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1. Introduction

Digital systems and Internet are nowadays spanning most domains of our
lives. They are responsible for communication between people, institutions,
for controlling airport systems, transport systems, managing medical sys-
tems, etc. Digital systems start to appear everywhere and are responsible
for more and more important and confidential processes. We are flooded
with digital data, which are not always easy to authenticate, manage and
secure. Generally majority of common users of digital systems do not care
much about authentication, confidentiality, integrity and security of their
data. They are still little aware of possibilities of stealing, tampering or us-
ing their digital data or what is worse their digital identity (identity fraud
is a serious threat [90]). They are even less aware of consequences resulting
from such abuses or negligence of security matters [90, 63].
Fortunately security awareness slowly increases mainly due to rapid de-

velopment and increase of number of services performed in a digital way.
People start to perceive the meaning (necessity) of securing data. Every-
one wants to securely perform banking transactions, safely sign important
documents, protect confidential data (tax, medical, etc.) or just safely shop
online. On the other hand, nobody wants to be bothered about securing
data and nobody wants that this process will in any way interrupt normal
work of a system. Luckily most system developers have information security
awareness and tend to equip digital systems and communication channels
with more and more efficient security issues, depending on application and
requirements. The security of a system has to be very often verified because
although users start to take precautions and new ways for securing data are
developed, new ways of stealing and tampering data also appear.
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The science, which provides us with means to secure data, is called cryp-
tography [66, 99]. Cryptography dates back to ancient times [43]. It was
used to cipher messages to prevent adversaries from reading it. First ciphers
were very naive but usually sufficient due to the fact that most people were
illiterate. As centuries passed and elementary education became a standard,
ciphers had to become more and more sophisticated. Nowadays, cryptog-
raphy has to exploit properties of NP-hard mathematical problems (see [6]
on computational complexity) to provide us with new means of data se-
curity. The mathematicians working on encryption algorithms constantly
adapt them to arising needs and computer scientists create new informa-
tion security systems employing them (for more details see [91]). With
development of new technologies designers tend to create faster and more
efficient cryptographic systems. Unfortunately as the technical and theoret-
ical possibilities of securing data increase, the number of ways of tampering
communication and recovering secret and hidden data also increases. In
fact cryptography, treating about concealing the secret, is just one branch
of a wider science: cryptology. The other branch of cryptology, evolving
simultaneously is cryptanalysis, which concerns breaking the ciphers and
data security (see [100, 105]). Due to developments in cryptanalysis, mod-
ern cryptographic systems suffer from more threats than their predecessors.
They have not only to be mathematically secure but also physically secure.
At first it was sufficient to employ a simple, secure, mathematically un-

breakable cryptographic algorithm. Then it occurred that with development
of computational power of computer systems and new means of communica-
tion (Internet, wireless communication), the mathematical security of most
algorithms should be revised, and either new algorithms should be developed
or their parameters have to be changed [99]. After managing the problems
of algorithms’ mathematical security, it was proven that there exist other
ways of extracting secrets from cryptographic systems. Cryptanalysts came
up with idea to eavesdrop work of digital cryptographic systems developed
to secure data [68]. They propose to analyse power trace, current signa-
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tures, execution time and other leaking information, concerned useless, in
order to correlate them directly with the secret or with operations executed
on secret in the cryptographic system.
Unfortunately their approach for recovering the secret was successful [53]

and nowadays it is not only sufficient to employ mathematically secure cryp-
tographic algorithms but also to secure their implementations as well as sys-
tems and devices performing cryptographic operations against adversaries.
It implies that safe and mathematically unbreakable algorithm is not enough
to secure the data; one needs also to secure hardware or software solutions
against information leakage. It is proven that it is possible to record power
trace, current trace or electromagnetic emissions, or observe execution time
and by analysis of obtained information deduce secret data. Such approach
is called side-channel analysis or side-channel attack (SCA), see [103]. Until
very recently, information leaking from the device during its work was con-
cerned as useless noise and designers did not especially bothered to decrease
or control it. Fortunately, now security systems developers/researchers are
aware that every information “leaking” from the cryptographic device can
be useful to the attacker. To avoid loss of secret data developers analyse the
behaviour of their devices in order to make them secure against eavesdrop-
ping. New ways of securing data and cryptographic processors are being
developed making attackers job harder. Simultaneously methods for secret
data retrieving also develop, decreasing the strength of added security issues
(countermeasures) [105].
There are few families of possible side-channel analysis attacks [88] de-

pending on which side channel the attacker is exploiting. To retrieve secret
the attacker analyses timings of the operation, power consumed by the de-
vice or the character of electromagnetic radiations. The side-channel anal-
ysis attacks are so called passive attacks, they are based on the information
eavesdropped during circuit work, they do not interfere with the device.
There exist also active attacks in which the attacker manipulates crypto-
graphic device and/or its environment, see [7]. Usually the attacker tries to
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insert errors (fault-injection attacks) in device work, tries to force unnormal
behaviour of the device or manipulates clocks to observe changes in device
behaviour which may give information about secret.
In our researches we are motivated by the possibility of ensuring more

powerful physical security of cryptographic systems especially against power
analysis attacks. There are still many ideas for countermeasures to verify
and there are still units of cryptographic systems, which were not considered
during security level evaluation, i.e. for which no countermeasures against
SCA were yet provided. We aim at fulfilling parts of those security gaps.
Adding countermeasures against SCA is not a trivial task [35]. Some may

overload cryptographic device and degrade its performance. Some counter-
measures may protect against one type of SCA but may make the other
type more feasible to succesfully perform [26]. The ideal countermeasures
are such that do not decrease the overall performance, efficiency and do not
increase the cost of the cryptographic system too much. The cryptographic
systems are already complex circuits due to the fact that they employ a lot
of arithmetic computations on large numbers. Thus overloading them with
useless subcircuits generating additional activity may cause serious decrease
of efficiency, especially in terms of area. Moreover adding noise to blind the
operations performed is speculative because there exist effective denoising
methods in signal processing, see [87]. Additionally the noise adding coun-
termeasures are insufficient as an autonomous countermeasures. They can
serve as an additional protection element [60].
Thus we are motivated by a possibility of increasing the security of cryp-

tographic system in such a way that it will not result in degradation of
its efficiency and overall cost increase. What is more we want to increase
the overall efficiency of cryptographic system and decrese its cost. To be
able to achieve our goals we first have to propose very efficient computation
units dedicated to work in cryptographic systems and then try to insert the
countermeasures in such a way that elaborated efficiency of our units will
not decrease. That way we presume we may improve overall cryptographic
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system performance (by increasing efficiency of its basic units) and cryp-
tographic system security (by inserting necessary countermeasures against
eavesdropping).
Utilising reconfigurable circuits, for instance Field Programmable Gate

Arrays (FPGAs) [46, 37], as a target platforms for our cryptographic de-
vices seems to provide a lot of possibilities in our field of research. Such
circuits allow for quick evaluation of proposed solutions and inserted coun-
termeasures. They are relatively cheap, flexible and provide a great mean for
prototyping circuits before implementation in more expensive Application
Specific Integrated Circuits (ASIC). Another advantage of FPGA solution
is that it is much harder to successfully attack them than a solution imple-
mented on microprocessors, due to for example sequential and predictable
nature of operation of a microprocessor.

Cryptographic systems rely on arithmetic operations and complex math-
ematics, they exploit certain mathematical problems, which are infeasible
to solve. There exist two types of modern cryptographic systems, utilis-
ing: secret-key cryptography or public-key cryptography (PKC). Our work
concerns the second type, the public-key cryptography. There are three
most widely used types of PKC systems. They are divided regarding the
mathematical problem their security is based on. The most commonly ex-
ploited problems are [36]: integer factorisation problem (e.g. RSA system),
discrete logarithm problem (e.g. ElGamal system) and elliptic curve dis-
crete logarithm problem (Elliptic Curve Cryptography system). We have
decided to consider in our research security and efficiency of cryptographic
systems based on elliptic curve discrete logarithm problem; that is Elliptic
Curve Cryptography (ECC) [36] systems. The ECC is very advantageous
especially due to the fact that it operates on much smaller numbers than
for example RSA , in order to provide the same level of security. This fact
should create the possibility to propose much more efficient cryptographic
hardware solutions.
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The elliptic curve cryptography concerns/exploits mathematical proper-
ties of elliptic curves defined over finite fields. Main ECC protocols oper-
ations are performed on points of such elliptic curves. To perform those
operations (curve-level operations) one needs to perform operations on the
coordinates of elliptic curve points, i.e. on the elements of the underlying
finite field. Due to this, the operations on the elements of finite fields are the
ones on which really the work of any ECC protocol depends. The efficiency
of finite-field computation units is crucial for the efficiency of ECC systems.
There exist many ways of protecting the operations performed on points

of elliptic curves (curve-level operations) or operations performed by ECC
cryptographic protocols, see [26]. However there are not yet known any
means for securing the operations in the underlying finite field (field-level
operations). According to the fact that efficiency and work of ECC systems
depend on the performance of the operations performed in finite fields [97],
we find that security of whole system may also depends on the finite field
arithmetic units security. The motivation for our research is the possibility
to increase the security and efficiency of whole ECC system via securing
and improving finite-field arithmetic operators responsible for performing
vital computations in ECC systems.
In elliptic curve cryptography, many SCAs [80] have been proposed. To
protect circuits against those attacks researchers propose various counter-
measures, or protections, see [39]. Moreover, specific protections at the
arithmetic level (curve-level operations arithmetic) have been proposed.
For instance, addition chains allow performing only one type of operation,
point addition, during scalar multiplications [14]. In [15] randomisation
techniques are used. But these protections are at the curve-level not the
finite-field one. At the moment the means and effects of protecting finite-
field arithmetic operators are not yet exploited. It seems that if except
just securing curve level operations of the ECC processor we will secure
also arithmetic operators, which efficiency is crucial for curve-level opera-
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tions, we can make our cryptographic system more difficult to break (to
attack successfully). We presume that leaking information are much harder
to analyse and to correlate with a secret when the basic arithmetic units
operations are secured against eavesdropping. Our objective is to protect
cryptographic devices as much as possible against some SCAs. Usually the
only thing, which stops cryptanalysts from recovering secret data (breaking
the device), is insufficient computational power of available computer sys-
tems. The more countermeasures and protections the more computational
power needed to break the system.

Summing up, we recognise the following problems to analyse and to solve.
First problem concerns the efficiency of ECC systems. Its efficiency strongly
depends on the efficiency of finite-field arithmetic operators. Thus we need
to perform research, which will allow us to come up with very efficient
hardware finite-field arithmetic units. In order to provide solution to this
problem and elaborate our own efficient algorithm easily translatable to
hardware it is necessary to analyse as many existing algorithms as possible.
There are two types of finite fields over which elliptic curves are defined

to serve cryptographic purposes. Prime fields GF (p) and binary extension
fields GF (2m) [36]. Binary extension fields GF (2m) allow for carry-free op-
erations. Thus we may avoid taking care of long carry chains. According
to many sources GF (2m) fields are more suitable for hardware solutions,
i.e. [111, 47]. Thus we have decided to focus on GF (2m) rather than GF (p)
arithmetic operators. Generally there are two operators defined in a field:
addition and multiplication. All other operations (i.e. squaring, inversion)
can be implemented by means of addition and multiplication. Addition
in a binary field is very simple, it is a bitwise XOR operation. However
managing large operands even during such a simple operation may yield
problems. ECC applications require performing operations on operands of
size 150-600 bits [32]. Multiplication is more complex and furthermore it
is a modular operation (modulo specific irreducible polynomial generating
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the field). It means that we need not only to perform multiplication but
also reduce obtained result. There are many multiplication algorithms and
their improvements presented in literature, however most are just theoret-
ically evaluated. This means that proposed mathematical improvements
might not give desired enhancements when implemented in hardware. In
our work we are motivated by a possibility of finding such modifications of
algorithms, which may yield real hardware improvements, i.e. energy and
area savings, design acceleration (speed-up). Our goal is to provide such
algorithms, which will be suitable for efficient implementation in hardware.

Second problem, which influences the structures of elaborated algorithms,
is the need to secure algorithms’ implementations against physical attacks
(here we consider SCA). As stated by Micali and Reyzin in [68], when they
first defined group of physical attacks, “computation and only computation
leaks information”, thus our goal is that our computations leak as small
amount of information useful to an adversary as possible. In fact we are
not able to prevent electronic device from leaking information, however we
may make the leaking information as useless as possible by controlling the
behaviour of our devices to a feasible extent. We want that our solutions
are as robust as possible to side channel attacks. We focus on preventing
successful power analysis attacks due to the fact that they are the most
popular types of SCA attacks, i.e. they receive a lot of attention from re-
searchers and cryptanalysts [61]. Moreover according to [61] they are very
powerful and can be conducted relatively easy.
The thorough analysis of finite field operations algorithms should reveal

the possibilities of securing them. It should reveal their features, advantages
and potentialities for inserting countermeasures. In order to counteract to
possible attacks, we have to propose modifications at algorithm level as well
as at the architecture level. The goal is to propose them in such a way
that resulting overhead will be sensible and that they will be transferable
to other hardware architectures (ASICs).
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As mentioned developers usually add protections in ECC systems at curve
operations level and as proven such protections usually secure only against
certain families of physical attacks [53]. For example the device strongly
secured against timing attacks can be very weak against power attacks and
otherwise [79]. We are strongly motivated by the presumption that securing
all computations performed in ECC system (finite-field operations, curve-
level operations, protocol operations) allows creating a system strongly se-
cure against most families of side-channel attacks.

Third problem, which needs to be investigated, is the trade-off between
security issues and efficiency. On one hand we want the device to be very se-
cure but on the other it still has to be very efficient. If we overload operators
with security issues (countermeasures) their speed may drastically decrease
and their size/cost may dramatically increase. However if we insert not
enough countermeasures, cryptographic system might be easily attacked.
The elaborated efficient hardware arithmetic operators units should allow
for inserting countermeasures without adding much overheads to the solu-
tion (without degrading performance of the solution and increasing its cost).
The impact of added countermeasures on the parameters and behaviour of
the solution should be very carefully evaluated. If a countermeasure de-
grades speed too much or causes an explosion of its size, it should be either
avoided and substituted by other or thoroughly reconsidered (and possibly
improved).

The alongside problem, having impact on all the others, is the size of data
to be manipulated by the operators. As they need to serve ECC purposes
they need to operate on numbers of size approximately 150-600 bits [32].
Large binary vectors are not easy to handle and what is more sometimes
they may cause synchronisation and routing problems, i.e. be the cause of
hazards or strange delays. Usually with growth of operands size, the oper-
ator solutions grow and their speed decrease, so our objective is to provide

9



very efficient solutions for arithmetic operators working on vectors of large
sizes.

In the following sections some cryptography basics, necessary to under-
stand the purpose of our researches, will be presented.

1.1. Modern cryptology - basics, goals, applications
and threats

In this section a short introduction to cryptography is presented. We provide
brief overview of most popular cryptographic techniques and more detailed
description of the techniques to which our researches will apply.
We introduce also cryptanalysis and describe briefly code breaking tech-

niques. The short introduction to those topics is necessary to understand
the objectives of our researches. More detailed introduction to some attacks
is presented in Chapter 4.

1.1.1. Cryptology basics

Cryptology comprises cryptography and cryptanalysis. To introduce reader
to our problem we present briefly both branches. We give here classical def-
initions. Presently cryptology domain concerns not only mathematics but
also computer science. This is due to the fact that the modern cryptology
deals with digital data and digital systems. Nowadays to use cryptographic
techniques it is necessary not only to know a secure mathematical algorithm
but also to efficiently implement it in a digital system.

Cryptography
Cryptography is a branch of cryptology treating about information security.
It provides means for securing communication and information exchange in
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presence of adversaries.

Definition 1.1.1. (according to [66, 99]) Cryptography is a study of
mathematical* techniques related to aspects of information security such as
confidentiality, data integrity, entity authentication and data origin authen-
tication. Cryptography treats about prevention, detection of tampering and
other malicious activity of which physical and digital data can suffer.
*modern cryptography as mentioned above concerns also computer science discipline

Modern cryptography concerns the following security objectives [66, 99]:

• confidentiality (privacy) - no information can be extracted by unau-
thorised entity from messages send over unsecured channel or data
stored on unsecured media (in unsecured area/zones);

• authentication - a process by which one may ascertain for example
data origin; comprises entity authentication and data origin authen-
tication;

• data integrity - ensures that a message has not been tampered with
(altered in unauthorised way);

• non-repudiation - the message is bound to the sender, i.e. the receiver
can be sure that it comes from the sender and the sender cannot deny
sending it;

The most popular cryptographic tools for providing information security
are symmetric cryptography and asymmetric cryptography. Both comprise
algorithms, which security bases on intractability of underlying mathemat-
ical problems and on security of a secret key. Short explanation of some
basics of those algorithms is presented in next subsections.

Cryptanalysis
The second, equally interesting, branch of cryptology is cryptanalysis.

Definition 1.1.2. (according to [66, 99]) Cryptanalysis is a study of
mathematical* techniques related to analysis of secured communication, ci-
phers and cryptographic systems in order to discover their weaknesses, which
may allow retrieving secret data. Modern cryptanalysis treats about break-
ing mathematical systems as well as physical devices implementing them. It
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validates cryptographic system security and points out the features, which
need to be improved.
*modern cryptography as mentioned above concerns also computer science discipline

Cryptanalysts study breaking codes, breaking cryptographic systems and
recovering the secret. We may say that their task is to validate a crypto-
graphic system. To prove that it is breakable in any way or to confirm its
security level. Before popularisation of digital systems, the aim of crypt-
analysts was just to find a way to solve an intractable mathematical prob-
lem. Nowadays when underlying mathematical problems are really hard
to solve and the ability to solve them usually depends on available com-
puting power, the cryptanalysts seek for other, easier, complementary and
less expensive, ways of recovering the secret. Due to the fact that phys-
ical documents are being replaced by digital ones, to secure and handle
them researchers/designers tend to provide efficient digital systems, either
software or hardware, implementing cryptographic algorithms. Hence the
cryptanalysts turn their interest to observation of designed devices and sys-
tems implementations in order to find cheaper and more effective ways of
recovering secrets. Unfortunately for system designers it occurred that by
observation of the behaviour of a device implementing cryptographic sys-
tem: power consumption, time of execution, electromagnetic emissions, it is
possible to break the system [68, 5]. It was proven that plenty of information
leaking from the system might be useful to a cryptanalyst (an adversary,
eavesdropper). Thus in order to create secure cryptographic system, it is
necessary not only to find secure algorithm but also to be aware of possible
information leakage advantageous to an adversary [4, 61].

Communication model
Figure 1.1 shows a typical communication model. In this model entity A
communicates with entity B. Entity E tries to tamper the communication
either by stealing exchanged messages, altering them or destroying them.
The goal of cryptography is to secure communication between A and B

12



Figure 1.1.: Typical plain (not secured) communication model

against actions of E. The goal of cryptanalysis is to find a way to tamper
the secured communication or to retrieve secret data (M, key).
Secure communication model
The model is illustrated on Figure 1.2. In secure communication model

Figure 1.2.: Secure communication model

entity A, before transmitting the message to B, enciphers it. Upon receiving
the ciphered message (ciphertext) entity B must decipher it to be able to
read it. It should be infeasible for E to tamper the communication or to
decipher message sent by A. This infeasibility should be ascertained by
proper cryptographic techniques. Nowadays the most popular techniques
for securing communication are key-based techniques. Key-based means
that their security depends on secrecy of the key.
The cryptographic problem in this model (Figure 1.2) is how to effectively

encipher the message (plaintext) to have it deciphered by B but not by E.
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The idea of key-based algorithm is to rely entirely on the secrecy of a key. In
such algorithms the encryption/decryption process is done in the following
way:

plaintext
K−→ ciphertext

K−→ plaintext.

