16 gage, not corrugated copven alloy 3.60 C ; Granite Clty 3.70c; Pacitac sori 4.25 c ; copper iron 390 c , pure iron 3.95 c ; $\mathbf{7 0 6}$ coated, hot-dipped, heat-treated, No. 24, 17tr burch, 4.25 c

Enago, Gary, Cleveland Younestoun, Middle town, base, 2.85 c ; Granite City, base 2.95 c : Detrolt, del, 2.95c; eastern. Mich. 3.00c: Pacific ports 3.50 c ; 20-gage; Plttsburgh, Chicago, Gary, Cleveland, Youngstown, MIddletown, Del. 3.55 c ; eastern Mich Elacirial fic ports 4.10 c
 Hot-Sulled Strip: Pittsburgh, Chicago, Gary, Cleveland, Blimingham, Youngstown, Middletown, base 1 ton and over, 12 inches wide No. Picifie ports 2.75 c (Joslyn Mfg. Co. may quote 2.30 c , Chlcago base.)
(whl Itolled Strlp: Plttsburgh, Cleveland, Younkstown, 0.25 carbon and less 2.80c: Chicags, base 2.90 c ; Detroit, del. 2.
Mxh. $2.9 \overline{\mathrm{c}}$; Worcester base 3.00 c .
(rimuindity C. R. Sirlp: Plttsburgh, Cleveland, Yunnstown, base 3 over, 2.950 Nich, 3.10 c ; Worcester base 3.35 c . Nich, 3.10 c ; Worcester base 3.35 c .
Culd-Fluibled Sprine stecl: Pltts
culd-Flmiked Spring StecI: Plttsburgh, Cleve-
land bases, add 20 c for Worcester, $26-50$ land bases, add 20 c for Worcester; $26-.50$ Carb. 2.80c; .51-. 75 Carb., 4.30c; .76-1.00 Carb., 6.15 c ; over 1.00 Carb., $8.35 c$.

Tin, Terne Plate

Tin flate: Plttsburgh, Chlcago, Gary, 100-1b. base bux, $\$ 5.00$; Granite Caty $\$ 5.10$.
kileclrulylic TIn plate: Plttsburgh, Gary, 100 H_{1} hase box, 0.50 lb . tin, $\$ 4.50 ; 0.75 \mathrm{ib}$. tin IiII DIII Jhuck PInte: Pittsburgh, Chlcago, Ciary, buse 29 gage and lighter, 3.05c; Granite City, 3.15 c ; Paclfe ports, boxed 4.05 c . 24 Lim Terıes: Plttsburgh, Chicago, Gary, No. 24 unassorted 3.80 c ; Pacific ports 4.55 c Hanufacturiup Ternes: (SDecial Coated) Pittsbursh, Chlcaso, Gary, 100-base box $\$ 4.30$ Grailte Clity $\$ 4.40$.
Ruting Ternes: Pittsburgh base per pack age 112 sheels: 20×28 in. coating I.C 8 -lb. $\$ 12.00 ; 15-10$. $\$ 14.00 ; 20$-1b. $\$ 15.00 ; 25-\mathrm{lb}$. $\$ 16$ 3Llb, \$17.25; 40-lb. \$19.50.

Plates

Carbon Steel Plates: Pittsburgh, Chicago, Siny, Cleveland, Birmingham, Youngstown, Sparrows Polnt, Coatesville, Claymont, $2.25 c$; New York, del. 2.44c; Phlla., del. 2.30 c ; St. Louts, 2.49c; Boston, del. 2.57-82c; Pacific porls, 2.80c; Gulf ports, 2.60 c .
(Grunite Clly Steel Co. may quote carbon plates 2. S5c f.o.b. mill; 2.65c f.o.b. D.P.C mul; Kalser Co. Inc., 3.20 c , f.o.b. Los Angeles.
 boins; Geneva Steel Co., Provo, Utah, 3.20c, 10.b. Pac, ports.)

Phor I'lates: Pittsburgh, Chicago, 3.50 c Uacilc ports, 4.15 c .
Uptr-ilearth Alloy Plates: Plttsburgh, ChiFacif Coatesville,
Pacific ports 4.15 c .

Shapes

Structural Shapes: Pittsburgh, Chicago, Gary, Brmingham, Buffalo, Bethlehem, 2.10c; New fort, del. 2.27c; Phila., del. 2.215c; Paden Pris, 2.75 c .
thoenlx Iron Co., Phoenixville, Pa., may Quote carbon steel shapes at 2.35 c at eatab. lished basing points and 2.50 c , Phoenixville SL export: Sheffield Steel Corp., 2.55 c 1.0.b. \$L, louls. Geneva Steel Co., 3.25c, Pac. ports) Katser Co. Inc., 3.20 e f. o.b. Las Anzeles) Yeei Sheot Piling: FPttsburgh, Chicago, Bui

Wire Products, Nails

he: Pittsburgh, Chicaso. Cleveland, Blrm. toners (except sprlng wire) to manuiactor Duluth).
Filoht basic, bessemer wire
Pittsburgh steel Co., 0.20 c hicher
Hive Products to the Trade:
sandiard and Cement-coated wre nalls,
Chicago staples, 100-lb. keg, Pittsburgh
lith $\$ 2.90$;
patt $\$ 2.90$; galvanized, $\$ 2.55$; Pac. ceell Chkasn, Cleveland

ben fence, 15% gage and heavier, per lathed column
Caed wire, 80 -rod spool, Pittsburgh, Chicazo areland. Blrmineham, column 70; twisted Tuless wre, column 70.
Tubular Goods
Felded PIpe: Base price in carloeds, thrended
ton. Base discounts on steel pipe Pittsburgh and Loraln, O.: Gary, Ind. 2 points less on lap weld, 1 point less on butt weld. Pittsburgh base only on wrought iron plpe.

Butt Weld

 Boller Tubes: Net base prices per 100 feet f.o.b. Plttsburgh in carload lots, minimum

 f.o.b. Pittsburgh in carload lots, m| | | S | nless | La | Char- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O.D. | | Hot | Cold | | coal |
| Stzes | B.W.G | Rolled | Drawn | Steel | Iron |
| $1{ }^{\prime \prime}$ | 13 | \$ 7.82 | 59.01 | | |
| 14" | 13 | 9.26 | 10.67 | | |
| 116" | 13 | 10.23 | 11.72 | \$ 9.72 | \$23.71 |
| 1% | 13 | 11.64 | 13.42 | 11.06 | 22.9 .1 |
| $2{ }^{*}$ | 13 | 13.04 | 15.03 | 12.38 | 19.35 |
| 214" | 13 | 14.54 | 16.76 | 13.79 | 21.63 |
| 21/4" | 12 | 16.01 | 18.45 | 15.16 | |
| 21/2" | 12 | 17.54 | 20.21 | 16.58 | 26.57 |
| 27 | 12 | 18.59 | 21. 42 | 17.54 | 29.00 |
| $3{ }^{\mu}$ | 12 | 19.50 | 22.48 | 18.35 | 31.38 |
| 312 | 11 | 24.63 | 28.37 | 23.15 | 39.81 |
| $4{ }^{3}$ | 10 | 30.54 | 3520 | 28.66 | 49.90 |
| $41 / 2{ }^{\prime \prime}$ | 10 | 37.35 | 43.04 | 35.22 | |
| $5^{\prime \prime}$. | 9 | 46.87 | 54.01 | 44.25 | 73.93 |
| 6 " | 7 | 71.96 | 82.93 | 68.14 | |

Rails, Supplies

Standard rails, over 60-lb., f.o.b. mill, eross ton, $\$ 43.00$. Light rails (blllet), Pltsburgh, Chicaco, Birmingham, gross ton, $\$ 45.00$.
Relaying rails, 35 lbs. and over, f.o.b. rail road and basing points, $\$ 31-\$ 33$.
Supplies: Track bolls, 4.75 c ; heat treated 5.00 c . Tie plates, $\$ 46$ net ton, base, Standard spikes, 3.25 c .
Fixed by OPA Schedule No, 46, Dec. 15,
1941 .

Tool Steels

Towl ${ }^{\text {ts }}$ Steels: Pittsburgh, Bethlehem, Syracuse, base, cents per lb.; Reg. carbon 14.00c; extra carbon 18.00c; special carbon 22.00 c ; oll-hard ening 24.00c; high car.-chr. 43.00 c .

Pltts. base

Tung.	Chr.	Van.	Moly.	per lb.
18.00	4	1	.	67.00 c
1.5	4	1	8.5	54.00 c
.50	4	2	8	54.00 c
5.50	4	1.50	4	57.50 c
5.50	4.50	4	4.50	70.00 c

Stainless Steels

Base, Cents per lb.-i.o.b. Pittsburgh
CHROMIUM NICKEL STEEL

				H. R. Strio	C. R Strip
pe	Bars	Plated	Sheet:	0	
	24.00 c	27000	34.000	21.50 e	28.00 C
303	26.00	29.00	36.00	77.00	33.00
304	25.00	29.00	35.00	23.50	30.00
308	29.00	34.00	41.00	28.50	35.00
309	36.00	40.00	47.00	37.00	47.00
310.	49.00	52.00	53.00	48.75	56.00
312	36.00	40.00	49.00		
316	40.00	44.00	48.00	40.00	48.00
+321.	29.00	34.00	41.00	29.25	38.00
$\ddagger 347$	33.00	38,00	45.00	33.00	42.00
431	19.00	22.00	29.00	17.50	22.50
STRAIGHT CHROMIUSI STEEL					
403.	21.50	24.50	29.50	21,25	27.00
410.	18.50	21.50	26.50	17.00	22.00
416.	19.00	22.00	27.00	18.25	23.50
†t420	24.00	28.50	33.50	23.75	36.50
430	19.00	22.00	29.00	17.50	22.50
$\ddagger \ddagger 430 \mathrm{~F}$	19.50	22.50	29.50	18.75	24.50
440A	24.00	28.50	33.50	23.75	36.50
442	22.50	25.50	32.50	24.00	32.00
443.	22.50	25.50	32.50	24.00	32.00
446	27.50	30.50	36.50	35.00	52.00
501.	8.00	12.00	15.75	12.00	17.00
502	9.00	13.00	16.75	13.00	18.00

STALNLESS CLAD STEEL (20\%)
 \section*{304.}

-With 2-3\% moly. †W1th titanium. \&Wlth columblum. *Plus machining agent. †tHich carbon. $\ddagger \ddagger$ Free machining. Eincludes annealing and plckling
Basing Point Prices are (1) those announced by U. S. Steel Corp. subsidiaries for first quarter of 1941 or in effect Aprll 16. 1941 at desimmated basing polnts or (2) those prices announced or customanrily quoted by other orm ducers at the same desimnated points. Base prices under (2) cannot exceed those under
quarter of 1940
Exiris mean additions or deductions from base prices in effect Adrli 16, 1941.
llellxered prices applying to Detrolt, Eastern Mohigan. Gulf and Paclife Coast points are deemed basing points except in the case of the latter two at'eas when water transporta basing point price plus all-rall irelght may be charged.
Donestlc Celting prices are the rggregate of (1) governing basing point price, (21 extrab and (3) transportation charges to the point of dellvery as customarily computed. Goveralis basing polnt is basing point nenreyt the consumer providing the lowest dellvered price Secunds, maximum urices: flat-rolled rejecte 75% of prime prices, wasters 75%, wastewasters 65% except plates, which take waster
prices; tin plate $\$ 2.80$ per 100 lbs: terne prices: tin plate $\$ 2.80$ per 100 lbs: terne grades immited to new materlal cellngs
Expurt crilhag prices may be elther the ag gregate of (1) governing basing polint or emer gency basing polnt (2) export extran (3) export transportation charges provided they art the f.a.s. seaboard quotations of the U. S. Steel Export Co. on Aprll 16, 1941.

Bolts, Nuts

F.u.u. Pittsburgh, Cleveland, Birmingham, Chicago. Discounts for carloads additlonal 5% full contalners, add 10%
$1 / 2 x 6$ and smaller
er 6 -In. and shorter.
Do., is to $1 \times 6-\mathrm{fn}$. and shorter
146 and larger, all lengths
All diameters, over 6-ln. long
Tlre bolts
Slep bolts
Plow bolts

In parkages with nuts separate $71-10$ off ; will nuts attached 71 off: bulk 80 off on $15 .(\mathrm{KM}$ of 3 -inch and shorter. or 5000 over 3 -in

Semifinlshed hex
in inch and les
$1 / 2-1-$ inch
$138-11 / 2$-Inch
14 and larger

U.S.S	S. A.
62	64
59	60
57	58
56	

Piling

Plttsburgh, Chicago, Buffalo 2.41

Rivets, Washers

F.c.b. Pittsburgh, Cleveland, Chtraxu

Birmingham
Structural
375
$65-5 n$
Wrought Washers, Pittsburgh, Chicaco.
Phlladelphia, to jobbers and large
nut, bolt manufacturers l.c.l..... \$2.75-3.00) on:

Metallurgical Coke

Beehive Ovens

Connellswlle, furnace	-756
Connellsvale, foundry	8.00-85
New River, foundry	9.00-9.2m
Whse county, foundry	7.75-8
Wise county, furnace Wy-Product Poundry	$7.25-$
Kearney, N. J., ovens	12 5:
Chicago, outside delivered	12 ${ }^{\text {a }}$
Chicaga, delivered	123
Terre Haute, delivered	19 If
Milwaukee, ovens	13.37
Now England, delvered	
S1. Louis. delivered	+19
BIrmingham, delivered	10
Indiamapolis, delivered	13 11.
Cincinnati, dellvered	$1{ }^{\circ} \mathrm{s}$
Clpyeland. delivered	$12 \pm$
Buffalo, dellvered	
Detrolt. delivered	13 y
Philadelphia, dellvered	12 ¢

[^5]Coke By-Products
Spat. sal., freight allowed east of Omain
Pure and 90% benzol
Taluol. two degre
Snlvent maphtha
Indusirial xylnt
27.000
$27.00 r$

Phenol (car lots lb. 1.o.b. worka
Do., less lons, returnable drums
Do.. tant can car lots
12.50 n
1278

Eastern Plants, per Ib
aphthalene flakes, balls, bbls., to fob-
bers
Per inn. bulk, f.o.b. port
Suiphate of ammonia. 3092

WAREHOUSE STEEL PRICES

Base delivered price, cents per pound, for delivery within switching limits, subject to established extras

			$\begin{aligned} & \frac{5}{0} \\ & \stackrel{y}{3} \\ & \text { a } \end{aligned}$										
	4.04 .11	$3.91{ }^{1}$	$3.912{ }^{1}$	5.727^{1}	3.7741	4.106^{1}	5.100^{1}	5.224^{14}	4.744^{14}	4.14411	4.715	6.012^{34}	6.015
Beston Now York	3.853^{1}	3.7581	3.768^{1}	5.5741	3.590^{1}	$3.974{ }^{1}$	S.9741	5.010^{14}	4.613^{14}	4.103^{21}	4.774		
Jersoy Clty	3.853^{1}	3.747^{1}	$3.768{ }^{1}$	$5.574{ }^{1}$	3.590^{1}	3.9741	3.9741	5.010^{13}	4.813^{14} 4.872^{35}	4.103^{11} 4.072^{21}	4.774		5.85\%
Philadelphia	3.8291	3.666^{1}	$3.60{ }^{1}$	$5.272{ }^{2}$	3.5181	3.922^{1}	$427{ }^{1}$	$5.018{ }^{18}$	4.872^{25}	4.072^{21}	4,772	$818^{\text {² }}$	\%
Baltinore .	3.802^{1}	3.759^{1}	3.5941	5.252^{1}	3.394^{1}	3.902^{3}	4.258	4.894^{1}	4.852^{25}	4.052^{21}			-1.1.
Washington	3.941^{1}	3.980^{1}	3.798^{1}	5.341^{1}	3.5961	4.041^{1}	4.8911	$5.198^{\text {T }}$	4.841^{10}	4.0418			
Nerfolk, Va,	4.065^{1}	4.002^{1}	3.9711	5.465^{1}	3.771^{1}	4.165^{2}	4.518 ${ }^{1}$	5.371^{17}	4.965^{14}	4.165^{21}			
Bethehem, Pe*			$3.45{ }^{1}$										
Clayment, Del.*			$3.45{ }^{1}$		
Buffalo (olty)	$3.35{ }^{\text {t }}$	$3.40{ }^{1}$	3.63^{1}	$5.26{ }^{1}$	3.351	3.819^{8}	3.819^{1}	4.75^{15}	$4.40{ }^{16}$	$3.75{ }^{21}$	4.669	$5.60{ }^{23}$	5.751
Buffalo (oountry)	3.251	3.301	3.301	4.90^{2}	$3.25{ }^{1}$	$3.81{ }^{1}$	$3.50{ }^{1}$	4.65^{16}	4.30^{16}	3.65 3 21	4.35	$5.60{ }^{3}$	
Pittsburgh (otty)	3.351	$3.40{ }^{1}$	3.401	5.00^{1}	S.35 ${ }^{1}$	3.601	8.60	$4.75{ }^{18}$	4.40^{34}	3.75 \%			
Pittrburgh (oountry)	3.251	3.301	3.301	4.90^{1}	$3.25{ }^{2}$	3.501 3.60^{1}	3.501 3.801	4.857^{12} 4.877^{12}	4.30^{14} 4.40^{14}	3.855^{11} 3.713	4.453	$5.60{ }^{21}$	5.61
Cleveland (alky) .	3.351	$3.588{ }^{1}$	$3.40{ }^{1}$	$5.188{ }^{1}$	3.	$3.60{ }^{1}$	3.60	$4.87{ }^{12}$			4.45	5.60	
Cleveland (country)	$3.25{ }^{1}$		$3.30{ }^{1}$		3.251	3.501	8.508		4.800^{24} 40004	$3.65{ }^{21}$	4.3571	5.938	5.991
Detroit	$3.450{ }^{8}$	3.661^{1}	3.609^{1}	$5.281{ }^{1}$	3.4501	3.700^{1}	3.700^{1}	5.000^{13}	4.500^{34}	3.800^{11}	4.859	5.93^{2}	5.8
Omaha (city, dolivered)	4.115^{1}	$4.16{ }^{1}$	4.1651	5.765^{1}	3.865^{1}	4.2151	4.2151	$5.608{ }^{10}$	5.443^{4}	4.443^{11}			
Omaha (country, bue)	$4.015{ }^{1}$	4.065^{1}	4.065^{1}	5.685 ${ }^{1}$	3.7651 3.4251	4.1151	3.1675	5.508^{10} 4.825^{14}	4.475^{24}	4.011^{12}	4.711	6.10	6.20
Cinclnnati	3.611^{1}	6.391^{1}	3.661^{1}	$5.291{ }^{1}$	3.425	$3.67{ }^{2}$	$3.67{ }^{\circ}$	$4.82{ }^{4}$	$4.47{ }^{24}$	4.011	4.711	6.10	0.1
Youngstown, 0 .								4.40^{13}					
Middletown, O.					3.251	3.501 $3.60{ }^{1}$	$3.50{ }^{1}$ $3.60{ }^{\circ}$	$4.65{ }^{16}$ 5.2815	$4.20{ }^{14}$	3.7571	4.65	5.75	5.80^{3}
Chicago (city)	3.501 3.637^{1}	3.551 3.687^{1}	3.551 3.6871	$5.15{ }^{1}$	$3.25{ }^{1}$	3.601 3.787^{1}	S.687 ${ }^{1}$	5.272^{15}	4.337^{14}	3.887 II	4.787	5.987^{18}	6.081
Milwaukee Indianapolid	3.637^{1} 3.581	3.687 3.63^{1}	3.688^{1}	5.281^{1} 5.23	3.518^{1}	3.768^{1}	3.788^{1}	4.918^{15}	$4.568{ }^{24}$	$3.98{ }^{71}$	4.78	$6.08^{\text { }}$	6,18
St. Paul	$3.76{ }^{1}$	$3.81{ }^{2}$	$3.81{ }^{2}$	$5.41{ }^{1}$	$3.51{ }^{2}$	$3.86{ }^{\text {z }}$	3.88^{1}	5.257^{15}	$4.46{ }^{24}$	4.36121	5.102	6.09^{81}	$8.19{ }^{19}$
St. Louls	3.647^{1}	3.697^{1}	3.8971	5.297^{1}	$3.397{ }^{1}$	3.747^{1}	$3.74{ }^{12}$	$5.17{ }^{15}$	4.847^{4}	4.031^{31}	4.931	$6.181^{\text {² }}$	8. 88.11
Momphls, Tann.	4.015^{5}	4.065^{5}	4.065^{5}	$5.78{ }^{5}$	3.985^{5}	4.213^{8}	4.215^{5}	5.265^{16}	$4.78{ }^{4}$	4.33^{11}			
Blmangham ..	3.501	3.551	$3.55{ }^{1}$	5.903^{1}	3.451	8.70^{1}	$3.70{ }^{1}$	$4.75{ }^{18}$	4.852^{24}	4.54	5.215		
New Orlmans (eity)	4.10^{4}	$3.90{ }^{4}$	3.904	$5.85{ }^{4}$	4.058	$4.20{ }^{6}$	4.20°	$5.25{ }^{\circ}$	5.079^{19}	$4.60{ }^{31}$	5.429		
EIouston, Tex.	$3.75{ }^{3}$	$4.25{ }^{1}$	$4.25{ }^{3}$	5.50	3.783^{*}	4.313^{4}	4.318^{*}	5.318^{38}	4.10^{10}	$3.65{ }^{23}$			
Las Angoles.	4.40	4.654	4.954	7.204	5.004	4.954	6.75	6.00^{13}	7.20^{18}	5.588^{22}	5.618 7.388	5.85^{x}	5.99
San Francisoo	4.15	4.35:	$4.65{ }^{\top}$	$6.35{ }^{7}$	4.557	$4.50{ }^{1}$	5.751	$6.35{ }^{\circ}$	7.30^{18}	5.333^{11}	7.388	8.304^{2}	
Portland, Oreg.	4.45^{37}	4.45^{18}	4.75π	$6.50{ }^{4 \pi}$	$4.65{ }^{71}$	4.757	$6.80{ }^{10}$	5.7518	$6.60{ }^{18}$	5.533^{15}			8.000^{4}
Tacoma ...	$4.35{ }^{\circ}$	4.45°	4.755°	$6.50{ }^{4}$	$4.65{ }^{\circ}$	4.25	5.45			5.783^{21}			8.001
Seattle	$4.35{ }^{6}$	$4.45{ }^{6}$	$4.75{ }^{\text {c }}$	$6.50{ }^{4}$	4.65	$4.25{ }^{\text {a }}$	5.45	$5.95{ }^{18}$	7.05^{16}	$5.783^{\text {21 }}$			

[^6]
to 1499 pounds: "-one bundle to 1499 pounds; ${ }^{17}$-one to nine bundle tone to sir bundles; w- 100 to 749 pounds; $20-300$ to 1999 pound n- 1500 to 39,999 pounds; $21-1500$ to 1999 pounds; $21-1000$ it 39,999 pounds; 2×-400 to 1499 pounds; ${ }^{35}-1000$ to 1999 pound is -under 25 bundles. Cold-rolled strip, 2000 to 39,999 pounds. bus 21-300 to 4999 pounds.

