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A NEW APPROACH TO THE UNCERTAIN SYSTEMS MODELING^

Abstract. An input-output model of an uncertain plant is proposed 
which maps an input metric space into an output Menger space. On the 
contrary a controller is modelled by a mapping of the Menger space 
into the metric space of control variables. A control objective is 
considered to be the reachability of the desired output (£,r) neigh­
borhood. Some notions of mathematical systems theory have been defi­
ned for the above model.

1. INTRODUCTION

The input-output models used in control systems synthesis and analysis 
are only approximations of real plant dynamics. The uncertainty resulting 
from the approximation can be included in modeling in a variety of ways. 
Stochastic (e.g. D3*[2])» fuzzy (e.g. [5], [12] ), set-membership (e.g.
DO» [4] ), state-inequalities (e.g. [8], [9]) models are examples of the
approaches to uncertain systems descriptions. However some generalization 
of the uncertain system modeling may be useful. This paper develops such 
unified approach proposed in [10] based on statistical metric spaces con­
cept. The main idea of the method is to use different statistical distan­
ces to describe different types of uncertainty. However some general pro­
perties of statistical metric spaces [6] , [7] give general properties of
uncertain models.

The role of the notion of a "distance" in system analysis and design 
is crucial. In partly unknown systems the very association of a single 
number with a pair of elements is, -realistically speaking,an over-ideali­
zation. In these situations it is appropriate to look upon the distance 
concept as an uncertain rather than a determinate one. However some useful 
properties of special metric speces "hold or may be transfered into statis­
tical metric spaces and especially in Menger spaces. The fixed point the­
orem is the example of such useful result [l o]-see; Appendix.

Prace wykonana w ramach projektu(badawczego RP. I. 02: Teoria sterowa­
nia i optymalizacji ciągłych układów dynamicznych i procesów dyskret­
nych.
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2. MENGER SPACES REVISITED

In that part some important mathematical definitions are recalled [7] •

Definition 1> A statistical metric space is an ordered pair (3,7) where 
S is an abstract set whose elements will be called pointB and ?  ia a map­
ping of S x S into the set of distribution functions - i.e., associates 
a distribution function?” (p, q) with pair lp,q) of points in S. We shall 
denote the distribution function 3” (p, q) by F whence FpqU)  will denote
the value of P for the real argument x. The functions F are assumed pq ° pq
to satisfy the following conditions»

I. F Ut'- 1 for sll x > 0 iff p - q pq

Definition 2» A Monger spgce is a statistical metric space in which a 
triangle inequality

V. Fprlx+y) ^ TlFpqU), *qr!iy)) ^ ° r all > 0

holds universally for some choice of T satisfying following conditions»

T1t T(a,1) - a, T(0,0) - 0
T2i T(c,d) £ T(a,b) for o ^ a, d ̂  b
T3» T(a,b) - Ttb.a)
T4» T(T(a,b),c) - T(a, Ttb.c))

T is a 2-place function on the unit square called a triangular norm.
The topology in a Menger space may be induced by the family of neigh­

borhoods. The concept of neighborhood is also Important for definition of
convergence, completeness and other topological notions. It may be defined 
in several nonequivalent ways. However the useful definition is following

Definition 3: Let p be a point in the statistical metric space IS,?”).
By an l£,r) neighborhood of p. (£>0, r > 0) we mean the set of all points 
q in S for which Fpq(£) > 1-r.
We write»

V (x+y> - 1

m *

t
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A sequence of points <Pnl in an IS,?") space is convergent to a point p
in S iff for every £>0, r >  0 there exists an integer M such that
pQ 6 Np l£,r) whenever n > M. It is a Cauchy sequence iff for every E and
r there exists an integer M such that p e N „l£,r) whenever n,m > M.pn 1 7
Completeness of a Monger space 1b quaranteed by convergence of every Cauchy 
sequence to an element of this space.