Let Ki ∈ keyspace, plaintext be denoted by M , ciphertext (ciphered
plaintext) by C. Let us also denote encryption by E and decryption by D.
Thus (see [66]):

EKe(M) = C

DKd
(C) = M,

where EKe denotes encryption with key Ke and DKd
decryption with key

Kd.
Entity A transforms plaintextM (message) into a ciphertext, using encryp-
tion key Ke and transmits the ciphertext to B. Entity B receives ciphertext
C and transforms it back to plaintext M, again using a key, this time de-
cryption key Kd (somehow correlated with Ke). Depending on how we
define, correlate and distribute the pair of keys we may distinguish two
different key-based cryptographic techniques: symmetric cryptography and
asymmetric cryptography.

1.1.2. Symmetric cryptography (Secret-Key Cryptography)

In symmetric-key cryptography, called also secret, single, one-key [66], we
perform (see also Figure 1.3):

1. Key exchange / key distribution

2. EKe(M) = C

DKd
(C) = M,

where Ke can be calculated from Kd and otherwise [66]. In fact in this
cryptographic scheme usually Ke = Kd = K.
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In symmetric-key cryptography, before starting to communicate, A and B

Figure 1.3.: Secret-key cryptography communication model

have to exchange secret key via some secured channel, see step 1 on Fig-
ure 1.3. The key must remain secret as long as communication has to remain
secret. The problem of secure key distribution and management is crucial for
symmetric key cryptography. It leads to many other problems and although
secret-key cryptography is very efficient, due to key management problems
it cannot be safely used in all communication schemes, especially in secure
communication over the Internet. What is more secret-key cryptography
does not fully implement all abovementioned cryptographic objectives (i.e.
authentication, non-repudiation) [66].
The most popular symmetric-key cryptography algorithms are [36]:

• Data Encryption Standard (DES), Triple DES,

• Advanced Encryption Standard (AES),

• RC4 stream cipher (Rivest Cipher 4),

• Message Authentication Codes (MAC/HMAC).
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Even though secret-key cryptographic techniques are characterised by high
efficiency they cannot be used before the key is safely exchanged. To over-
come this problem public-key cryptography was proposed [22, 67].
The secret-key cryptography is out of scope of our researches thus we

do not present the algorithms in more details. For further reading we
suggest NIST (National Institute of Standards and Technology) standards
or [99, 66].

1.1.3. Asymmetric cryptography (Public-Key Cryptography)

Public-key cryptography (PKC) was introduced in 1975 by Diffie, Hell-
man [22] and Merkle [67] as an attempt to solve problems arising in secret-
key cryptography. Definition according to Diffie and Hellman [22] is pre-
sented below (see also Figure 1.4):

Definition 1.1.3. [22] A Public-Key Cryptosystem is a pair of families
{EK}K∈{K} and {DK}K∈{K} of algorithms representing invertible transfor-
mations,

EK : {M} → {M}

DK : {M} → {M}

on a finite message space M , such that

• for every K ∈ {K}, EK is the inverse of DK

• for every K ∈ {K} and M ∈ {M}, the algorithms EK and DK are
easy to compute,

• for almost every K ∈ {K}, each easily computed algorithm equivalent
to DK is computationally infeasible to derive from EK ,

• for every K ∈ {K}, it is feasible to compute inverse pairs EK and
DK from K.

In public-key communication model, communicating entities avoid ex-
changing secret key. Instead of one secret key, which is hard to distribute
(transmit) securely, the entities A, B use a pair of keys. One, which is pri-
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vate (secret) and not transmitted; and the other, which is public and can
be distributed freely. Each entity has its own pair of keys (Ke,Kd). The
public-key communication scheme is as follows:

1. Key distribution

2. EKe(M) = C

DKd
(C) = M

where Ke 6= Kd and Ke (public key) can be calculated from Kd (secret key)
but Kd cannot be calculated from Ke. Depending on which entity wants to
communicate, this entity distributes its public key.

Figure 1.4.: PKC communication model

Everyone can encipher messages using key Ke but only the owner of
paired key Kd is able to decrypt and read them. According to Figure 1.4
the communication is conducted as follows. If entity B wants to securely
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communicate with entity A, it generates the pair of keys (Ke,Kd). It keeps
Kd for itself and sends Ke to entity A. Upon receiving Ke from B, A is
able to send encrypted messages to B. In order to send the message to B, A
encrypts it using Ke. Entity B, receives encrypted message sent by A and
in order to read it, decrypts it using key Kd. That way no one except B
can read message encrypted with Ke key. In case of digital signature public
key Ke is used by entity A for verification of B’s signature (B’s document
received).
The property and simultaneously the requirement for PKC key security

states that it should be computationally infeasible to compute the private
key Kd from public key Ke and otherwise. The public key is used to en-
crypt messages and only private key can be used to decrypt them. Thus
if it would be feasible to compute Kd knowing Ke it would be possible to
break the system and make communication unsecure.
Although the public-key cryptography solves the problem of key manage-

ment and distribution, it is slower and much harder to implement efficiently
than secret-key cryptography (see Table 1.1 for comparison). Thus it is
popular to use PKC for secret key exchange and later proceed with com-
munication secured with symmetric cryptography techniques. The key pair

Table 1.1.: Comparison of secret- and public-key cryptography

Secret-Key Cryptography Public-Key Cryptography
Advantages Disadvantages Advantages Disadvantages

high efficiency
key distribution, solves key lower
key management distribution efficiency,

problem problems higher cost

lower cost
cannot fully fully due to more
implement implements complex

authentication and all cryptographic computations and
non-repudiation objectives longer keys
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generation is a crucial point of asymmetric cryptography. The pair should
be generated in such a way that it is infeasible to inverse the process. The
private key is believed to be safe as long as a mathematical problem involved
in its derivation is believed to be intractable. The following mathematical
problems, infeasible to solve for certain sizes of arguments, form bases for
security of private key:

• Integer factorisation problem

• Discrete logarithm problem (DLP)

• Elliptic curve discrete logarithm problem (ECDLP)

Regarding the underlying mathematical problems one can distinguish three
groups of algorithms. The most popular algorithms based on integer factori-
sation problem are RSA public-key encryption and signature schemes [54].
ElGamal cryptographic schemes [23] exploit discrete logarithm problem.
The last group of algorithms based on elliptic curves exploiting ECDLP [36]
problem is of most concern to us. Thus in Chapter 2 we provide more de-
tailed description of elliptic curve cryptographic techniques and schemes.

In our researches we have decided to focus on ECC because it is proven
that it can be more efficient than RSA [109, 56, 36], which is the most pop-
ular PKC scheme. In key-based cryptography where security depends on
a key the infeasibility of computing it from publicly known data is crucial.
It is recognised that the abovementioned mathematical problems are fea-
sible to solve for some arguments (usually small but also for certain types
of arguments). To make the problems infeasible to solve the mathemati-
cians proposed the arguments to be primes of specific sizes. For too small
primes the accessible computational power is enough to solve the problems
in reasonable time. The safe, suitable for cryptographic purposes, argu-
ment (key) sizes are given in cryptographic standards (e.g. NIST , SECG ).
The standards are often verified by cryptanalysts and updated if the com-
putational power, which continuously grows, becomes enough to break the
cryptographic algorithm secured with a key of a certain size or if new type
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of attack, which makes retrieving the secret feasible, appears. The key sizes,
for which RSA achieves the same security level as ECC, are much bigger
than the ones required for ECC. For example, RSA key size of 3072 bits
gives equivalent security level as ECC key of size 256 bits [109]. More de-
tailed comparison of different key-based techniques and their security levels
depending on the key size is presented below.

Comparison of security strength of different cryptographic key-based tech-
niques
Table 1.2 (according to [109]) confirms and explains the abovementioned
advantages and disadvantages of all presented types of cryptographic tech-
niques. We can clearly see why one technique is more efficient than the
other. The key sizes for symmetric encryption algorithms are much smaller
than the ones used in asymmetric encryption schemes. It is especially vis-
ible when we compare key sizes of RSA with symmetric key sizes. The
difference between key sizes providing equivalent security strength for ECC
and symmetric algorithms is much smaller. That feature makes ECC very
attractive. With smaller keys the computations are simpler and faster, thus
also the computational devices are smaller and less demanding.

Table 1.2.: Comparison of key sizes [109]

security (bits) symmetric encryption minimum size (bits) of Public-Key
algorithm DSA/DH RSA ECC

80 Skipjack 1024 1024 160
112 3DES 2048 2048 224
128 AES-128 3072 3072 256
192 AES-192 7680 7680 384
256 AES-256 15360 15360 512
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1.1.4. Modern cryptosystems - application, requirements,
security (robustness)

Definition 1.1.4. (according to [66, 99]) Cryptosystem is a set of cryp-
tographic algorithms with all possible ciphertexts, plaintexts, keys and key
management processes. It is a set of cryptographic techniques (primitives)
used to provide security services for communication over unsecured channel.

Nowadays we perceive cryptosystem as an embedded digital system imple-
menting cryptographic primitives in order to provide information security.
Before digital information era, security of information depended on the man-
ner in which we have sealed our document, on type of media we have used to
record and pass the message, and usually on communication channel (mes-
senger, furnisher). Due to digitalisation of data and popularity of digital
techniques and networks high percent of confidential transactions became
digital. The electronic cash transaction, electronic confidential documents
exchange (tax data, health data), communication with banks and important
offices, it all becomes more and more popular. With growth of popularity of
digital data exchange, grows the need to secure such communications. The
digital documents exchange is usually done over Internet, which is a very de-
manding, unsecured communication channel. The cryptographic techniques
evolve to fulfill the arising requirements and their implementations adapt
to new conditions.

Applications The applications of digital cryptosystems spread many do-
mains. The first and the most popular is securing data exchange in commu-
nication over Internet. The number of services possible to do over Internet
still grows. The most popular ones are: messages exchange (e-mail), bank-
ing transactions (electronic credit and debit card transactions, bank account
management), all transactions involving electronic cash, e-commerce, digi-
tal signatures, business transactions, communications with offices (e.g. tax
office) and many many more.
Other applications involve not only data exchange but also data storing.
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The digital data importance grows. Many people and companies start to
rely mostly on digital documents and data, instead of keeping many useless
paper copies. Many jobs now are performed using computers and many
people’s job depends on the security of data stored either on hard drives or
somewhere over Internet. We start to deposit our data on external servers
thus they can be more vulnerable to unauthorised actions. The so called
“cloud computing” service providing computing power and storage capac-
ity, becomes very popular. Therefore our data should be secured/encrypted
before transmitting/depositing it somewhere over the Internet. The loss or
unauthorised alteration of such data may cause huge problems to a com-
pany and similarly to a common user.
What is more, many offices and institutions tend to digitalise their databases,

e.g. to ease the access to it. In hospitals and clinics the vital medical data
have to be secured properly to avoid stealing or tampering. The same
applies to tax offices, the tax data need to be secured properly to avoid
embezzelments.
Another problem to which cryptosystems can be applied is a wireless com-

munication. Number of wireless applications communicating grows rapidly
thus also the demands for its quality, i.e. speed, range, security. Wireless
communication is especially easy to eavesdrop or tamper. To do this the
adversary does not even need to have direct access to the communicating
entities [74].
What is more, nowadays, with modernisation of healing techniques, there

arise a need to secure medical appliances. Besides usual medical apparel
hard to disturb without direct access to them, there were developed a mi-
crochip devices delivering drugs [42], which can be used instead of regular
injections. Such a device is implanted in a patient and is responsible for
oozing out the right dose of a drug in proper time intervals. If the microchip
work would be disturbed due to external malicious actions, it could cause
irreversible damage of one’s health.
Finally, the most obvious application: military application. Cryptosys-
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tems apply to almost all areas in military domain. They are responsible
for securing information exchange between governments, for distribution of
confidential orders, etc. They provide means for securing remote controls of
military equipment (for example: rocket launcher), for securing flow of in-
formation between units in order to avoid being eavesdropped or discovered
and many, many more.

Requirements Depending on the application the requirements vary. How-
ever the digital cryptosystem should always fulfill the following objectives
in order to serve any application.
The proper cryptosystems should be:

• very efficient (fast, small, not very demanding when it comes to power
consumption)

• mathematically robust (they should use up-to-date specifications of
cryptographic systems)

• physically robust (they should be secure against eavesdropping and
tampering)

• adaptable (they should properly work in given environment - depends
on application)

Characteristics of a good cryptosystem:

• theoretical/mathematical security - hardness of underlying mathe-
matical problem,

• key length - the smaller the key the easier the computation,

• speed-efficiency of encryption/decryption process,

• implementation - efficiency of implementation,

• scalability - ”the unit can be reused or replicated in order to generate
long precision result independently of the data path precision for which
the unit was originally designed” [8]

• interoperability - ability to exchange information with external sources.

• physical security - security against side channel attacks, security of a
device
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Robustness Security strength of an cryptographic algorithm depends on
quality of the algorithm and underlying mathematical problem, length of
the key and nowadays also on quality of the implementation of the algorithm
or we may say robustness of the cryptographic device (device performing
cryptographic operations). The cryptanalysts describe the security of the
system using the notion of level of security. Level of security is usually given
in terms of the amount of work (number of operations), using the best meth-
ods currently known, needed to be performed to break the system [66].
Figure 1.5 presents different layers of a cryptosystem. Each of these

Figure 1.5.: Security layer model [8, 98]

layer should be somehow secured in order to obtain a secure communi-
cation scheme. For us the most interesting is the bottom layer. For ECC
it can be divided further, see Figure 1.6. It can be divided into three parts
(sub-layers):

• [k]P sub-layer - multiplication of the base point of the curve by a large
scalar [k] (key, secret),
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• 2P , P +Q (doubling, addition) - operations on points of the curve,

• arithmetic operations in GF (2m) - operations on coordinates of the
points, on elements of the underlying field.

Figure 1.6.: ECC cryptosystem layers

There are already known techniques for securing the first two sub-layers.
On some we were working together in IRISA laboratory (Lannion, France)
with other PhD student Thomas Chabrier [15]. However there are not yet
known any propositions for securing at the arithmetic level the operations
performed on the elements of the underlying field.

1.2. Dissertation overview

In the next chapter, we will provide a short introduction to elliptic curves
for use in cryptography and elliptic curve cryptography techniques. Then
we will explain the arithmetic in finite fields and provide more details about
binary extension fields GF (2m). Finally we will formulate the main thesis
we want to prove with our researches. Third chapter contains detailed de-
scription of hardware arithmetic operators elaborated during the researches.
Followingly the subsequent chapter introduces the side channel attacks, es-
pecially the power analysis attacks and presents our ideas for securing the
previously described hardware arithmetic operators against them. Eventu-
ally we summarise our work, draw conclusions and present future prospects.
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2. Elliptic curves over finite fields -
application to cryptography
(overview)

In this chapter we present brief overview of the most important, from cryp-
tographic point of view, properties of elliptic curves and finite fields. We
present their application to modern cryptography, which is of most interest
to us. We give a short overview of the application of finite fields to elliptic
curve cryptography. We will try to show what is the impact of finite-field
arithmetic operators on ECC system, how important those operators are
for the computations performed by the ECC system.
All presented here elliptic curve theory is based on [49, 102, 55, 10, 65].

Finite field description is written according to [59, 58, 64, 96, 48]. Those
sets of references contain complete knowledge about elliptic curves and fi-
nite fields.

2.1. Elliptic curves and cryptography

Elliptic curves were studied long before they were introduced to cryptog-
raphy. In 1985, independently Neal Koblitz [49] and Victor Miller [69]
proposed to use them in public-key cryptographic systems due to their spe-
cific properties. It occurs that the problem on which the security of most
popular public-key techniques depends, i.e. the discrete logarithm problem
(DLP), defined for elliptic curves (ECDLP) is more complex than in usual
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case (in case of DLP). Elliptic curve cryptography techniques were popu-
larised in 90’s. Their use in security applications have been approved and
recommended by many. Their attractiveness lies especially in fact that to
achieve the same security level as RSA, they require much smaller keys i.e.
they operate on much smaller numbers, see Table 1.2 on page 20 for com-
parison. The smaller are the numbers on which the arithmetic units operate
the simplest (the smallest, the fastest) the final cryptographic device.
In the following sections we briefly introduce elliptic curve arithmetic, then
present their application to security schemes. The ECDLP problem, guard-
ing security of ECC protocols, will also be explained along with the descrip-
tion of few ECC security schemes.

Understanding elliptic curve arithmetic is not necessary to be able to pro-
vide efficient GF (2m) arithmetic units. However it is crucial when we want
to add protections against SCA to those units. We ought to be conscious,
which operations need to be secured and in what way they can be insecure
or vulnerable to attacks.

2.1.1. Elliptic curves

Definition 2.1.1. (according to [24]) An elliptic curve E over a field K
can be defined by Weierstrass equation of the form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where a1, a3, a2, a4, a6 ∈ K.

The following quantities are related to E:

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

j =
c34
∆

for ∆ 6= 0

b2 = a2
1 + 4a2
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b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b22 − 24b4.

Element ∆ is called discriminant of E and determines whether the Weier-
strass equation is singular or not, j is its j-invariant. The quantities bi and
ci are defined to simplify the definition of ∆. K is called the underlying
field and can be the field R of real numbers, Q rational numbers, C complex
numbers or Fq finite field. If E is defined over K then it is defined over
any extension of K. An elliptic curve E defined over a field K can be also
denoted as E/K.

The set of points of an elliptic curve E defined over any extension L of
field K forms an abelian group and is defined in the following way:

E(L) =
{

(x, y) ∈ L×L : y2 +a1xy+a3y−x3−a2x
2−a4x−a6 = 0∪{∞}

}
,

where∞ is a point at infinity. The elliptic curve over K is the set of points
(x, y) satisfying a Weierstrass equation. Depending on the underlying field
K, the equation 2.1 can be simplified. During our researches, we focus
on elliptic curves defined over finite fields of characteristic 2 (GF (2m)).
For GF (2m) the basic Weierstrass equation defining elliptic curve may be
simplified as follows from Definition 2.1.1.

Definition 2.1.2. If K is a finite field of characteristic 2 (K = GF (2m))
then E/K can be defined by:

E1 : y2+cy = x3+ax+b, for a = 0,∆ = c4 6= 0 (supersingular) (2.2)

or

E2 : y2 + xy = x3 + ax2 + b, for a 6= 0,∆ = b 6= 0 (non-supersingular)
(2.3)
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All the arithmetic principles of elliptic curves are best visualised geometri-
cally on elliptic curves defined over R. Below we present graphs of curves
defined over R (Figure 2.1) as well as curves defined over prime finite fields
(Figure 2.2). The exemplary curves were plotted using SAGE.

E1 : y2 = x3 − 5x+ 4 E2 : y2 = x3 + 1

Figure 2.1.: Elliptic curves over R.

E1(F571) : y2 = x3 + 1 E2(F7919) : y2 = x3 + 7914x+ 4

Figure 2.2.: Elliptic curves over Fp.

Group Law (according to [36]) The basic operation on elliptic curve group
is point addition. It is best explained geometrically with chord-and-tangent
rule for elliptic curves defined over R. Let P (x1, y1), Q(x2, y2), R(x3, y3)
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be three distinct points on E(K) (xi, yi ∈ K) such that Equations 2.2/ 2.3
hold. Then

Additive identity
If P is the point at infinity, i.e. P = ∞, then −P = ∞ and
P + Q = Q. Point ∞ (zero element) serves as additive identity of
the group of points

Negatives
The negative −P is on the curve whenever P is. The point −P
has the same x-coordinate as P but negative y-coordinate, i.e.
−(x1, y1) = (x1,−y1). The addition P + (−P ) gives as a result
point at the infinity.