Ores

Lake Superior Iron Ore
Gross ton. 513% (Natural)
Lower Lake Ports
Old muge bessemer
Mesalii nonbossemer
High phosphorus
Messibi bessomer
Old range nonbessemer

Eastern Local Ore

Cents, units, dal. E. Pa
Fonmdry and basic 56-
65\% contract
Foreign Ore
Cents per undt, c.i.f. Allantic ports Manganiferous ore, 45$55 \%$ Fe., 6-10\% Mang. N. Africau low phas.

Spanish, No. African basic, 50 to 60%.
Brazil inon ore, 88 - 69%
f.o.b. Rio de Janeira. . 7.50-8.00

Tungsten Ore
 Chinese wolframite, per

 short ton unit, duty' poidIndian and African

48\% 2.8:1	\$41.00
48\% 3:1	43.50
489\% no ratio	31.00
South African (Transvaal)	
44\% no ratio	\$27.40
45\% no ratio	28.30
48\% no ratio	81.00
50\% no ratio	82.80
Brazilian-nominal	
44\% 2.5:1 lump	33.65
48\% 3:1 lump	48.50

Rhodesian

28.50
$\$ 1.00$
43.50
52.80

Sales prices of Metals Reserve Co., cents per gross ton unit, dry, 48%, at New York, Philadelphia, Baltimore, Norfolk, Mobile and Now Orleans, 85.0 c ; Fontane, Calif.,

Provo, Utah, and Pueblo, Cal. 91.0 c ; prices include duty on 1 ported ore and are subject to pt miums, penalties and other pront sions of amended M.P.R. No. 26 effective as of May 15 . Prict basing points which are also pos: of discharge of imported mals nese ore is f.o.b. cars, shipsid, , dock most favorable to the birm

Molybdenum

Sulphide conc., Ib., Mo. cont., mines

NATIONAL EMERGENCY STEELS (Hot Rollod)

(Equivalent OPA schedules):

Gross ton f.a.b. cars, New York, Philadolphia, Baltimore, Charleston, S. C., Parland, Ore., or Tacoma, Wash.
(S/S paying for discharginc: dry basis; subiect to peralties if cuarantees are not met.)

Prlces (in stoss tons) are maxdmums fixed by OPA Price Schedule No 10, effective June 10, 1941, amended Feb. 14, 1945. Exceptions indicater n footnotes. Base prices bold lace, dellvered llent face. Federal ta, in freight charges, effective Dec. 1, 1942, not included in following prices

	Foundry	Basle	Bessemer	leable
Bethlehem, Pa., base	. \$26.00	\$25.50	\$27.00	\$26.50
Newark, N. J., del.	27.53	27.03	28.53	28.03
Brooklyr, N. Y., del.	28.50			29.00
Birdshord, Pa., base	26.00	25.50	27.00	26.50
Blmingham, base	21.38	+20.00	26.00	
Balumore, del.	26.61			
Boston, del.	26.12			
Chlcago, del.	25.22			
Cinclnnati, del.	25.06	23.68		
Cleveland, del.	25.12	24.24		
Newark, N. J., del.	27.15			
Philadelphia, del.	26.46	25.96		
St. Louls, del.	25.12	24.24		
Burfalu, base	25.00	24.00	26.00	25.5
Boston, del.	26.50	26.00	27.50	27.0
Rochester, del.	26.53		27.53	27.0
Syracuse, del.	27.08		28.08	27.5
Chicaga, base	25.00	24.50	25.50	25.0
Nilwaukee, del.	26.10	25.60	26.60	26.1
Muskegon, Mich., del.	28.19			28.19
Clevelitund, base	25.00	24.50	25.50	25.00
Akron, Canton, O., del.	26.39	25.89	26.89	26.39
Detroul, base	25.00	24.50	25.50	25.00
Saginaw, Mich., del.	27.31	26.81	27.81	27.31
Dullith, base	25.50	25.00	26.00	25.50
SI. Paul, del.	27.63	27.13	28.13	27.63
Erte, Pa, base	25.00	24.50	26.00	25.50
Everett, Mass., base	26.00	25.50	27.00	26.50
Buston, del.	26.50	26.00	27.50	27.00
Limilie City, Ill., base	25.00	24.50	25.50	25.00
St. Louls, del.	25.50	25.00		25.50
lamilton, O., base	25.00	24.50		25.0
ClacInnatl, del.	25.44	25.61		26.11
vevilic Lsland, Pa., base §Pittsburgl2, del.	25.00	24.50	25.50	25.00
No. \& So. sides	25.69	25.19	26.19	
Turu, Utali, base	23.00	22.50	26.19	
Dharpsilte, l'a., base	25.00	24.50	25.50	25.0
Sparraws P'ulat, base	26.00	25.50		
Ballimore, del.	26.99			
steplton, l'a, base.		25.50		
3edelithd, Pa., base Philadelplita, del.	26.00	25.50	27.00	26.5
Philadel plata, del.	26.84	26.34		27.3
mived, 0., base	25.00	24.50	25.50	25.0
Lumasfown, 0. base llansfield, $0 .$, del.	25.00	24.50	25.50	25.0
.lansfield, O., del.	26.94	26.44	27.44	26.9

Buse srade, sllicon $1.75-2.25 \%$; add 50 cents for each additional 0.25% slicon, or portlon thereof; deduct 50 cents for silicon below 1.75% on Mekes Rocks, Pa. add .25 to Neville or over deduct 38 cents. δ For seads Rocks, Pa., add . 25 to Neville Island base; Lawrenceville, Hometead Mckeesport, Ambridge, Monaca, Aliqulppa, 84 ; Monessen, MononNole! Add 50 (water) ; Oakmont, Verona 1.11 ; Brackenridge 1.24 . Note! Add 50 cents per ton for each 0.50% manganese or portion hered aver 1.00%
Nickel differentials: Under 0.50%, no extra; 0.50% to 0.74% incl, s2

High Sillcon, Slivery
6.00-6.50 per cent (base) ..$\$ 30.50$.51-7.00. . \$31.50 9.01-9.50. 36.50 7.01-7.50. . $32.50 \quad 9.51-10.00$. 37.50 $\begin{array}{lll}\text { 7.51-8.00.. } & 33.50 & 10.01-10.50 . \\ 8.01-8.50 . . ~ & 34.50 & 10.51-11.00 . \\ 89.50\end{array}$ 8.51-9.00. . 35.50 11.01-11.50. 40.50 F.o.b. Jackson county, O., per gross ton, Buflalo base prices are $\$ 1.25$ higher. Prices subject to additional charge of 50 cents a ton for each 1.00% -
Electria Furnace Ferrosilicon: Sil. 14.01 to 14.50%, $\$ 45.50$: each addl lonal $.50 \%$ silicon up to and includ exceeding 0.05 Phos., 0.40 Sulphur. exceeding 0.05 Phos.

Bessemer Ferrostlicon

Prices same as for high silicon silvery iron, plus \$1 per gross ton (For higher sllicon irons a differ antial over and above the price of base grades is charged as well as for the hard chllling iron, Nos. 5 and 6.)

Charcoal Plg Iron Northern

Lake Superior Furn. $\$ 34.00$ Chicago, del.

Semi-cold blast, herg phos.

f.o.b. Iurnace, Lyles, Tenn. $\$ 28.50$ Semi-cold blast, low phos
f.o.b. furnace, Lyles, T'enn. 33.00

Gray Forga
Nevllle Island, Pa. $\$ 24.50$
valley base
Low Phosphorus
Basing polnts: Blrdsboro, Pa.,
$\$ 30.50 ;$
N. Yteelton, Pa., and Butfalo,
N. 30.50 base; 31.74, del., Philadelphla. Intermediate phos,
Central Furnace, Cleveland, \$27.50
Swltching Charges: Basing point prices are subject to an additional charge for delivery within the switching

Silicon Differential: Basing point prices are subject to an additional charge not to exceed 50 cents a ton or each 0.25 sillcon in excess of ase grade (1.75 to 2.25%)
Phosphorus Differential: Basing point prices are subject to a reduc tion of 38 cents a ton for phos phorus content of 0.70% and over.
Celling Prices are the aggregate of ferentials (3) transportation charges
from governing basing petit to polnt

Refractories

Per 1000 f.o.b. Works, Net Prices Fire Clay Brid
Super Duty
$\$ 68.50$
Pa., Mo., K K
FIrst Quality
Pa., Ill., Md., Mo., Ky. 54.40
Alabama, Gcorgia' 54.40
New Jersey 47.70

Ohio $\begin{array}{r}\text { Mallenble Mung Brick }\end{array}$

Sillea Brick	
Pennsylvania	54.40
Joliet, E. Chicago	
Birmingham, Ala.	. 40

Jolict, E. Chicago
Birmingham, Ala............. 54.45
54.40
Ladle Briak
(Pa., O., W. Va., Mo.)
Dry press
32.90
30.80

Wry press
Maqnealte
Domestic dead-burned grains,
Wash., net ton, bulk net ton, bags
Net ton, f.ob. Basic Britiore, Plymouth Meeting, Chester, Pa.
Chrome brick
Chem. bonded chrome
Magnesite brich
$\$ 54.00$
54.09
78.00
65.00

Fluorspar

Metallurgical grade, 1.o.b. II!., Ky.. net ton, carloads CaF content, 70% or more, $\$ 33$; 65 but less than 70\%, $\$ 32$; 60 but less than 63% Aug. 29 base price any grade $\$ 30$.) war chemicals.

Ferroalloy Prices

etromanganese (standard) $78-82 \%$ gross ion, duty paid, $\$ 135$; add 1.5 packed c.1., $\$ 10$ for ton, less-ton, fo.b. cars, Balt1mutiever is most favorable to buy: Rackdale or Rockweod, Tenn.,

Tennessee Products Co. Is s-Sheffield Steel \& Iron Co. soller; $\$ 1.70$ for each I\% or raction contained manganese over \% or under 78%; dellvered Pittsatrgh. \$140.33.
(trimanganese (Low and Medtum tanese; eastern zone low carbonmulk, c.l., 23 c ; 2000 low carbon, Hoc; medium, 14.50 c and 15.20 c ; 2a3c; low carbon, bulk, c.1., 2000 1b. to c.1., 24.40 c ; aseium 14.80 c and 16.20 c ; west: m low carbon, bulk. c.1., 24.50 c , 3 ive to c. $1,25.40 \mathrm{c}$; medjum. ant, freight allowed.

negeleisen: 19-21\% carlots per | oss ton, Palmerton, Pa., $\$ 36$; 16 - |
| :--- |
| on, $\$ 3$ |

iectrolytic Manganese: 99.9% plu: ston lots, per lb. 37.6 cents. a, max Metal: 97% min. chromiper 1 b . 50% carbon, eastern ck, c.l., $79.50 \mathrm{c}, 2000 \mathrm{lb}$. to cl 8 central, 81c and 82.50 c ; west8.25 c and 84.75 c ; 1.0 .6
trocolumbium: 50 -60\%ed
Nained columbium in gross ib. fs, contract basls, R.R. freight Mod, eastern zone, $\$ 2.25$; less-

tree bulke: High carbon, eastern
c.1, 13.90 c ; central, add 40 c and high witrogen, hith 1 c and $1.85 \mathrm{c}-$ chrome: Add $5 c$ to all himh carbos ferrochrome prices; all zones; low carbon eastern, bulk, c.1., max. 0.06% carbon, $23 c, 0.10 \%$ 22.50c. $\begin{array}{lllll}\text { Gi. } 15 \% & 22 \mathrm{c}, & 0.20 \% & 21.50 \mathrm{c}, & 0.50 \% \\ \mathrm{zlc} & 1.00 \% & 20.50 \mathrm{c} & 2.00 \% & 19.50 \mathrm{c}\end{array}$ 3000 lb . to c. $1,0.06 \% ~ 24 \mathrm{c}, \quad 0.10 \%$ $\begin{array}{llllll}23.50 \mathrm{c}, & 0.15 \% & 23 \mathrm{c}, & 0.20 \% & 22.50 \% \\ 0.50 \% & 22 \mathrm{c}, & 1.00 \% & 2150 \mathrm{c} & 200 \%\end{array}$ $\because 0.50 \mathrm{c}$: central, add 4 c for bulk wretern add ic for bulk. to c. 6 wrstern add 1c for bulk, c.1. and

1. stic for 2000 lb. c.l.; carload nacked differential 45 c ; f.o.b, shipping point, freight allowed. Price per lb contalned Cr high nitrozen hery carbon fertochromes nutrozen hiv carbon ferrochrome: Add $-c$ to ow carbon ferrochrome prices; al add 2 c for each $.25 \%$ of nitrogen add 2 c for
over 0.75%.
Spectal Foundry ferrochrome Chrum, 62-66\%, car. approx (\%) Contract, carload, bulk 13.50 c packed 13.95 c , ton lots 14.40 c , less 14.90 c , eastern, frelght allowed, per pound contained chromlum; 13.90 c $14.35 \mathrm{c}, 15.05 \mathrm{c}$ and 15.55 c central $14.50 \mathrm{c}, 14.95 \mathrm{c}, 16.25 \mathrm{c}$ and 16.75 c , western; spot up .25 c .
S.II. Ferroclirome. high carbon (Chrom. $60-65 \%$, sil. 4-6\%, mang 4-6\% and carbon 4-6\%.) Contract carlot, bulk, 14.00 c , packed 14.45 c , on lots 14.90 c , less 15.40 c , eastern reight allowed; 14.40 c , 1485 e , 15.55 c and 16.05 c , central: 15.00 c $15.45 \mathrm{c}, 16.75 \mathrm{c}$ and 17.25 c , weatern spot up .25 c ; per pound contalned chromium.
S.M. Ferrochrome, low earbor: (Chrom. 62-66\%, sll. 4-6\%, mang

4-6\% and carbon 1.25% max.) Con 20.45 carlot, bulk. 20.00 c, packed 22.00 c , eastern 21.00 , less ton lots pound contalned chromlum; 20.40 c $20.85 \mathrm{c}, 21.65 \mathrm{c}$ and 22.65 c , central; 21.00 c . $21.45 \mathrm{c}, 22.85 \mathrm{c}$ and 23.85 c , western; spot up .25 c
sayz Alloy: (Silicon 60-65\%, Mang. $5-7 \%$, zir. $5-7 \%$ and iron approx. 20%) per 1 b . of alloy contract carlots 11.50 c . ton lots 12.00 c , less 12.50 c , eastern zone, frelght allowed; 12.00c, 12.85 c and 13.35 c central zone; $14.05 \mathrm{c}, 14.60 \mathrm{c}$ and 15.10 c , western: spot up .25 c . silicac, western, spot up .25c. Slicaz Alloy: (Sil. 35-40\%, cal $9-11 \%$, alum $6-8 \%$, $55-0.5 \%$, tit $9-11 \%$ and boron 0.55-0.75\%), per ib. of alloy contract. carlots 25.00 c , ton lots 26.00 c . less ton lots 27.00 c , eastern, freight allowed; 25.50 c, 26.75 c and 27.75 c , central; 27.50 c , 28.90 c and 29.90 c , western; spot up .25 c .
Silvaz Alloy: (Sil. $35-40 \%$, van 9-11\%, alum. 5-7\%, zir 5-7\%, tit. $9-11 \%$ and boron $0.55-0.75 \%$), per lb. of alloy. Contract, carlots 58.00 c ton lots 59.00 c . less 60.00 c , eastern, freight allowed; $58.50 \mathrm{c}, 59.75 \mathrm{c}$ and 60.75 c , central; $60.50 \mathrm{c}, 61.90 \mathrm{c}$ and 62.90c, western: spot up ${ }^{1 / 4} \mathrm{c}$.