3. MODELING OP PARTLY UNKNOWN PLANT

- Consider plant given by input-output basic models of a form

y « flu) ll)

where u is an element of input metric space IU,d) and y an element of out­
put metric space lS,p).

Since 11) is only an approximation of the real plant the single valued 
prediction of the plant is unrealistic. So the plant should be modelled 
by the mapping from the input apace (U, d) into a proper Menger space IS,?-). 
Then we wre led to the model 11) in which however y is now an element of 
a Menger space IS,?) and f is understood as a mapping from lU,d) into 
IS,30. If there is no uncertainty in' the Bystem the model is still in force 
setting

?y2U) - Hlx -£> ly,z)) - 12)

H is a unit Btep defined ast

0 x < 0
Hlx) «<

1 x > 0

So the input space is also a Manger space with »9f where 3f lp,q) ■»

“ Hdlp.q)‘
Different uncertainties lead to different functions P. However it is 

very important to consider not only the uncertainty resulting from an 
environment of the system but also the possibilities of realization of the 
control objective. This problem will be disousBed more extensively in the 
next chapter. Here consider typioal uncertainties and respective functions 
P. In the set-membership or inequality approach y may be interpreted as a 
set of possible responses and the distribution function may be defined asi

*y„lx) - Hlx - ? h ly,z)) (3)
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where PjjU, •) is a Hausdorff distance between two sets. Other possibility 
is to consider y as the result of a selector for the point-set mapping and 
discuss more general distribution function for example defined as follows:

where G is a distribution function different from H satisfying G(0) = 0.
The function F defined in (4) is also suitable for Hausdorff distan­

ces This approach is in some sense generalization of 13) and (4). Ho­
wever it becomes similar to fuzzy set approach. Then S is understood as 
a set and interesting interpretation of function P follows. Consider re­
lation R(x) defined by

Note that the usual definition of a fuzzy subset of S as a membership 
function ¿*A (p) is equivalent to

what may be convenient for further consideration.
Some difficulties must be met in the probabilistic case although the 

interpration of function Fyz is the most natural. Namely define Fyz(x) as 
the probability that the distance of y to z is less then x. More precisely 
y must be interpreted as a random variable i.e. function from P)
into R,vor a stochastic process and we define:

where yCtO), z (to) are realizations of y, z respectively. However triangu­
lar norm (I) does not ensure the triangle inequality V. In the case of the 
stochastic inpendency of the distances T may be chosen as a product i.e.

G(x/ P (y,z)) y f z

?yzU )  m \ H(x)
(4)

y - z

(5)

Then R(x) is fuzzy relation and Fyz(x) may be defined as the grade of 
membership of(y,z) in R(x) i.e.:

PyzU) " f  R(x)(y*z) (6)

? pA(0+) "  3uP tPpq(0+) | 1 e A ).

In all cases mentioned above triangular norm may be defined as:

T(a,b) » min(a,b) (7)

Fyz(x) » p|tO inii lp(y to), z(tO))<x| (8)

T » ab (9)
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This is the ease of so called Wald spaces [7] • However in some cases for
example when the normal spaces are considered T may be defined only as:

T ■ max (a + b - 1, 0) 110)

For control purposes it may be more convenient to consider function F 
defined by a metric m l.,f) based on an expectation operation. Then a fun­
ction similar to that defined by (3) or (4) may be applied with p or 
changed by m . This permits use of the T-norm given by {7).

The uncertainty in a plant is usually represented by uncertainty in pa­
rameters of itB model,Denote by w such uncertain parameter and consider 
w to be an element of a Monger space (W,9^) and the model (1) will be 
extended to the form:

y > f(u,w) (11)

where now f is a mapping of a product of input metric space and parame­
ter Menger space into output Monger space.