Addition of two distinct points P, Q (see Figure 2.3 left part)
Let R ∈ E(K) be the result of P + Q. To obtain R we draw a line
through P and Q. The third point, at which this line intersects
E(K) is the reflection about x-axis of the sum R.

Point addition algebraic formula for non-supersingular
E(F2m) : y2 + xy = x3 + ax2 + b

x3 = λ2 + λ+ x1 + x2 + a y3 = λ(x1 + x3) + x3 + y1,

where λ = (y1+y2)
(x1+x2)

Point addition algebraic formula for supersingular E(F2m) :
y2 + cy = x3 + ax+ b

x3 = λ2 + x1 + x2 y3 = λ(x1 + x3) + y1

where λ = (y1+y2)
(x1+x2)
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Doubling P (see Figure 2.3 right part)
Let Q ∈ E(K) be the result of 2P operation. To obtain Q we draw
a line tangent to elliptic curve at P . The point, at which this line
intersects E(K) is the reflection about x-axis of the resulting point
Q.

Point doubling algebraic formula for non-supersingular
E(F2m) : y2 + xy = x3 + ax2 + b

x3 = λ2 + λ+ a = x2
1 + b

x2
1

y3 = x2
1 + λx3 + x3

where λ = x1 + y1
x1

Point doubling algebraic formula for supersingular E(F2m) :
y2 + cy = x3 + ax+ b

x3 = λ2 y3 = λ(x1 + x3) + y1 + c

where λ = (x
2
1+a
c )

Point on elliptic curve can be represented using different types of coor-
dinates. Each type has his advantages and disadvantages. For instance,
projective coordinates does not require inversion when performing opera-
tions on elliptic curve points [36]. All the above formulas are derived for
curves described by affine coordinates. For other types of coordinates: pro-
jective, Jacobian, mixed, etc., those formulas are different [36].
For more details about elliptic curves we suggest reading [49, 102, 55, 10,

65].

2.1.2. Elliptic Curve Cryptography

The elliptic curve cryptographic techniques exploit properties of elliptic
curves defined over finite fields Fq. The elliptic curve cryptography schemes
depend on the hardness of elliptic curve discrete logarithm problem (below
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Addition P +Q = R Doubling 2P = R

Figure 2.3.: Addition and Doubling of a point on E(K)

we present definition from [36]).

Definition 2.1.3. Elliptic Curve Discrete Logarithm Problem (ECDLP) [36]
Given an elliptic curve E defined over finite field Fq, a point P ∈ E(Fq) of
order n, and a point Q ∈ 〈P 〉, find the integer l ∈ [0, n− 1] such that
Q = lP . The integer l is called the discrete logarithm of Q to the base P,
denoted l = logPQ.

Elliptic curve domain parameters D: q - field order; FR - field represen-
tation; S - seed; a, b ∈ Fq, which define the equation of elliptic curve E;
point P (xp, yp) ∈ Fq; order n of P ; cofactor h = #E(Fq), to be used in
cryptography are usually defined in standards (NIST [32], SECG [92, 93]).
Only for specific values of those parameters the cryptographic schemes re-
sist all known mathematical attacks on ECDLP.

Exemplary ECC security schemes The ECC is used in many crypto-
graphic schemes. We will provide some details of how some schemes work
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and give exemplary algorithms. Our goal is to point out the operations in
elliptic curve based security schemes, which are the attackers target.
The most important algorithm used in all types of public-key schemes is

the key pair (Q, d) generation, where Q is a public key and d is the corre-
sponding private key. On the secrecy of the key d depends the security of
cryptographic techniques/schemes.

Algorithm 1 Key pair generation [36]
Input: Domain parameters D = {q, FR, S, a, b, P, n, h}.
Output: Public key Q, private key d.
1: Select d ∈R [1, n− 1]
2: Compute Q = dP
3: Return (Q, d)

The computation of d having Q and P is the elliptic curve discrete loga-
rithm problem. As the problem for properly chosen domain parameters D
is intractable the security of d is ensured.

Signature scheme
Signature schemes are used to sign digital documents in the same way as
handwritten signatures are used to sign paper documents. With them we
can provide the following security services: authentication, data integrity
and non-repudiation.
The signature scheme consists of the following steps [36]:

1. Domain parameter generation - to perform any of the next steps, we
need set D = {q, FR, S, a, b, P, n, h}; for cryptographic purposes those
sets are defined in standards: NIST [32], SECG [92, 93];

2. Key pair generation - generation of key pair {Q, d}, see Algorithm 1;

3. Signature generation - generation of a signature Σ of messagem, using
set D and private key d (see Algorithm 2);

4. Signature verification - signature is verified, using set D, public key
Q, and received signature Σ, in order to reject or accept incoming
message m, see Algorithm 3.
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One of the most popular scheme is Elliptic Curve Digital Signature Algo-
rithm (ECDSA).

Algorithm 2 ECDSA signature generation [36]
Input: Domain parametersD = {q, FR, S, a, b, P, n, h}, private key d, mes-

sage m
Output: Signature (r, s)
1: Select k ∈R [1, n− 1]
2: Compute kP = (x1, y1) and convert x1 to an integer x1

3: Compute r = x1 mod n. If (r = 0) go to step 1.
4: Compute e = H(m) // H is a hash function //
5: Compute s = k−1(e+ dr) mod n. If (s = 0) go to step 1.
6: Return (r, s)

Algorithm 3 ECDSA signature verification [36]
Input: Domain parametersD = {q, FR, S, a, b, P, n, h}, public key Q, mes-

sage m, signature (r, s)
Output: Acceptance or rejection of the signature
1: Verify that r, s are integers in the interval [1, n− 1]. If verification=fail

then return “reject the signature”
2: Compute e = H(m) // H is a hash function //
3: Compute w = s−1 mod n
4: Compute u1 = ew mod n and u2 = rw mod n
5: ComputeX = u1P+u2Q. If (X =∞) then return ‘reject the signature”
6: Convert the x-coordinate x1 ofX to an integer x1; Compute v = x1 mod
n

7: If v = r return (r, s)

The other popular elliptic curve signature scheme is Elliptic Curve Ko-
rean Certificate-based Digital Signature Algorithm (EC-KCDSA). For more
details see standards: ANSI X9.62 see [2], FIPS 186-3 see [32], IEEE 1363-
2000 see [3], ISO/IEC 15946-2 see [1].

Public-key encryption schemes
Public-key encryption schemes provide confidentiality service. It comprises
the following steps [36]:
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1. Domain parameter generation - to perform the scheme, we need set
D = {q, FR, S, a, b, P, n, h}; for cryptographic purposes those sets are
defined in standards: NIST [32], SECG [92, 93];

2. Key pair generation - generation of key pair {Q, d}, see Algorithm 1;

3. Encryption - encryption of a message m, using set D and public key
Q, preparation of ciphertext c, see Algorithm 4;

4. Decryption - either rejects the ciphertext as invalid or produces plain-
text m using domain parameters D, private key d, and received ci-
phertext c, see Algorithm 5; it is assumed that D and Q are valid.
The decryption algorithm always accepts (D, d, c) and outputs m if c
was indeed generated by the encryption algorithm on input (D,Q,m).

As an example we will provide algorithms used in elliptic curve analogue
of ElGamal encryption scheme (see Algorithms 4, 5). Other popular elliptic
curve based public key encryption schemes are Elliptic Curve Integrated
Encryption Scheme (ECIES), see [101], and Provably Secure Encryption
Curve Scheme (PSEC), see [78].

Algorithm 4 Basic ElGamal elliptic curve encryption [36]
Input: Domain parametersD = {q, FR, S, a, b, P, n, h}, public key Q, mes-

sage m
Output: Ciphertext (C1, C2)
1: Represent the message m as a point M in E(Fq).
2: Select k ∈R [1, n− 1]
3: Compute C1 = kP
4: Compute C2 = M + kQ
5: Return (C1, C2)

Observing the structures of Algorithms 1, 2, 4, one can spot that if the
values d, k will be known to an adversary the cryptographic schemes will
not serve their purpose anymore. Knowing the algorithm and those values
an adversary will be able to negatively affect the communication.
Finding those values mathematically is equivalent to solving ECDLP prob-
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Algorithm 5 Basic ElGamal elliptic curve decryption [36]
Input: Domain parameters D = {q, FR, S, a, b, P, n, h}, public key Q, ci-

phertext (C1, C2)
Output: Message m
1: Compute M = C2 − dC1

2: Return m

lem, which is intractable for certain sets of elliptic curve domain parameters.
Unfortunately except theoretical attacks, there exist physical attacks. By
analysis of the behaviour of the device performing cryptographic operations
it is possible to discover the secret values, in ECC case, the values such as
the private key d or k (see algorithms in this section). Thus it is necessary
to secure all operations involving values d and k.

2.2. Finite Fields

The general theory of finite fields starts in the beginning of 19th century
with works of Carl Friedrich Gauss (1777–1855) and Evariste Galois (1811–
1832). We will introduce the most important algebraic theories. For a
complete introduction to finite fields we suggest reading [59, 58, 64, 96, 48].
The contents of this section are based on those references.

Groups [59]

Definition 2.2.1. A group is a set G together with binary operation * on
G such that following properties hold:

• ∗ is associative; for any a, b, c ∈ G a ∗ (b ∗ c) = (a ∗ b) ∗ c
• there is an identity (unity) element e ∈ G, such that for all a ∈ G:
a ∗ e = e ∗ a = a

• for each a ∈ G, there exists an inverse element a−1 ∈ G such that
a ∗ a−1 = a−1 ∗ a = e

If for all a, b ∈ G, a ∗ b = b ∗ a, then the group is called abelian (commuta-
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tive).

Definition 2.2.2. A multiplicative group G is called cyclic if there is an
element a ∈ G such that for any b ∈ G there is some integer j with b = aj.
The element a is called a generator of the cyclic group, and we note
G =< a >. Every cyclic group is commutative.

Definition 2.2.3. A group is called finite (resp. infinite) if it contains
finitely (resp. infinitely) many elements. The number of elements in a
finite group is called its order. We shall write: |G| for the order of the finite
group G.

Rings [59]

Definition 2.2.4. A ring (R,+, ·) is a set R, together with two binary
operations, denoted by + and ·, such that:

1. R is an abelian group with respect to +

2. · is associative - that is, (a · b) · c = a · (b · c) for all a, b, c ∈ R.
3. The distributive laws hold: that is, for all a, b, c ∈ R we have a·(b+c) =

a · b+ a · c and (b+ c) · a = b · a+ c · a.

Element 0 (the zero element) is the identity element of the abelian group
R with respect to addition. Element −a is the additive inverse of a. Rings
can be classified as follows:

Definition 2.2.5. Rings classification

1. A ring is called a ring with identity if the ring has a multiplicative
identity - that is, if there is an element e such that a · e = e · a = a for
all a ∈ R.

2. A ring is called commutative if · is commutative.

3. A ring is called an integral domain if it is a commutative ring with
identity e 6= 0 in which ab = 0 implies a = 0 or b = 0.

4. A ring is called a division ring (or skew field) if the nonzero elements
of R form a group under · operation.
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5. A commutative division ring is called a field.

Fields [59]

Definition 2.2.6. A field is a set F with two binary operations, addition
and multiplication, containing two distinguished elements 0 (zero element)
and e (identity element) with 0 6= e.
A field F is an abelian group with respect to addition having 0 as the identity
element. The elements of F that are 6= 0 form an abelian group with re-
spect to multiplication with e as the multiplicative identity element, usually
denoted by 1. Addition and multiplication are characterised by the following
distributive laws a · (b+ c) = a · b+ a · c, (b+ c) · a = b · a+ c · a.

Definition 2.2.7. Extension field
Let F be a field. A subset K of F that is itself a field under the operations
of F will be called a subfield of F . Then, F is called an extension (field)
of K. If K 6= F , then K is a proper subfield of F . If K is a subfield of the
finite field Fp, p prime, then K must contain the elements 0 and 1, and all
other elements of Fp by the closure of K under addition. It follows that Fp
contains no proper subfields.

Definition 2.2.8. Field as a vector space
If L is an extension field of K, then L may be viewed as a vector space
over K. The elements of L (“vectors”) form an abelian group under addition.
Moreover, each “vector” α ∈ L can be multiplied by a “scalar” r ∈ K so that
rα is again in L ( rα is simply the product of the field elements r and α of L)
and the laws for multiplication by scalars are satisfied: r(α+ β) = rα+ rβ,
(r + s)α = rα + sα, (rs)α = r(sα), and 1α = α, where r, s ∈ K and
α, β ∈ L.

Definition 2.2.9. Existence and uniqueness
The order of a finite field is the number of elements in the field. There
exists a finite field F of order q if and only if q is a prime power, i.e.,
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q = pn. If n = 1, then F is called a prime field. If n = 2, then F is
called an extension field. For any prime power q, there is essentially only
one finite field of order q; informally, this means that any two finite fields of
order q are structurally the same except that the labeling used to represent
the field elements may be different. We say that any two finite fields of order
q are isomorphic and denote such a field by Fq.

Number of elements of a field. [59]

Theorem 2.2.1. Let F be a finite field. Then F has pn elements, where
the prime p is the characteristic of F and n is the degree of F over its
prime subfield.
Proof. Since F is finite, its characteristic is a prime p according. Therefore
the prime subfield K of F is isomorphic to Fp and thus contains p elements.

Constructing finite fields. [59]
Starting from the prime fields Fp, we can construct other finite fields by the
process of root adjunction. If f ∈ Fp[x] is an irreducible polynomial over
Fp of degree n, then by adjoining a root of f to Fp we get a finite field with
pn elements.

Bases of the finite field. [59, 36]

Definition 2.2.10. We regard a finite extension F = Fqm of the finite field
K = Fq as a vector space over K. Then F has dimension m over K, and
if {α1, ..., αm} is a basis of F over K, each element α ∈ F can be uniquely
represented in the form
α = c1α1 + · · ·+ cmαm with cj ∈ K for 1 ≤ j ≤ m.

Definition 2.2.11. Let K be a finite field and F a finite extension of K.
Then two bases {α1, ..., αm} and {β1, ..., βm} of F over K are said to be
dual (or complementary) bases if for 1 ≤ i, j ≤ m we have:
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TrF/K(αi, βj) =

{
0 for i 6= j

1 for i = j

Trace
The trace function TrF/K serves for a description of all linear transforma-
tions from F into K. For more detailed information we suggest Chapter 3
of [58].

Definition 2.2.12. Let K = Fq and F = Fqm . Then a basis of F over K
of the form {α, αq, ..., αqm} consisting of a suitable element α ∈ F and its
conjugates with respect to K, is called a normal basis of F over K.

2.2.1. Binary finite field extensions GF (2m)

The two most popular finite fields used in cryptography are prime fields
GF (p), where p is prime, and finite fields of characteristic 2 (binary exten-
sion field) GF (2m), denoted also by F2m . The described research work in
this thesis, concerns the second type of fields that is binary extension fields
GF (2m). Binary extension fields GF (2m) are considered advantageous for
hardware solutions because their elements are represented by polynomials
(binary polynomials) instead of integers and polynomial addition and mod-
ular reduction are regarded as simpler than operations on integers [113].
To construct a binary finite field extension an irreducible polynomial f(x)

overGF (2) of degreem is used, it is assumed that α is its root, i.e. f(α) = 0.
The irreducible polynomial is of the form :

f(x) = xm + fm−1x
m−1 + · · ·+ f2x

2 + f1x+ 1, (2.4)

where fi ∈ GF (2).

The field can be viewed as a vector space, which elements are represented
with a use of a specific basis. The most commonly used basis, of the form
{1, α, α2, . . . , αm−1}, is called polynomial (canonical) basis of the field. The
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elements of the finite field GF (2m) represented in this basis are as follows:

A =
m−1∑
i=0

aiα
i = am−1α

m−1 + am−2α
m−2 + · · ·+ a2α

2 + a1α
1 + a0α

0, (2.5)

where ai ∈ GF (2) = {0, 1} and α is a root of f(x). Thus we may say that
all elements of GF (2m) are polynomials of degree at most (m− 1).

2.3. Problem definition

This section will provide the reader with problems of our interest existing
in described domain, which for us seems worth solving. There are two main
objectives when creating a cryptographic system:

1. The system has to be very efficient in terms of speed, size (imple-
mentation cost), power consumption, performance.

2. The system should be secure against attempts of stealing the secret
data.

Efficiency of cryptographic system Modern cryptographic systems have
numerous applications. In order not to negatively impact the performance
of larger electronic systems they need to be integrated with, they should
be very efficient. By efficiency we mean that they are fast, relatively small
and effective. That they protect our data without slowing down other op-
erations and disturbing our work.
As the data size on which cryptographic systems operate constantly grows,

we need to constantly adapt existing cryptographic systems to arising needs.
In ECC systems all operations depend on the operations performed by finite-
field arithmetic operators. If their performance is inferior they negatively
impact the work of the whole cryptosystem. Even if highly efficient higher-
level solution will be provided (see Figure 1.6 for what is a higher-level
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operation), the system will fail due to poor performance of the most impor-
tant modules: arithmetic operators.
It is not easy to create a really efficient solution. We have to take into ac-

count many things, such as finite field elements representation, arithmetic
operation algorithm, size of operands (for ECC solutions they are of size
150–600 bits), if it is worth and possible to parallelise the algorithm. It is
necessary to find a trade-off between size and speed of a solution. It is possi-
ble to create extremely fast solutions but huge and otherwise. The problem
is to balance those two parameters so that the overall efficiency/performance
and cost will be satisfying.

Security of cryptographic system If we will implement the elliptic curve
cryptographic system according to requirements stated in the newest stan-
dards we can be sure that our cryptographic system is safe against theo-
retical (mathematical) attacks. However as mentioned in the introduction,
there were developed attacks called side channel analysis attacks. SCA
attacks exploit the correlation between behaviour of the cryptographic de-
vice, such as power consumption, emitted electromagnetic field, timing of
the operation, and the secret data, such as private keys, on which the de-
vice operates. The SCA is a very serious threat for a cryptographic system.
The weak implementations of cryptographic techniques allow even not well
skilled adversary to discover a private key. With the discover/reveal of pri-
vate key the whole communication system becomes insecure.
Recently there have been proposed many methods for securing ECC sys-

tems, however they focus on the top layers of the system; that is on operation
[k]P (multiplication of the point on a curve P by a scalar k) and primitive
operations on points of elliptic curves (2P , P + Q). We presume that se-
curing just curve-level operations of ECC system is not enough. For simple
side channel analysis, where just one power trace sample is analysed, it is
sufficient. However in case of differential power analysis (where hundreds
of samples are analysed) such countermeasures may be too weak. We do
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not know any sources discussing countermeasures for finite field arithmetic
operators. The topic seems not yet exploited.
We presume it is necessary to secure all layers of a cryptographic system

to make it really secure. Because even if the upper layers of a cryptographic
system are very secure, the information leaking in lowest layer may signif-
icantly decrease the level of security of the whole system. We find that
implementing SCA countermeasures on each layer of ECC system should
increase much the level of the security of the cryptographic device.

Trade-off between objectives One may say that presented objectives for a
cryptographic system exclude one another. That, if we want to have efficient
cryptosystem it cannot be loaded with countermeasures because they would
limit much its efficiency. On the other hand very efficient cryptosystem
without any countermeasure is useless nowadays. The problem is to find a
trade-off between efficiency of the system and its security, i.e. to find a way
to secure the system without degrading its elaborated efficiency.