CMSZ Alloy 4: (Chr. 45-49\%, mang. $4-6 \%$ sil. $18-21 \%$, 2ir. 1.25-1.75\% lots, buik 11 coc and packed 1150 c ton lots 12.00 c : less 12.50 c eastern frejght allowed; 1150 C and 12 am $12.75 \mathrm{c}, 13.25 \mathrm{c}$, central 1350 c and $12.00 \mathrm{c}, 13.25 \mathrm{c}$, central; 13.50 c and $14.00 \mathrm{c}, 14.75 \mathrm{c}, 15.25 \mathrm{c}$, western; spot
up .25 c .
CMSZ Alloy 5: (Chr. 50-56\%, mang.
 1.25% car. $3.50-5.00 \%$) per ib . of
packed 11.25 c , ton lots 11.75 c , less 12.25 c . eastern, frelght allowed; $11.25 \mathrm{c}, 11.75 \mathrm{c}$ and 12.50 c , central 13.25 c and $13.75 \mathrm{c}, 14.50 \mathrm{c}$ and 15.00 c . western, spot up .25 c .
Fierro-Baron: (Bor. $17.50 \% \mathrm{mln}$. sil. 1.50% max., alum. 0.50% mex and car. 0.50% max.) per lb. of alloy contract ton lots, $\$ 1.20$, lass ton lots $\$ 1.30$, eastern, frelght aljowed; $\$ 1.2075$ and $\$ 1.3075$ central; $\$ 1.229$ and \$1.329, western; spot adid 5 c
Manganese-Boron: (Mank. 75\% 2pprox., boren 15-20\%, iron 5% max. sil 1.50% max. and carbon 3% max.). per lb . of alloy. Contract, ton lote, $\$ 1.89$, less, $\$ 2.01$, eastern, ireigh 51 . 35 and $\$ 2.055$ western 51.935 and $\$ 2.055$ western spot up 5c.
Nlekel-Boron: (Bor. 15-18\%, alum 1% max., sil. 1.50% max, car. 0.50% max., iron 3% max., nlcked. balance), per lb. of alloy. Contract, 5 tons or more, $\$ 1.90,1$ ton to 5 tons, $\$ 2.00$, less than ton $\$ 2.18$, eastern. freight allowed; \$1.9125, $\$ 2.0125$ \& n d $\$ 2.1125$, central; $\$ 1.9445, \$ 2.0445$ and $\$ 2.1445$, western; spot same as contract.
Chromium-Copper: (Chrom. 8-11青, cu. 88-90\%, Iron 1% max gil tity. N. Y., basis, freight allowed to destination, except to points taking rate in excess of St. Louls rata to whath equivalent of St. Louls rate wir be allowed: spot, up $2 c$.
Vanadium Oxido: (Fused: Vane dium oxlde $85-88 \%$ sodium axde approx. 10% and calctum oxds dium oxide 85% approx., sodium medie, approx. 9% and water apprex.
2.5%) Contract, any quantity, $\$ 1.10$ ehslern, freight allowed, per pound anadlum oxide contuined; contract curluts, $\$ 1.105$, less carlots, $\$ 1.108$, pot udd 5.118 and $\$ 1.133$, western; spnt add 5 r 10 contracts in all cases. lots or more $\$ 1.80$, less, $\$ 2.30$. eantern zone, freight allowed, per eantern zone, treight allowed per yund of melal: $\$ 1.809$ and $\$ 2.349$
Crilital. $\$ 1.349$ and $\$ 2.349$, westCralrai. \$1.899
ern. sput up 5c. ern. spol up 5 c .
(antum- Mankun
 $5: 3-54 \%$), per ib. of alloy. Contract less 17.00 c . 0 e, ton lots 16.50 c and less 17.00 c , enstern, freight allowed; If whe, 17.35 c and 17.85 c , central; 18 usc, 18.10 c and 19.60 C western: anut up .25 c .
(mtrlinth-sillcon: (Cal. 30-35\%, sIL 6 10.65% and iron 3.00% max.), per it of alloy. Contract, carlot, lump is ooc, ton lots 14.50 c , less 15.50 c . thsiem, freight allowed; 13.50 c , 15. 25 c and 16.25 c central; 15.55 c . 17 40c
$u p .25 c$
Briyurls, Ferromanganese: (Welght auprox. 3 lbs. and containing exacily 2 lbs. mang.) per lb. of brioucked .063c, ions ocsic less 088 c eastern, freleht allowed; .063c, $.048 \mathrm{~F}, .0685 \mathrm{c}$, and . 0855 c and central; uestern; spot up .25 c .
Briunetn: Ferrochrome, contalning exactly 2 lb . er.; eastern zone, bulk b. to 8.2 sc per 1 lb . of briquels, 8.75 c ; 2000 itor c.1. and .5 c for 2000 jb , to c. 3 l .
 for 2000 hl . to c.l.; :illcomancanese.
eastern, containing exactly 2 lb . mankianese and approx. $1 / 2 \mathrm{lb}$. c. 6 mue: central add 35 c for c.l. and lc for 2000 lb . to c.i. ; westero. edd .jn for c.1., and $2 c$ for 2000 lb . to c.l.; ferrosilleon, eastern auprox. 5 b., containing exactly 2 lb . sillcon. or weighing appres. $21 / \mathrm{ib}$. and containing exactly 1 lb . of silicon, bulk, c.1., 3.35 c , 2000 lb to c.l. $3 . \operatorname{suc}$ i central, add 1.5 sc ior c.1., and -40 c for 2000 lb . to c.l.: western, add 3.0 c ior c.1.
and fīe for 2000 to c. $1 .:$ f.o.b. shippuse puint, freight allowed.
Prermublybdenum: $\mathbf{5 5 - 7 5 \%}$ per lb. contained molybdenum f.O.b. Lankeluth and Washington, Pa., furnate. any quantity 95.00c.
Fierruhtumpharua: 17-19\%, based on 18% phosphurus content, with unitare uf $\$ 3$ fur each 1% of phosplanus above or below the base; gruss tons per carload f.o.b. sellers' works, with freight equalized with Rockdale, Tenn.; contract price \$58.50. spot \$62.25.
Firrowlicun: Eastern zone, $90-95 \%$, bulk. c.l., $11.05 \mathrm{c}, 2000 \mathrm{lb}$. to c.l., 2000 ib to c. L, 9.95 c ; 75%, bulk, c.i.. $8.05 \mathrm{c}, 2000$ ib to c.1., 9.05c; 50%. bulk c.l., 6.65 c and 2000 lb . 10 c. $1,7.85 \mathrm{c}$; central $90-95 \%$, bulk, so-9u\%, bulk, c.1. $9.05 \mathrm{c}, 2000$ to c. $1,10.45 \mathrm{c}$; 75%, bulk, c. $1 ., 8.20 \mathrm{c}$,
 c.1. T. $10 \mathrm{c}, 2000 \mathrm{lb}$. to c.l., 9.70 c ; western, $90-95 \%$ bulk, c.l., 11.65 c ,
 bulk. c.1., $9.55 \mathrm{c},{ }^{2000}$ b. to c.1.,
to c.l., $13.10 \mathrm{c} ; 50 \%$ bulk, c.l, ping polnt frelght allowed. Prices per $1 b$. contained sllicon.
silton Metal: Min. 97% sillicon and max. 1\% Iron, eastern zone, bulk, max. 12% Iron, eastern zone, ${ }^{13.15 k}$ ceniral 13.20 c and 1 s 90 c ; western 13.35 c and 16.80 c ; min. 96% silicon and max. 2% Irim, eastern, bulk, c.1. $12.50 \mathrm{c}, 2000 \mathrm{lb}$. to c.l., 13.10 c ceniral, 12.80 c and 13.55 c ; western puint freight allowed. Price per puint, freight allow.
B. contained silicon. 96 to 98% manganese, max. 2% Iron) per lb . of metal, eastern zone, bulk, c.l., $36 c$ no00 lb. to c.l., 38 c , central, 36.25 c and 39c: western 36.55 c and 41.05 c 95 to 97% manganese, max 2.50% 1. $3 \overline{\mathrm{c}}$; central 34.25 c and 36 c vestern $34.55 c$ and 38.05 c ; i.o.b hipping point, freight allowed. furroungsten: Spot, carlots, per lb. contalned tungsten, \$1.90; frelght allowed as far west as 5 E . Louis. 1 uncsien Metal lowder: spot, not less than 97 per cent, $\$ 2.50-\$ 2.60$: irelgh
Firrustanium: 40-45\%, R.R. freight allowed, per lb. contalned titanium: ton lots \$1.23: less-ion lots $\$ 125$: eastern. Spot up 5 cents per lb.
Ferrutitamium: $20-25 \%, 0.10$ maxi mum carbun; per lb . contained t anfum: ton lots \$1.35: less-tun lots $\$ 1.40$ eastern. Spot 5 cents per lb. higher.
'Ilish-Carbon Ferrotilanium: $15-20 \%$ Niagara Falls, ${ }^{2}$ N. Y.., trelght f.ob
lowed to destination east of Misds. sippi River and North of Baltimner and St. Louis, 6-8\% carbon \$142.50: $3-5 \%$ carbon $\$ 157.50$.
Carbortam: Boron 0.90 to 1.15% net ton to carload, 8 c lo. l.o.b. lowed same as high-carbon ferm lowed sa thanium
Bortam: Boron 1.5-1.9\%, ton lots 45 c 1 b ., less ton lots 50 c lb .
Ferrovanadium: $35-55 \%$, contract basls, per 1 b . contalned vanadua f.o.b. producers plant with ususi refght allowances; open-hearh grade $\$ 2.70$ i special grade $\$ 2.8$ highly-special grade $\$ 2.90$. Zirconlum Allays: $12-15 \%$, per it of alloy, eastern contract, carlous bulk, 4.60 c , packed 4.80 c , ton loul 480 c , less tons 5 c , carloads buls per gross ton S102.50; pack
$\$ 107.50$; ton lots $\$ 108$: less-ton los $\$ 107.50$; ton lots $\$ 108$: less-ton loi \$112.50. Spot 14 c per ton higher. Zirconlum Alloy: $35-40 \%$, Easter contract basis, carloads in bulk jackage, per lb. of alloy 14.00 gross ton lots 15.00 c ; less-ton lots 16.00 c . Spot $1 / 4$ cent hizher. Alsifer: Approx. 20% aluminurn 40% sillicon, 40% (ron) contract ba sis f.o.b. Nlagara Falls, N. Y., pa 1b. 5. īc c ton lots 6.50c. Spot cenı higher.
simaniat (approx. 20\% each 5 Mn., Al.) Contract, frt. all. not ove Si. Lasuls rate, per lb. alluy: rar gis sc: ion luts 8.75 c ; less ton lum Burusil: 3 to 7% boron, 40 to 45% Si.. Su. 25 lb . eunt. Bo.. f.o.b. Phila O., Ireight not exceeding St. Louts rate allowed.

OPEN MARKET PRICES, IRON AND STEEL SCRAP

Following prices are quotations developed by editors of STEEL in the various centers. For complete OPA ceiling price schedule refer to page b by editors of STEEL in the various centers. For complete OPA
of Sept. 4,1944 , issue of STEEL. Quatations are on gross tons,

IHILADELPHIA

(Dellvered consumer's plant) No. 1 Heavy Melt. Steel $\$ 18$ No. 2 Heavy Melt. Steel No. 2 Bundles 18.75
18.75 No, 3 Bundles $\ldots . . .$. . 14 1.75-15.25 Mixed Borings, Turnings $12.50-13.00$ Machine Shop Turnings $12.50-13.00$ Billet. Forge Crops...
Bar Crops, Plate Scrap Cast Steel
Punchings
Elec. Furnace Bundies
Heary Turnings

Cast Grades

(F.o.b. Shipping Point)

Hryvy Breakable Cast Charging Box Cast upula Cast
lunstripped Motor Blocks Malleable
Chemical Borings

, EW ronk:

(Denlers' buying prlces.)
No. 1 Heavy Melt. Steel $\$ 15.33$
No. 2 Heavy Melt. Steel No. 2 Hyd. Bundles. No. 3 Hyd. Bundles. 'hemical Burings Tachine Turnings Alxed Borings, Turnings
Nu. 1 Cupola
Chusging Box
Heavy Breakalule
Unsirin Motor Blocks
Stove plate

(s) | |
| ---: |
| $\$ 14.06$ |
| 14.06 |
| 14.06 |
| 14.06 |
| 14.06 |
| $6.00-6.50$ |
| $6.00-6.50$ |
| $8.75-9-75$ |
| 13.81 |
| 16.56 |
| 20.00 |
| 20.00 |
| 19.00 |
| 16.50 |

Bosion Differential 99 cents higher, steel-mak
$\$ 1.09$ hlgher.

DITTSHURGH: , Delivered consumer's	plant)
Rallroad Heavy Melting	\$21.00
No. 1 Heavy Melt. Steel	20.00
No. 2 Heavy Melt. Steel	20.00
No. 1 Comp. Bundles	20.00
No. 2 Comp. Burrlles	20.10
Short Shovel, Turnings	16.00-16.50
Mach. Shop 'lurmats	14.00
Mixed Borings, Turninge	14.00
No. 1 Cupola Cast ...	20.00
Heavy Breakable Cast	16.50
Cast Iron Borings	16.00
Billet, Bloom Crups	25.00
Sheet Bar Crups .	22.50
Plate Serap. एumehings.	2.50
Ratlroad Speciallies	24.50
Sxap Rail	21.50
Axies	26.60
Rail 3 ft . and under	$2-3.50$
Rallroad Malleable	21.00

YALI.EX

No 1 R.R. Hvy. Melt.	\$21.00
No. Heary Melt Steel	20.00
No. Comp. Bundles	20.00
Short Shovel Turnings	15.00-15. 50
Cast Iran Rarines	1-1.nn-14.5
Machine Shop Turnings	12.00-12.50
Low Phos. Plate	$21.00-22.00$
MANSFIELD, 0.: i Delivered consumer's	slant)
Machine Shop Turnings	10.50-11.00
HHEMINGHAM: (Delivered consumer's	3 plant)
Billet, Forge Crops	\$22.00
Siruclural, Plate Scrap	19.00
Scrap Rails. Random	18.50
Rerolling Ralls	20.50
Angle Spllce Bars	20.50

So
C
St
L
C
Ir
C
N
N
N
N
N
B

So
C
C
olid Steel Axle
ove Cast
ong Turninga
Cast Iron Bartnes
ron Car Wheels
CHICAGO:
(Delivered consumer's plant
o. 1 R.R. Hvy. Melt
vo. 1 Heary Mell Steel
No. 1 Ind. Buadies
Baled Mach. Shop Turn
Bo. 3 Galv. Bundles
Machine Turnings
94.00
20.00
19.00
$8.50-9.00$
$8.50-9.00$
$16.50-17.00$

splant
$\$ 19.75$
18.75
18.75
18.75
18.75
18.75
16.75

Hix. Borlngs, Sht. Turn.
Short Shovel Turnings
Cast Iron Borings
crap Rails
Cut Ralls. 3 teer
Cut Rails, 18 -nnct
Angles, Splle Pars
Plate Scrap. Pumehine
Rallroad Specialues
No. 1 Casi
.R. Malleable
railroad grade f.u.b. tracks)

nCPFALO:

Delivered consumer's plant)
Nu. 1 Heavy Melt. Steel
io. 2 Heaty Mert. Sleel
No. 1 Bundles
No. 2 Bundles
No. 1 Bushellne
Short Shovel Turnings
12.50-13.00

Hixed Borlngs Tuin
Cast Iron Borings
Luw thus.

M 16 S S S C C H B S G B 1 S S C

I.OS ANGEI,EA:
(Dellvered consumer's planil
No. 1 Heary Melt. Sied
No. 2 Heisty Belt. Sien
Nu ${ }^{\text {V. }} 2$ Deal. Eun
Mlxed Enrings, Tumbacs
No. $]$ Casi
SAd FIRANCISCO:

- Dellwered cunsumer's plantl

No. 1 Heavy Melt. Sieel
No. 2 Heavy Melt. Steel
No. 1 Busheling
No. 1, No. $\frac{1}{2}$ Bundles.
No. 3 Bundies
Machine Turnings
Billet. Forge Crops
Bar Crops, Plate
Cast Steel
Eut Structural. Plate,
Alloy-free Turnings
Tin Can Bundles
Nu. 2 Steel Wheels
Iron, Sleel Axies
No. 2 Cast Steel
Concut Frogs. Switche
Scrap Ralls
Limenmusw Tyres

NONFERROUS METAL PRICES

Copper: Electrolytic or Lake from producers in carlots 12.00 c , Del. Conn. less carlots 12.12 3/a. refinery; dealers may add $3 / \mathrm{c}$ for 5000 lbs. to carlond ; $1000-4999 \mathrm{lbs}$. 1 c ; $500-99911 \mathrm{hc}$; $0-499$
2 c , Casting, 11.75 c , refnery for $20,000 \mathrm{jbs}$, or 2 c . Casting, 11.75 c , reflnery for 20
more, 12.00 c less than $20,000 \mathrm{lbs}$.

Brass Ingot: Carlot prices, including 25 cents per hundred frelght allowance: add $1 / 4 \mathrm{c}$ for less than 20 tons; $85-5-5-5$ (No, 115) 13.00c; $88-10-2$ (No, 215) 16.50 c , $80-10-10$ (No. 305) 15.75 c ; Navy G (No. 225) 16.75 c ; Navy N 10.00c; manganese bronze (No. 420) 12.75 c .

Zinc: Prime western 8.25 c , select 8.35 c , brass speclal 8.50c, intermediate 8.75 c, E. St. Louls, for carlots. For 20,000 lbs. to carlots add $0.15 \mathrm{c} ; 10,000-20,000$ 0.25c; $2000-10,000$ 0.40c; under 20000.50 c .

Lend: Common 6.35c, chemleal, 6.40c, corrodIng, 6.45c, E. St. Louis for carloads; add 5 polnts for Chicago, MInneapolls-St. Paul, Mll-waukee-Kenosha districts; add 15 points for Cleveland-Akron-Detrolt area, New Jersey Cleveland-Akron-Detroit area, New Jersy
New York state, Texas, Pacife Coast, RichNew York state, Texas, Pacinc Coast, Rtich-
mond, Indianapolls-Kokomo; add 20 points for mond, Indianapolls-Kokomo; add 20 points for Springheld, New Hampshire, Rhode Island.

Primary Aluminum: 99% plus, Ingots 15.00 c del. plgs 14.00 c del.; metallurgical $94 \% \mathrm{mln}$. 13.50 ec del. Base $10,000 \mathrm{lbs}$. and over; add $1 / 2 \mathrm{c}$ 2000-9999 lbs.; 1c less through 2000 lbs.

Secondary Aluminum: All grades 12.50 c per 1 lb . except as follows: Low-grade piston alloy (No. except as follows: Low-grade piston alloy (No.
122 type) 10.50 c ; No. 12 foundry alloy (No. 122 type) 10.50 c ; No. 12 forndry alloy (No. ingot (9214% Dlus) 10.00 c ; steel deoxidizers in notch dars, granulated or shot, Grade 1 ($05-9713 \%$) 11.00c, Grade 2 ($92-95 \%$) 9.50 c to 9.75 c , Grade $3(90-92 \%) 8.50 \mathrm{c}$ to 8.75 c , Grade 4 (85.90%) 7.50 c to 8.00 c ; any other ingot containing over 1\% iron, except PM 754 and hardness, 12.00 c . Above prices for $30,000 \mathrm{lb}$. or more: add $1 / 4 \mathrm{c} 10,000-30,000 \mathrm{lb}$. $18 \mathrm{c} 1000-$
$10,000 \mathrm{lbs} . \mathrm{ic}$ less than 1000 lbs . Frices in10,000 lbs. 1 lc less than 1000 lbs. Frices include freight
per hundred.

Magneslum: Commercially pure (99.8%) standard ingots (4-notch, 17 lbs.), 20.50 c lb., add ic for special shapes and sizes. Alloy Ingots, neslum-aluminum, 23 75c: AST $50-50$ R93.41T, nesium-aluminum, $13,14,17,23.00 \mathrm{c}$: Nos. 4 X , Nos. ${ }^{2},{ }^{3}, 4,12,13,14,17,23.00 c$, Nos. $13 \mathrm{X}, 17 \mathrm{X}, 25.00 \mathrm{~F}$; ASTM B-107-41T, or B-90-41 T, No, $8 \mathrm{X}, 23.00 \mathrm{c}$; No. 18, 23.50 c ; No. 18X, 2 , 5.00 c . Selected magnesium crystals, crowns, and muffs, including all packing screening, barrelung, handling, and other preparation charges, 23.50 c . Prices for 100 lbs. or more; for $25-100$ lbs., add 10 c ; for less than 25 lbs., 20c. Incendiary bomb alloy, lowed all other alloys for 500 lbs . or more.

Tin: Prices ex-dock, New York in 5-ton lots. Add 1 cent for 2240-11, 199 lbs., 11/c 1000-2239. $212 \mathrm{C} 500-999,3 \mathrm{c}$ under 500 . Grade A, 99.8% or hlsher (includes Stralts), 52.00 c ; Grade B, 99.8% or higher, not meeting specincations for Grade A with 0.05 Der cent maximum 51.624 c : Grade $D, 99.50-99.64 \%$ Incl., 51.50 c ; Grade E, 9999.49% incl. 51.1215 c ; Grade F. below 99% (for tin content), 51.00 e.

Antlmony: American, bulk carlots f.o.b. Laredo, Tex., 99.0% to 99.8% and 99.8% and over but not mesting specifications below, 1450 c ; 99.9% and over (arsenic, 0.05% max, and other tmpuritles, 0.1% max.) 15.00 c . On producers' sales add yic for less than carload to $10,000 \mathrm{lb}$; 32 c for $9999-224-\mathrm{lb}$. ; and 2 c for 223 lb . and less; on sales by dealers, distributors and jobbers add $1 / 2 c, 1 c$, and $3 c$, respectively.

NLekel: Electrolytic cathodes, 99.5%, f.o.b. refinery 35.00 c 1 lb .; pig and shot produced from electrolytic cathodes 36.00 c ; " F ", nickel shot or Ingot for additions to cast iron, 34 -00c; Monel shot 28.00 c .
Mercury: OPA celling prices per 76-lb. flask 1.o.b. point of shipment or entry. Domestic produced in Calli., Oreg, Wash., Idaho, Nev. Ariz., $\$ 191$; produced in Texas, Ark. $\$ 193$. Foren market, spot, New York, nominal for 50 Open market, spot, New York, nominal for 50
to 100 flasks; $\$ 158$ to $\$ 163$ in smaller quanties.
Arsenie: Prime, white, 99% carlots, 4.00 c lb .
Berylilum-Copper: $3.75-4.25 \%$ Be., $\$ 17 \mathrm{lb}$. contalned Be .
Cadnulum: Bars, ingots, pencils, pigs, plates rods, slabs, sticks and all other "regular"
stralght or flat forms 90.00 c lb., del. ; anodes, balls, dises and all other special or patented shapes 95.00 c 1 b . del.

Cobalt: $97-99 \%, \$ 1.50 \mathrm{lb}$. for 550 lb (bbl.); $\$ 1.52 \mathrm{lb}$. for 100 lb . (case) ; $\$ 1.57 \mathrm{lb}$. under 100 lb .
Indium: 99.9\%, $\$ 7.50$ per troy ounce.
Gold: U. S. Treasury, \$35 per ounce.
Silver: Open market, N. X. 44.75c per ounce.
Platinum: $\$ 35$ per ounce.
Iridum: $\$ 165$ per troy ounce.
Palladium: $\$ 24$ per troy ounce.

Rolled, Drawn, Extruded Products

(Copper and brass product prices based on 12.00 c , Conn., for copper. Frelght prepald on 100 lbs. or more.)
Shet: Copper 20.87 c ; yellow brass 19.48c; commerclal bronze, $90 \% 21.07 \mathrm{c}, 95 \%$ 21.28c; red brass, $80 \% 20.15 \mathrm{c}$, $85 \% 20.36 \mathrm{c}$; phosphor bronze, Grades A and B 5\% 36.25c; Everdur, Herculoy, Duronze or equiv. 26.00 c ; naval
brass 24.50 c ; manganese bronze 28.00 c ; Muntz brass 24.50 c ; manganese bronze 28.00 c
metal 22.75 c ; nickel sllver $5 \% 26.50 \mathrm{c}$.
Rods: Copper, hot-rolled 17.37 c , cold-rolled 18.37 c ; yellow brass 15.01c; commerclal bronze 90% 21.33c, $95 \% 21.53 \mathrm{c}$; red brass 80% $20.40 \mathrm{c}, 85 \%$ 20.61c; phosphor bronze Grade A, B $5 \% 36.50 \mathrm{c}$; Everdur, Herculoy, Duronze or equiv. 25.50c; Naval brass 19.12e; mangenese bronze 22.50 c ; Muntz metal 18.87 c ; nickel silver $5 \% 26.50 \mathrm{c}$.

Seamless Tubing: Copper 21.37c; yellow brass trass $80 \% 22.80 \mathrm{c}$, $85 \% 23.01 \mathrm{c}$.