To be well behaved the product must be M-product [11] defined as the 
pair lux W,3(J^9y where ?0 is defined by:

QiJl S'o^P.q) - “i“ l3i(ur  u2), ? 0 (w1t w2)) 110)

where

3£(uv  u2) = Hd (Ui>u2)

*2) “ Fow1 w2

and
MinlH,dlu1(u2),?o w. » ” EnlHl1 " 4(ui $ 2 })’ ?o«1(w2 W )

111)

4. MODELING OF CONTROL OBJECTIVE AND CONTROLLER

Although a variety of approaches to system design is reasonable both 
for deterministic and uncertain systems including optimal control design, 
it seems that the objective lies almost always in achieving desired res­
ponse of a system for given sets of parameters, reference signals etc.
This objective is however unrealistic for uncertain systems. Moreover even 
in the case when we are able to get complete information about a plant to be 
controlled the desired response may be unachievable because of the constra­
ints imposed on the control variables. The Menger space approach provides 
great flexibility in modeling the control objective which can be Btated as
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reachability of (£,r) neighborhood of the desired response. Denote the 
desired output by y° in S. Then the control objective may be written in 
the forms

| y \  is yQ treated as an element of S.
The type of neighborhood is defined by the Menger space in which out­

puts are considered. However, it now seems obvious that the proper Menger 
space may be chosen not only on the base of the type of uncertainty intro­
duced by the environment of the system, but also talcing into account some 
design needs. In some sense we may regard the objective (12) 8S the target 
set control with given degree of risk,£ is Interpreted as a diameter of the 
target set and r as the given degree of risk (in the sense of the Menger 
§pace (S,?')). The input-output model of the system and the model of control 
objective imply a model of controller which may be useful in control sys­
tem design.

Therefore we are led to a controller defined by a mapping of Menger 
space into metric space i.e.«

The controller must place the outputs of the system in the (£,r) neighbor­
hood of the desired response. Combining the models (1) and (13) we are led 
to a model'offthe overall system in the form:

The model (14) is given by the mapping f(g(.y)) of the Menger space (S,90 
into itself. Therefore some properties of the feedback systems may be con­
sidered by regarding properties of specially defined mappings in Menger 
space.

5. SYSTEMS THEORY CONCEPTS

For systems given by the models considered above some mathematical 
systems theory concepts may be defined. We shall give examples of such 
definitions.

Definition 4: The system (1) is (c,V) Lipechitzian if there exist a 
positive real constant c and a distribution function V(x) with V(0) = 0 
such that:

(1 2)

u = g(y)

y “ f(g(y)) (14)

Pf (u,) f (u?) <c x) > V U  - <H«1.U2)) (15)
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for every t U and every x > 0.

Definition 5: The system 11) is l£,r) controllable to y° if there
exista u such that

flu) £ N (£,r) 11 6)
{ y }

jy°j ia y° treated as an element of S.

Definition 6: The system 11) ia l£,r) atabilizable at y° if there
exists a controller u =• gly) such that the output of the overall system 
is unique and lies in N, l£,r)

{y-
Definition 7 ».The system .111) is completely identifiable if there 

exists an inverse mapping:

w - f 1 l. ,y) 117)

with values in metric space IW,£)

Definition 8 : The system (12) is yo - identifiable if there exista an 
inverse mapping

w - f"1 I* ,y)

with values in statistical metric apace IW.3^)

Definition 9: A solution y of the feedback system 114) is stable if y
is the attractive fixed point of the mapping flgl*)).

The last definition shows that one way of finding conditions for the
uncertain system to posses some desired properties is the use of fixed
point theorem in Menger space.
An example of such a result may be given in the form of the following 
sufficient condition of the l£,r) stabilizabillty.

Theorem: Consider (c,V) Lipschitzian uncertain system l£,r) controlla­
ble to y° with u in the input metric space ^U,d) and y in the complete 
Menger space IS.i.T) with T continuous and satisfying an inequality 
Tlx,x) > x. Then the system is (£,r) stabilizable at y°.

Proof: The l£,r) controllability implies an existence of u° such that 
flu0) - y* £ N, l£,r).