2.4. Thesis formulation and research objectives

According to the formulated problems we may define the research objectives.
The two main ones are: to create efficient GF (2m) arithmetic operators and
to make the operators secure against some types of SCAs.
In order to create efficient GF (2m) basic arithmetic operators we have

to familiarise ourselves with details of operations on finite fields. Then it
is necessary to perform a vast research and choose most suitable basis to
represent finite-field elements. Later we have to carefully study existing
algorithms for operations defined over GF (2m). Then we have to translate
the most promising ones to hardware and analyse meticulously their work
in order to be able to create our own solutions as efficient as possible.
The second objective is to secure the created arithmetic operators. There

are many types of SCAs, we have decided to secure our operators against
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family of power analysis attacks. The power analysis attacks exploit the
correlation between power consumed by the cryptosystem and operations
performed inside. We want to find effective algorithmic and architectural
countermeasures against those type of attacks.
Working on those two objectives we have to remember to verify the coun-

termeasures impact on the overall performance of arithmetic operators. If
the countermeasure degrades much the work of the solution then we have
to rethink the countermeasure and either upgrade it or abandon the idea.
We have summarised all objectives of our research in the following plan:

1. Study of elliptic curve cryptography, finite fields, arithmetic operators,
side channel attacks and countermeasures.

2. Study of parameters of GF (2m) arithmetic operators - number repre-
sentation, algorithms, requirements.

3. Design and development of hardware GF (2m) arithmetic operators
solutions.

4. Theoretical and practical evaluation of designed operators’ perfor-
mances in FPGA circuit - the operators’ efficiency is evaluated and if
necessary improved until the results are satisfying, and final versions
of efficient operators are provided

5. Design and development of test environment for evaluating security of
elaborated operators - experiments using simulators, specific FPGA
boards, FPGA dedicated internal signals analysers, probes and oscil-
loscope.

6. Evaluation of security of designed arithmetic operators, elaboration
of countermeasures.

7. Insertion and evaluation of countermeasures - evaluations of their ef-
ficiency, analysis of their impact on the performance of the operators,
if the results are not satisfying return to previous point.

8. Proposition of efficient and secure basic GF (2m) arithmetic operators
and their final evaluation.

9. Analysis, documentation and publication of obtained results.
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Having identified the existing problems we may formulate now the main
thesis we want to prove with our researches. The thesis is as follows:

It is possible to create efficient and secure against some side-
channel power analysis attacks GF (2m) arithmetic operators ded-
icated to reconfigurable hardware.

We find that it is possible to create very efficient GF (2m) arithmetic
modules dedicated for elliptic curve cryptosystems, working on operands of
sizes up to 600 bits, and that it is possible to secure them against information
leakage without significant overhead. Moreover we claim that it is possible
to develop such countermeasures against power analysis attacks which would
not decrease significantly the performance of our elaborated modules but
will significantly increase their security against power analysis attacks.
The following chapters describe the researches conducted to prove our

thesis.
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3. Arithmetic operators on GF (2m)

There are two main operations defined in GF (2m): addition and multi-
plication. All other operations (inversion, division, squaring, etc) can be
performed using multiplication and addition. The complexity of some op-
erations depends on the representation of the elements of the field.
The most popular bases (for definition see Chapter 2, Section 2.2) used

for representing elements in cryptographic applications are [36]: polynomial
(canonical basis), normal basis and its variations (optimal normal bases,
gaussian normal bases), dual basis. Choosing right basis is not a simple
task. We have performed vast research on bases of finite fields elements
taking into account our target devices, results described in known litera-
ture obtained for each basis and the application of developed finite fields
arithmetic operators. The basic theory about each basis is presented in
Chapter 2, Section 2.2, here we will present the most popular applications
of each basis, its advantages, disadvantages and reasons why we have chosen
the certain basis.
For our solutions we have chosen polynomial (standard, canonical basis).

At first we have eliminated from our choices the dual basis. Mainly due
to the fact that it was mentioned in few articles, such as [72], that it is
not suitable for large m (field size). What is more all described dual basis
solutions were designed for very small m (up to 16). We have observed
that dual basis is used usually in error correcting codes applications, which
does not require use of large finite fields. It is usually used for smaller fields
because it requires basis transformation operation, which heavily depends
on field generator (irreducible polynomial) form.
The hardest was to eliminate either polynomial or normal basis. Both
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standard and normal basis seem to have properties suitable for dedicated
application of our basic arithmetic operators. Below we present summarised
characteristics of those bases, and some comments found in literature.
Polynomial basis:

- characterised by regularity and simplicity (during implementation yields
regular and simple structures of the solution),

- clear and easy to understand from the mathematical point of view,

- the highest clock rate is achieved for polynomial basis solutions,

- multiplication in polynomial basis offers scalability,

- according to [45]: “The time and space complexities of bit-parallel
canonical basis multipliers are much better than that of multipliers
based on the normal basis.”

Normal bases:

- squaring operation is very simple, it is just a rotation of vector ele-
ments,

- yields irregular structures,

- requires large area,

- it is claimed that for Optimal Normal Bases (ONB) [73] very fast
solutions can be achieved,

- using ONBs, requires basis conversion from normal to optimal normal
basis, which may be costly.

The features of both bases presented here were collected during study of
literature on the subject. Some information contradict the other, thus it is
hard to choose the right basis. Finally we have decided to choose polynomial
basis mainly due to the fact that it yields regular and simple structures. As
to this feature all known to us sources agree. We presume that for hard-
ware implementation it is much better when the structure is regular and
simple. Otherwise we may experience synchronisation, routing or hazard
problems [85]. The more irregular and complex architecture inserted into
FPGA circuit the harder to control it.
Moreover according to [36], a very important position in literature on
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ECC : “Experience has shown that optimal normal bases do not have any
significant advantages over polynomial bases for hardware implementation.
Moreover, field multiplication in software for normal basis representations
is very slow in comparison to multiplication with a polynomial basis;”. How-
ever we find that normal bases group maybe very promising and it would
be worth analysing it in the future.
The other important operators’ parameters are the field size m (operands
size) and field generator f(x). Designed arithmetic operators should serve
ECC applications thus we will use the values recommended in ECC stan-
dards [32]. The most recent values are presented in Table 3.1.

Table 3.1.: NIST recommended parameters [32]

field size m irreducible polynomial f(x)

163 f(x) = x163 + x7 + x6 + x3 + 1
233 f(x) = x233 + x74 + 1
283 f(x) = x283 + x12 + x7 + x5 + 1
409 f(x) = x409 + x87 + 1
571 f(x) = x571 + x10 + x5 + x2 + 1

We target all our solutions to Field Programmable Gate Arrays (FPGA),
for simulation and testing purposes we use Xilinx circuits. We will im-
plement our operators in small Spartan-3E XC3S1200E device [116] and
one of the biggest FPGAs: Virtex-6 LX240T [20]. For testing robust-
ness against side-channel we also implement our circuits in Virtex-II Pro
XC2VP7 FPGA [115] mounted on SASEBO-G board [94]. The elaborated
solutions architectures are described in VHDL, and synthesised, placed and
routed, and implemented using Xilinx ISE 12.2 (for Virtex-6 and Spartan-
3E) and ISE 9.2 (Spartan-3E, Virtex-II Pro) environments and their tools.
All the behavioral and post-route simulations are performed using built-in
ISim simulator or ModelSim simulator from Menthor Graphics. All the im-
plementation results given in this chapter are values predicted/calculated
by Xilinx ISE environment.
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3.1. Finite Field Addition

Addition is a very simple operation. In case of polynomial basis, it is a
polynomial addition, which can be viewed as a XOR operation of two m-bit
binary vectors (m is a field size). Let a(x) and b(x), two polynomials of size
m, be the elements of GF (2m) and let c(x) be its sum and also an element
of the field. Addition of two polynomials is carried out under modulo 2
arithmetic, i.e. to obtain c we have to perform the bitwise exclusive OR

operation. This operation is regarded as a very simple one due to the fact
that we do not need to bother about carry propagation and length of carry
chains. On the other hand, if we perform very simple operation but on large
numbers, we may experience some problems. If we XOR large numbers the
operation, although simple, may take a lot of hardware resources.
Summarising, addition is rather fast operation however for large numbers

it may take large amount of area and should be well synchronised. In order
to see if there exist real problems with this operation we have designed few
very simple operators.
It is very easy to paralellise this operation and it is possible to perform

on-the-fly addition while receiving consecutive parts of both operands with
no need for storing them as well as the result. In terms of efficiency the
design of addition unit does not cause many problems. However in terms of
security the addition may be very problematic what will be shown in next
chapter.
The ECC processor, in which the designed units will be built-in, assumes

sending data over buses in words (16, 32-bit words). According to this
assumption we propose some addition operator solutions.

We have studied the following cases:

1: Addition on-the-fly of a, b words, putting partial results in shifted
register c (solution 1);
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2: Addition on-the-fly of a, b words, putting partial results in memory
block (solution 2);

3: Waiting for the whole a, b vectors, adding them at the end (solution
3);

The results we have obtained shown us that this operation is rather simple
and should not generate a lot of problems. We do not present here values
obtained for the solution 3. This solution is really very simple, we may say
that it is a translation of input signal to the output, thus it is difficult to
synthetise it to obtain some credible values.

Looking at the results presented in Table 3.2 it is easy to observe that
addition in GF (2m) is really simple. Our solutions are very small, around
20-30 LUTs and fast. With growth of the size of input operands the area
grows slightly, the same applies to the decrease of maximum speed of the
solution. However for solution 1 and the biggest field the frequency in com-
parison for the smaller solutions drastically drops. In practice, in complete
ECC system, addition is usually performed parallely to other operations or
interleaved with them due to its simplicity.

Table 3.2.: Addition solutions (Virtex-6)

field size solution 1 solution 2
m [LUT] [MHz] [LUT] [MHz]
163 21 771 26 562
233 21 771 26 562
283 22 767 28 560
409 22 767 28 560
571 24 578 31 558

51



3.2. Finite Field Multiplication

The second basic operation defined in finite field is multiplication. Multi-
plication in contrary to addition is regarded as a complex operation.
Designing an efficient hardware algorithm for multiplication in binary fi-

nite field extensions is one of the aims of this thesis, thus the thorough
analysis of existing methods and solutions is necessary. Our solutions will
not be totally novel due to the fact that we base on old and known mathe-
matical theories. Our goal is to modify or merge the existing algorithms in
order to fulfill demanding cryptographic requirements. We also have to find
the best way of translating the algorithms to hardware and not losing much
of their features. Our operators are aimed for ECC applications thus they
need to perform multiplication on large numbers (150–600 bits) and simul-
taneously be very fast and occupy reasonable amount of area of the target
device. Moreover their structures should be easily modifiable (flexible) to
add countermeasures against physical attacks.

Finite field multiplication can be regarded as modular operation because
it consists of two steps: multiplication and reduction. In order to obtain
the finite field multiplication result we have to multiply operands and then
reduce the product with use of field generator, so the resulting element
will be the element of the same field. Let a, b ∈ GF (2m), be the (m − 1)

degree polynomials where a = a(x) =
(m−1∑
i=0

aix
i
)

= a0 + a1x+ a2x+ . . .+

am−2x
m−2 +am−1x

m−1 and b = b(x) =
(m−1∑
j=0

bjx
j
)

= b0 + b1x+ b2x+ . . .+

bm−2x
m−2+bm−1x

m−1, and let f = f(x) = 1+f1x+f2x+. . .+fm−2x
m−2+

fm−1x
m−1 + fmx

m be m degree irreducible polynomial generating the field
(for examples of irreducible polynomials used in cryptography see 3.1).
We want to perform:

c(x) = a(x)b(x) mod f(x) (3.1)
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First we have to perform multiplication:

d(x) = a(x)b(x)

= a(x)
(m−1∑
i=0

bix
i
)

=
(m−1∑
i=0

bia(x)xi
)

=
(
b0a(x) + b1a(x)x+ b2a(x)x2 + ...+ b(m−1)a(x)x(m−1)

) (3.2)

and then reduction [25] (the degree 2m − 2 polynomial d(x) is reduced it-
eratively by irreducible polynomial f(x) of degree m):

d(2m−2) = d(x)

d(k−1) = d(k)(x) + f(x)d(k)
k xk−m, m ≤ k ≤ 2m− 2,

(3.3)

where d(k) is a partial remainder and d(2m−2)(x) = c(x).

GenerallyGF (2m) multiplication algorithms can be divided in two groups:
two-step algorithms, in which we perform separately multiplication and
reduction (in two consecutive steps), and interleaved algorithms, in
which we interleave/combine multiplication with reduction. The most pop-
ular algorithms of both groups are presented and discussed below.
We have analysed many algorithms and their different versions to be able

to take and combine those features of the algorithms, which will allow us to
create the most efficient algorithm fulfilling, assumed requirements. Here
we present only the most interesting results of our analysis.

3.2.1. Two-step algorithms

One of the most popular group of algorithms comprises two-step algorithms.
Two-step because to perform finite field multiplication we need to perform
two separate steps: multiplication d = ab and reduction c = d mod f . There
exist many versions of two-step multipliers. They combine different meth-
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ods for multiplication and reduction in order to achieve the best, the most
efficient solutions.
In the following paragraphs, different methods for performing multiplica-

tion and reduction are presented. Their features are thoroughly analysed in
terms of hardware design and efficiency. Finally the chosen combinations of
multiplication and reduction are described and compared in order to expose
their advantages and disadvantages.

Multiplication step Here we will present the analysis of some widely known
polynomial multiplication methods.
Schoolbook multiplication method (shift-and-add method). The sim-
plest and the most known polynomial multiplication method is so called
schoolbook method (shift-and-add method). Having two polynomials a(x)
and b(x) of degree m−1 we obtain product d(x) of degree 2m−2 in the way
presented in Equation 3.2. We multiply polynomial a by each coefficient of
polynomial b, i.e. we successively shift the polynomial a by each coefficient
of polynomial b, and add (XOR in our case) the partial results. One may
regard the a and b polynomials as two binary vectors. Vector a, which is
being shifted left (multiplied by 2n) by 2, 4, 8, etc., and vector b, which bits
decide if we should accumulate the particular shift of vector a or not. The
illustrative example for m = 4 is shown below:

a3a2a1a0

× b3b2b1b0
—————————————–
⊕ a3a2a1a0 ∧ b0
⊕ a3a2a1a0 ∧ b1
⊕ a3a2a1a0 ∧ b2
⊕ a3a2a1a0 ∧ b3
—————————————–
= d6d5d4d3d2d1d0

The method is very simple and allows creating regular combinatorial de-
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signs. However if we want to use it to multiply large numbers it can be
inefficient, especially regarding chip space utilisation.
All basic polynomial multiplication algorithms are usually some kind of

variations of this method. The difference between variations usually lies in
the way the operands are represented. There exists a simple vector ver-
sion, matrix-vector version and divide-and-conquer version (operands are
partitioned). Different representations of operands strongly influence the
hardware structures elaborated to perform the multiplication. Some cause
acceleration of the solution but on the other hand they increase amount of
resources used, some decrease the area cost but also degrade speed of the
solution. If we want to find the efficient solution, we always have to look for
some trade-off between resources occupied and time needed to execute the
algorithm. Different representations of operands let us also perceive new
ideas of optimisation of the basic algorithm.
In order to efficiently design hardware unit for a polynomial multiplier it

is important to notice the advantages of different mathematical algorithms
and to find the tradeoffs between area and speed of the elaborated solution.
Unfortunately even the best theoretical optimisations and simplifications of
the algorithms do not give the expected efficiency increase when translated
to hardware. We have analysed many of the theoretical improvements by
translating them to hardware in order to see and maybe use their advanta-
geous properties. However we were not very satisfied with obtained results.
In practice many of those improvements either yielded hardware structures
similar to original proposition or decreased efficiency of hardware solution.
In many cases it was not clear to what field sizes the algorithm improve-
ments target. As we would present, there exist improvements suitable only
for certain field sizes, while for the other they does not work as expected.
However basing on the theoretical approaches presented in the literature it
is possible to extract the best parts, promising for hardware solution de-
sign, of all the proposals and merge them to create an efficient hardware
algorithm.

55



Matrix-vector approach. One of the most popular variations of the
shift-and-add method is its matrix-vector version [25]. There, polynomial
a(x) is represented by a specific matrix A of size (2m−1)×m, in which each
column represents consecutive shifts left of a(x). Element b(x) is represented
by m size vector and product d(x) is also a vector but of size (2m− 1).
Instead of d(x) = a(x)b(x) we perform:

d = Ab =



d0

d1

...
dm−1

dm

dm+1

...
d2m−3

d2m−2



=



a0 0 0 . . . 0 0
a1 a0 0 . . . 0 0
...

...
. . . . . .

. . .
...

am−2 am−3 am−4 . . . a0 0
am−1 am−2 am−3 . . . a1 a0

0 am−1 am−2
. . . a2 a1

0 0 am−1 . . . a3 a2

...
...

...
. . .

...
...

0 0 0 . . . am−1 am−2

0 0 0 . . . 0 am−1





b0

b1

b2
...

bm−3

bm−2

bm−1



(3.4)

As mentioned above and what can be observed comparing Equation 3.2
and Equation 3.4 each column of matrix A represents shifted vector a, in-
dex of column indicates how many times vector a was left shifted. Further,
as in case of shift-and-add method, bits of vector b denote which column
of matrix A (which shift of vector a) should be accumulated to obtain the
product vector d. We have implemented this algorithm in hardware in or-
der to compare it with the schoolbook version and concluded that they give
basically the same implementation results. However the matrix representa-
tion of a(x) reveals to us more ideas of optimisation of hardware realisation.
Combining elements of standard algorithm with the operands representation
used in matrix-vector approach allowed us creating an efficient algorithm
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for polynomial multiplication in GF (2m). The implementation results and
more details concerning implementation are presented below.

Divide-and-conquer algorithm and Karatsuba Ofman trick. One
of the most popular improvements of the classical multiplication method is
Karatsuba-Ofman trick [44]. The trick improves divide-and-conquer version
of multiplication algorithm. Theoretically it decreases number of the most
complex operations we have to perform to get product of a and b.
The aim of divide-and-conquer algorithms is to reduce large (hard) prob-

lem into a set of smaller (easier) problems. In our case we partition input
polynomials (multiplicands) so instead of performing one multiplication of
very large polynomials we perform many multiplications of much smaller
polynomials and finally combine the partial results. It is even possible to
partition our inputs into single coefficients, however this may not be very
efficient.
The method assumes the following partitioning of the input parameters.

For polynomials of size m = 2t (m is even) we have:

a(x) = x
m
2 AH +AL = x

m
2 (x

m
2
−1am−1 + · · ·+am

2
) + (x

m
2
−1am

2
−1 + · · ·+a0)

b(x) = x
m
2 BH +BL = x

m
2 (x

m
2
−1bm−1 + · · ·+ bm

2
) + (x

m
2
−1bm

2
−1 + · · ·+ b0)

Hence one can denote multiplication as follows:

d(x) = a(x)b(x)

= (x
m
2 AH +AL)(x

m
2 BH +BL)

= xmAHBH + x
m
2 (AHBL +ALBH) +ALBL.

(3.5)
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According to Equation 3.5 in order to multiply a and b one has to perform:
four sub-multiplications and three additions.

Karatsuba and Ofman [44] had modified the Equation 3.5 in such a way
that the number of needed sub-multiplications decreased. However the num-
ber of necessary additions, XOR operations, increased. The modified equation
employing Karatsuba-Ofman trick is as follows:

d(x) = a(x)b(x)

= (x
m
2 AH +AL)(x

m
2 BH +BL)

= xmAHBH + x
m
2 ((AH +AL)(BH +BL)−AHBH −ALBL) +ALBL.