Lxtruded Shapes: Copper 20.87e; architectural bronze 19.12c: manganese bronze 24.00c; Muntz metal 20.12 c ; Naval brass 20.37c.

Ancles and Channels: Yellow brass 27.98 c ; commercial bronze $90 \% 29.57 \mathrm{c}, 95 \% 29.78 \mathrm{c}$ commercial brass $80 \% 28.65 \mathrm{c}, 85 \% 28.86 \mathrm{c}$.
Copper Wire: Soft, f.o.b. Eastern mills, carlots $15.371 / 2 \mathrm{c}$, Less-carlots $15.871 / 2 \mathrm{c}$; weatherproof, foob. Eastern mills, carlot 17.00 c , less-carlots 17.50 c ; magnet, dellvered, cariots $17.50 \mathrm{c}, 15,000 \mathrm{lbs}$. or more 17.75 c , less carlots 18.25 c .
Aluminum Sheets and Circles: 2 s and 3 s , flat mill finish, base $30,000 \mathrm{lbs}$. or more; del.; sheet widths as Indicated; circle dlameter $9^{\prime \prime}$ and larger:

Gage	WIdth	Sheets	Cliccles
$.249^{\prime \prime}-7$	$12^{\prime \prime}-48^{\prime \prime}$	22.70 c	25.20 c
$8-10$	$12^{\prime \prime}-48^{\prime \prime}$	23.20 c	25.70 c
$11-12$	$26^{\prime \prime}-48^{\prime \prime}$	24.20 c	27.00 c
$13-14$	$26^{\prime \prime}-48^{\prime \prime}$	25.20 c	28.50 c
$15-16$	$26^{\prime \prime}-48^{\prime \prime}$	26.40 c	30.40 c
$17-18$	$26^{\prime \prime}-48^{\prime \prime}$	27.90 c	3290 c
$19-20$	$24^{\prime \prime}-42^{\prime \prime}$	29.80 c	35.30 c
$21-22$	$24^{\prime \prime}-42^{\prime \prime}$	31.70 c	37.20 c
$23-24$	$3^{\prime \prime}-24^{\prime \prime}$	25.60 c	29.20 c

Lead Products: Prices to jobbers; full sheets 9.50 c ; cut sheets 9.75 c ; plpe 8.15c, New York; 8.25 c , Philadelphia, Baltimore, Rochester and Bultalo; 8.75 c , Chicago, Cleveland, Worcester, Boston.

Zinc Produots: Sheet f.o.b. mill, 13.15c; 36,000 lbs. and over deduct 7%. Ribbon and strip $12.25 \mathrm{c}, 3000-\mathrm{lb}$. lots deduct $1 \%, 6000 \mathrm{lbs} .2 \%$ 9000 lbs. $3 \%, 18,000$ lbs. 4%, carloads and 9000 lbs. 3%, 18,000 (s. 4%, carloads and over 7%. Boller plate (not over $1200-2000 \mathrm{lbs}$. 12.50 c ; $100-500 \mathrm{lbs}$ it 13.00 c ; under 100 lbs . 12.50 c ; $100-500$ libs. 13.00 c ; under 100 ion plate prices.

Plating Materials

Chronle Acld: 99.75\%, flake, del., carloads 16.25c; 5 tons and over 16.75 c ; 1-5 tons 17.25 c ; 400 lbs . to 1 ton 17.75 c ; under 400 lbs . 18.25 c .

Copper Anodes: Base 2000-5000 lbs., del.; oval 17.62c; untrimmed 18.12c; electro-deposited 17.37 c .

Copper Carbonate: $52-54 \%$ metallic $\mathrm{cu}, 250 \mathrm{lb}$. barrels 20.50 c .
Copper Cyunde: $70-71 \%$ cu, $100-\mathrm{lb}$. kess or bbls. 34.00 C f.o.b. Nlagara Falls.

Sodium Cyanide: 96%, 200-1b, drums 15.006; $10,000-1 \mathrm{~b}$. lots 13.00 c f.o.b. Niagara Falls.
Nickel Anodes: 500-2999 lb. lots: cast and rolled carbonized 47.00 c ; rolled, depolarized 48.00 c .

Ntekel Chioride: $100-1 \mathrm{~b}$. kegs or $275-\mathrm{lb}$. bbls. 18.00 c tb., del.

Tin Anodes: 1000 los. and over 58.50 c , dol Tin Annades: $500-99959.00 \mathrm{c} ; 200-49959.50 \mathrm{c} ; 100-19961.00 \mathrm{c}$. In Crystals: 400 lb . bbls. 39.00 c 1.0.b. Gras. selll, N. J.; $100-\mathrm{lb}$. kegs 39.50 c .
Sodlum Stannate: 100 or $300-\mathrm{lb}$. drums 36.50 C del. ; ton lots 33.50 c .
Tine Cyanide: 100-lb. kegs or bbls. 33.00 f.o.b. Niagara Falls.

Brass MLII Allowances: Prices for less than 15,000 lbs. f.0.b. shipping point. Add \%e soi $15,000-40,000 \mathrm{lbs}$; 1 c for $40,000 \mathrm{lbs}$. or more

Scrap Metals

	Clean Heavy	Rod Clean Ends Turning	
Comper	10.250	10.250	9.500
Tinned Copper	9.625	9.625	
Yellow Brass	8.625	8. 375	
Commenclal bronze			
90\%	9.375	9.125	
95\%	9.500	9.250	8.375
Red Brass, 85%	9.125	8.875	35
Red Brass, 80%		8.875	7.250
Muntz metal	8.000 9.250	7.900	4.635
Phos. br., A, B, 5\%... 11.000 10.750			
Phos. br., A, B, 5\%. Herculoy, Everdur or	10.250	10,000	9.80
Naval bra	8.250	8,000	
Mang bronze	8.250	3.000	500

Other than Brass Mill Scrap: Prlces apply co materlal not meeting brass mill specificatios and are fob shipoing point; add $3 / \mathrm{c}$ lu and are 1.0. $60,000 \mathrm{lbs}$. of one group and $\frac{1}{4}$ shlpment same car. Typical prlees follow:
(Group 1) No. 1 heavy copper and wre, No. 1 tlnned copper, copper borings 9.75 c ; No. copper wire and mixed heavy copper, coppe tuyeres 8.75 c .
(Group 2) soft red brass and borings, alumbnum bronze 9.00 c ; copper-nickel and bornp 9.25 c ; car boves, cocks and faucets 7.75 c , metal 15.50 c ; babblt-lined brass bushlng 13.00 c .
(Group 3) zincy bronze borings, Admiralis condenser tubes, brass plpe 7.50 c ; Muntz ned condenser tubes 7.00 c ; yellow brass $6.2 x$ mankunese bronze (lead $0.00 \%-0.40 \%$) $7.2 x$ (lead $0.41 \%-1.0 \%$) 6.25 c ; manganese bronus. borlngs (lead $0.00-0.40 \%$) 6.50 c , (lead 0.2 . 1.00%) 5.50c.
Aluminum Scrap: Prices f.o.b. point of ship ment, truckloads of 5000 pounds or over, 3 regated sollds, 2 S , 3 S , 5 c 1 b ., 11,14 , ells 5 c lb. Segregated borings and turnings, wrough. alloys, $2,2.50 \mathrm{c} \mathrm{lb}$, Other high-grade allon 3.50 all sod plant scrap, all sold 3.2 .50 ctb borings and turnings one ceni les than segregated.
Lead Serap: Prices 1,0.b. polnt of shipment For soft and hord lead, including cable lewe deduct 0-55c
Zlnc Scrap: New cllppings 7.25 c , old zinc 5.28 f.o.b. polnt of shlpment: add $1 / 2$-cent for 10,00 lbs. or more. New die-cast scrap, ramaled grilles 4.95 c , add $1 / 2 \mathrm{c} 20,000$ or more.
Nickel, Monel Scrap; Prices 1.0 b point of
shipment; add $1,6 \mathrm{c}$ for 2000 lbs . or more of nlekel or cupro-nickel shipped at one tume ais 20,000 lbs. or more of Monel.
(dealers) allowed 2 c premium.
Nickel: 98% or more nickel and not over $1 / 4$ copper 26.00 c ; $90-98 \%$ nickel, 26.00 e per nickel contained.
Cupro-nickel: 90% or more combined nickeb and copper 26.00 c per lb . contained nych plus 8.00 c per lb, contained copper; less tax 90% combined nickel and copper 26.006 tov contained nickel only.
Monel: No. 1 castines, turnlings 15.00 c ; clioping 20.00 c : soldered 'sheet 18.00 c

```
Sheet & Strip Priccs, Page 180
```

Sheet backlogs continue heaviest of all major steel products and possibility of deliveries of unrated tonnage in third quarter are no brighter. Manufacturers civilian goods who have expected supplies of sheets and strip for their products find little possibility of obtaining shipments in this quarter, unless priorities assistance is forthcoming.
Boston - Heavier orders for narrow cold strip against allotments dashed hopes for delivery of any substantial unrated volume this quarter. Orders placed on an unrated basis in some instances have been given allotments or priorities assistance for fabrication of components for essential civilian goods for which quolas have been assigned, an instance oeing producers of stampings. Typewiter builders have both rated and unalidated orders in with mills. A flurry in rated orders is ascribed to late allotments by WPB and delays in applications lor them on part of some fabricators who had hoped to fill requirements on an unrated basis. This has extended backlogs of priority tonnage with some producers well into fourth quarter. Cancellations continue irregular. No definite promises are made as to unrated shipments in third quarter. Only late cancellations involving tonnage already procussed are likely to make available free spot material, providing specifications are suilable.
Hot strip deliveries have improved materilly with some mills, reffecting cancellations of forward orders on the part
and of converters, recently placed on a rerised replacement schedule as to hot metal requirements. This also has resulted in revisions in July hot mill schedules.
Chiengo - Sheemakers are hopeful that WLB's request for reports on orders for third quarter will bring a clearing of considerable tomage. There is a feeling that some consumers have placed unated orders with several mills in hope dit gelting deliveries from at least one. Under present conditions, there is scant hope for unrated business to be accommodated this year. Sheets needed urgently for early delivery require a directive and some mills receiving such directives have uncomfortable overloads. trip mill sizes are not available before larch, hot-rolled and hot-rolled pickled February. Cold-rolled finds openings a December. Galvanized is in March. larow and wide strip and hot-rolled rip stands in December, while hotroled pickled is not obtainable before rebruary.
Cleveland - There seems little likemood that any considerable tonnage of rrated orders for sheets and strip will e rolled this quarter. However, in a instances abrupt opening in rolling xhedules, resulting from contract canNllations, has enabled some producers to If tonnage for civilian goods account. Invever, these opportunities are relativefew and tonnage involved is small. xive demand continues for steel on the of contand continues and steel drum proFins, with little change noted in other *war requirements. Sheet sellers are uked through the remainder of this lar on most items, with galvanized Fended into March. Further increase ${ }^{2}$ onrated orders has been noted lately.
fittsourgh - sheet mill rolling schedcontract cutbacks. In many instances contractors have left the tonnage involved in a contract adjustment on mill rolling schedules on the chance of booking other war contracts or that shipment of the steel would be made for civilian goods account. Leading interest here reports near record carryover tonnage in third quarter of about a month's output on galvanized sheets, cold-rolled items and among the lighter gages of hatrolled sheets. The proportion of unrated orders to CMP authorized tonnage has increased substantially in recent weeks. Sellers report many contractors are placing duplicate unrated orders with
a number of producers on the hope that
the tonnage could be meshed into rolling schedules when order cancellations occur. However, little sheet or strip tonnage is expected to be shipped for civilian goods during the third quarter.
The overall steel supply situation for third quarter is expected to leave little or no steel for civilian goods account, trade reports indicate. However, this is on the basis of current military requirements, and therefore does not take into consideration the expected sharp increase in war contract cancellations and cutbacks anticipated during the period. Third quarter war steel requirements are expected to be about 15 million net tons on basis of current schedules, com-

Hanna Fool Contral Valve provides easy, quick control of Hanna Cylinder.

ALL the operator at the Raymond Mfg. Division of Associated Spring Corp. has to do to quickly clamp the heavy artillery-type spring in place for end grinding is to step on the Hanna Foot Control Valve. Presto ... the Hanna Cylinder instantly clamps down and grinding starts. And presto! Another touch of the foot valve and the spring is released.

This is just one more example of the 1001 ways of using Hanna Cylinders for pushing, pulling, lifting, pressing, clamping and controlling. Where can you use smooth, dependable, Hanna Cylinder Power in your plant? Write for catalogs No. 233 on high pressure cylinders. No. 230 on low pressure.

> HANNA DNGINDDRING WORKS
> 1765 elston avenue
> Air \& Hydraulic RIVETERS
> (3)
> chicago 22, ILLINOIS
> CYLINDERS - HOISTS
pared with 16.1 million in the initial three months this year on at two-front war basis. After an allowance of 300 ,000 tons for mechanical breakdowns, strikes, etc., there is an apparent balance of 800,000 tons for civilian use. However, steel carryover tomnage into third quarter is estinnated at 1.9 million. About 500,000 tons of this 1.9 million represents tonnage involved in contract cancellations but which has not yet been reported back to mills.
New York-Although deliveries arc not quite so extended, the situation in sheets remains tight. Mills had a carryover into the current quarter of about 000,000 tons and most producers believe they will be unable to catch up before last quarter, if then. This means that
unrated tomage will be practically out of the question for the current quarter, although there may be a little tonnage in the heavier gages.

Prospects for civilian automobile tonnage in third quarter are poor. Some, believe that the automobile builders' best hope lies in the operation of Di_{i} rection 70, Reg. 1, which permits diversion of nilitary allotments on civilian type products, where cutbacks have occurred. Help may also be gained through application of excess stocks and this should be especially true with regard to stainless steel, on which all mill orders are rated. It appears that there is a fairly good supply of excess stainless steel at various plants throughout the country. However, this tonnage may prove rather
costly as it will be found to be in various shapes, which means a substantial scrap loss; also some will be in grades more difficult to process than those usually specified.

Reflecting recent shell cancellations is a substantial cutback in the order of one large container manufacturer herc for long terne shell containers

Cincinnati-Sheet mills in this district went into third quarter with carryover tonnage on rated orders which shows no relaxing in the tight situation on nearly deliveries. Readjustments and cutbacks may release sheets during the quarte: for household appliances and other domestic needs, but these developments so far have not been in volume to assure the material. The volume of unvalidated, hence unscheduled, orders is constantly expanding.
St. Louis-Pressure on sheets colltinues heaviest in two years but a paradoxical labor situation threatens to reduce production by 20 per cent in the next few weeks. In spite of heavy labor layoffs and shutdowns in four major consuming plants, labor shortage is becoming more critical. Rated sheet orders now scheduled for January may be extended soon. As a result of the layoffs, War Manpower Commission advisors here recommend suspension of manpower controls.

Steel Bars . . .

Bar Prices, Page 180
Bar deliveries on smaller diameters are becoming easier and it is possible some "free" tonnage in small sizes mar) be available in third quarter. The situs. tion is mixed, some producers being booked solidly through third quarter and into fourth. At the same time it is possible to place orders for compard. tively prompt delivery, notably in alloys, which are fairly easy, some electric fur. nace alloy producers being able to promise July delivery.

Philadelphia-Small size hot carbon bars can be had in third quarter and there may even be some "free" tomnage in small specifications before the quarter is over, but little will be available in the sizes involved in recent shell cancellia. tions. Cold-drawn carbon bar scheduls may reflect shell cutbacks in third quarand possibly to a limited extent before the present month is over. However, cold drawers doubt if their operations will be affected much before the last of the vear. At present they are booked fairly solidy into November and have nothing to oflor before December and January on largef sizes, from about $21 / 4$ inches up. Much of this larger size tonnage is going into rockets, although some is for strikt components for fire bombs and other munitions.

Cold-drawn alloy bars can be had it August and September, the situation being generally easier as a result of curtailments in aircraft and combat tank programs, which also affect hot-rolled alloys. Some producers of hot-rollied electric furnace alloys still can pronlise deliveries for July.
Chicago-Considerable confusion crists
over the bar situation. Some producens are heavily booked through third quarif and into fourth; but reports are current that it is not difficult to place ordes with some makers here and elsertione for fairly prompt scheduling. This is
true for alloy grades, which are available for August delivery. Quality and regular carbon grades range from September through December. It is agreed, however, that the shell billet situation has eased considerable, due in part to recent cutbacks in heavy ammunition schedules for the remainder of the year. With the clasing of the Geneva structural mill, it is reported that a substantial tonnage of shell billets on order for Kaiser has been transferred to a Chicago mill.
St. Louis-Pressure for steel bar delivery is easing under cutbacks in ammunition and bomb production schedules. Labor 'shortage hampers production. Increasing number of civilian orders for all purposes is adding to potential back logs.
New York-Despite cutbacks in shell work bar sellers continue to quote late in the year and beyond on all but smaller sizes. On hot-top quality steel some producers are quoting well into second quarter next year. Deliveries on alloy bars, on the other hand, are casy, falling generally in August.
Steel Plates
Plate Prices, Page 181
Plates continue the easiest major steel product, with some capacity for unrated orders expected to be available in third quarter. Buying is light. The situation is unbalanced, a midwestern mill receiving some directives recently in spite of the fact some other mills are actively seeking tonnage. At least one producer can take wide and narrow sheared plates 1or September and universal for October. Clicago-Plate situation varies accordily to mill, some makers finding scledules declining and others holding at a substantial level. One local platemaker th the latter category continues to receive an occasional directive despite the fact that mills in other areas are actively seeking new business. Result is that Ihe local mill is in no position to take on unated business. Another mill, less hexrily booked can take both wide and narrow sheared plates in September, and uniersal in October.
Boston-Plates are available against unated orders for August with some mills, notably for universal, but open ending of CMP has resulted in small material increase in buying. For Navy ships moderate tomnage is required, but below peak. Some plates are required for ship reconversion but demand Irom other directions is light. Easing in plates increasingly improves semifinshed supnly at some mills.
Philadelphia-Plate demand is uneven, wilh sellers of sheared plates booked sis to eight weeks alkead. Capacity for unated tonnage will be available before Wird quarter is ended but to date rehiviely little has been booked.
New York-Plate demand is fairly aclive, with an increasing volume of unrated tonnage and with some scattered Puers placed for Sweden, Portugal and be French colonies. Specifications are xavy for ship reconversion and rekir:
Pittsburgh - Manpower is the maIn choke point in effort to increase prosertion of sheets on plate mills that have Tmpleted plate schedules for shipbuild$\%$ and other key war programs. Howprogress is being made and it is
ared that the tight delivery situation
in shects can be eased somewhat this quarter through greater output on converted plate mills. Plate producers expect to have considerable capacity for unrated orders for universal plates this quarter. The delivery situation on sheared plates is somewhat more extended, but here also shipment on unrated orders will undoubtedly be made during August or earlier. Volume of unrated plate orders has been relatively small to date, for most heavy industries are still working off government contracts and there is little pressure to get on mill rolling schedules because of the excess capacity.

Wire

Wire Prices, Page 181
Chicago-Dealers and jobbers in-
dicate that virtually all merchant wire products are being sought actively. This is surprising in view of the tight restrictions which WPB is enforcing on lumber sales, thus holding down nail consumption, and the fact that heary rainfall probably will impair crop yield this year. Demand for small sizes of nails and steel fence posts exceeds that Ior other merchant items. For manufacturers' wire, the trade anticipates that substantial orders for mesh, electrical wires and cables will be offered soon. Consumers are keeping close watch over inventories.
Boston - Pressure is increasing for priorities assistance on delivery of wire orders placed by the automotive industry, now with mills on an unrated basis with dim chances for third quarter de-
 industry due to the costliness of hand labor. But the best housckeepers in the World, the U. S. Army, Navy and Marine Corps. dare not neglect frequent and thorough cleaning of all equipment to safeguard against fire and malfunctioning, and to permit fast, certain inspection. This cleaner, developed to meet their high standards, removes greasc, dirt and grit 5 times as fast as any ocher method. It cleans by a balanced combination of hea, detergent, water and friction. It is typically "army" in simplicity of design and operation; in 30 minutes, the entire machine can be dismantled and complerely cleaned.

Wartime uses of Wrigley's Spearmint Gum also point the way that industry may benefit when this quality product again becomes available. It will again be a "help on the job" in many ways. Right now no Wrigley's Spearmint is being made, as present conditions do not permit the manufacture of Wrigley's Spearmint in quantity and quality sufficient for all. But remember the Wrigley's Spearmint wrapper-it is a certificate of high. est quality and flavor-and will always remain just that.

You can get complete information from
Remember this wrapper
Clayton Manufacturing Company, Alhambra, Calif.
livery in volume. Unless firm allotments are forthcoming or cancellations develop in much greater volume than has been the case until now, prospects of delivery of much "free" or open unvalidated volume this quarter are small. Some aircraft volume, including valve spring wire, has been reinstated. Bookings on rated orders are lower and in some instances shipments about balance incoming volume of this type. Aggregate tonnage involved in unrated tonnage offered is heavy, but definite delivery promises are few. Here and there government cancellations have opened some fine wire capacity which is promptly filled by moving rated orders ahead. Nevertheless, several mills are looking for orders for wire 0.021 and finer. Spring and
basic wire schedules are filled with CMP orders. A somewhat tighter situation in rods with some mills is complicated by 40,000 tons wanted for France. Buffalo - Although still working on substantial top priority contracts, a leading wire producer reports a good chance that it will be able to start filling some non-rated low carbon wire business by the end of July. Hopes were based on a falling off in demand as a result of cutbacks in wire for fragmentation bombs.