Assume thatH) controller gly) is chosen such, that for y ■ y* gives
u°, i.o.

gly*) - u° - f-1 ly*) (18)
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Then y* is a fixed point of the mapping, f(g(»)) i.e.

f(g(y*)) = y* (19)

To make y# an attractive fixed point one must ensure a contraction in the 
sense of the Menger space (S,5",T) of the mapping flg(.)). It suffi­
ces to impose the following condition for the controller. Let t > u, be 
the constant such that cl < 1. For every y,z in S and every x > 0 
the controller g(#) must satisfy the relation:

Now combining the (c,V) Lipschitzian property of the system with the 
property (20) of the controller we have:

where k * c 1 < 1 for every y,z in S and every x > 0 (21) is a
contraction condition, and y* is therefore, on the base of the fixed 
point theorem ( [10] - see Appendix), unique attractive fixed point. That 
completes the proof.

6. CONCLUSION

A unified approach for uncertain modeling has been proposed. It Implies 
a convenient way of control objective and controller modeling. Moreover 
it may be useful for control systems design and makes it possible to find 
common properties for systems characterized by different types of uncerta­
inty. The criterion proposed for systems theory concepts could be compared 
with various notions considered elsewhere e.g. [1] , [3] for some types 
of uncertainty. For example the notion of (£,r) controllability considered 
for set-membership model of uncertainty coincides with the reachability of 
target tubes tmin-max reachability [3] if r » 0).

Appendix: Contraction mappings in statistical spaces

Definition: A mapping M: (S,30 (S,1*) is said to be a contraction if
there exists a real number k : 0 < k <1, such that

F„ ,, (k x) > F (x) for all p, q in S and each x > 0Up Mq pq

V(lx - d(g(y), g(z))) > FyZ U) (.20)

Ff (g(y))f (g(z)) (2 1)

Fixed point theorem: Let (S,“£,T) be a complete Menger space where T is 
a continuous triangular norm satisfying the condition T(x, x) > x for 
each x in [0, 1] .
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If M is a contraction mapping in S then exists a unique point p in 
E such that Mp = p. Moreover, for all q in S, every sequence of itera­
tes of M converges to this fixed point (Mn q—»-□).

For proof see [icQ .
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HOBtŁł nOAXOA K MOAEJIHPOBAHMU CHCTEM G HEyBEPEHHOCTbK)

P e 3 b u e
B ciaibe npe^Jiaraeics BxoAHO-BiixolAHaa MOAejib cHOTeuu o HeyBepeHHocib», 

b  KOTopoft BXOAHoe ueTpjmecKoe npocTpaaciBo^npeofipa3oBaHO b  MeHrepoBcnoe b h -  

xoflHoe npocTpaHdBO. C. A t y r o t i  o t o p o h h  p e r y n a i o p  MOflejiHpyeTca sepes oio6paxe- 
Hue npocTpaHOTBa M e u r e p a  b  MeipH>łecKoe npocipaHCTBo ynpaBJieHHii. U e a b  ynpa- 
BJiemw npHHAia b  sa^e flooTHxeHHB oÓJiacm cooTBeTciBycneft TpeOyeuoMy OTKJiHKy 
CHCTeufci. jijM yKa3aHHoK Modemu Bae^eiiu onpe,ąe.neHH« HeKoxopux MaTeuaTHaacKHi 
nOHHTHfi H3 TeOpHH CHCleU.

'IOWE PODEJŚCIE DO MODELOWANIA UKŁADÓW Z NIEPEWNOŚCIĄ

S t r e s z c z e n i e
Proponuje się wejściowo-wyjściowy model obiektu w warunkach niepewnoś­

ci, który jest odwzorowaniem wejściowej przestrzeni metrycznej w wyjściową 
przestrzeń Mengera. Z kolei regulator modelowany jest w postaci odwzorowa­
nia przestrzeni Mengera w przestrzeń metryczną sterowań. Cel sterowania 
jest przyjęty w postaci osiągalności l£,r) otoczenia pożądanej odpowiedzi 
układu. Dla powyższego modelu wprowadza się definicje niektórych pojęć ma­
tematycznej teorii systemów.