(3.6)

The number of necessary multiplications is now three and number of XOR
operations needed is six. It is assumed that multiplication operation is more
costly than addition. If we operate on single coefficients and we assume that
multiplication equals to AND operation and addition is equivalent to XOR op-
eration than this assumption does not hold, especially in case of FPGA
circuit.
In theory when we build FPGA circuits on LUTs there is no difference if

we use XOR or AND gate because each of those gates can take one LUT if they
yield the values of different outputs. However if we assume that LUT size
is finite (the function size, which can be implemented is limited) then the
XOR gates take more space. We have conducted some tests on this matter
and found that this is caused by the fact that however one describes the XOR
gate in HDL (hardware description language) it is always substituted by the
combination of AND and OR gates. This can be observed while inspecting
technology schematics generated by the Xilinx ISE environment. According
to this the XOR function can be regarded as three gates plus inverters. Thus
it is obvious that it is more costly than a single AND gate. All that proves
the opposite to what is assumed; that is that XOR function is suggested to
be the trivial operation, on the contrary it appears to be a source of delay
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and space problems in the design.
Taking into consideration our observations we have decided to test the

performances of basic divide-and-conquer algorithm (Equation 3.5) along-
side with testing the algorithm involving Karatsuba-Ofman trick (Equa-
tion 3.6).
The first obtained results confirmed our observations concerning addi-

tion and multiplication complexity. The straightforward implementation of
Karatsuba-Ofman optimisation for short binary vectors did not yield so-
lutions more efficient than the algorithm with four multiplications, on the
contrary, first attempts for small input vectors (4-bit) had shown that the
optimisation is not efficient at all and yields bigger and slower designs. The
advantage of Karatsuba-Ofman trick could be observed starting from 16-bit
input vectors as will be discussed later. The implementation analysis pre-
sented further will describe the practical effectiveness of Karatsuba-Ofman
optimsation.
The main problem, which occurs during the implementation of divide-

and-conquer algorithms, is how to wisely partition the polynomials (operands)
to make the designed multiplier really efficient. In order to find the most ef-
ficient partitioning, we had performed vast analysis of various possibilities.
We have started our tests and analysis from implementation of small

number multipliers. We presumed that starting from implementations of
large number multipliers might cause that some algorithms’ properties will
be invisible due to being masked by other problems existing in extensive
designs.

Multiplication step - hardware realisation. The presented multiplication
algorithms can be translated to hardware in two manners: straightforward
as a combinatorial circuits or can be partitioned to perform the multiplica-
tion steps sequentially. Combinatorial circuits are usually very fast but also
very extensive whereas sequential ones are slower, but better synchronised
and more compact. The best solution will be to combine combinatorial and
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sequential features. In hardware it is important to find trade-offs between
those two types of realisations in order not to end up with extensive and
very slow solutions.

To ease the comparison of elaborated solutions a new measure, the AT
efficiency factor is introduced.

Definition 3.2.1. The efficiency factor AT is the measure of efficiency in
terms of execution time of the operation and area taken by the circuit.

AT = (area × execution time)

It is a normalised product of area taken by the solution and the time needed
to perform the operation.

To calculate AT for combinatorial designs we have multiplied maximum
delay value given by Xilinx ISE environment by predicted area. In case of
sequential designs we have multiplied number of clocks needed to obtain
result by minimal period given by ISE environment and by predicted area.
All the AT values were normalised to ease comparison.
During the primary analysis we have assumed that big number multipliers

will be designed as a combination of smaller number multipliers. We have
presumed that such approach will yield best results.
We begin our study of each algorithm for a very small input numbers

(4-bit) and then observe what are the best combinations and best sizes of
primary multipliers when it comes to designing bigger multipliers. Such
approach seems advisable if one wants to create large number multipliers of
various sizes it should make the multiplier architectures scalable and flexible.

The first analysed multiplication method was the shift-and-add method.
We have started from the straightforward implementation and created pure
combinational structures multiplying two vectors. The simplest version of
the circuit was a translation of Equation 3.2. To each bit of resulting polyno-
mial d a combination of XORed values were assigned as presented for m = 4
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in Figure 3.1.
We have started the analysis with implementation of 4-bit multiplier. The

Figure 3.1.: Idea of circuit performing shift-and-add method for m = 4

synthesis of the 4-bit multiplier circuit yielded satisfying and promising re-
sults. Created design has quite regular structure and works rather fast. It
is compact (11 LUTs) and a total combinatorial path delay is fairly low -
around 7.7 ns (for Spartan-3E). With the doubling of the size of the input
polynomial the number of LUTs taken increases approximately 4 times. For
4-bit inputs the multiplier circuit takes 11 LUTs, for 8-bit it is already over
40, then for 16 its nearly 200, thus for 32-bit it is approximately 800 LUTs.
According to this 256-bit multiplier will take over 52000 LUTs. Spartan-3E
has 17344 LUTs, which means that purely combinatorial design of 256-bit
multiplier far exceeds number of available resources. One may say that
there are bigger devices available. That is why as the second target FPGA
we have chosen Virtex-6, which has 150720 LUTs, so such multiplier will fit
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in but will occupy 1/3 of the chip. For bigger multiplier, 512-bit, the de-
sign grows four times so probably it will have approx. 200000 LUTs, which
exceeds also the area of Virtex-6. Of course there exist still bigger chips,
in Virtex-6 family of FPGAs the biggest one has 566784 6-input LUTs, so
that one will fit 512-bit combinational multiplier. However building a design
with the assumption that there is always newer and bigger FPGA, which
will fit it, is nonsense unless we always have huge amount of spare money
to spend. Nowadays in a world where one of the most important features
of the device is the cost of its production, the excessive, usually containing
much redundancy, designs are useless. Additionally the routing costs and
delay problems are smaller if we connect the units inside the chip instead of
connecting the chips with some external buses. As a result of our study one
may conclude that it is not wise to create purely combinatorial circuit for
a large number multiplier. Although they are fast (the combinatorial path
delay increases slightly with the increase of the size of the input parame-
ter, around 0.5 ns or even less), for large inputs, they take a huge amount
of hardware resources, which makes them not suitable for integration with
other units. The overall hardware cost will be too big. Extensive designs
cause also routing and synchronisation problems.
Thus we may conclude that big straightforward combinatorial multipliers

are very area inefficient. However such regular structures seem to be very
appropriate to be implemented in FPGAs. Our next idea was to use small
combinational multipliers to build bigger solutions.
The biggest implemented by us fully combinatorial multiplier was 32-bit

multiplier. All obtained results are presented in Table 3.3.
Because purely combinatorial circuit yields huge solutions for large sizes

of input operands we have decided to test what are the results and advan-
tages of sequential solutions. The question arising in this case was how to
“sequence” (partition) the design to obtain a compact and fast multiplier.
The first idea was to observe the purely sequential solution, which means

to perform each stage of Equation 3.2, each XOR operation, in a separate
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clock cycle. The primary size of input operands was 4 bits as in previous
cases. The resulting hardware structure in Spartan-3E is very regular and
can work with high frequencies, around 300 MHz. However such a solution
requires, for 4-bit inputs, more LUTs (35 LUTs) than the combinatorial
solution. Such a result is not surprising and could be predicted. What
is surprising is the fact that for larger input vectors its area increases al-
most similarly as in case of combinatorial circuits. Hence it requires more
space than the combinatorial circuit, simultaneously requiring more time to
perform the task. Probably it caused by the synthesizer settings which du-
plicate gates structures, instead of reusing just one structure in each clock
cycle (state of finite state machine).
Our next idea was to create the sequential circuit utilising the classical com-
binatorial multiplier units. We have analysed the behaviour of few 32-bit
multipliers built as a sequential combination of 16, 8 and 4-bit multipli-
ers. To combine obtained partial results we have used divide-and-conquer
algorithm. 32-bit multiplier is still small in comparison to ones we ought
to create (150–600 bits), however it may show us what is the best way
of partitioning input operands in order to achieve the best efficiency. In
the following equations Ai, Bi denote i-bit A, B elements (vectors). Our
first proposition was to create a circuit using sixteen times one 8-bit sub-
multiplier according to the equation 3.7.

A32B32 = AH16B
H
16 +AH16B

L
16 +AL16B

H
16 +AL16B

L
16

= AHh8 BHh
8 +AHh8 BHl

8 +AHl8 BHh
8 +AHl8 BHl

8

+AHh8 BLh
8 +AHh8 BLl

8 +AHl8 BLh
8 +AHl8 BLl

8

+ALh8 BHh
8 +ALh8 BHl

8 +ALl8 B
Hh
8 +ALl8 B

Hl
8

+ALh8 BLh
8 +ALh8 BLl

8 +ALl8 B
Lh
8 +ALl8 B

Ll
8 ,

(3.7)

Each expression of the form AIi8B
Ii

8 symbolises one operation performed
by the 8-bit sub-multiplier. Second proposed solution uses four times one
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16-bit sub-multiplier.

A32B32 = AH16B
H
16 +AH16B

L
16 +AL16B

H
16 +AL16B

L
16. (3.8)

Here each expression of the form AI16BI
16 symbolises one operation per-

formed by the 16-bit sub-multiplier. The last combination uses four 8-
bit sub-multipliers four times. In the equation 3.7 each row of the form
AIi8 B

Ii
8 +AIi8 B

Ii
8 +AIi8 B

Ii
8 +AIi8 B

Ii
8 symbolises operations performed by one

8-bit sub-multiplier.
Those tests were made to see what is the best combination of sub-multipliers.

The best result was obtained for combination 3.8: the solution takes the
smallest number of LUTs and can work at high frequencies; what is more
it needs small number of clock cycles to perform a, b multiplication. We
have compared that solution with the combinational one using four 16-bit
units. In terms of area taken the second solution seems to be much worse.
Comparing AT efficiency factors (see Definition 3.2.1), for sequential so-

Table 3.3.: Schoolbook multiplication: implementation results (Spartan-3E)

Multiplier
Combinatorial delay [ns] / area

ATMax. freq. [MHz]
(# of clock cycles) [LUT]

4-bit 7.68 ns 11 84
8-bit 8.9 ns 43 383
16-bit 9.4 ns 195 1833

32-bit, combinational, 12 ns 818 9816four 16-bit multipliers
32-bit, sequential, 451 MHz (6 clks) 277 3685one 16-bit multiplier: eq.3.8
32-bit, sequential, 451 MHz (14 clks) 318 9871one 8-bit multiplier: eq.3.7
32-bit, sequential, 451 MHz (6 clks) 279 3712four 8-bit multipliers: eq.3.7

lution we have ATseq = 2.213ns×6 × 277 ≈ 3678 and for combinational
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ATcomb = 12.076ns×789 ≈ 9527, we can see that sequential solution is
overall three times better than the combinational one. The solution using
four 8-bit sub-multipliers yields similar results to the one using one 16-bit
unit, however we have to deal with more sub-blocks. The worse solution
happens to be the one using only one 8-bit unit. Mainly due to the fact
that it needs the greatest number of clock cycles to compute the result. We
have analysed many more variations of 32-bit sequential multiplier reusing
combinatorial multipliers, but those presented seemed to be the most inter-
esting from our point of view, for further analysis of bigger multipliers. The
results of implementations for Spartan-3E FPGA are presented in Table 3.3.

Before starting the analysis of matrix-vector approach we have attempted
to build bigger multipliers employing just the schoolbook approach and
divide-and-conquer methods. We have built 64-bit multipliers and 128-bit
multipliers but we were not very satisfied with results so we have switched
to analysis of matrix-vector approach.
On the other hand the analysis of 64-bit multipliers allowed us to see

advantages of Karatsuba-Ofman optimisation. In Table 3.4, we present re-
sults obtained for two 64-bit multipliers, built from the same elements (built
of 32-bit sub-multipliers, built of 16-bit sub-multipliers, which are built of
8-bit combinational sub-multipliers). One multiplier combines all partial
results using standard divide-and-conquer approach (see Figure 3.2.1) and
the other using Karatsuba-Ofman trick (see Figure 3.2.1).

According to the results presented in Table 3.4 it is clear that the design
using Karatsuba-Ofman trick is much faster and smaller than the one using
standard version of divide-and-conquer method.
The last multiplier built with use of pure combinational sub-multipliers was
128-bit multiplier. The most efficient classic 128-bit multiplier designed,
however we did not explored all possibilities, was built of eight 16-bit sub-
multipliers. The idea for this multiplier was to divide input polynomials
into 16-bit words. Thus for 128-bit inputs we had to use eight times eight
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Table 3.4.: Classic divide-and-conquer technique and Karatsuba-Ofman
trick comparison

AT
64-bit multiplier

Divide-and-conquer Karatsuba-Ofman
Area Spartan-3E 2897 1754
[LUT] Virtex-6 1782 1424

Max.delay Spartan-3E 14.25 13.37
[ns] Virtex-6 3.79 5.13

AT
Spartan-3E 41270 23442
Virtex-6 6746 7301

Figure 3.2.: Classic divide-and-conquer approach

Figure 3.3.: Karatsuba-Ofman approach
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16-bit sub-multipliers. That is in each clock cycle we multiply each 16-bit
word of vector a by successive 16-bit words of vector b. Finally we combine
all partial results. The constructed multiplier has the parameters presented
in Table 3.5.

Table 3.5.: 128-bit multiplier

Area (LUTs) Max.frequency (MHz) AT

Spartan-3E Virtex-6 Spartan-3E Virtex-6 Spartan-3E Virtex-6
2919 1561 288 775 101354 20142

The most advantageous feature of the circuit is that it needs only 10 clock
cycles to perform multiplication, thus it seems rather efficient in terms of
speed.
Further analysis aimed at investigating how the area of combinatorial

Karatsuba-Ofman designs depend on the size of input polynomials. By
analysis of 32, 64 and 128-bit multipliers we saw that the design area grows
almost 4 times for doubling of the size of the input arguments. However in
contrary to pure combinatorial schoolbook method solutions areas, which
were each time, multiplied by more than 4 (for large numbers the multipli-
cation factor grows to 5), here areas of multipliers grow by less than four.
For example pure combinatorial 64-bit multiplier has taken over 2000 LUTs
but Karatsuba-Ofman multiplier took about 1750 LUTs. Nevertheless in
case of this approach the combinatorial path delay increases faster and for
64-bit multipliers it is over 16 ns while in case of previous solution it is about
12 ns. The results for different sizes of divide-and-conquer multipliers are
compared in Table 3.6. Observing parameters of obtained designs we can
clearly see that Karatsuba-Ofman trick is efficient for large operands. Up to
16-bit input vectors it is visibly less efficient than classic divide-and-conquer
method.

Next we have analysed what advantages yield matrix-vector approach.
Initially we have implemented the method straightforward for small mul-

tipliers, but for example for 4 bits we have obtained exactly the same struc-
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Table 3.6.: Divide-and-conquer methods implementations

Multiplier (basic unit) Type Delay Area
AT[ns] [LUT]

8-bit

4-bit combinatorial multiplier dq 9 45 405
KO 9.3 46 427

16-bit
4-bit combinatorial multiplier dq 12.6 158 1991

8-bit combinatorial multiplier dq 10.3 172 1772
KO 11.7 159 1860

8-bit Karatsuba-Ofman multiplier KO 12.7 170 2159
32-bit

(16-bit divide-and-conquer multiplier dq 11.9 518 6167built of 8-bit combinational multipliers)
(16-bit Karatsuba-Ofman multiplier KO 13.3 429 5708built of 8-bit combinational multipliers)

64-bit
(32-bit Karatsuba-Ofman multiplier )

KO 16 1753 28048built of 16-bit Karatsuba-Ofman multiplier)
built of 8-bit combinational multiplier)

*(dq: classic divide-and-conquer, KO: Karatsuba-Ofman optimisation)

ture as in case of shift-and-add method. Thus we have reanalysed the
Equation 3.4 used in matrix-vector approach and came out with new idea
for structure of a multiplier. It seemed obvious that storing whole matrix A
during the computations and XORing its rows in the end would yield enor-
mous solutions, especially in the case of large operands. For example in case
of 4-bit inputs, matrix A would be of size 6 × 4 which could be regarded
as six 4-bit vectors. So instead of having one 6-bit output vector and two
4-bit inputs we have one 6-bit input and seven 4-bit inputs. Thus the re-
dundancy here is big. For example if m = 100 we would need 2m− 2 = 198
additional vectors. Our idea is to store only two columns of the matrix A at
a time, which in fact means working on two registers representing matrix A
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columns. In the first we exchange values of consecutive columns of A and in
the second we accumulate partial results. We may actually regard one reg-
ister as a column of matrix A and the other as our product d. The solution
is sequential and due to the fact that we have to process each column of ma-
trix A and we have only one register for storing its values (we may use more
registers to process more columns at a time) it requires for m-bit input
2m clock cycles to perform multiplication. The analysed implementation
can multiply at most 600-bit operands. Exactly the same structure can be
used for multiplying for example 2, 4 or 8-bit operands. Depending on how
many bits of our “column” vectors we use Xilinx synthetiser optimises the
area taken by the solution. Table 3.7 presents parameters of matrix-vector
designs for few values of m.

Table 3.7.: Matrix-vector approach implementation results (Virtex-6)

m Area [LUT] Maximal frequency
AT[MHz]

32 230

520

28.3
128 838 412.2
163 1050 658.5
233 1490 1335.3
256 1632 1606.9
283 1820 1981
409 2617 4116.7
571 3644 8002.8
600 3707 8554.6

The solution can be optimised, for example number of clock cycles needed
to obtain the result could be minimised by increasing the area of the so-
lution, i.e. increasing the number of matrix A’s columns stored. We can
also try to reuse small multipliers and combine partial results by means of
divide-and-conquer techniques. There exist many possibilities. So far the
algorithm was the easiest to implement efficiently. The resulting circuit was
sequential. The structure as in previous cases was regular and fairly simple.
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Next we have analysed if it is possible to increase the efficiency of matrix-
vector solutions by utilisation of divide-and-conquer techniques, increasing
number of “columns” used in computation process or storing whole matrices.
Obtained results with comments are presented in Table 3.8.

It can be observed that inserted optimisations did not really increased
the efficiency of the designs. Some of them caused significant decrease of
number of clock cycles needed to compute the product, from 2m to m/2,
however in the same moment they have increased area. Interesting seem
the designs utilising three sub-multipliers and employing Karatsuba-Ofman
trick. Those ones need small number of clock cycles and do not need much
more area than in case of simple solution. In fact their efficiency factor AT
is better then the one obtained for simple matrix-vector solution.

To start the process of design of required NIST size, i.e. large size mul-
tipliers we have compared our most efficient hardware solutions for classic
and matrix-vector approach in order to decide which design approaches are
most worth utilising. We have considered designs of 32-bit, 64-bit and 128-
bit multipliers, see Table 3.9.

For us the most promising solutions are matrix-vector solutions utilising
Karatsuba-Ofman optimisation, working on halved input operands. They
occupy a reasonable amount of area and they are quite fast. However ac-
cording to Table 3.9 their AT coefficients are not always the best ones,
they are usually average. Examining closer the results we may also see that
those solutions which occupy more area can perform multiplication faster,
and otherwise. Furthermore we find that the solutions with average AT
factors usually contain some trade-offs between space and speed. In fact
the designer always have to decide what parameter is the most important
and then decide which type of solution to choose.