Tubular Goods . . .

Tubular Goods Prices, Page 181
Seattle-Inquiry for cast iron pipe is active but delivery is unsatisfactory,

How One Forge Shop Uses Refractory Concrefe

Refractory Concrete used for lining center door and for arches over all doors of this forge furnace. A. Finkl \& Sons, Chicago, have been using Refractory Concrete for the past twelve years.
100% war production by this plant prevents taking pictures of recent installations. But here is one of their early Refractory Concrete jobs that led to steadily increasing use of this jointless, cast-in-placerefractoryduring the past twelve years.
Another example: Big billets are heated in Finkl's press forge furnaces. The doors often rest on top of the billets. Flame impingement burns off the bottom of the door casting. A lining made up of small pieces doesn't last long, because the pieces drop out. The one-piece Refractory Concrete lining stays where it belongs, even when the bottom of the frame is gone. The framecan be saved
by bolting on a new bottom-plate. Since 1933, the convenience and economy of Refractory Concrete on such jobs have led Finkl to use it for arches and sub-hearths, for irregular sections and inaccessible locations. For special shapes, they make precast Refractory Concrete units, ready for use in 24 hours. For structures subject to soaking heat, such as furnace foundations, they use Heat-Resistant Concrete made with LUMNITE.
Let us tell you how LUMNITE can save time and money in your plant. The Atlas Lumnite Cement Company (UnitedStatesSteel CorporationSubsidiary), Dept. S, Clurysler Bldg., New York 17, N. Y.

60 days being apbout the earliest promised. In some instances other types of pipe have been substituted. Seattle has ordered 275 tons of 8 and 16 -inch for local improvements from H. C. Purceli for U. S. Pipe \& Foundry Co. Pacilic States Cast Iron Pipe Co. has booked about 200 tons for Vancouver, Wash Carlton, Oreg., will open bids July 9 for 14,500 feet of 4,6 and 10 -inch pipe and fittings. R. H. Corey, Portland, Oreg., is engineer. Plentywood, Mont., has approved a $\$ 48,000$ bond issue for has proposed water system. Grandview Wash., has sold a $\$ 20,000$ bond issue and will ask bids soon for 8 -inch cast iron pipe. E. F. Pugsley, Seattle, is low to Kelso, Wash., for furnishing pipe, at $\$ 40,000$ for cast iron pipe and $\$ 36,000$ for concrete.

Tin Plate . . .

Tin Plate Prices, Page 181

Chicago-Despite the fact that November is the first month with openings for tin plate, order volume is substantial and most is unated. It is a question whether the unvalidated business will find its way into schedules this year. Tin plate makers also report that lend-lease commitments for export against third and fourth quarter directives also aggregate heavier than in several months. Shipments from mills are at a good pace, but trouble may lie ahead as the expanding grain movement from westem states increase the strain on box car supply.

Pittsburgh - Included in the exparsion program of Carnegie-Illinois Steel Corp., recently announced, to increasie cold-reduced strip facilities considerably, are several new pots to be installed on the hot-dip lines of the Irvin works. This is an interesting and significant development inasmuch as many observers have written of much hot-dip tin plate equipment as excess capacity. It now appears that postwar demand for dipped plate will be more than currently existing cas pacity can produce. According to io parity can produce. According lo be true of electrolytic lines but as yet there is no evidence to substantiate this poini.

Structural Shapes

Structural Shape Prices, Page 181

New York -While few structural awards are being noted, inquiry is in. creasing and is placing a heavy strain on drafting departments of fabricators. In fact, with their forces having been so badly depleted by demands of some e the more urgent war activities, such as shipbuilding, some leading fabricators today are being forced to pass up sonie of the projects now coming out for figures. Of course, the emergency in some of these lines, such as shipbullding. is abating; however, not sufficiently yet to make any important difference, Fabricators believe it will be at leass another three or four months perbap before an appreciable easing appears is the supply of draftsmen; and some be lieve it will be longer than that.

Included in the few awards reportee at this time is a plant addition for the New Departure Division of Genersl Motors Corp., Hartford, Conn., requiring 335 tons, placed through Topper \& Griggs, New Haven, with Bethlenem Fabricators, Bethlehem, Pa.

One factor for delay in placing stric
tural steel is continued tightening in shape mill deliveries, due in part to further shell work and lend-lease rehabilitation requirements. Mills are booked solidly into September, with one large producer quoting November shipments on standard sections. Prospects for unrated tonnage in third quarter are slim, a situation which is holding up considerable inquiry.
Philadelphia - Domestic structural orders are light, although considerable work is being figured and shape schedules are well extended. At least two large producers are out of the market for third quarter on standard sections, with one booked solidly into November. Contributing to this situation is said to be lend-lease business for construction abroad. United Engineers, Philadelphia, is asking bids on an unstated tonnage for a carbon black plant in Texas.
Chicago - The recent wave of new construction work has been slow in reaching the stage of award. This is believed to be due to the tightness of steel and also to an inability to gain govermment approval. In the meantime, new inquiry has been light. However, reports are heard that many new jobs will be out for bids in the next few weeks. September is the first open month on mill books for standard shapes.
Pittsburgh - New buying on the storage building and barracks program has brought in a fair tonnage during the past week. There is some miscellaneous construction work, but in the main new tomnage is small compared to backlogs now existing. Cancellations have come through on some contracts and producers here expect some structural tonnage will be available in third quarter for unrated orders despite the fact that most mills are now booked for complete capacity during that period.

Reinforcing Bars . . .

Reinforcing Bar Prices, Page 181
Chicago - Inquiry for reinforcing stee, except small miscellaneous jobs, has dropped sharply in the last week or ten days. There also has been a dedine in awards on which bids are already in. Suppliers report that some projects seem to evaporate after bids are taken, the assumption being that sponsors fail to get government approval.

Pig Iron

Pig Iran Prices, Page 183
General shutdown by foundries the irst week in July interrupted pig iron melt somewhat but resumption this week will be at full capacity of labor supply. Additional stacks are being blown out Ior repairs as the hard driving of many past months taken toll of linings. Another stack has been blown out in the Chicago district and one in the Youngstown area. Backlog of war castings orders is estimated at five months.
Philadelphia - Curtailment in pig ron shipments the past week because 4 holiday influence came as a welcome treather for producers as most were beund on shipments, with substantial demand looming. Official Washington estmates place war order backlogs of gray ion foundries at five months. Outlook mong basic consumers also is active. $\$$ leading Buffalo producer expects to a large blast furnace back in pro-
duction about the middle of August after being down for repairs since early in the year.
Chicago - The fact that many foundries were down last week to give workers a holiday, to check and repair equipment and to take inventory was a welcome relief to pig iron suppliers. With iron in tight supply, due partly to strong demand and partly to a deteriorating blast furnace situation in the district, any lessening of consumption tends to remove the strain. While foundries have had some orders cut back, other business of essential character is in hand to take its place. Inland Steel Co. blew out its Indiana Harbor No. 5 furnace June 23 for relining, leaving 37 of the district's 41 stacks active. Long and active campaigns are taking their toll of furnaces now. In-
terlake Iron Co. found it necessary to take wind off one of its two Federal furnaces four or five days for repairs.

Boston - Most consumers strive to maintain inventories close to 30 days and monthly shipments are relatively numerous, without material change in melt. For larger consumers inventory limitations tend to retard normal forward buying and in case of basic this margin, while safe for the season, is dangerously low for periods of uncertain transportation. Shortage of labor continues to hamper increase of melt in several industries on which production controls have been eased or removed.
Youngstown - Carnegie-Illinois Steel Corp is blowing out its No. 3 blast furnace at Farrell Works, one of two at the plant, for relining, expected to be

COLD DRAWN STEEL TUBING

SPIRAL BRAZED

low carbon monel high carbon alloys

SEAMLESS

high carbon . . low carbon. . monel . . alloys . . stainless

WELDED

monel
stainless
low carbon

SPECIALTIES.

s.
fabricated from tubing inquiries invited
Sizes $5 / 8$ inch OD and Smaller

AGALOY
 TUBINGCOMPANY

MILL: SPRINGFIELD, OHIO
Executive and Sales Offices:

1027 NEWARK AVENUE ELIZABETH 3, NEW JERSEY

down for nearly four months.
New York-Pig iron shipments are appruaching normal, now that the holiday period is over. Various foundries, although not quite as many as originally expected, closed down cluring the first week in July Lor vacations and inventory taking. Uuless the weather is excessively hot, the inclication is that the melt over the next several weeeks will be at as high a rate as the supply of manpower will permit, for plenty of business appears to be in sight.

In connection with recent reports of tentative orders being booked by producers for shipment to Sweden, it is understood that the question of bring-
ing iron ore from Siveden to this country in payment did not seriously enter the negotiations. The business was placed tentatively on the basis of price ruling at time of delivery, with payments to be financed on regular terms.

Cincinnati-The foundry melt during the holiday week was far below normal because of numerous vacation shutdowns. Demand for castings has not slackened and the backlog of orders is heavy. Buying of pig iron for third quarter, however, reflects little hope for a general expansion of operations in the face of limited manpower. Shipments recently have been more satisfactory, and the shutdowns also aided in
 buitt for almost every heayy-duty hearing application where the load is radial. Use of AMERICANS in heavy machinery lowers maintenance costs and increases the performance-life of vital equipment. AMERICAN RADIAL ROLLER BEARINGS are readily adaptable because the outer race is removable for easy assembly. Rugged durability and long life are assured by special heat-treated alloy steel. Constant inspection and precision tests make for absolutefaccuracy and smooth, quiet performance. AMERICAN RADIAL ROLLER BEARINGS are made in five styles, 4 S.A.E. series and 85 sizes. Special designs to your requirements are also available. Write today.

AMERICAN ROLLER BEARING COMPANY PITTSBURGH
 PENNSYLVANIA

Pacific Coast Office: 1718 S. Flower St., Los Angeles, Calif.

AMBRICAN

Heavy-Duty ROLLER BEARINGS
building up stocks which were critcally short in recent months.

Buffalo - Pig iron demand continues to hold at about recent peak levels. Railroad demands head the list of peacetime and reconversion orders. A growing volume of civilian work is reported edging its way into order books. An increased tonnage is said to be moving to New England consumers, both by canal and by rail.

Bolts, Nuts . . .

Bolt, Nut, Rivet Prices, Page 181
New York - Bolt and nut manufac turers assert that there has been only a slight overall easing in their backlogs. Cutbacks have not been as heavy as expected and have been offset to a considerable degree by other work, largety for the Army and Navy. At present a large number of bolts, running into the millions, are being figured by fabricator for knock-down barracks. They fall in the range of small sizes, particularly 3/8-inch.

Deliveries on small bolts now average around 10 to 12 weeks, while those on the large range around 4 to 5 weeks, reflecting particularly the lag in heary building construction.

Bolt and nut makers generally are not accepting unrated orders, as they are not sufficiently sure that they will be able to obtain unrated tonnage from mills to meet the schedules desired.

Scrap

Scrap Prices, Page 184
Steelmaking scrap and all other grades except light scrap, borings and turnings are strong at ceilings, and the latter are advancing close to the top as demand continues and supply shrinks. Cast grades are continuously scarce and some steelmaking scrap also is less than de. mand. Lack of yard labor to process steel scrap causes some tightness.

Philadelphia-Machine shop turnings and mixed borings and turnings have advanced again, reaching $\$ 12.50$ to $\$ 13$, delivered. Expectation is general that these grades will reach ceilings of $\$ 13.75$ shortly. No. 3 bundles also are higher, at $\$ 14.75$ to $\$ 15.25$. All other grades are at ceilings, with demand in general in excess of supply. This is particularly true of cast grades and in less degree in better grades of melting steel. There is a reasonably good supply of steel scrap but not enough labor at yards to process it.

Boston-Strength in heavy melting steel is reflected in firmer prices for lighter steelmaking grades, unprepared and short shoveling turnings, among others. Bids for machine shop turnings are better than $\$ 1.25$ above the recent low. Demand for all grades is more active, including chemical borings at ceiling, while recent spot offerings of cast scrap bring out numerous bids at ceiling.

Cleveland-More active demand for all scrap grades is noted here, and morement from this district into the Young. stown area has also increased recently. All softness in turnings prices has disappeared, with machine shop items moving at $\$ 11$ to $\$ 11.50$. Supply of this grade continues to tighten as effect of cutbacks begins to be reflected in current production schedules. Cast scrap is in particular short supply, with slight easing io
foundry manpower situation permitting moderate increase in gray iron castings output. Considerable tonnage of turnings is moving into this district via lake vessel, and these shipments are expected to be increased over the remainder of the navigation season.
Pittshurgh-Further tightening turnngs supply is indicated over the next few weeks, resulting from additional war contract cutbacks, particularly in the ammunition program. Reflecting this situation machine shop turnings are up another 50 cents and are currently moving within the range of $\$ 16$ to $\$ 16.50$. There is active demand for all serap grades, a reversal of the former intermittent buying policy for stock replenishing. Dealers are trying to move material through yards as quickly as possible, but manpower shortage continues the major limiting factor. Steel foundries have unusually low scrap inventories. This factor, combined with the indicated continuation of current high blast furnace and steel operations are the motirating forces behind present active demand for all scrap grades.
New York-While there are few new orders, heavy melting steel and borings and turnings are moving in substantial volume to Bethlehem, Pa., and Sparrows Point, Md. Heavy melting still also is being shipped into the Pittsburgh area. Except for borings and tumings all major grades are at ceilings and undertone in the latter is strong. Brokers are quoting $\$ 8$, New York, and $\$ 8.75$, Northem New Jersey, on machine turnings and mixed borings and tumingss. Curtailment in foundry, operations the first week in July for vacations and inventory temporarily eased pressure on cast grades, but cast supply still is far short of demand.

Cincinnati- Dullness such as has not been experienced during the wartime years is current in the iron and steel scrap market. The condition is undoubtedly due in part to the holiday and nacations by many melters the week begiming July 1.
Recent purchases by mills have been small, in an apparent effort to reduce inventories. Nevertheless, this lack of interest in buying has not been accompanied by pressure on prices, which are firm at ceiling on heavy grades. St. Louis-Scrap shipments continue low and demand is brisk, mainly from Chicago melters. St. Louis consumers are placing a few orders for local material but none for scrap from remote areas. Reserves are about five weeks. Heavy melting steel is most sought grade. Seattle-Scrap market conditions are satisfactory to steel mills. Good material is plentiful from local sources. Inventories are being held steady. Scrap yards have less difficulty preparing material.
Los Angeles-Some No. 1 heavy melting steel is moving east again on priority allocations, indicating no shortage on the Coast. Mill reserves are reported ample and prices have made no advance in the last two weeks. Negligible quantities of war-front scrap are reported arriving as ballast in ships from the Orient. More Non-reusable salvage material is entering ue market from local sources, partially compensating for smaller tonnages of hipyard scrap. No. I heavy melting teel is selling at about $\$ 2$ under ceiling.

Receipts of turnings and borings show little change.
Buffalo-Stronger tendencies dominate the scrap trade following the recent buying flurry, but no appreciable new business was placed this week. While serious maupower problems still exist, dealers renort 110 difficulty covering previous substantial sales. Dealers find workers released from war plants affected by order cutbacks are not willing to accept scrap yard jobs. Favorable weather, however, has augmented the flow of material. Signs of price hardening are noted among dealers who are discussing the possibility of higher prices on turnings, which advanced $\$ 1$ a ton on latest business, but are still below ceil-
ing. No further lake scrap has arrived since the recent. re-allocation of upper lakes material originally scheduled for local consumers. The heavy flow of scrap from the eastern seaboard, hovever, contimues, via the barge camal.

Chicago-Scrap prices are unchanged. The market continues active, with prime grades at ceiling and turnings and borings holding their recent advances firmly. It is reported but not confirmed the latter have taken full ceiling but these transactions appear to represent broker rather than consumer buying. Deteriorating blast furnace situation is playing a part in demand for turnings and borings. Heavy melting steel not too plentiful and with mills holding operations steady at near

From the first pair to the 10,000 th pair on your order, you can depend upon "Steel Products" Precision Gears to be perfect facsimiles and mates which will insure long and efficient operation of your geared equipment.
The Steel Products Engineering Company has the skilled workers and modern facilities to generate precision gears in quantity, using the most modern equip-
ment through to Gleason Universal Testers and involute checkers.

We are equipped to generate spur gears from 3 diametral pitch, and $42^{\prime \prime}$ diameter, on down; straight bevel gears, to maximum of $12^{\prime \prime}$ diamerer; helical gears; worm and worm wheel; and many other forms, including profile work, splines and ratchets.

Our complete engineering, development and manufacturing facilities are available to help solve your problems with gears whose quality and interchangeability have been proved in the bands of leading U. S. industries and over a period of two wars. Your inquiry regarding any type of special or standard gear will receive our prompt attention. Write for booklet showing views of our plant and same of our products.
KEEP ON BUYING WAR BONDS

THE STEEL PRODUCIS ENGINEERING CO.

REVOLVATOR
 pobitaile elevators

Two Men Plus REVOLVATOR Piling 1200 ib Hogsheads in Tobacco Warehause.

Simply Press A Button or Turn a Crank

and up go bulky hogsheads or heavy dies; paper rolls or wooden cases; bales of cotton or sheets of metal-to be slid into place a moment later. With REVOLVATOR you con lift, pile, tier or stack almost any material with a fraction of the time and labor required by hand. Facilitates car loading, press feeding, or servicing ceilings. Piles clear to ceiling, utilizing every foot of storage space.

REVOLVATOR
 hYoraulic alivators

These Hydrautic Elevators Comply with all State Requirements. For El
Water or Oil-air Operation.

Used as ramp eliminators between basement and street level or between floors of different levels, or as press feeders; in fact, for nearly all short lifts (up to 26 feet) this type of elevator is the mast practical and economical. Safe and quiet; easy to install and operate. Capacities up to 30,000 lbs.
Now is the time to prepare for post war campetition by installing REVOLVATOR PORTABLE ELEVATORS, REVOLVATOR HYDRAULIC ELEVATORS, and RED GIANT LIFTRUCKS. They're safe, efficient, economical.

Write us your requirements.
y $=31$ toth 5
maximum capacity good material moves readily. Inventory of some mills is not good and allocations are more numerous than recently

Iron Ore

Iron Ore Prices, Page 182

Shipments of Lake Superior iron ore in June totaled $10,621,309$ gross tons, compared with $11,910,685$ tons in June, 1944, according to the Lake Superior Iron Ore Association, Cleveland. Details of shipments from various ports are as follows:

	$\begin{aligned} & \text { Junc, } \\ & 19455 \end{aligned}$	$\begin{aligned} & \text { June, } \\ & 1944 \end{aligned}$
Escanaba	625,753	755,445
Marquette	556,905	626,186
Ashland	565,037	820,791
Superior	3,446,821	3,944,200
Duluth	2,838,259	3,076,904
Two Harbors	2,521,135	2,687,159
Total U. S. Ports	10,553,910	11,910,685
Michipicoten	67,399	63,955
Grand Total	10,621,309	11,974,640

To July 1 total season shipments totaled $29,024,586$ tons, compared with $29,376,930$ tons to the corresponding date last year. Details of shipments are as follows:

Escanaba	To July 1, $1,883,154$	To July 1 , 2,152,141
Marguette	1,446,606	1,298,412
Ashlind	1,757,234	2,095,328
Superior	9,177,971	9,422,480
Duluth	7,576,176	7,315,776
Two Hathors	7,010,491	6,917,562
Total U. S. Ports	28,851,632	29,201,699
Michipicoten	172,954	175,231
grand Tota	29,024.586	9,376

A new record for ore cargoes was set

 July 1 by the Benjamin F. Famless of the Pittsburgh Steamship Co., one of the new 640 -footers. This ship loaded 18,593 gross tons at Two Harbors, Minn. The prior record was 18,479 tons, loaded June 23 by a sister ship, Enders M. Vooritees.
Warehouse

Warehouse Prices, Page 182
Cincinnati-The early-July ordering of steel from jobbers' stocks holds to recent high levels, unaffected by any cutbacks, holidays or vacation shutdowns. Rated demand is such that sales volume is keyed to supplies of active items, and ability, under handicaps, to complete preparation and make deliveries. Jobbers are moving cautiously in respect to the unrated orders.

Los Angeles-Deliveries of plates, except galvanized are expected to ease soon. Aside from this there is little hope of better supply. Mill shipments continue low while requests for shipment are pressing. Pipe and wire products lead in delayed delivery, with alloys slightly less pressing.

Philadelphia - While July got off to a slow start because of the holiday in the first week, warehouse demand in June was active, showing little change from May. Orders were a little lighter but were fully as numerous and one leading distributor reported June business on a dollar basis was equal to that of May.

St. Louis-Warehouse steel stocks show no improvement as a result of war cutbacks. Particular difficulty is met in
sheets, cold-finished bars and tubular goods. Small diameter bars are especially scarce. Demand is slightly less but warehouses still have all the business they can handle. Some gain is expected soon as a result of WPB permitting entry of Z-3 orders, such orders coming in considerable volume.

Cleveland-While buying has slackened somewhat demand is still strong. In some products mill deliveries are better than recently but cancellations to mills have not eased the general situation.

Chicago - Warehouses continue to experience strong demand for steel, but are handicapped in accommodating it by short and unbalanced inventories. of all products, sheets are needed most urgently, and outlook for obtaining any. thing near adequate tomnages from mills is discouraging. Demand for structurals also in considerable volume for manufacturing operations rather than building construction. Interest in excess prime plates is running light, despite the fact that plate mill schedules are declin. ing.

Canada

Toronto, Ont. - There has been comparatively little change in demand in Canadian steel market in the past two or three weeks. While there have beea some order cancellations as a result of curtailment in war production there has been no easing in steel supply and with few exceptions delivery is being extended continually. While there is still some buying on war account it is stated that a much larger portion of nell business now is associated with civilian manufactures, although no large volume of consumer goods has yet started to flow off assembly lines. Permission has been granted for manufacture of a wide range of civilian goods, including wash ing machines, vacuum cleaners, electric stoves and numerous other types of household equipment, as well as automobiles and agricultural implements etc., but most companies still have considerable retooling to do and there is a shortage of steel and other raw materials.

Canadian mills as a whole are heavily toaded with orders and in some special lines one or two producers have withdrawn from the market. Backlogs now extend well into 1946 and on only a fow items is surplus capacity available be fore December. While there has been no change in steel or iron prices in Canada in the past two or three years, some producers are hopeful that government ceiling prices soon may be abandoned and in order to take full advantage of aas advance in prices are adhering stricty to their policy of making price as : time of shipment, thus forward delivers contracts do not protect consumers. On many materials mills are not promising delivery for any set period, but most bookings are accepted on an if and when basis.

Sheet supply is specially tight and with continued inpouring of new orders there are no indications of early easing. While producers continue to accept business in sheets, deliveries are being mori extended and now run almost to the end of first quarter. However, there is a possibility that war cancellations my make additional supplies available to

civilian users within the next three or four months, but this is problematical at the moment.

There has been little change in bars, both carbon and alloy. While there have been some war contract cancellations, these have been far overshadowed by buying from non-war consumers. Carbon bar demand has been gaining in volume in the past week or ten days and delivery extends well into December with some booking into January.

The plate situation appears easiest of all materials and Ontario mills are quoting delivery within four months. Fresh buying is developing on a broader scale for non-war use and it is not expected there will be much improvement in the present clelivery situation this year. Heavy orders have been closed recently from railroad car and locomotive builders and buying on a large scale is reported from agricultural implement makers. Building trades and mining interests also have been more prominent in the market for plates in the past two or three weeks.
Mills are said to be filled with orders for wire and nails and some producers have withdrawn from the market on certain lines of nails. The shortage of nails is said to be due to the fact that skilled labor is not available.

While there was some slowing down in merchant pig iron sales late last week as a result of the Dominion holiday, there are indications of more normal action.

Scrap iron and steel receipts continue in good volume and many dealers now are accumulating supplies for future sorting. However, there has been further slowing in offerings from war plants due to curtailment in war production by a number of plants in this area.

Iron and steel production in Canada showed a minor decline in May from April, according to the Dominion Bureau of Statistics. In May pig iron production amounted to 155,574 net tons which indicates a daily average of 5018 tons compared with 5202 tons per day for April. Output in May also fell below the corresponding month of last year. Production of steel ingots and castings in May totaled 267,643 net tons for a daily average of 8633 tons, compared with 9140 tons per day in April. Production of ferroalloys made a new record for the year at 19,883 net tons. There was no change in the number of blast furnaces blowing in May from the preceding month. At the end of May 9 stacks were in blast and 5 were blown out. Comparative production figures, in net tons, are as follows:

	Steel ingots, castings	Pig iron	Ferroalloys
May 1945	267,643	155,574	19,883
April 1945	274,213	156,070	18,350
May 1944	263,431	175,207	17,906
5 Mos. 1945	.1,338,503	782,917	80,199
5 Mos. 1944	. 1,271,833	627,343	60,316
5 Mos. 1943	1,259,652	719,900	93,642

Steel in Europe

London - (By Radio) - Third quarter demand for steel in Great Britain points to increasing confidence in early expansion of the industry. Sheet mills are heavily booked and delivery dates have been further extended. Semifinished steel is needed in larger supply for rerollers.

You can make sure doorways are geared to high-speed production by installing Kinnear Rolling Doors-operated by motor for maximum efficiency. Their vertical, coiling operation gives you full use of all floor, wall and ceiling space. The doors open overheadcompletely out of the way of traffic and plant operations. The interlocking steel slat curtain-originated 46 years ago by KINNEAR is flexible (for ease in rolling) and rugged (to withstand years of hard usage). It affards high protection against theft, riot, wind and weather. And with remote-contral switches, openings can be cleared or closed by a split-second touch of a pushbutton, from as many strategic points as efficiency demands.

Write today for complete information. The KINNEAR Mfg. Co. Factories: 1780-1800 Fields Ave., Columbus 16, Ohio; 1742 Yosemite Ave., San Francisco 24, California.

OFFICES AND AGENTS IN PRINCIPAL CITIES

REINFORCING BARS

heinforcing bars placed

190 tons, wire mesh, SBI route 18 , Secs. 13-R and $14-\mathrm{R}$, Kendall county, Ill., for state highway commission, to American Steel \& Wire Co., Chiengo; R. R. Anderson Co., Chicago, contractor; bids June 15.

REINFORCING BARS PENDING

$\bar{u} 00$ tons, veterans hospitnl, Sioux Falls, S. D., for U. S. Veterans Administration, bids taken May 22 rejected; McGough Bros., St. Paul, was low bidder on general contract.
153 tons, power plant addition, Indianapolis, for Indianapolis Power \& Light Co.; bids June 5.

STRUCTURAL SHAPES

STRUCTURAL STEEL PLACED

3900 tons, Ternstedt Mifg. Division, General Motors Corp., Columbus, O ., to R. C. Mahon Co., Detroit; bids June 4.
2080 tons, stornge warehouse, East Chicago, Ind., for RFC, to Bethlehem Steel Co., Bethlehem, Pa.; bids June 18.
Y60 tons, power plant addition, Indianapolis, for Indinnapolis Power \& Light Co., to Central States Bridge \& Structural Co., Indinnapolis; bids June 5.
335 tons, plant addition, New Departure Division, General Motors Corp., Hartford, Comn., through Topper \& Griggs, New Haven, general contractors, to Bethlehem Fabricators, Bethlehem, Pa
220 tons, factory addition, Caterpillar Tractor Co., Peoria, Ill., to Mississippi Valley Struchirnl Steel Co., Decatur, Ill.; Fred Harbers Sons, Pcoria, Ill., contractor; hids June 15.

STRUCTURAL STEEL PENDING

1000 tons, store, factory building and boiler house, Nincteen Hundred Corp., St. Joseph,

Mich.; general contract to Pierson Construction Co., Benton Harbor, Mich.; bids June 14.
955 tons, bridge requirements, various locations, for Atchison, Topeka \& Santa Fe railroad; bids July 10
350 tons, factory building, Kalamazoo Stove \& Furnace Co., Kalamazoo, Mich
100 tons, plant addition for Electric Hose \& Rubber Co., Wilmington, Del.; general contract to John E. Haley, Wilmington, Del.
Unstated, open grill decking, 8320 square feet, for Montlake bridge improvement, Seattle; plans approved, bids soon.

PLATES

PLATES PENDING

Unstated, two 80,000 -barrel or storage tanks at Manchester, Wash;; bids in to Navy July 3.

PIPE

CAST IRON PIPE PLACED
275 tons, 8 and 16 -inch, for local extensions, Seattle, to H. G. Purcell, Seattle, for U. S Pipe \& Foundry Co., Burlington, N. J.
200 tons, 12,500 feet, for Vancouver, Wash. to Proific States Cast Iron Pipe Co., Portland, Oreg.

CAST IRON PIPE PENDING

Unstnted, 14,500 feet, 4, 6 and 10 -inch for Carlton, Oreg.; bids July 9.
Unstated, Fourth Avenue N. E. project, Seattle; bids soon.
Unstated, 6, 8 and 10 -inch, for army center Opportunity, Wash.; general contract to Rushlight Auto Sprinkler Co., ortland, 74, 164.

Unstuted, 8-inch for system improvement, Grandview, Wash.; $\$ 20,000$ available.

SPECIAL MAGHINERY BUILT ON CONTRACT

THIOMAA Punching. Shearing MACHINERY
 now sad by lenolina DISTRIBUTORS COAST TO COAST TribuTors
 5

ATLANTA, GA.

Chandler Machinery Co. baltimore, MD. birmingham, ALA. Quinn \& Quinn BOSTON, MASS
Gurp General Machinery Corp. BuFazo, N.Y.
J. L. Osgood Maclxinery \& Tool Co. CHATTANOOGA, TENN. Noland Co. CHICAGO, ILL.
Bryant Mnchinery \& Engineering Co. CINCINNATI, O.

Brokaw Machinery Co. CLEVELAND, ${ }_{\text {O }}$.

George D. Miller Co. DALLAS, TEX.
DENVEH, COLORADO C. Machinery Rich Richard Ives Co. GRAND RAPIDS 4, MICH.

Joseph Monahan houston 3, TEXAS
C. J. Harter, Machinery los angeles, calif.

Harron, Rickard \& McCone Co.

MILWAUKEE, WIS.
Bryant Machinery \& Engineering Co. MINNEAPOLIS, MINN.
Northern Machinery \& Supply Co. NASHVILLE, TENN. o Noland Co. NEW HAVEN, CONN. . . Giebel, Inc. NEW ORLEANS, LA.

Frederic \& Baker NEW YORK 19, N.Y. . Giebel, Inc. PHILADELPHIA
PORTIThomas Machine Mig. Co. PORTLAND 9, OREGON RICHMOND 11, VIRGINIA ROCHESTER 7 Smith-Courtney Co. SALT LAKE CITY, UTAH Wentz SALT LAKE CITY, UTAH SAN FRANCISCO, CALIF. Grisley Harron, Rickard \& McCone Co SEATTLE 4, WASH.

Dawson Machinery Co. SHREVEPORT 91, LA.

Frederic \& Baker ST. LOUIS, MO.
Robert K. Stephens Machinery Co. SYRACUSE, N.Y.
C. H. Briggs Machive Tool Co., Inc.

RAILS, CARS
 RALLHOAD CARS PLACED

Erie, 700 fifty-ton box cars, to American Car $\$$ Foundry Co., New York; bids on 600 gondolis and 100 covered hoppers will be opened July 9.

LOCOMOTIVES PLACED

Delaware \& Hudson, five freight locomatives, 4-6-6-4 type, to Anerican Locomotive Co ., New York.
Northern Pacific, nine diesel-electric switchers, eight of 1000 horsepower, to Baldwin Locomotive Works, Philadelphia, and one 660 horsepower to American Locomotive Co_{a}, New York

LOCOMOTIVES PENDING

Stinneapolis \& St. Louis, four 1000 -horsepower diesel-electric switchers and one 1350 -horsepower diesel unit; purchase authorized.

Biddle Urges Independent Operation of Geneva Plant

(Concluded from Page 77)

11. Control of western operation by eastern steel interests does not promise independent and competitive pricing.
12. Basic facts such as western operating costs, future transportation rates, market possibilities and disposal terms should be immediately made widely available to insure the widest possible independent interest.
13. Even on the basis of 1937 demand for steel, continuous production in the West is justified if independent operators are not saddled with excessive investment costs.
14. Competition can be expected from eastern producers with all wates access to Pacific ports. Continuous production at Geneva would be complementary to the producing facilities in the West.
15. Successful continuous steel mak. ing operations in the West afford the soundest basis for future industrial expansion in that area. Western fabricating industries can be expected to devel. op only when cost of steel is competitive with similar costs in other sections of the country.

Renegotiation Hits Labor
 As Well as Management

(Concluded from Page 79)

 production and efficiency in lowering costs; increased labor and material costs: complexity of manufacturing techniques; the financial record of the company, whal the earnings were over the period 19301939, which is the so-called base period; the extent of conversion to the war effort and the percentage of profits to net worth.The 1942 allocation of a company in a Price Adjustment Board was determined first by its major production item. If it were for Army Ordnance, the Distrid Ordnance board in the nearest proximity to the company handled the renegotiation. If the Engineer Corps used the greatest part of the company's output, that board determined the allowable pruiit. Each board was a law unto itself. In 1943 and continued in 1944 allocation
to the services was made by industries thereby achieving somewhat more uniformity of standards in judging as to the existence or non-existerice of excessive profits. The War Department now conaucts all aircraft, textile and rubber renegotiations; the Navy Department has steel and electrical manufacturers, and the RFC has the machine tool industrv. It is indeed a tremendous undertaking for these Price Adjustment Boards. In the early days they started off each day with some manufacturers' challenge: Why do we have renegotiation? The internal revenue law is all that is needed to tax our so-called excess profits. They are likewise confronted by the unspoken basic bbiection to compulsory repricing and renegotiation by individuals who determine what constitutes "a reasonable profit" without the establishment of rules or standards for making such determinations. They cannot refute the premise that renegotiation deals with current annual profits and not with possible subsequent years' losses. But quite unperturbed, they peg away with their difficult and thankless job of administering this unprecedented law as they see it.
It's a pity that these staffs could not have been recruited from industry, particularly by those who at one time scraned the bottom of the barrel to meet a shop payioll. But most of our seasoned manufacturers are "in there pitching" adding their own products to our armament stockpiles. Therefore the job inevitably fell to accountants who know figures and to the lawyers who know how to interpret laws and directives.
Seraping the bottom of the barrel to meet a shop payroll is a tough experience. Haring successfully sweated it through, an employer emerges at different man, schooled in the "facts of life" as they relate to operating a plunt. Profits from the lat" war years have to be intangible ash if they are to be used to meet payrolls in the "lean" years ahead.
In the case cited, the bulk of the profits we in the assets as additional plant and equipment. The management needed this extra capacity to meet his delivery schedules and to increase plant efficiency through building machines in larger lots. In 1942 when he expanded his facilities He never dreamed that over and above mis hefty taxes he would be obliged to refund annually an additional sum thru renegotiation, and that in three years it would cost him $\$ 119,000$. With this nest egg snugly tucked in the bank in war tonds it would have meant facing the postwar period with immeasurably more confidence and aggressiveness. As it now appears, his cushioin of cash reserves will lot carry through the second postwar Trar. That will mean he will have to horrow. He will not mind too much, but then thauld stiff competition, and oversold markets and deflation hit him hard, it will mean langing the "no help wanted" Iga on the gate, and perhaps soon thereiter telling the returned veteran and his Ther loyal men that it's hopeless to carry on. He will not blame it on anything Tanyone, but in his case renegotiation will have proved profoundly wrong.

HOOK 'ER ON-PLUG 'ER IN
A Bove you see why the Erie Electric Bucket 4 works in its own headroom controlled from the crane cab. This sturdily constructed bucket needs only to be hooked over the crane hook and power line plugged in. The man in the cab controls the opening of the bucket from cracking the lips to any degree of opening or closing. The extrain-built weight permits easy penetration. Write for complete particulars. eriesteel constructionco GS7 GEIST ROAD. ERIE PA

alictaic overifad cranes THE MOST COMPLETE LINE BUILT PORTABLE CONCRETE PLANTS

IS A SMALL TO

when you're staying at The Roosevelt! All the best of Manhattan is within comfortable walking distance of this mid-town hotel, known for Hilton hospitality. Rooms with Bath from $\$ 4.50$.

RoOSTEVELT

Dean Carpenter, Gen. Manager
MADISON AVENUE AT 45th STREET, HEW YORK

Other Hilton Hotels include : Chicago: The Stevens
Dayton: The Dayton-Biltmore Los Angeles: The Town House
C. N. HILTON, PRESIDENT

DIRECT ENTRANCE TO GRAND CENTRAL TERMINAL

CONSTRUCTION AND ENTERPRISE

OHIO

AKRON, O.-Dover Machine Products Co. Inc., Edward I. Harris, president, has been organized and has bought the plant of the former E. J. James Co. at Canal Fulton, O., and plans to expand operations, erecting an of fice building and plant adition. Stock is owned by members of Akron Machine Prod ucts Co., 572 South High street, Akron, O, manufacturer of tire-building machinery.
BELLEVUE, O.-Nickel Plate railroad, J. C. Wallace, chicf engineer, Terminal Tower building, Cleveland, has WPB approval for an 18 -stall roundhouse and tumtahle, $120 \times$ 140 -foot machine shop, boiler house and other improvements, at estimated cost of about $\$ 1,500,000$

CAMBAIDGE, O.-Reynolds Molded Plastics Division of Continental Can Co. has re ceived WPB authorization for plant expansion at cost of about $\$ 500,000$ for buildings, which will be one story.
CLEVELAND-Cleveland Welding Co., 2115 West 1174 street, has permit for a onestory 100×200-foot welding building, to cost about $\$ 50,000$.
CLEVELAND-Modem Gas Furnace Co. has been incorporated with 250 shares no par value to manufacture heating fumaces, by Gerald A. Doyle, agent, 517 N. B. C. building, E. E. Trit and J. L. Vaughan.
CLEvELAND-Republic Steel Corp., Republic building, has received WPB authorization to install a heavy-duty vertical edging stand, bar mill, open hearth and necessary motors and controls at its Youngstown, O., plant, to cost $\$ 107,000$.
CLEVELAND-Aluminum Co. of America has received WPB authorization for additions to water recirculating building No. 153 and re-
circulating system pumps, chlorinating sys tem, to cost $\$ 42,250$.
CLEVELAND-Mueller Electric Co., 1583 East 31st street, will build a one-story plant addition 29×77 feet and make alterations to other buildings.

CLEVELAND-Republic Steel Corp. has received WPB authorization for installation of equipment at Massillon, O., plant including cold-rolling, pickling, annealing, cleaning and slitting units, with construction of a substation, to cost $\$ 943,000$; addition to plant at Niles, O., $108 \times 220 \times 48$ feet, costing $\$ 883,000$; building addition at Youngstown, including stands and coiler, furnace and nuxiliaries to plate mill, to cost $\$ 2,175,000$
CUYAHOGA FALLS, O.-Summit Grinding \& Machine Co. has been incorpornted with $\$ 51$, 000 capital to do precision grinding and manufacture machine parts. H. W. Schwab, First Central Tower building, Akron, O., is agent.
DAYTON, O.-Chrysler Corp. has WPB authorization for construction of new boiler house and installation of boilers, stokers, water softeners, etc., to cost $\$ 339,772$.

DAYTON, O.-National Cash Register Co., 1400 South Main street, has let contract to IndustrinI Building Co., Reibold building, for a plant addition to cost about $\$ 40,000$.
DAYTON, O.-Delco Products Co., division of General Motors Corp., First street, has let contract to James I. Barnes Construction Co., Talbott Realty building, for a six-story factory building 172×184 feet on First street, estimated to cost $\$ 810,000$. Argonaut Realty Co., General Motors Research building, Detroit, is engineer.
Defiance, O.-Defiance Metal Products Co. M. Zachrich, general manager, plans a plant

addition 64×114 feet, including inside load ing dock and crane, to cost about $\$ 40,000$

NAPOLEON, O.-Board of public affairs plams postwar water softening plant, and additions to equipment in waterwerks plant, to cost about $\$ 200,000$.
SANDUSKY, O.-Apex Electric Mfg. Co., C. G. Frantz, president, is preparing to reconvert and enlarge plant at cost of about $\$ 750$, 000.

ST. MARYS, O.-City, City Hall, will take bids soon for a water softening plant to cost abous $\$ 120,000$. F. G. Browne, Marion, O., is engineer.
TIFFIN, O.-General Electric Co., 1885 Broadway, Fort Wayne, Ind., has let contract to the Austin Co., 11612 Euclid nvenue Cleveland, for design and construction of a fractional horsepower motor plant, estimated to cost $\$ 5$ million.
TOLEDO, O.-Schill Pattern Co., 2100 Hendon street, has let contract to John Pioch Co., 1130 Prospect street, for a onc-story pattern shop, estimated to cost about $\$ 40$, 000.

TOLEDO, O.-Toledo Smelting \&e Refning Co, A. F. Sutts, general manager, 1011 Avondaie street, plans construction of smelter and re finery for nonferrous metals on a site on Maumee river, to cost about $\$ 75,000$.
TOLEDO, O.-Airite Mfg. Co., 730 Phillips avenue, has let contract to A. Bentley \& Sos Co., 201 Belmont street, for a dairy equipment manufacturing plant at 5500 Tele graph road, to cost about $\$ 40,000$, with equipment. Hahn \& Hayes, 723 Adams street, are architects.
WELLINGTON, O.-Lorington Co., Clifford W. Unser, owner, will build a 40×100-foot sheet metal fabricatitng plant on a 3 -acre site between Westlake Park and Gas avenue.

MASSACHUSETTS

SEEKONK, MASS.-Water department, Toun Hall, has preliminary plans for a complete water supply system, to cost over $\$ 300,000$. Whitman \& Howard, 89 Broad street, Boston, are engineers.
SPRINGFIELD, MASS.-Westinghouse Electric Corp., 653 Page boulevard, East Springfield has let contract to Ley Construction Copp 1215 Main street, at $\$ 76,500$ for two 29 . 100 foot and two 20×128-foot additions.