Initially we have assumed that the best hardware solutions for large num-
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Table 3.8.: Modified matrix-vector multipliers: implementation results
(Spartan-3E)

m
Area Max. freq./delay Description AT[LUT] [MHz]/[ns]

15 132 205 MHz/30 clks Simple solution, 19.32 columns used

15 324 218 MHz/8 clks Optimised solution, 11.98 columns used

15 171 9.4 ns Combinational solution, 1.6whole matrices “stored”

64 511 228 MHz/128 clks Simple solution, 286.882 columns used

64 984 223 MHz/64 clks Uses three 32-bit 282.4matrix-vector multipliers

64 1626 233 MHz/32 clks Uses four 32-bit 223.3matrix-vector multipliers

64 1299 225 MHz/32 clks Optimised solution, 184.78 columns used

256 1955 231 MHz/512 clks Simple solution, 4333.22 columns used

256 5070 217 MHz/128 clks Optimised solution, 2990.68 columns used

256 2118 220 MHz/228 clks Uses three 128-bit 2195matrix-vector multipliers

512 3881 234 MHz/1024 clks Simple solution, 16983.52 columns used

512 10983 198 MHz/256 clks Optimised solution, 14200.28 columns used

512 10445 220 MHz/256 clks
Uses three matrix-vector

12154.2256-bit multipliers built of
3 128-bit matrix-vector units

512 6596 220 MHz/512 clks Uses three 256-bit 15350.7matrix-vector multipliers

ber multipliers are the ones working on vectors of regular sizes. By regular
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Table 3.9.: Comparison of classic and matrix-vector approach implementa-
tions results (Virtex-6)

Multiplier Area Max.f(#clks)/delay
AT[LUT] [MHz]/[ns]

32-bit
Three 16-bit multipliers built of 540 13.3 ns 7.2

three 8-bit combinational multipliers
matrix-vector multiplier 230 520 MHz (64 clks) 28.3

64-bit
Built of 32-bit Karatsuba-Ofman

1424 5.13 ns 7.3units built of 16-bit Karatsuba-Ofman
built of 8-bit combinational multipliers

matrix-vector multiplier 433 520 MHz (128 clks) 106.6
Karatsuba-Ofman multiplier built 810 535 MHz (64 clks) 96.9

of 32-bit matrix-vector units
Divide-and-conquer multiplier 1476 533 MHz (32 clks) 88.6
built of 32-bit mv multipliers

Matrix-vector multiplier 1112 520 MHz (32 clks) 68.4
(matrix divided into 4 parts)

128-bit
Multiplier built of eight 16-bit 1561 775 MHz (10 clks) 20.1

combinational multipliers
Matrix-vector multiplier 838 520 MHz (256 clks) 412.6

256-bit
Matrix-vector multiplier 1632 520 MHz (512 clks) 1606.9
Matrix-vector multiplier 4580 520 MHz (128 clks) 1127.4

(matrix divided into 4 parts)
Karatsuba-Ofman multiplier, 2009 535 MHz (228 clks) 856.2
(128-bit matrix-vector units)

512-bit
Matrix-vector multiplier 3268 463 MHz (1024 clks) 7227.7
Matrix-vector multiplier 8769 520 MHz (256 clks) 4317

(matrix divided into 4 parts)
Karatsuba-Ofman multiplier,

10357 528 MHz (256 clks) 5021.6built of 256-bit mv multipliers)
built of 3 128-bit mv multipliers

Karatsuba-Ofman multiplier 6026 535 MHz (512 clks) 5766.9
(256-bit multipliers)
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we mean 32, 64, 128, 256, 512, i.e. power of 2 sizes. Thus we have created
such multipliers to have them as reference designs, i.e. to compare them
with multipliers of NIST (irregular, prime) sizes and to see if it is really
better (more efficient) to have redundant but regular multiplier or the one
optimised for certain prime size. We have assume that it is possible to
perform multiplication of:

• m = 163, 233-bit vectors using 256-bit multiplier,

• m = 283, 409-bit vectors using 512-bit multiplier,

• m = 571-bit vectors using 1024-bit multiplier.

It can be observed that for m = 283 and 571 the redundancy is huge,
thus in those cases we are rather sure that optimised to recommended sizes
solutions will give better results.

Table 3.10.: Implementations of classic 163-bit multiplier (Virtex-6)

Multiplier Area Max. freq.(#clks)
AT[LUT] [MHz]/[ns]

163-bit matrix-vector multiplier 1050 520 MHz (326 clks) 658.5
256-bit matrix-vector multiplier 1625 520 MHz (512 clks) 1600
163-bit multiplier built of three 1977 535 MHz (164 clks) 60682-bit matrix-vector units
256-bit multiplier built of three 2009 535 MHz (228 clks) 856.2128-bit matrix-vector units
163-bit multiplier built of two

2098 535 MHz(256clks) 1003.9128-bit matrix-vector multipliers
and one 64-bit matrix-vector unit
256-bit matrix-vector multiplier 4580 520 MHz (128 clks) 1127.4(matrix divided into 4 parts)

We have started from 163-bit multipliers and obtained solutions with pa-
rameters presented in Table 3.10. The best seems to be our multiplier based
on Karatsuba-Ofman trick, utilising three 82-bit matrix-vector multipliers.
Quite nice results gives also simple matrix-vector 163-bit multiplier. It is
slower than modified version but much smaller, what is more its AT factor is
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not much higher. Another conclusion, which can be drawn from the results
is that “regular” size solution does not give better results either in terms of
area or in terms of speed. However difference between 163 and 256 is rather
big thus we could predict such comparison results. Unfortunately another
“regular” value close to 163 is 128 which is too small. We have also tried to
combine smaller “regular” size multipliers to create 163-bit multiplier (see
5th solution in Table 3.10) however, as could be observed, the results were
not very satisfying.

After evaluation of big number multipliers (see tables in this section for
results) and multipliers, which can perform 163-bit multiplication, we have
concluded that the best solutions which can be achieved with classical meth-
ods, are multipliers based on three matrix-vector multipliers. In those solu-
tions the sub-multipliers size is half the size of original input polynomial. To
combine partial results obtained from sub-multipliers we base on Karatsuba-
Ofman trick. Regarding those conclusions we have created multipliers of size
233, 283, 409, 571. The results are presented in Table 3.11. Next we have
switched to analysis of reduction methods to be able to create complete
finite field multipliers.

Table 3.11.: 233, 283, 409 and 571-bit multipliers (Virtex-6)

Multiplier Area Max.freq.(#clks)
AT[LUT] [MHz]

233-bit multiplier built of three 2625 520 MHz (234 clks) 1181.3117-bit matrix-vector units
283-bit multiplier built of three 3381 535 MHz (284 clks) 1794.8142-bit matrix-vector units
409-bit multiplier built of three 4834 535 MHz (412 clks) 3722.6206-bit matrix-vector units
571-bit multiplier built of three 7095 522 MHz (572 clks) 7774.6286-bit matrix-vector units
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Reduction step Generally there exist two reduction methods. One method
employs a classic scheme, see Equation 3.3 on page 53, the other employs a
specific reduction matrix R (see [25]). However many variations of a classic
method optimised for a specific irreducible polynomials (trinomials, pen-
tanomials, equally spaced polynomials) have been proposed (see [36]).

Classic reduction. The classical method in case of polynomials may be
interpreted as follows: we look for bits equal to 1 in the upper part of d(x),
that is on positions: (2m − 2) down to m, and step by step reduce vector
d(x), XOR vector d(x) by appropriate shift of irreducible polynomial f(x)
(see Algorithm 6).

Algorithm 6 Classic reduction (our interpretation)
Input: d(x), f(x)
Output: c(x) = d(x) mod f(x)
1: for i = 2m− 2 to m do
2: if di = 1 then
3: e = shift f by (i−m) // producing shift of vector e

//
4: d = d XOR e // reducing d //
5: end if
6: end for
7: return d

The drawback of this reduction method is that it is very time consuming
(we need at least m clock cycles to perform reduction). Utilising proper-
ties of special irreducible polynomials one may optimise classical algorithm.
The aim of optimisations is usually to decrease number of sequential XOR
operations needed to reduce polynomial d(x), thus to reduce time needed
to obtain result.

Reduction matrix method. [25] As in case of multiplication the matrix
approach to reduction was derived. To reduce the product we need spe-
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cial reduction matrix R. The reduction matrix method allows significantly
speeding up reduction process.
Having polynomial d(x) = a(x)b(x) = d0 +d1x+ · · ·+d2m−2x

2m−2 in order
to reduce it we partition it in two parts. The lower part containing the least
significant bits of d : d(L)(x) = d0 + d1x + · · · + dm−1 and the upper part
containing the most significant bits of d: d(H)(x) = dm+dm−1+ · · ·+d2m−2.
Then representing both parts of d as vectors and using an (m×m−1) matrix
R, reduction is performed as follows:

c = d(L) +Rd(H). (3.9)

Reduction matrix R is defined in terms of irreducible polynomial f(x), gen-
erating the field. Let fi and ri,j denote coefficients of f(x) and entries of
reduction matrix R respectively. Let rj = [r0,j , r1,j , ..., rm−1,j ]T denote the
j-th column of matrix R; f = [1, f1, ..., fm−1]T denotes vector representing
irreducible polynomial generating the field and let ↓ denote shift right (shift
down) of any vector. Then,

rj =

 f for j = 0

rj−1[↓ 1] + rm−1,j−1f for j = 1, ..., (m− 2)
(3.10)

Thus we have :

c = d(L) +Rd(H) =

d
(L)
0

d
(L)
1
...

d
(L)
m−2

d
(L)
m−1


+



r0,0 r0,1 r0,2 . . . r0,m−3 r0,m−2

r1,0 r1,1 r1,2 . . . r1,m−3 r1,m−2

...
...

...
. . .

...
...

rm−2,0 rm−2,1 rm−2,2 . . . rm−2,m−3 rm−2,m−2

rm−1,0 rm−1,1 rm−1,2 . . . rm−1,m−3 rm−1,m−2





d
(H)
m

d
(H)
m+1
...

d
(H)
2m−3

d
(H)
2m−2


(3.11)

Matrix approach to reduction yields very good results in terms of hard-
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ware design. Many researchers find it even advisable to perform multipli-
cation in any way, using any method, and then to reduce the result using
reduction matrix R.

Reduction step - hardware realisation. We have started with analysis of
classic not optimised to irreducible polynomial reduction method. However
knowing that it is not very efficient we have created just one version of
such reduction unit, just to be assured that its efficiency makes it unworthy
considering. Created solution (see first solution in Table 3.12 at the end of
the paragraph) is rather big and time inefficient. We find that it can be
improved, especially in terms of area. According to us also the number of
clocks could be reduced but we presume that the smallest number of clocks,
which is possible to achieve is m.
Next we have started to optimise classic algorithm reducing product d(x)
regarding irreducible polynomials recommended for NIST’s fields. Usually
for those fields there are defined generators with special properties, e.g.
trinomials, pentanomials. Trinomials have only three and pentanomials five
coefficients equal to 1, which is very advantageous.
Our version of reduction algorithm for elements of field of size m = 233,

optimised for trinomial f(x) = x233 + x74 + 1 (recommended in [32]), is as
follows:

Similar reduction algorithms optimised for trinomials can be found in [36].
It may seem that Algorithm 7 requires additional multiplications (line 2

and 5), however if one of the operands is known in advance and number
of its bits equal to 1 is very low, multiplication is very simple. It can be
substituted with few XOR operations. Moreover we do not need to reduce
those products. So instead of performing costly modular multiplication we
perform simple set of XOR operations.
Last implemented reduction unit was the one employing reduction matrix

R. We propose two types of such solution, sequential (synchronised) and
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Algorithm 7 Reduction algorithm (optimised version for m = 233))
Input: d(x), f(x)
Output: c(x) = d(x) mod f(x)
1: e = d[2m− 2, ...,m] // assign part of vector d to e //
2: e1 = e× f
3: d1 = d XOR e1 // first reduction step //
4: e = d1[74 + (m− 1), ...,m] // assign part of new vector d

to e //
5: e2 = e× f
6: c = d1 XOR e2 // second reduction step //
7: return c

combinational one. Results obtained for all discussed types of reduction
units, for field of size m = 233, are presented in Table 3.12.
As we can observe the non-optimised classical unit is the biggest and

needs the greatest number of clock cycles to perform reduction operation.
Quite promising seems the solution of optimised version of classical unit,
especially in terms of speed. As mentioned, number of operations necessary
to be performed depends strongly on the form of irreducible polynomial
f(x). Form = 409 number of operations performed by this type of reduction
unit remains the same, form = 233 and 409 it is possible to have trinomials.
However for m = 163, 283, 571 number of operations performed increases
to 14 (which is still small) due to the fact that for those fields NIST defines
pentanomials (there are no trinomials for those fields). Concluding, one
may say that optimisations regarding irreducible polynomials are highly
recommended because they improve much the overall efficiency of reduction
unit.

The most efficient seem to be solutions employing reduction matrix R. In
fact that reduction method is very simple. The reduction matrices for tri-
nomials and pentanomials contain a lot of zeroes (see exemplary matrix on
Figure 3.6 for trinomial defined for m = 233). Thus the whole complicated
reduction operations are in fact a set of simple XOR operations. The more
bits equal to 1 the irreducible polynomial has the more XOR operations we
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Table 3.12.: Comparison of different types of reduction units for 233-bit
multiplier (Virtex-6)

Reduction unit Area Max.freq.(#clks)
AT[LUT] [MHz]

Classical not optimised 3528 209 MHz (600 clks) 10128.2

Classical optimised 1165 571 MHz (8 clks) 16.3

Reduction matrix 466 1264 MHz∗ (2 clks) 0.74(sequential)
Reduction matrix 233 1.13 ns 0.26(combinational)

*the results are the one given by Xilinx ISE, in this case we presume that
combining such unit with other will not have impact on the speed

have to perform. The proposed reduction circuits integrate additional mech-
anisms serving data exchange and communication with multiplier units.
When we use finite field operators for cryptographic purposes we are pro-

vided with secure field sizes and irreducible polynomials (NIST) thus it is
easier to optimise the reduction process. What is more the recommended
field generators are usually trinomials or pentanomials (they contain either
only three or five bits equal to 1) whose properties may really simplify re-
duction process of large numbers.

Two-step finite field multipliers - proposed solutions, summary and com-
parison The analysis of multiplication and reduction allowed us to create
the hardware solutions for complete two-step GF (m) multipliers. Basing on
the obtained results to create a complete GF (2m) multipliers we have
decided to use:

- as a multiplier unit: matrix-vector multiplier utilising three sub-
multipliers of half the original input size (m/2), employing Karatsuba-
Ofman trick,
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- as a reduction unit: classical optimised to irreducible polynomial
reduction unit or the one utilising reduction matrix R.

We present as exemplary the implementation results for our GF (2m) mul-
tipliers where m = 233. The results are presented in Table 3.13.

Table 3.13.: Complete classic GF (2233) multipliers (Virtex-6)

Multiplier Area Max.freq. # of clock AT
m=233 [LUT] [MHz] cycles normalised

multiplier block with 3638 302 MHz 264 3.18× 103

classic reduction
multiplier block 2862 302 MHz 238 2.25× 103

with matrix reduction

3.2.2. Interleaved algorithms

Another group of finite field multiplication algorithms comprises interleaved
algorithms. In this type of algorithms instead of performing separately
multiplication and reduction we interleave or combine the two operations.
Classic interleaved method is based on the following idea:

c(x) = a(x)b(x) mod f(x) = a(x)
(m−1∑
i=0

bix
i
)

mod f(x)

=
(m−1∑
i=0

bia(x)xi
)

mod f(x) = b0a(x) mod f(x) + b1a(x)x mod f(x)

+ · · ·+ b(m−1)a(x)x(m−1) mod f(x)

(3.12)

As in previous two step methods we multiply a(x) by each coefficient of
b(x), i.e. we shift a(x), but here before accumulating the partial result we
perform its reduction. We shift, reduce and then accumulate each partial
result. Thus finally we obtain a result, which is already reduced.
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After theoretical analysis of the algorithm it was concluded that its com-
plexity (number of the operations we have to perform) is comparable with
a complexity of shift-and-add method combined with standard reduction.
The only difference is that here we interleave shifting with reduction. Ad-
ditionally in previous case maximal number of reductions (divisions/XOR)
we have to perform is m/2 − 1 here even regarding the fact that only half
of the partial results have to be reduced it may occur that the number of
reduction operations will increase.
Apart this standard formulation of the interleaved multiplication there

exist few popular algorithms, which combine multiplication and reduction
and by exploiting certain arithmetic properties they speed up a bit process of
multiplication in GF (2m) field. The most worth analysing methods accord-
ing to us are multiplication with use of Mastrovito matrix and Montgomery
multiplication algorithm.

Mastrovito matrix approach. Mastrovito matrix method [62] is an
extension of basic matrix-vector approach (see previous section) where c(x)
and b(x) are represented in form of m size vectors and a(x) is transformed
into (2m− 2)×m matrix. In standard matrix-vector approach we perform
two steps:
1. Multiplication d = Ab =



d0

d1

...
dm−1

dm

dm+1

...
d2m−3

d2m−2



=



a0 0 0 . . . 0 0
a1 a0 0 . . . 0 0
...

...
. . . . . .

. . .
...

am−2 am−3 am−4 . . . a0 0
am−1 am−2 am−3 . . . a1 a0

0 am−1 am−2 . . . a2 a1

0 0 am−1 . . . a3 a2

...
...

...
. . .

...
...

0 0 0 . . . am−1 am−2

0 0 0 . . . 0 am−1





b0

b1

b2
...

bm−3

bm−2

bm−1


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2. Reduction



d0

d1

...
dm−1

dm

dm+1

...
d2m−3

d2m−2



⇒



d(L)

d(H)


⇒



a0 0 0 . . . 0 0
a1 a0 0 . . . 0 0
...

...
. . . . . .

. . .
...

am−2 am−3 am−4 . . . a0 0
am−1 am−2 am−3 . . . a1 a0

0 am−1 am−2 . . . a2 a1

0 0 am−1 . . . a3 a2

...
...

...
. . .

...
...

0 0 0 . . . am−1 am−2

0 0 0 . . . 0 am−1





b0

b1

b2
...

bm−3

bm−2

bm−1


⇒



AL

AH




b



⇒ c = d(L) + d(H)R = ALb+AHRb (3.13)

In Mastrovito matrix method we perform only one step:

c = Mb, (3.14)

where M is so called Mastrovito matrix. Comparing Equation 3.13 and
Equation 3.14 we can see that Mastrovito matrix M is a combination of
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AL, AH and R matrices [25], that is:

c = Mb = (AL +AHR)b (3.15)

Matrix M construction and storage is very problematic. As it will be pre-
sented it strongly affects area and speed of elaborated hardware solution.
There exist many approaches to handling matrix M . For example one

may store whole matrixM , however as we have pointed in previous section,
such approach requires a lot of resources. The smallest matrix used in ECC
is matrix of size 163 × 163 bits, which is 26569 bits, which is rather big
amount of data to store. Moreover matrix M entries depend on variable a
value. Thus we would have to create matrix M before each multiplication,
which will add time overhead.
Another idea of handling M matrix is the one used to create the two-

step GF (2m) multiplier multiplication unit. That is to work with vec-
tors/registers of size (2m− 2) representing columns of required matrix. In
our case we have used two registers, one filled with contents of consecutive
columns of the matrix A (we have processed columns from left to right) and
the other accumulated partial results of multiplication. Varying number of
vectors (columns) used, the design behaviour and parameters can be easily
changed.
Our new idea for handling matrix M is to partition it, i.e. matrices of

which it constitutes, into sub-matrices, to save area and ease optimisation
and synchronisation of circuits. The entries of sub-matrices of matrix M
are supposed to be calculated on-the-fly during multiplication, from parts
of matrices AL, AH and R, i.e. from vectors a and f . Our approach may
be regarded as a variation of divide-and-conquer technique because we par-
tition large problem of operating on large matrices into a set of problems
operating on much smaller matrices. We presume that such manner of di-
vision may increase overall efficiency of elaborated circuits and may make
the designs flexible, easily adaptable to new tasks.
The chosen size of sub-matrices is 16×16 bits. It was chosen regarding the

83



analysis performed for two-step multipliers (see previous section). For sizes
over 500 bits however, it may be wiser to work with 32 × 32 sub-matrices
blocks.