CONNECTICUT

HARTFORD, CONN.-Aetna Oil Burner Co Inc., 2074 Park street, has plans for a 100 $\times 130$-foot enameling unit plant addition on Rowe avenue.
Middletown, CONN.-Russell Mfg. Co. East Main street, has let contract to Dennis O'Brien \& Sons Inc., 190 Trumbull stred Hartford, Conn., for a one-story $65 \times 120^{\circ}$ foot laboratory on East Main street, estamated to cost $\$ 42,000$.
MILFORD, CONN. - American Windshield Specialty Co., 442 Boston Post road, has let contract to DeFonce Construction Co., 110 Colenial avenue, for a 45×180-foot plant on Milford tumpike, estimated to cost $\$ 40,000$.
PORTLAND, CONN.-Claire Glow Mfg. Co.I. M. Wolfson, 62 Maplewood avenue, wesi Hartford, manager, has plans by C. M. Giv ford, 16 Elm street, East Hartford for post war construction of one-story 80×140-foo plant on Indian Hill avenue, estimated to cost about $\$ 43,000$.

NEW YORK

BUFFALO-Testing cells at the Chevrolet ariation engine plant will be changed over fot testing of a new type of jet-propulsion air craft engines, a contract at not more the $\$ 500,000$ has been let to John W. Cowpet Co. Inc., 2625 Delaware avenue.

PENNSYLVANLA

PITTSBURGH-Pittsburgh Equitable Meter CO_{*}

400 Lexington avenue, has let contract to
0. H. Martin, 513 North Homewood avenue, for a one-stary 114×208-foot third story top addition. Franklin \& Brown, H. C. Douden Associates, 729 Maryland avenue, architects.
WEST PITTSBURGH, PA. - Pennsylvania Power Co., Louis B. Hound, New Castle, Pa., vice president and general manager, will double capacity of its power plant at cost of about $\$ 3,200,000$. Plans include turbogenerator, boilers, transmission facilities and other equipment. Present capacity is 35,000 kw.

MICHIGAN

EALhMaZOO, MICH.-E. \& K. Brass, Bronze \& Aluminum Foundry Inc., I334 Ravine road, has been incorporated with $\$ 25,000$ capital to operate a foundry, by William H . Exel, 1803 Shaffer street, Kalamazoo.

ILLINOIS

PEORIA, ILL.-Johnson Instrument Co. has been formed as a branch of Sommer Products Co., manufacturer of electric welding machines, by William A. Johnson and Samuel C. Sommer, to manufacture hay balers and farm tools.
ROCKFORD, ILL.-Rockford Screw Products Co. is having plans made for a new plant on a nine-acre site on Harrison avenue.
WOODSTOCK, ILL.-Alemite Die Cast \& Mfg. Co., 538 Erie street, Toledo, O., has let contract to O. E. Strom, 102 Main street, Crystal Lake, Ill., for a two-story plant addition costing about $\$ 100,000$.

INDIANA

AUBURN, IND.-Board of public works, F. A. Potter, secretary, has plans completed for a 500,000-gallon elevated steel water storage tank, to cost about $\$ 100,000$. Boyd E. Phelps Inc., $8221 / 2$ Franklin street, Michigan City; Ind., is consulting engineer.
EvansVille, IND.-Servel Inc., L. Ruthenberg, president, Franklin street and Kentucky abenuc, plans two one-story plant buildings, 91×270 feet and 100×100 feet, to cost about $\$ 100,000$. E. C. Berendes, 121 NW Fourth street, is architect.

MISSOURI

ST. LOUIS-Southem Equipment Co., 5017 South 38th street, has let contract to L. 0 . Stoocker Co., 806 Olive street, for a one-story 120×150-foot factory at 5201 South 38th street, to cost about $\$ 40,000$. E. J. Lawler, 806 Olive street, is architect.
ST, LOUIS-Hussmann-Ligonier Co., W. B. McMillan, president, 2401 North Leffingwell avenue, has let contract to Fruin-Colnon Construction Co., 502 Merchants Laclede luilding, for two one-story plant buildings, to cost about $\$ 500,000$.
ST. LOUIS-Marlo Cail Co., 6135 Manchester avenue, has let contract to H . LaBoube, 7404 Devonshire avenue, Shrewsbury, St. Louis, for a one-story 60×240-foot addition to cost about $\$ 40,000$. Brussell \& Viterbo, 800 Olive street, are engineers.

WISCONSIN

GREEN BAY, WIS.-Wisconsin Public Service Corp. has let contract to C. R. Meyer \& Sons C_{0}., Oshkosh, Wis., for substructure of power Dlant to cost about $\$ 3$ million for building and equipment. Public Utility Engineering \& Service Corp., 281 South LaSalle street, Chicago, are engineers.
LUXEMBURG, WIS.-Village, C. Ross, clerk, plans a water and sewage system to cost about $\$ 125,000$. McMahon Engineering Co., Menasha, Wis, is engineer.
PORT WVASHINGTON, WIS.-Wisconsin Electric Power Co., 231 West Michigan street, Milwaukee, plans electric power plant addition costing $\$ 7,119,500$. Stnictural steel to Midwaukee Bridge Co.

EL PASO, TEX.-Texas Aluminum Casting Co. has plans under way for postwar construction of a foundry to cost about $\$ 100$,000.

HOUSTON, TEX.-A. I. Martin Welding Co., 1107 Austin street, has plans under way for a plant building estimated to cost $\$ 40,000$.

IOWA

GLENWOOD, IOWA-City holds special election July 9 on $\$ 249,000$ bond issue for a municipal electric light and power plant and equipment.
NEW HAMPTON, IOWA-City has plans by J. B. Harris Co., 702 Wesley Temple building, Minneapolis, for improvements to municipnl electric light and power plant, including steam generating unit, boiler room addition with coal-handling equipment, etc., at estimated cost of $\$ 125,000$.

CALIFORNIA

LOS ANGELES-Westem Arc Welding Inc. has building permit for a factory building at 755 Kohler street, 100×100 feet, to cost about $\$ 50,000$.
LOS ANGELES-E. L. Christman has permit for construction of a machine shop at 8259 South Compton avenue, 40×50 feet, to cost about $\$ 4500$.
LOS ANGELES - Coast Coil Spring Co. has let contract to Buttress \& McClellan, 1013 East Eighth street, Los Angeies, for a factory and office building at 128 East 58th street, to cost about $\$ 40,000$.
SAN CARLOS, CALIF.-Welding Services Sales, 605 Old County road, plans rebuilding of its war production plant at cost of about $\$ 75,000$.
SAN FRANCISCO-Golden West Plating Works, A. D. LaMar, manager, 60 Juniper

street, plans rebuilding at cost over $\$ 50,000$.

VERNON, CALIF.-Modern Metal Fabricators have let contract to Buttress \& McClellan, 1013 East Eighth street, Los Angeles, for a plant 75×125 feet.

OREGON

ROSEBURG, OREG. - Pacific Co-operative Poultry Producers, G. C. Keebey, manager, plans a $\$ 500,000$ construction for four Oregon cities, Roseburg, Salem, Newberg and Medford. Plans also are being prepared for a $\$ 300,000$ feed mill and additional warehouse facilities at Eugene, Oreg.

WASHINGTON

ELLENSBURG, WASH.-Northwest Chemurgy Co-operative has obtained priorities for machinery for a proposed starch plant here, an existing building to be remodeled for its plant.
SEaTTLE-Reichold Chemical Inc. is considering sites for construction of a synthetic resin plant in Seattle.
SEATTLE-Puget Sound Bridge \& Dredging Co. has let contract to General Construction Co. for a pier 50×600 feet and a frame powerhouso at its shipyard plant, to cost \$342,000.

SEATTLE-Seattle has approved plans and will call bids as soon as materials are available for decking Montlake bridge with open grill steel, to cost about $\$ 36,372$, requiring shapes, reinforcing steel and steel decking.
SEATTLE-Pacific Car \& Foundry Co., owner of a controlling interest in Kenworth Motor Truck Corp., has plans for a truck and bus fabricating plant adjacent to its car shops at Renton, Wash. WPB has approved a $\$ 250,000$ project, providing 200,000 square feet of floor space. Kenworth operations will be removed from Seattle.

Less talk the thing

> GALVANIZED PRODUCTS

AND
PRODUCTION HEAT TREATING

commererail metill iretille. IIC.

TOLEDO.OH1O

We can't sit down to a Peace Conference just yet and Commercial Metals Trecting, inc. is busy maintaining war-time production schedules. However, we must take time to plan for the peacerime changeovers that will inevirably come. We have expandec our facilifies enormously and will soen be able to handle pieces up to 20^{\prime} in length in galvanized products. We will be glad to assist you vith your present and post-war metals treating problems and invite your inquiries.

"A Material Difference"

PLASTO-PAK is a COLD DIP* Strip Coating designed to prevent corrosion, tarnishing, or scratching of metals during production, assembly, shipping or storage.

* Plasto-Pak can also be sprayed. APPROVED FOR METHOD IB PACKAGING BY U.S. ARMY SIGNAL CORPS.

WRITE FOR TECHNICAL BULLETIN $3 S$
FOR FULL INFORMATION

The SHENANGO FURNACE
 Company

Oliwer Bullding, Pittsburgh, Penna.

W. P:SNYDER \& COMPANY

In The Bendix-Weiss Rolling Ball Universal Joint

Here, in the Bendix-Weiss Constant Velocity Universal Joint, Strom Balls do their part in making military vehicles, from Jeeps to 14 -ton Armored Cars, the efficient fighting equipment that they are. This is only one spot in our great war production effort where the high degree of perfection of Strom Balls serves industry, enabling it to provide the finest bearing equipment towards its great contribution to total victory. Strom Steel Ball Company, 1850 South 54th Avenue, Cisero 50, lti.

Largest Independent and Exclusive Melal Ball Manufacturet
A101 BALLS Serve Industry

NEOR is recognized as one of the finest high-carbon, high-chromium steels. For quantity production, NEOR is unsurpassed for dies. Retains a keen edge much longer than carbon or high speed steels. NEOR hardening penetrates to the center of the tool and is non-deforming.
Owing to its remarkable resistance to abrasion, NEOR is ideal for gages.

Furnished in Billefs, Bar Stock and Drill Rod. Bulletin on Request

DARWIN \& MILNER IIc.

highest grade tool stoels
1ae w. faurth si. CLEVELAND 13, 0HIO

54

You can depend on Preformed "HERCULES" (Red-Strand) Wire Rope for maximum efficiency. Its long life means fewer replacements and more hours of work from each pound of steel used, thus saving both time and material. As "HERCULES" is available in both Round Strand and Flattened Strand constructions as well as in the Standard and Preformed types, there is, in this one grade, a right rope for every teary-duty purpose.

We would be glad to have you write for further particulars.
A. Leschen \boldsymbol{z} Sons Rope Co, WIRE ROPE MAKERS © GSTAELISMED $18 S 7$,
ST. LOUF, MISSOBR1, U, S: A,

DENVER SANFRANCISCO SEATTLE PORTLAND

LESB MOi: Accowracy

with KESTER Solder FLUX

- Kester eliminates guesswork, for whatever the solder job. For delicate dip-soldered electrical connections, sweating operations, or various types of seams, Kester has the right flux to make it permanent. Tight solder-bonds with Kester fluxes resist shock, vibration, bending, contraction, and expansion without failure!
- Kester fluxes help to make the service of your product trouble-free, because Kester's 46 years of practical experience and laboratory research make it possible for you to have the best flux for whatever metal you're using ... the correct flux to protect your product.
- Consult Kester engineers; they'll gladly recommend the right flux for your operation. A letter today will bring their practical, experienced help-at no obligation.
* BUY WAR BONDS \star

[^7]

> ORSERVES 30 YEARS OF SERVICE TO INDUSTRY

It is with a spirit of thankfulness that we approach the milestone - July 12, 1945 - which marks the completion of our first thirty years.

We are grateful to the many industrial concerns, large, medium and small, whose confidence in our skill and integrity has enabled us to grow to a position among the nation's leaders in our field.

We are grateful to the loyal Wesley workers who, by their ability and unstinting effort, have made it possible for us to render an expanding service and who have brought honor to their company as the first steel treating company in Wisconsin to win the Army-Navy " E " and the first of its kind in the United States to win both the " E " and the Army Ordnance Banner.

Under the leadership of our president, Charles I. Wesley, who, with his father, the late Charles Wesley, Sr., founded this company on July 12 , 1915, we face the next thirty years with confidence. This confidence is born of our faith in the future of America and American industry and is backed up by our pledge to serve to the limit of our ability in the months of war that lie ahead and in the long years of peace which we pray will follow.

WESLEY STEEL TREATING CO.

M. D. HUBBARD SPRING COMPANY

425 CENTRAL AVENUE - PONTIAC 12, MICHIGAN

PEAK PERFORMANCE

SHUSTER WIRE STRAIGHTENER TYPE A Wire Capacity $1 / 32^{\prime \prime}-1 / 16^{\prime \prime}$ Diameter
 \section*{\section*{Faster Cutting Speeds
 \section*{\section*{Faster Cutting Speeds GREATER PRODUCTION!} GREATER PRODUCTION!}

Outstanding Features-
Almost continuous wire travel
Lightning cut-off assures square-cut ends
High speed, direct driven 5 -die straightening flier
Quiet, highly efficient V-belt motor drive
Ball and roller bearings throughout
Extremely rigid construction
Fully guaranteed as to material and workmanship.
New descriptive folder on request.

The F. B. Shuster Mfg. Co., Inc., New Haven, Conn.

STAMPINGS

Over 40 years experience.
Literature on request
WHITEHEAD
STAMPING CO.

Est. 1903
1667 W. Lafayefle Blyd.
Detroit 16, Mithigan

 49TH ST. \& A.V.R.R.
 PITTSBURGH, PA

THE SIMONDS GEAR \& MFG. CO.
25TH STRENU, PITTSEURGH, PA.

LADLE SLEEVES • NOZZLES FOUNDRY GATES • RUNNERS (Longer Lengths)
Clay Manufacturers Since 1889 Also other Refractories
NATIONAL FIREPROOFING CORPORATION PITTSBURGH 12, PA.

SPRING COTTERS RIVETED KEYS

 SCREW EYES, HOOKS and WIRE SHAPES NHanyHINDLEY MFG. CO. Valley Falls, R. I

The Manufacture of Steel Sheels By Edvoard S. Latorence
This book describen the principal steps involved in the maniben the principal steps in
macture of ateel sheets
244 pages Price, Pontpaid $\$ 4.50$ in U. S. and Canada

1213-35 W. 3rd St.
Cleveland, O. 517-5

TAYLOR-WILSON

 CUTTING-OFFMACHINES

HOW to Care for

Rotary Type
for Rounds $1^{\prime \prime}$ to 24" Dia. Made in six sizes. Each machin has a wide range.
Cutting-off toole hydraullcally driven. Extra Sturdy, Fast.
TAYLOR-WIISON MFG CO. 15 Thomson Ave, Mckiees Rocks.Pa. PITTSBuRGH DISTRAST

Have It Galvanized by-
Joseph P. Cattie \& Bros., Inc. Gaul \& Letterly Sts.. Philadelphia, Pa.
Philadelphia's Oldest, The Country's Largest Hot Dip Job Galvartiser Galvanized Products Furnished

GRINDIMG WHEELS AND THEIR USES

Second Edition-Second Printing

By Johnson Heywood

- The New Book of "KNOW HOW" that "TELLS HOW"a practical volume for every man interested in modern granding methods and applications. Today's production, with a premium on "Know How", depends on men that can do a job, or know where to find out how to do it.
"Grinding Wheels and Their Uses" covers the entiro field of grinding . . . a study of the twenty-nine chapter heads will show how broad its scope really is.

Shop executives can turn to this book for practical help ou everyday grinding problems; grinding machine operators, or apprentice operators, can use it to good advantage. Students in trade and technical schools and colleges can profit

Srond Editlon, comprelely revlsed, Spon-
sored by the Grinding sored by the Grinding reciallon. 436 pages, 29 shapters, 5 appendices, 496 illustrallons and fig. uras. Fully indexed. Price 3300 Posipaid. Prico additional oc for slate soles fox on orders for delivery in Ohio)

保 from the operating experience of engineers, designers, foremen and employes as sot forth in this new volume.

This 436 page book, with 29 chapters and 436 illustrations and figures, is the only up-to-date book of its ldind on the market today. Fifteen tables of Wheel Recommendations and 4 other appendices provide working data that every operator coust have.
ORDER YOUR COPY TODAY! - Orders will be filled the same day received . . . Order now and have this valuable handbook ready for immediate reference.
STEEL-Book Department-Penton Building, Cleveland, O.

CHAPTERS

The Abraslve Materlals How Grinding Wheels Are Made
Theory of Grinding
Surfoce Quallites and Finlshes Selecting the RIght Wheal
For the Job
Wheel Shapes and Slzes Truing, Dressing and Baloncing Use of Grinding Fluids
Tool and Cutter Sharpening
Sharpening Cemented Carbide Tools
Cylindrlcal Grinding
Grinding Cams and Other Out-of-Round Surfoces Roll Grinding
Internal Grinding
Surface Grinding

- Disk Grinding

Centarlass Grindlng
*Thread Grinding

- Gear Grinding
*Grinding Dies and Molds
tapping
*Honing
* Superfinishing
* Preparing Matallographic

Spacimens
Cutting Off With Abrasive Wheels
Use of Abrasives in Non Metalworking Industries Grinding Castings, Welds and Billats
How to Cut Costs and Increase Production
Some Tips for Product Designers
-Naw chopters added in this Second Edifion.

APPENDICES

Table of Wheel Recommendaflons
Lapping Compound Recom mendotions
Wheel Breakage and Safety Tips
Standard Grinding Wheal Markings Glossary of Trade Names

RYERSON STEELS in Srock

IMMEDIATE DELIVERY

ALLOY and CARBON GRADES AS ROLLED, ANNEALED and HEAT TREATED MACHINERY STEELS
COLD FINISHED and HOT ROLLED TOOL STEELS
HIGH SPEED and CARBON GRADES
DRILL ROD-TOOL BITS-FLAT GROUND STOCK SPECIAL PLATES-FLAME CUTTING BROACH TYPE HACK SAWS

BEMEDICT-MILLER, IHC.
M. \mathcal{L} Phuna: MArtal 1-\$40 - N. Y. Phase: REater 2-2732 216 CLIFFORD ST., NEWARK 5, N. d.

$$
\begin{aligned}
& \left(2 \frac{7}{16} \times 7\right) \times\left(4 \frac{7}{8} \times 3 \frac{5}{16}\right)= \\
& 17 \frac{1}{16} \times\left(\frac{39}{8} \times \frac{53}{16}\right)=17 \frac{1}{16} \times \frac{2067}{128} \\
& 17 \frac{1}{16} \times 16 \frac{19}{128}=\frac{273}{16} \times \frac{\frac{2048}{120}}{128}=273
\end{aligned}
$$

CLOSE FIGURING by buyers and sellers of good used or surplus machinery and supplies adds up to STEEL'S "Used and Rebuilt Equipment" section. Rates are moderate . . . results are excellent. Make a note to send your instructions to steel, Penton Building, Cleveland 13, Ohio

REEVES STEEL \& MANUFACTURING CO.

 Dover, OhioSHEET STEEL AND SHEET STEEL PRODUCTS FOR WAR NEEDS

FOR SALE

HORIZONTAL BORING MILL

Giddings \& Lewis No. 32, 1937 model, $3 k^{\prime \prime}$ bar, vertical adjustment of head on column $36^{\prime \prime}$, maximum distance face of spindle to outboard support $841 / 2^{\prime \prime}$. Longitudinal travel of table $50^{\prime \prime}$, working surface of table $30^{\prime \prime} \times 54^{\prime \prime}$. Spindle speeds 12 to 225 r.p.m., $71 / 2$ h.p. 1200 r.p.m. motor with starter rapid traverse. Now doing precision work. May be seen Twin City area. Condition good, immediate delivery. Direct sale by owner.

Address Box 974
STEEL, Penton Bldg., Cleveland 13, 0.

BLOWARS-FANS EXHAUSTERS
 "Lunge for Induitry"

REBUILT and GUARANTEED
 Prompt Shipments from a torge Stock All Types-All Makes-All Stizes And Wo Reolly Rebuild 'Em: [We suy selt and exchances thave rou a dower ror salef
 cembal blower oo. Phonc: Canal 6310 sut Norih Reorla's. CHICNGO 22, TLL.

TRACK ACCESSORIES from Warahousas

- PROMPT SHLPMENTS
- fabbicating facilities
- TRACKAGE SPECLALISTS EVERYTHING FROM ONE SOURCE L. B. FOSTER COMPANY PITTSBURGH NEW YORK

SAN FRANCISCO

RAILWAY EQUIPMENT AND ACCESSORIES

We can faraish rails, spikes, bolta, angle bers, locomotives, craner and other mil way matarial.

Write, wirs or phone for pricess
SONKEN-GALAMBA CORP.
108 N. 2d St. Kansas Clity, Kansas

RAIL-ACCESSORIES RAILWAY EQUIPMENT - boucro e sols ac.

of IH ushinutam swo National Bldig.
of Nrac lius
2sis Whatwingh. Hide. sisw Tank 7. . \%

FOR SALE

MANUFACTURER'S SURPLUS

 X-4130 ALLOY STEEL2700 Ibs. $1 / 8 \times 17 / 8 \times 114$
3300 lbs. $1 / 8 \times 19$ x 84
6300 lbs. $116 \times 19 \times 114$
3100 lbs. 1 有 $\times 11 / 4 \times 84$
All CR, NORM, and Oiled, Slit Edges. Certified Analysis Available. Offers for all or part are solicited.
ARMSTRONG PRODUCTS CORP.
Huntington 12, W. Va.