As mentioned one of the advantages of block structure is its flexibility. In
our interpretation of Mastrovito proposition to perform multiplication we
use 16-bit sub-multiplier units and we control their work with use of finite
state machine (FSM). The FSM controls reseting, starting and switching-
off the units. It also controls the order of sub-multiplications. Results of
sub-multiplications are independent of each other and can be calculated in
arbitrary order. We can group sub-matrices multipliers in different man-
ners and that way easily change computing time (number of clocks needed
to perform the multiplication) or somehow the area occupied by the design.
We can group sub-matrices in rows spanning several rows of matrix M , we
may try to utilise sub-block multipliers as efficiently as possible, we may
change the order of sub-multiplications to adapt the circuit to our needs.
Partitioning into sub-blocks allows to simplify the multiplication opera-

tion. Observing the structure and placement of vital entries (entries equal
to 1) in matrices AL, AH and R we may decrease number of operations,
which have to be performed to obtain final solution. We may omit in multi-
plication process operations on those sub-blocks whose multiplication result
by part of vector b will be always equal to zero. In fact we omit processing of
sub-matrices, which entries are all equal to zero. If we look closely at parti-
tioned AL, AH and R matrices (Figures: 3.4, 3.5, 3.6) we can see that there
are a lot of zero blocks, blocks in which all entries are equal to zero. Thus
we will consider in processing only those sub-matrices, which may influence
the final result (those which contain at least one non-zero elements). In fact
AL and AH matrices are triangular, they are almost half-filled with zeroes.
Figures 3.4 and 3.5 show illustrations of matrices partitioning for field of
sizes m = 233, for other NIST sizes, matrices AH and AL look similarly
(they differ in number of sub-blocks). The R matrix is different for each
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field due to the fact that its contents are derived from irreducible polyno-
mial generating the field. However matrices R for NIST fields are similar in
number of non-zero blocks and their placement. On Figures 3.4, 3.5, 3.6 all

Figure 3.4.: Illustration of AL matrix partitioning for m = 233

zero blocks are marked in gray. Getting rid of those blocks and operations
performed on them allows us to save some clock cycles and area.
Proceeding in analysis we also observe that our proposed partitioning

into 16× 16 sub-matrices makes not only easier to spot zero blocks but also
repeating blocks (marked with the same indices on the figures) and thus to
optimise the solution. By repeating we mean the ones with same positioning
of vital (depending on values of a, f) entries. Such observation minimises
number of different sub-multipliers we have to propose for calculation of
each sub-product.
Unfortunately for mostm’s (also for sizes recommended by NIST) the ma-
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Figure 3.5.: Illustration of AH matrix partitioning for m = 233

trices will always contain an “irregular” row and column. Irregular means
that it is impossible to partition it into 16 × 16-bit blocks. That fact in-
creases slightly area and decreases speed of design. But as recommended
field sizes are usually primes it is not possible to find such a partitioning,
in which all sub-matrices will have equal size.

Our basic algorithm for computing the result of a(x)b(x) mod f(x) works
as follows: the 16 × 16-bit sub-matrices are grouped into 16-bit wide rows
spanning sixteen rows of matrix M and for each such row 16-bit part of
ab product is calculated. In order to save some space, sub-matrices are
not stored in the unit, they are calculated on-the-fly during computations
basing on parts of incoming a and b operands.
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Figure 3.6.: Illustration of R partitioning matrix for m = 233

In order to provide the best solution we have analysed few variations of the
unit. Initially we have implemented equation c = ALb+AHRb. That is, the
solution calculated separately results for ALb and AHRb and eventually the
two partial solutions were XORed to obtain final result c. Resulting hardware
unit is very efficient however it seems to be rather big. Thus to improve
overall efficiency of the solution we have implemented equation c = Mb.
Instead of calculating on-the-fly contents of sub-matrices AL and AHR we
are providing on-the-fly contents of M ’s sub-matrices to sub-multipliers.
Such approach has visibly improved area of the solution. Results for both
solutions are presented in Table 3.14. It is possible in both cases to modify
number of clock cycles needed to perform the operation. Number of clock
cycles can be modified by varying the order and way, in which sub-multiplier
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units are utilised. Initially we have grouped them into rows spanning sixteen
rows of M (AL and AHR) consisting up to fifteen sub-blocks, but the sub-
matrices may be grouped into longer or shorter chains.

Table 3.14.: Mastrovito matrix approach solution

Virtex-6
(ALb+AHR)b MbXC6VLX240T

area(A)[LUT] 5014 3760
max.frequency 297 MHz 276 MHz

time of execution 65 75
(T)[clock cycles]
efficiency AT 1097 1021

Computations of multiplication results of each sub-matrix are controlled
by means of finite state machine. At first the FSM had 15 states (for
m = 233, there are 15 blocks in a matrixM row) and we have used separate
sub-units for calculation of each 16-bit of final result. Each 16-bit part of
final result is calculated in separate clock cycle, according to the following
equations:

c0 = (AHR(0,0) +AL(0,0))b0 + (AHR(0,1) +AL(0,1))b1+

· · · + (AHR(0,m/16) +AL(0,m/16))bm/16

c1 = (AHR(1,0) +AL(1,0))b0 + (AHR(1,1) +AL(1,1))b1+

· · · + (AHR(1,m/16) +AL(1,m/16))bm/16

...

cm/16 = (AHR(m/16,0) +AL(m/16,0))b0 + (AHR(m/16,1) +AL(m/16,1))b1+

· · · + (AHR(m/16,m/16) +AL(m/16,m/16))bm/16,

(3.16)

where ci denotes 16-bit chunk of final result c(x). Additionally we have to
compute partial results for “irregular row and column” and combine it with
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previously obtained values. Last row equation:

cm/16+1 = (AHR(m/16+1,0) +AL(m/16+1,0))b0 + (AHR(m/16+1,1) +AL(m/16+1,1))b1

+ · · · + (AHR(m/16+1,m/16+1) +AL(m/16+1,m/16+1))bm/16+1.

(3.17)

Last column parts:

cm/16+1
0 = (AHR(0,m/16+1))bm/16+1

cm/16+1
1 = (AHR(1,m/16+1))bm/16+1

...

cm/16+1
m/16 = (AHR(m/16,m/16+1))bm/16+1,

(3.18)

The second version of our Mastrovito multiplier was optimised according to
the fact that some 16 × 16-bit sub-blocks structures are similar. Thus we
have used only one of each type of sub-multiplier. We have decreased that
way the number of instantiations of sub-units but increased the number
of states of the controlling FSM. Figure 3.7 shows matrix M partitioning
for m = 233. There are marked blocks requiring same sub-multiplier unit.
In total in our new solution, for m = 233, we need seven different simple
sub-multipliers, before we have utilised eleven sub-multipliers. On the Fig-
ure 3.7 we may observe, which blocks may be multiplied with use of the
same sub-multiplier unit (one with corresponding names).
It is easy to observe that there exist many variations of the order of sub-

multiplications, which may be very useful for physical security purposes,
see Chapter 4. We can create longer multiplication controllers (finite state
machines), increase or decrease number of instantiation of sub-multipliers
or change the order of multiplications.
We have performed small analysis of variations of our solution and in

terms of efficiency we found that solution containing longer finite state ma-
chines but single instances of each sub-multiplier gives the best results,
especially in terms of area. However we have not tried even half of possible
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Figure 3.7.: Illustration of Mastrovito matrix partitioning for m = 233

combinations of sub-units thus there may exist more efficient versions of our
design. The most efficient solution, obtained after few experiments, takes
3760 LUTs and can work with frequencies up to 276 MHz, number of clocks
needed to perform the operation is 75.

Montgomery multiplication algorithm. The second most popular in-
terleaved multiplication method is Montgomery method [71]. The algorithm
is constructed in a specific way in order to avoid most costly operations. In-
stead of performing c(x) = a(x)b(x) mod f(x) it performs

c(x) = a(x)b(x)r−1(x) mod f(x). (3.19)
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The Montgomery method assumes operating on Montgomery versions of
the operands throughout the chain of operations and recovering original
(proper) value at the end of computation. For fair comparison with other
multiplication solution we present the complete multiplication process needed
to obtain proper product.
To obtain the complete result of modular multiplication a(x)b(x) mod f(x)
we must run the Montgomery algorithm (see Algorithm 8), twice, at first
for a(x)b(x) and then for the obtained result d(x) and fixed value r2(x) mod
f(x). Thus operation c(x) = a(x)b(x) mod f(x) comprises in fact two steps:

1. d = MontMult(a, b)

2. c = MontMult(d, r2 mod f)

Utilising Montgomery method for chain of computations to perform multi-
plication we run MontMult(a, b) once (we perform just first step). At the
end of computations we perform second step to recover from Montgomery
representation. The algorithm for Montgomery multiplication (MontMult(a, b))
is presented below.

Algorithm 8 Montgomery multiplication algorithm (MontMult(a, b)) [50]
Input: a(x), b(x), r(x), f(x), f ′(x)
Output: c(x) = a(x)b(x)r−1(x) mod f(x)
1: t(x) = a(x)b(x)
2: u(x) = t(x)f ′(x) mod r(x)
3: c(x) = [t(x) XOR u(x)f(x)]/r(x)
4: return c

To utilise the algorithm we need three additional values, which depend
on the value of the irreducible polynomial. We need polynomials r(x),
r2(x) mod f(x), f ′(x). Element r(x) is a fixed element. Requirements for
element r(x), given by Montgomery, are as follows:

• it should be an element of the field,

• it should be relatively prime and gcd(r(x), f(x)) = 1.

According to [50] for best results for field GF (2m) it is chosen to be a simple
polynomial xm. To find polynomials r−1(x) and f ′(x) we use Bezout’s iden-
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tity: since r(x) and f(x) are relatively prime there exist also polynomials
r−1(x) and f ′(x) such that r(x)r−1(x) + f(x)f ′(x) = 1. For cryptographic
application irreducible polynomials are defined in standards. Thus for given
m we calculate r(x), r2(x) mod f(x), f ′(x) and store them, we do not need
to precalculate those vectors before each multiplication.
The most complicated in the Algorithm 8 is first operation where we need

to perform multiplication of two large binary vectors. In the second line we
also need to perform multiplication but this time we may substitute it with
few XOR operations because we know f ′(x) in advance. What is more it
has, for irreducible polynomials recommended by NIST, low number of co-
efficients equal to 1, thus the operation gets really simple. In the modulo
operation in this line we just cut out all elements of order higher or equal
to m due to the fact that r(x) = xm. In third line we can again substitute
multiplication with a chain of simple additions. The division operation in
this line is a simple shift right by m positions.
Summing up we may say that the algorithm combines multiplication and

reduction steps. However it is not easy to distinguish standard reduction
and standard multiplication processes and it is impossible to separate them.
Although looking at the complete algorithm for finite field multiplication
(see Algorithm 9) one can observe that in its first line we perform multipli-
cation and all the remaining operations are responsible for reduction.
It is easy to observe that if the irreducible polynomial is unknown/variable

we need to add to our solution units, which will precalculate additional val-
ues needed. In fact that operations maybe much more complicated than
multiplier itself. Knowing irreducible polynomial, which is the case for typ-
ical cryptographic applications, we may perform optimisations and forget
about additional precomputations. That way we gain a lot on efficiency.
The Montgomery method based algorithm calculating the modular product
c(x) is given in Algorithm 9.

To perform multiplication in second line of Algorithm 9 we have used mul-
tiplier based on shift-and-add method but different from the one proposed
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Algorithm 9 Modular multiplication algorithm based on Montgomery
method [50]
Input: a(x), b(x), r(x), f(x), f ′(x), r2(x) mod f(x)
Output: c(x) = a(x)b(x) mod f(x)
1: // MontMult(a, b) //
2: t(x) = a(x)b(x)
3: u(x) = t(x)f ′(x) mod r(x)
4: d(x) = [t(x) XOR u(x)f(x)]/r(x)
5: // MontMult(d, r2 mod f) //
6: t(x) = d(x)(r2(x) mod f(x))
7: u(x) = t(x)f ′(x) mod r(x)
8: c(x) = [t(x) XOR u(x)f(x)]/r(x)
9: return c

previous section. For m = 233 we partition vector b into 16-bit words (we
add bits equal to 0 on MSB positions if necessary), multiply sequentially a
by all parts of vector b (we need to perform 15 multiplications) and sequen-
tially cumulate partial results. In Table 3.15 we compare the performance of
Montgomery solution utilising such multiplier and utilising multiplier based
on matrix-vector approach (see Section 3.2.1). To construct full finite field
multiplier based on Montgomery method we may use different types of mul-
tipliers but we have to remember that they strongly influence the solution.
In fact large binary vector multipliers perform half of the calculations (or
even more) required by the complete Montgomery finite-field multiplier.

All other multiplications needed to perform the algorithm, multiplication
by r(x), r2(x) mod f(x), f ′(x), f(x) are simpler due to the fact that we know
the values of those operands. Thus we may substitute those multiplications
with short chains of XOR operations as already mentioned. Summing up,
knowing the irreducible polynomial generating the field we may say that
the algorithm comprises a set of very simple operation. The only difficulty
here is that we operate on large numbers, thus we have to manage large
binary vectors.
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Table 3.15.: Montgomery finite field multipliers (m = 233) (Virtex-6)

area max.freq # clock multiplier used AT[LUT] [MHz] cycles

1 3197 338 270
Shift-and-add multiplier built

2554of 233x16-bit multipliers
area: 2308 LUT
max.f : 323MHz

2 3730 302 244
Matrix-vector multiplier built

3014of three 117-bit multipliers
area: 2625 LUT
max.f : 302MHz

3.2.3. Summary, conclusions and comparison

Comparing our solution with already existing ones is not easy. Available lit-
erature does not always contain all necessary data. The designs are usually
not fully described. Many references does not contain practical results but
theoretical description, i.e. evaluation of predicted number of gates used
and probable delay. As the solution depends not only on the algorithm
used but also on the way it is described in HDL it is not easy to say, which
solutions are the best. Even if we would try to implement other described
just theoretically algorithms we may get different results than predicted and
probably achieved by the inventors. In Table 3.16 we present our exemplary
solutions. In Table 3.17 we present the solutions found in accessible liter-
ature. Looking on both tables we may conclude that our units are rather
fast and small.

We present in Table 3.16 implementation results for Virtex-6 device of
first versions of our finite field multipliers. We present all the solutions for
exemplary field size m = 233. To ease the comparison of our solutions we
have calculated the AT factors. It seems that the best in terms of efficiency
is Mastrovito multiplier. The Mastrovito multiplier outperforms the rest

94



Table 3.16.: Our exemplary solutions

Algorithms area freq. clock
AT[LUT] [MHz] cycles

Classical 1 3638 302 264 3.18
Classical 2 2862 302 238 2.25
Mastrovito 3760 297 75 0.95

Montgomery (full) 3197 338 270 2.55

mainly due to the fact that it needs only 75 clock cycles to perform the
multiplication.

In Table 3.17 there are presented results for other existing solutions we
have found described in literature. Unfortunately it is difficult to calculate
the AT factor for them. Mainly due to the fact that we have insufficient
data. The other reason is that area is interpreted (not in all cases) differently
than in our work thus comparison of such AT factors maybe inadequate.

The second goal of our research is to secure the elaborated efficient arith-
metic operators. That is why their versions presented here are not fully
optimised. We have left some space (some “gaps”) for the countermeasures.
What is more we have structured our designs in such a way that would
be possible to secure our operators. Some of those additional mechanisms
may occur to be useless however at this stage we will not suppress them.
The final fully optimised and secured operators will be described in con-
secutive chapters. Results presented in this chapter have been published at
conferences and in journal [82, 81, 83].
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Table 3.17.: Existing solutions

Solution m Device Area Max.freq. T
/delay

[21] 256 Virtex II 5267 LUT 44.91 MHz 5.75 us
1033 2000-6 23.07 us

[110] 1024
XCV2000E-6 4355 CLB 100.4 MHz -
XC40150XV-7 8339 CLB 44.4 MHz -
XC4VFX100-10 2793 CLB 150.5 MHz -

[27] 233 XC2V-6000-4 415 slices - 2.42 us

[75] 233 Stratix 3728 LE 4.04 ns 12 cycles

283 EP1S40F780C5 3396 LE 3.66 ns 20 cycles

[114] 233 Stratix 3353 LE 6.91 ns 16 cycles
by [75] 283 EP1S40F780C5 3118 LE 6.95 ns 20 cycles

[34] 233

37296 LUT 77 MHz -
XC2V-6000 11746 LUT 90.33 MHz -
FF1517-4 36857 LUT 62.85 MHz -

45435 LUT 93.20 MHz -

[95] 191 XCV2600E 8721 CLB - 82.4 us

[18] 88 Altera EP2S60 6644 ALUT -

[30] 163

201,989 LUT 241 -
Virtex 214,703 DFF MHz

XCVL330 1471 LUT 241 -
982 DFF MHz -

[57]
283

1781 CLB 246.670 -
2156 FF MHz -

Virtex 4 3367 LUT MHz -

1132
XC4VFX140 25,955 CLB 248.447 -

32,578 FF MHz -
48,591 LUT MHz -
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4. Physical security of ECC
cryptosystems

Modern cryptographic devices suffer from more threats than their prede-
cessors. The mathematical cryptographic systems are now very secure. As
claimed in [68], there exist a mathematical/theoretical impassive barrier.
Organisations such as NIST or SECG develop and issue standards for cryp-
tographic systems. Those organisations verify the security level of cryp-
tographic systems very often in order to provide up-to-date parameters of
cryptosystems ensuring certain level of security and maintaining the math-
ematical barrier.
In todays world mathematical cryptographic system needs to be imple-
mented on some device in order to be useful. The most popular devices
used for cryptographic purposes are microprocessors, VLSI circuits (FPGA,
ASIC) or smart cards. Until very recently (beginning of 90’s), if such de-
vice contained secure, according to standards, cryptographic system, it was
considered as unbreakable (i.e. safe). Nowadays the security of whole sys-
tem relies not only on the security of algorithms and protocols, but also
on the security of their implementation [80]. It was found that crypto-
graphic devices leak information during their activity, i.e. they need certain
time to perform the operation, they consume specific amount of power and
they emit electromagnetic radiations. The leaking information was always
considered as useless noise. Unfortunately cryptanalysts observing work of
implemented cryptographic systems noticed that the leaking information
maybe useful for discovering secret data/keys on which the cryptographic
device operates. It was presented that the information depends on the ma-

97



nipulated operands values. The observation process is called side-channel
analysis and is now a serious threat for modern cryptosystems. Its main
advantage is that it is rather cheap and in many cases does not require
direct access to the device [61, 76].

Side-channel attacks - an introduction Eavesdropping of devices is not
a recent idea. For years people have been eavesdropping mechanical de-
vices such as safe locks. It is for example possible to open mechanical lock
through analysis of sound of the lock’s wheels dialed in a certain manner.
To do that the burglar must possess deep knowledge about lock being ma-
nipulated, nevertheless then it is possible to open the lock without leaving
a trace. Fortunately the digital devices can counteract such attacks and if
the developer of the device is aware of those threats he will surely try to
secure the device developed.
The notion of side-channel and the idea to eavesdrop information leaking
from electric material was proposed in 1918 by H.Yardley and his team [89,
108]. Later in mid-thirties IBM typewriter was studied and the study indi-
cated that the information leakage resulting from the device activity cannot
be neglected and constitutes a serious threat [89]. Afterwards in 70’s in
USA, a TEMPEST program [77] was initiated to counteract threats re-
sulting from leaking information, it concerned information leaking through
the electromagnetic radiations. The early research was concerned on the
electromagnetic radiations mainly due to the fact that intercepting electro-
magnetic radiations did not require direct access to the spied device.