FOR SALE

ALLOY STEEL

ROUND, HEX, SQUARE BARS
New York and Pittsburgh Warehouse Stocks
L. B. FOSTER CO.

9 Park Place, New Yark 7 Phone-Barclay 7-2111
P. O. Box 1647 , Pittsburgh 30 Phone-Walnut 3300 Michigan Distributor: c. J. GLASGOW COMPANY 2009 Fenkell Ave., Detrait 6 Phone-Townsend 8 -1172

FOR SALE

USED DC MILL TYPE MOTORS
From 3 to 35 h.p. with control and starting equipment. Telephone ELizabeth 2 8182, Mr. Dunne. Write Box 476, Elizabeth, N. J.

FOR SALE
X-RAY UNIT
GE-OX-250 KVA INDUSTRIAL
RADIOGRAPHIC UNIT
CONTROL SIAND \& JIB CRANE HARDLY USED
IMMEDIATE SHIPMENT
Address Eax 984
STEEL, Penton Bldg., Cleveland 13, 0.

CRANES \& HOISTS A. JAY HOFMANH Narberth, Pa.

More for your	IRON \& STEEL	40
	PRODUCTS	Yearr
Dollarl		Experience
	13462 S. Brainard Ave. Chicago 33, Illinois	-
"Anyth	hing containing IRON or	STEEL"

17-40-ton 40-ft. Box Cars
$14-40$-ton 40 -ft. Flat Cars
11 - 50 -ton 40 -ft. Flat Cars
15-50-ton $40-\mathrm{ft}$. Composite Gondola Cars
1-18-ton Davenport Locomotive (36^{11} ga.)

We BUY and SELL

New Surplus Pipe and Tubes Steel Buildings Tanks
Valves and Fittings
Plates, Bars and Structural Steel

JOS. GREENSPON'S SON PIPE CORP.
National Stock Yards, St. Clair County, III.

WARTED

Approximately 10 tons $11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime} \times$ 5/16" Angle, 6 tons $7 / \mathrm{B}^{\prime \prime}$ round cold finish shafting C1019 or 1020.

LIHDEMAN POWER EQUIPMENT CO.
P. O. Box 526

Yakina, Wash.

ROLING MILES and EQUIPMENT FRANK B FOSTER Diove Coblgadorear foster Rilsbugh
 HAMMER, Steam Forging goo ib. Chamberaburg LATHE, Turret 24° Gilaholt, f-1/4" hole. SHAPER $3 \mathrm{~S}^{\circ} \mathrm{Morton}$ Dram Cur Steam-Hyd SHEARR, $38^{\circ}-42^{\circ}-54^{-2} \times 1 / 8^{\circ}$. SHEARA, Allignior 1 - A $^{\circ} 1 / 8^{\circ}$. B.D.
 SHEAR ODen End $22^{\prime \prime}$ blades $2-1 / 22^{\circ}$ qu. M.D. SINTTBR. 12 Putnsm, 35° tsble, B.D. STRA IGETENER, Gution 5 roll $3-1 / 2$ rd. GTRAIGFTRARR, 42° W-F, 11 roll, $2-5 / 8^{\circ}$ dis | WEST PENN MACMINERY COMPANY |
| :--- |
| 0 Hous BIdg. |

FOR SALE

2 - Metal Alligator Shears
Address Box 335
STEEL, Penton Bldg., Cleveland 13, O.

(h CLASSIFIED

Help Wanted
Help Wanted

PRODUCTION FOREMAN WANTED

Abstract

A prominent Cleveland manufacturer of pipe fittings and hardware accessories requires the services of a production foreman with wide experience in this field He must be familiar with the designing of jigs, tools, foundry patierns, etc. He must also have knowledge of machine shop practice, know how to operate standard machines, and be able to demonstrate machine operations. It is important that he have supervisory eapacity A man between the ages of 35 and 45 is preferred for this position, with its splendid post war opportunity.

Write for appointment, stating qualifications. Address Box 988, STEEL, Penton
Bldg., Cleveland 13, 0 .

WANTED PRODUCTION MANAGER

Man experienced in planning, scheduling, machine loading and inventory control with experience in small lot production. Machine shop and sheet metal experience an asset. Excellent postwar prospects with an old organization in the Middle West.

Address Box 954

STEEL, Penlon Bldg., Cleveland 13, 0.

FURHACE EMGINEER WAHTED

Old established Western Pennsylvania organization has permaneat position for experienced man on steel mill furnace designing and estimating. Please describe education, experience, in detail, state residence zelephone number and availability. Address replies to Box 986, STEEL Penton Bldg., Cleveland 13. 0.

Wanted
 ELECTRIC FURNACE OPERATORS
 In Los Angeles steel foundry. Good opportunity for dependable man. Postwar work assured. Write giving full details including when available. Address Box 881, STEEL, Penton Bldg., Cleveland 13, 0.

WANTED-CARBIDE TECHDICIAN. FEXLkown eastern company uith eatablished file outhet has excellent opportunity for Chief Technicirn to develos carhide line, expecially for wear resistant applications. Fundamental processing equipment installed. Company also interested ing cant tool developments, precision and centrifucal eastings. with marticulnr reference to special cal enstinks. with particular reference to specia heat resirting applications, such ar ons turbimet State age. education. experience. sulary deaired and draft status. Address Box 90S, STEFI, Pen ton Bldy.. Cleveland 1S, 0 .

ELECTRICAL ENGINEER-A WESTERN New York manufacturer of heavy machine tools desires the services of an electrical engineer or experienced draftsman willing to break in on electrical designing. The work will consist of designing control panels, switchboards and electrical systems of large machine toots. This opening is permanent to the right man and offers excellent post-war prospects with well established, nation ally recognized machine tool manufacturer. Apply by letter, stating age, experience, education and dress Box 922, STEEL, Penton Blag., Cleveland dress
13,0

WAREHOUSE MANAGER

Must be capable of complete managemen of steel warehouse located in South. Salary and percentage of profits to man capable of doing a real job. Send full details and references. Address Box 968 STEEL, Penton Bldg., Cleveland 13, 0.

FANTED PATTERN E®REMAN

Malleable Foundry in Texas ha, an excellen opening for a man capable of laking charke of wood and metal pattem shon eniploying twelve to fifteen pattern makers and approntices. make own layouts and estimate pattern mits. Applicant choald state age. family stafis. alary erpected past and present emplovers. Addiris Bus 910 STEEL. Peaton Bldg., Cleveland 13 O.

DESIGNER, DRAFTSMAN \& ESTIMATOR Winted. Must have full knowledre of A.S.M.E construction on all types of pressure vessels and construction on all thpes of pressure vessels and
other complicated steel plate construction of refining cquipment, etc plant located in Texas 828, STEEL, Penton Bklg., Cleveland 13, 0 .

DRAFTSMEN WANTED-ENPERIENCE IN heavy machine tool work desirable, aircraft ex perience acceptable. Outstanding post-war picture for right men. Location, upstate New York. W.M.C. rules obseried. Give ful? particulars in letter adelressed to Bor 923, STEEL. Penton Bldg.. Cleveland 13,0 .

WANTED: MAN WITII GENERAL OFFICE or fitld sales experience by large reputable manu or fitld sales experience by large reputable manufacturer of seamless and electric wedded tubing alloy and carbon stecls. Please apply giving full information, experience, etc., to Box 754 , STEEL, Penton Bldg., Cleveland 13, 0 .

IF YOU HAVE AN OPPORTUNITY TO OFFER

Use the "Help Wanted" columns of STEEL Your advertisement in STEEL will put you in touch with quali6ed. high-calihre men who have had wide training in the variour branches of the Metal Produciag and Metnlworking industries.

ACCOUNTS WANTED

Hepresentative widely acquainted in the industrial field of New York, New Jersey New England, Delaware, Maryland, Pennsylvania, and other states, invites expression of interest from Manufacturers of Fabricated Stainless, Alloy Steel and Carbon hteel Process equipment and accessories fnr the Chemical, Petroleum, Plastics, FoodProducts, Pulp and Paper, and Steel HeatTreating Industries who desire experienced and intelligent representation in the Eastand States by one who has been manager of sales of such equipment for the path of sales of such equipment for the par Penton Blds., Cleveland 13, 0.

DO YOU WANT
 A

CALIFORNIA SALES OFFICE?

Sales Manager Executive 22 years personal and valuable contacts wirh major oil companies, public utilities, steel fabricating plants, large industrial and shipbuilding plantsoffers his entire or part services, and with established offices n Los Angeles and San Francisco, for immediare action. Address Box 970 , STEEL, Penton Bldg., Cleveland 13,0.

MILL OR

MANUFACTURERS' REPIRESENTATIVE Established jobbers in steel and kindred items, desire to take on a line that will be marketable in the Middle West, on a commission basis.

Address Eox 983
STEEL, Penion Bidg., Cleveiand 13, 0.
MVALABLE: SALES ENGINEER. WIDELS quainted with industrial feld in Indiana, own Michigan and llinois invites expression fus manumeturers of production materials and equir ment who desire experienced and intelligent ${ }^{\text {IT}}$ prescntation. Graduate engineer. J. C. Brooklyn, Indiana

Positions Wanted

ENECUTIVE-ENGINEER WTTH MANAGL ment and production experience in metal iatel cation and machine tooling in the Appliance 20 Automotive industry: Coordinate sing neenth with Manufacturing. Experience in Devcloputh Work, Production Enrineering, Productiou y terial Control, Industrial Engineering, Fades, Cost Control, and Supervision. Addrcss 0 95^{5}, S'IEEL. Penton Bldg., Clevelaud 13, 0. STRUCTURAL ENGINEER: GOOD MECHanical backoround. 10 years varied experte Structural, steel plate, mechanical design as construction sow assistant chief engher Vould like chanere a small atrexessive sum Vould the chang 0 , sman aggessume oper pany. Age 36. B.S. negree. Concise resume bls request. Address Ror 965 , STEEL, Penton Cleveland 13, 0.
EXECCTIVE 29 YEARS EXPERIENCE I purchasing. Univelsity rducation enginet mb: Full knowledte of metals. stampines, max shop operations. foundry: Maried, 43 year 0. Can furnish best of references. Address B STEEL, Penton Bldg., Cleveland 13,0

Positions Wanted

MANAGER OR CHIEF ENGINEER Fabricated Structural Steel Graduate Engineer with 30 years experience as an executive in the fabrication of structural steel for buildings, bridges and miscellaneous structures desires a position as Manager or Chief Engineer in a plant employing between 500 and 750 men and a rated capacity of 3000 to 5000 tons per month Has been associated in an executive per month. with the fabrication of some of the largest steel structures built in this country. Thoroughly steel quainted with both riveted and welded construction. Equally efficient as either welded construcof manager. Now employed but have personal reasons for wanting to maked but have personal teasons for wanting to make a change at this from both cost and production stand get results to handle industrial production standpoint. Able following industrial and labor relations. Have a part of a well can, if necessary, furnish all or part of a well balanced organization. Prefer locating in the east although other locations, including South America will be considered. Can furnish references and desire personal interview. Address Box 978, STEEL, Penton Bldg., Cleveland 13,0 .

FACTORY MANAGER OR SUPT. DESIRES TO contact a steel fabrication manufacturer able to employ, and put in charge a middle aged executive. Well seasoned and experienced in all phases of kindred operations. Able to assume full responsibility of your labor relations, production control, shop management, standards processing, cost, contractual commitments and the execution of any new production programs. Yets of experience in forming, welding, cutting, fishing, machining of light and heavy steel. Age 35. Now employed. Address Box 958 STEEL, Penton Bldg., Cleveland 13, 0.

Opportunities

Opportunities

BUSINESS OPPORTUNITY

Tool, Die, and Stamping Plant for sale. Excellent profits, large backlog of orders. Principals only. About $\$ 60,000$ required. Located in Cleveland.

ADDRESS BOX 982
STEEL - PENTON BLDG. . CLEVELAND 13, 0.

OPPORTUNITIES AND PROFITS

are of equal interest to distributors and manufncturers-use an ad on this page next week to let manufacturers know you are interested in taking on new lines.

Employment Service

SALARIED POSITIONS-This advertising service of 35 years' recognized standing negotiates for high salaried supervisory, technical, and executive positions. Procedure will be individualized to your personal requirements and will not conflict with Manpower Commission. Retaining fee protected by refund provision. Send for details. R. W. BLXBY, Inc., 110 Delward Bldg., Buffalo $2, \underset{N}{ }, \mathbf{Y}$.

SPECIAL MANUFACTURERS TO INDUSTRY. . . Since 1905

Metal Specialties comprised of STAMPINGS, FORMING, WELDING, SPinning, machining. All Metal or Combined with Non-Metal Materials

LARGE SCALE PRODUGTION
OR PARTIS ANS DEVELOPMENT ONL
GERDING BROS. SETHIPDVINE ST. CINSINNATI 2,0HIO

SCREW MACHINE CAPACITY AVAILABLE

hom 14^{11} to $41 / 4^{1}$, also hand screw capacity, Forward samples and blueprints.
Bridgewater Screw Products Co. Bridgewater, Mass.

DESIGM MANUFACTURE UWIUERSAL JOINTS

Mail us your inquiries AGERSTRAND CORPORATION Muskegon, Michigan

```
Send your inquiries for
    SPECIAL ENGINEERING WORK to the
A. H. NILSON MACMIHE COMPANY, ERIDGEPORT, CONN.
designers and builders of wire and ribbon stock forming machines.
Fe also volicit your Lids for cam milliny
```

EING FOUNDRIES, INC., NORTH WALES, Pa. Gray Iron and Semi Steel Cestings, also Elloyed with Nickel, Chrome, and Molybdenum, Wood, Iron, Brass, and Aluminum Pattern wark.

> METAL SPECIALTIES MFGS. STAMPINGS

> Complete Facilities for High and Economical Production Including Finishing Since 1904
> Inquiries for Post-War Products given our Prompt Attention
> DUSING \& HUNT, INC.
> 1927 Elmwood Avenue Buffalo 7, New York

EXCESS CAPACITY AVAILABLE Large and beavy mectine work. The Hilyard Co., Norristown, Pa

Great Lakes Steel Corp.	18
Greenlee Bros. \& Co.	207

Greenspon's, Jos., Son Pipe Corp............ 207
H
Hagan, George J., Co. 172
Handy \& Harman 40
Hanna Engineering Works 187
Hanna Furnace Corp., The 160
Hannifin Manufacturing Co. 188
Hansen Mfg. Co. 37
Harnischfeger Corp. 14
Harper, H. M., Co., The 89
Haynes Stellite Co. 57
Hendriek Manufacturing Co. 206
Hercules Powder Co., Inc. 43
Hindley Mfg. Co.
204
Hobart Brothers Co.
Holeroft \& Co. 159

Hubbard, M. D., Spring Ca. 202
Huck Manufacturing Co.

Illinois Gear \& Machine Co. 147
Inland Steel Co. 69
International Nickel Co., Inc. $4 B$
Iron \& Steel Products, Inc. 207
Irwin Manufacturing Co., Ine. 205

Jackson Iron \& Steel Co., The 206
James, D. O., Manufacturing Co. 203
Jeffrey Manufacturing Co., The 155
Jessep Steel Co.

Johnson Gas Appliance Co. 138
Kaydon Engineering Corp., The 38

Kearney \& Trecker Corp. 129
Kester Solder Co. 201
King Foundries, Inc.
209
Kinnear Mfg. Co., The
195

Lebanan Steel Foundry	
R. K., Machine Tool Co.	
Lehigh Safely Shoe Co., Ine	
Lehmann Machine Co. 141	
Leschen, A., \& Sons Rope Co. 201	
Link-Belt Co. 55	
Littell, F. J., Machine	
Logan Engineering Co. 143	
Lodge \& Shipley Machine Tool Co., The 19	
Logemann Brothers Co	
exible Coupling	

Macwhyte Co. 171
Merrill Brothers 204
Metal \& Thermit Corp. 157
Molybdenum Corporation of America 45
Morton Salt Co.
45
130
Muehlhausen Spring Corp.
Murchey Machine \& Tool Co.
139

National Carbon Co .nc.
National Fireproofing Corp.
2 204

National Lead Co. 149
National Steel Corp.
Nichols, W. H., \& Sons
151
Nilson, A. H., Machine Co.
Norton Co.

Ohio Crankshaft Co.
Ohio Locomotive Crane Co., The
Orange Screen Co.
P
Page Steel And Wire Division, American Chain \& Cable

128
Pangborn Corporation
Parish Pressed Steel Co.
7
Parker.Kalon Corp. 40
Peninsular Grinding Wheel Co.

Penola, Inc
Permold Co., The
Pesco Products Co.
Pitisburgh Commercial Heal Treating Co. .. 204 Pittsburgh Crushed Steel Co.
Pittsburgh Lectromelt Furnace Corp.
Pittsburgh Rolls Division, Blaw-Knox Co.
Pollak Manufacturing Co.
Porter, H. K., Co., Inc.
Preformed Wire Rope Manufacturers
R
Rail \& Industrial Equipment Co.
Ready-Power Co.
Reeves Steel \& Manufacturing Co.
Republic Steel Corp.
Revalvator Co.
Rheem Research Products, Inc.
Roebling's, John A., Sons Co.
Roosevelt Hotel
Ruemelin Mfg. Co.
Russell, Burdsall \& Ward Bole \& Nur Co..... 134
Ryerson, Joseph T., \& Son, Inc. 2
S
Saginaw Malleable Iron Division of General
Motors .
Salem Engineering Co.
Schloemann Engineering Corp.
Shenango Furnace Co., The
Shuster, F. B., Mfg. Co., Inc., The
Simonds Gear \& Mfg. Co., The
Simonds Worden White Co.
Sisalkraft Co., The
Snyder, W. P., \& Co.
Socony-Vacuum Oil Co., Inc.
Sonken-Galamba Corp.
Standard Products Co., The
Standard Varnish Warks
Steel Founders' Society
Steel Products Engineering Co., The
Sireeter-Amel Co.
Sirom Steel Ball Co.
Stuart, D. A., Oil Co.

Taylor-Wilson Mfg. Co.
Thomas Machine Mfg. Co.
Thomas Sreel Co., The
Tide Water Assaciated Oil Co. 28, 年
Todd Sleel Corp.

Union Carbide \& Carbon Corp.
Union Chain \& Manufacturing Co., The
United States Steel Corp., Subsidiaries
United States Steel Supply Co.
U. S. Automatic Corp.

Vanadium-Alloys Steel Co.
Veeder-Root Inc.

Walker-Turnar Co., Inc.
Weatherhead Co., The
Wells Manufacturing Corp.
Wesley Steel Treating Co.
Westinghouse Electric Corporation
26, 63. 1
West Penn Machinery Co.
Whitehead Stamping Co.
Wisconsin Motor Corp.
Wisconsin Steel Co. Div. International Harvest Co., Inc.
Wolff, Benjamin, \& Co.
Wrigley, Wm., Jr., Co.

Youngstown Sheet \& Tube Co., The
Youngstown Welding \& Engineering Co.. The 1,

Table of Contents, Page 65 Classified Advertisers, Pages 207, 209. 309

[^0]: ${ }^{\text {- The }}$ author is business counsellor with offices in the Leader building, Cleveland.

[^1]: MORTON'S DISPENSERS
 They deliver salt tablets, one at a time, quickly, cleanlyno waste. Sanitary, easily filled, durable.
 800 Tablet size - $\quad \$ 3.25$

[^2]: GHOUTEAU AT GRAND * ST. LOUIS 3 , MISSOURI

[^3]: $\$ 20.08$
 Julv,
 1944 Jul,
 194
 25.19 $\$ 25.19$
 23.50

[^4]: ${ }^{\circ}$ Add 0.25 for acid open-hearth; 0.50 electic. Cold-Flnlahed Carbon Bars: Plttsburgh, Chicago, Gary, Cleveland, Bulfalo, base 20,00039.999 lbs.' 2.65 c ; Detrolt 2.70 c ; Toledo 2.80 c . Keystone Drawn Steel Co may sell outside Dept. contracts at 2.65 c , Spring City. Pa, plus Dept. contracts at $2,65 \mathrm{c}$, Spring City. Pa, Dlus fretght on hot-rolled bars from Pittsburgh to may sell outside New England on WPB direc-

[^5]: - Operaiors of hand-drawn ovent ustng trume ad Coal may charge $\$ 8.00$. effectuve May 28 . 1945 113.85 from other than Ala., Mo.. T+nn

[^6]: cities computed in accordance with regulations.

 ## 13ASE OUANTITIES

 400 to 1999 poumds; 400 to 14,949 pounds; -any quantity; - 300 to 1999 pounds; ${ }^{5}$ _ 400 to 8999 pounds; 300 to 9999 pounds; - 400 to 39,999 pounds: under 2000 pounds; "-under 4000 pounds; - 500 to 1499 pounds in-ane bundle to 39,999 pounds; 12 - 150 to 2249 pounds; ${ }^{38}$ - 150 to 1499 pounds; it three to 24 bundler: ${ }^{16}-450$

[^7]: STANDARD FOR INDUSTRY