The idea of analysis of side-channel information leakage started to be at-
tractive to cryptanalysts of modern cryptosystems in the 90’s. Around this
time most cryptographic systems were standardised and it was even defined
when there will be available enough computing power to break the system
working on certain size of keys. Around that time the mathematical secu-
rity barrier was also set thus the cryptanalysts started to look for new ways
of retrieving secrets. Their interest turn to observation of implementations

98



of cryptographic algorithms and the side-channel information leakages.

According to [80] a side-channel can be explained as follows: A device
can have different types of outputs. If such outputs unintentionally deliver
information (about the secret key), then the outputs deliver side-channel
information and are called side-channel outputs (or side-channels).

The analysis of side-channels information occurred to be a very efficient
and in the same way cheap manner of stealing the secrets thus it gained a
lot of interest.

The most popular types of developed side-channel attacks are:

• timing attack - analyses the device running time [51],

• electromagnetic attack - analyses electromagnetic field emitted by the
device during its work [89],

• power analysis attacks - analyses power consumption of the device
during its work [61, 52],

In our researches we focus on securing our arithmetic units against some
power analysis attacks, which seem to gain a lot of attention nowadays [61].
We find that our ideas for protections against power analysis may be ex-
tended to protections against electromagnetic field analysis.

Power Analysis Attacks All the details presented here on power analysis
attacks are based on [61, 80, 52] and some recent summaries of those type
of attacks, such as [26, 86].
The power analysis attacks and their effectiveness were introduced in 1998
by Kocher et al., in [52]. Below we present the idea of such attacks.

Power Analysis Attacks [61]
The attacks rely on the fact that instantaneous power consumption
of a cryptographic device is correlated with data being processed
and operation being performed

Types of power analysis attacks (according to [53, 26]):
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• Simple Power Analysis (SPA) [52], goal: reveal the secret using few
power traces; attacks exploit key-dependent differences (patterns) within
a trace; “In SPA attacks, a device’s power consumption is analysed
mainly along the time axis. The attacker tries to find patterns in a
single trace.” [39]

• Differential Power Analysis (DPA) [52], requires many power traces,
it is usually necessary to physically possess a device to be able to
obtain large set of traces; “In DPA attacks, the shape of the traces
along the time axis is not as important. DPA attacks analyse how the
power consumption at fixed moments of time depends on the processed
data.” [39]

• Correlation attack [11], improved DPA attack; the measurements al-
low to predict at once more than one bit (e.g. 4 bits); more optimised
DPA,

• Template attack [16], requires to physically possess cryptographic de-
vice; attacker constructs a model of the wanted signal source including
the characterisation of noise then he compares it with measurement
values; improved DPA,

• Refined Power Analysis (RPA) [33], improved DPA

• Carry-based attack [29]

• others

Main principles of the power analysis attacks [86]:
In order to perform power analysis attacks, the attacker analyses the at-
tacked device’s power traces. In SPA the adversary tries to deduce secret
information by observation of variations and repetitive patterns in the ob-
tained power traces (usually a single power trace). In DPA and more com-
plex attacks the adversary requires a model of cryptographic device to be
attacked. The better the model, e.g. low-level descriptions (netlists), the
more advantageous for the attacker. The device model is used to predict
certain intermediate values, depending on inputs, outputs and secret key,
which are assumed to appear during computation. The dependency of those
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intermediate values on the secret key implies that it is possible to guess at
least a part of the key. Those intermediate values allow for creating a hy-
pothetical power consumption model of the attacked device. To reveal the
part of the secret key depending on chosen intermediate values the attacker
compares hypothetical model with the measured one, for illustration of the
DPA attack idea see Figure 4.1. To perform DPA the adversary needs many
power traces.

Figure 4.1.: Differential power analysis principle [80]

Summing up, according to [80], the simple side-channel analysis exploits
the relationship between the executed instructions and the side-channel out-
put. Differential side-channel analysis exploits the relationship between the
processed data and the side-channel output.

Popular ECC curve operation level countermeasures The ECC systems
and their main protocols are described in Chapter 2, there we have also
mentioned which is the most vulnerable to SCAs operation in ECC systems.
The operation is a scalar point multiplication [k]P , multiplication of the
point on the curve P by a large scalar k. Scalar k is usually the private key or
an ephemeral (secret) key. It has been shown that the scalar multiplication
of a secret value with a known elliptic curve point is vulnerable to simple
and differential side-channel analysis. A successful attack on this operation
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results in revealing scalar k (secret key) thus in breaking the cryptographic
system.

In order to perform [k]P operation one needs to perform a set of point ad-
dition (P +Q) and point doubling (2P ) operations. The simplest algorithm
for performing scalar multiplication [k]P is double-and-add algorithm, see
Algorithm 10.

Algorithm 10 Double-and-add algorithm (right-to-left binary algo-
rithm) [36]
Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)
Output: [k]P
1: Q←∞
2: for i = 0 to t− 1 do
3: if ki = 1 then
4: Q← Q+ P
5: end if
6: P ← 2P
7: end for
8: return Q

Looking at the algorithm it appears obvious that straightforward imple-
mentation of double-and-add is a very vulnerable algorithm. The type of
operation performed in the algorithm during each step depends on the value
of k. Depending on the value of bit of secret k the algorithm performs ei-
ther point addition and point doubling or only point doubling. If those
operations have different power traces, which is usually the case, then the
adversary analysing power consumption of the device implementing such
algorithm is able to deduce the secret key easily. Seeing the sequence of
performed doublings and additions the adversary is able to derive the se-
cret key.

For us the countermeasures for ECC systems against side-channel anal-
ysis have generally two goals. One is to mask/hide sequences of doubling
and addition operations, to make impossible to deduce from power traces
the operations performed. The second is to remove as much as possible
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the dependency of manipulated operands values on the power consumption.
There exist and are still developed many countermeasures. There are hard-
ware countermeasures and algorithmic countermeasures. To protect against
SPA there exist the following types of algorithmic countermeasures [39]:

• unification of the addition formula [13, 12] or alternative parameteri-
zations [40, 104, 9];

• insertion of dummy instructions or operations [19, 17];

• utilisation of “regularly” behaving algorithms (so called “atomicity”) [104,
79, 70, 13, 38, 28].

To protect further the device against DPA it is suggested to [39, 19, 41, 15]:

• randomise base-point P ,

• randomise/recode secret scalar k

All those countermeasures aim at goals described above. For example
unification of addition formula aims to unify addition and doubling in terms
of number, order and type of finite-field operations needed to perform 2P or
P +Q. Other countermeasures manipulate the order of sequence of 2P and
P +Q operations needed to perform [k]P . For example, algorithm double-
and-add, see Algorithm 10, is modified to perform additional, dummy point
addition each time it is executed, see Algorithm 11: double-and-add always.

Algorithm 11 Double-and-add always algorithm [19]
Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)
Output: [k]P
1: Q0 ← P ; Q1 ←∞
2: for i = t− 1 to 0 do
3: Q0 ← 2Q0

4: Q1 ← Q0 + P
5: Q0 ← Qki

6: end for
7: return Q0

The DPA countermeasures “mask” the chain of 2P and P +Q operations
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by randomising the base-point P or scalar k. There are either specific val-
ues added to P , k, which maybe easily subtracted at the end, or there exist
various methods for k recoding (NAF, DBNS). By recoding the key the se-
quence of doublings and additions is randomised. With DBNS for example
it is possible to have lot of distinct chains of additions and doublings using
the same key [15].

According to [39] preventing side-channel power analysis is a two step pro-
cess. At first the device needs to be secured against SPA and then against
DPA. That way it should be impossible to mount a successful power analysis
attack on the device. For ECC many SCAs and various countermeasures or
protections against them (see [39]) have been proposed. For instance, addi-
tion chains allow performing only one type of curve-level operation (point
addition) during scalar multiplications [14]. In [15] randomized and very
redundant representations of the scalar k are used. All yet proposed pro-
tections are at the curve-level not the finite-field one.
Efficient and secure computation units for finite-field arithmetic are impor-
tant elements of ECC processors. It was already mentioned few years ago
in [39] that “each elliptic curve operation itself consists of a sequence of
field operations. In most implementations, the standard sequence of field
operations in point addition differs from that in point doubling. Every field
operation has its unique side-channel trace. Hence, the sequence of field op-
erations of point addition has a different side-channel pattern than that of
point doubling”. However nobody yet, according to known references, tried
to secure finite-field arithmetic operations against information leakage. All
the efforts were put to randomise or unify the sequences of those operations
and curve-level operations.
We find that securing finite-field arithmetic operations should increase the
security of the ECC system. It may even occur that some countermeasures
of higher layers of cryptosystem (see Chapter 2) will yield better results
when mounted on secured arithmetic operators.
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Our goal is to secure the operators in such a way that finally the sequence
of finite field operations needed to compute 2P or P + Q will yield either
unified or random power traces. We want that observing the sequence of
e.g. finite-field multiplications it is impossible to distinguish the beginning
and end of a single multiplication thus to identify point addition or point
doubling. We find that it is possible to flatten/unify power consumption of
finite-field arithmetic operations and that it is also possible, in case of some
algorithms, to randomise the current signature of finite-field operation, i.e.
each time a single operation is executed it will have different current trace.

4.1. Physical security of hardware GF (2m)

arithmetic operators

In this chapter, we investigate protections against some power analysis at-
tacks at the field level in GF (2m) multiplication algorithms and their ar-
chitectures dedicated for ECC systems. All other GF (2m) arithmetic op-
erations needed to multiply points of elliptic curves, such as squaring or
inversion, can be performed with use of multiplication and addition in the
field [96]. According to this and the claim that finite-field arithmetic oper-
ators are crucial for ECC system, see Chapter 2, it follows that finite-field
multiplication operators are significant units of ECC system. The finite-field
addition operation is very simple and when implemented on reconfigurable
circuits it can be performed parallely to all other finite-field elements oper-
ations. Due to the fact that the multiplication operation is very costly in
terms of time and area and have to be performed many time during scalar
multiplication operation, we presume that it has a huge impact on the op-
erations performed in ECC system not only in terms of efficiency but also
in terms of security.
In previous chapters we have proposed very efficient multipliers for GF (2m),
in this chapter we analyse the security of elaborated operators and pro-
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pose protections and countermeasures against some power analysis attacks.
Those protections can be easily extended to protections against electro-
magnetic attacks. The proposed security modifications are not autonomous
countermeasures for ECC systems but an additional protection element,
which should enhance higher-level (curve-level) countermeasures. Results
presented in this chapter have been published at WAIFI 2012 conference [84].

The cryptanalysts concern two types of power consumption leakage [80]:

• transition count leakage - related to the number of bits that change
their state at a time.

• the Hamming weight (HW ) leakage - related to the number of 1-bits,
being processed at a time.

Here we concern transition count leakage (Hamming distance = HW (t+
1) − HW (t)) due to the fact that in VLSI circuits instantaneous power
is linked with the number of useful transitions in the operator. Useful
transitions are the theoretical changes of bit state during the operation
(from one clock cycle to the next one). This is also called useful circuit
activity. To estimate information leakage in typical GF (2m) multipliers, we
have accurately measured their useful activity [84].

Power analysis based SCAs use possible correlations between internal
secret values (e.g. keys) and information leakage related to instantaneous
power of the executed operations (see [61] for details).

Definition 4.1.1. Instantaneous power at time t is PDD(t) = iDD(t)×
VDD, where iDD(t) is the instantaneous current and VDD is the power supply.
Power consumption components are: static power and dynamic power.
See [112, Sec.4.4] for circuit-level details in CMOS circuits.

Static power does not depend on circuit activity and is not used in this
work. Dynamic power appears due to circuit activity: charging and dis-
charging load/parasitic capacitances and short-circuit currents. It strongly
depends on the executed operations and data values. Dynamic power vari-
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ations are used as a source of information leakage for power attacks.

Dynamic power components are: useful activity and parasitic activity as
illustrated on Figure 4.2. Useful (or theoretical) activity is due to complete
and stable transitions required by computations from one clock cycle to the
next one (i.e. 0 → 1 and 1 → 0 for each bit). Parasitic (or glitching)
activity is due to non-useful transitions. For instance, in case of non-equal
arrival times for a gate inputs, the output may have multiple transitions
before reaching a steady state.
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Figure 4.2.: Useful (left) and parasitic (right) transitions.

Parasitic activity in GF (2m) multipliers is small. This is not the case for
all arithmetic operators (e.g. operators in high-performance CPUs [106]).
In GF (2m) arithmetic units, the logical depth is small. Power consumption
of memory elements (e.g. flip-flops) used inGF (2m) multipliers is important
compared to power consumption in logic gates. In this work, we only focus
on useful activity as a large contribution to iDD(t).

Several methods can be used to evaluate useful activity: cycle-accurate
and bit-accurate (CABA) simulation [31] of a low-level architecture descrip-
tion, electrical simulation or FPGA emulation. Fast high-level behavioral
simulation is not sufficient to catch cycle-accurate and bit-level coding as-
pects. As the target operators have large operands (e.g. 160 to 600 bits for
ECC) and long computations, CABA simulation would be too slow. This is
even more critical with electrical simulation. Thus we use FPGA emulation
for evaluating useful activity.

An activity counter was attached to each monitored signal [107] which
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counts the number of useful transitions as illustrated on Figure 4.3. The
D flip-flop and the XOR gate produce 1 for each useful transition between
s(t + 1) and s(t). The k-bit counter accumulates transitions counts (k
depends on test vector length).

Figure 4.3.: Activity counter architecture for a 1-bit signal s(t) (control not
represented).

Comparisons with electrical simulations in [107] show that this is reason-
able assumption for small parasitic activity. At the end of this chapter we
compare FPGA emulations result with current measurements to show that
the assumption holds. We insert activity counters at the output of each in-
ternal register and for each signal of the multiplier. Outputs of all XOR gates
(radix-1 representation of transitions number) are compressed into a binary
value as the total transitions count for cycle t. This value is monitored
using ChipScope Pro tool from Xilinx. ChipScope Pro enables observation
of internal signals of FPGA device during its work. It is possible to record
the monitored value changes and analyse it later with other tools.

One of our goals was to design efficient finite-field multipliers in such a
way that their architectures can be easily modified to add protection against
SCAs. We have analysed many algorithms, with different variants, to be
able to take and combine those parts, which will allow us to create the most
efficient algorithm fulfilling assumed requirements. The analysis and final
solutions are presented in Chapter 3. As a result of our study, we have pre-
pared three efficient GF (2m) multipliers based on three different algorithms:

108



classical two-step, Montgomery and Mastrovito algorithm. In this chapter
we analyse the security and possibility of inserting various countermeasures
for each of those solutions. Using FPGA emulation, it is possible to quickly
and accurately evaluate useful activity in GF (2m) finite-field multipliers for
large and relevant test vectors (this cannot be done using “slow” software
simulations). Activity counters do not change the multiplier mathematical
behavior. Moreover insertion of activity counters allowed us to optimise
some multipliers. For example in multiplier based on Montgomery algo-
rithm we were able to reduce the total number of registers used. Initially
we had put in this architecture some auxiliary registers and assumed that
the synthesis tool will optimise the solution. However it was not the case.
After optimisation done by hand, the Montgomery multiplier unit is much
smaller than the one presented in Section 3.2.2.

Corresponding implementation results without and with activity counters
are reported in Table 4.1. The table reports huge area overhead and about
a ÷3 frequency decrease due to activity counters inserted. These overheads
are very important, but they only appear during evaluation not in final cir-
cuit. FPGA emulation leads to activity evaluation running at more than
100MHz (see Table 4.1) which would not be possible using software simu-
lations.

Table 4.1.: FPGA implementation results of GF (2m) multipliers without
(original operators) and with (monitored operators) activity
counters.

without activity counters with activity counters
Algorithms area freq. clock area freq. clock

LUT MHz cycles LUT MHz cycles

Classical 3638 302 264 11383 133 264
Montgomery 2178 323 270 6100 121 270
Mastrovito 3760 297 75 5956 110 75
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4.1.1. Security level verification, problem identification

For all experiments, random operands have been used with uniform and
equiprobable distribution for all bits. We have performed numerous experi-
ments (corresponding to hundreds of thousands clock cycles for each tested
solution). The traces presented correspond to typical traces. We find that
even though it occurred that overall traces shape dependency on operand
random values is relatively small, using average trace is not possible since
this may flatten the activity variations and mask information leakage. Thus
we have been evaluating our modifications by running modified multipliers
for several various sets of experimental data. Here we present representative
traces.

All proposed hardware solutions are analysed for one of field sizesm = 233
recommended in ECC standards (similar results are obtained for other field
extension sizes).

The first analysed unit is the one based on classical algorithm. In Chap-
ter 3 we have proposed two classical multipliers, one with standard, op-
timised to irreducible polynomial reduction and the other utilising matrix
reduction. After collecting and analysing activity traces of those two types
of classic multipliers we have concluded that the reduction does not impact
activity traces very much. In fact the activity traces for both solutions
are very similar, almost alike. Thus we have decided to focus on only one
classical multiplier, the one using standard, optimised to irreducible poly-
nomial reduction. We presume that this unit architecture can be more
advantageous for inserting countermeasures mainly due to the fact that the
standard reduction requires few steps. Figure 4.4 (left) presents useful ac-
tivity measurement results for a typical sequence of GF (2m) multiplications
of random operands using classical algorithm.
One may observe that there is a high peak at the beginning of each mul-
tiplication. The peak occurs due to the initialisation phase and loading of
new operands values. Figure 4.4 (right) presents an extract for a single rep-
resentative multiplication (all random operands lead to the similar overall
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shape). We have noticed that dependency of the shape of activity variation
curves on input data is rather low.
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Figure 4.4.: Useful activity measurement results for random GF (2m) mul-
tiplications with classical algorithm (left). Extract for a single
representative multiplication (right).

Measurement results for a sequence of random GF (2m) multiplications
using Montgomery algorithm form are presented in Figure 4.5 (left) with
an extract of a single representative multiplication (right). The reported
measurements are shown for complete multiplications with final reduction
(for conversion from Montgomery “representation”). We have provided com-
ments on that point in Chapter 3. One can observe that there is a large
activity drop at the end of each multiplication. We presume that it occurs
due to the reduction step (recovery from Montgomery representation) and
multiplier control.

Figure 4.6 (left) presents useful activity measurement results for a typical
sequence of random GF (2m) multiplications using Mastrovito algorithm
form with an extract for a single representative multiplication (right). The
variations of the useful activity during a multiplication have a very specific
decreasing “step-wave” shape.

Measurements for all three multiplication algorithms show very specific
shapes for useful activity variations, which may lead to some information
leakage. Those specific shapes provide the attacker with strong temporal
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Figure 4.5.: Useful activity measurement results for random GF (2m) mul-
tiplications with Montgomery algorithm (left). Extract for a
single representative multiplication (right).

references of the operations time location. Based on these references about
field-level operations, higher-level operations (e.g. point addition and dou-
bling) can be guessed.

The analysis of the obtained activity variation traces and the architectures
of our solutions allowed us to came up with the following conclusions.

Peaks due to the initialisation phase at the beginning of operations in
Figure 4.4 are not related to the selected algorithm but to the implemented
architecture and especially its control. Resetting all internal registers gen-
erates a lot of activity and can give information about the time borders of
the operation. Then this specific different shape for the initialisation phase
may occur for other algorithms and architectures.

Activity drops at the end of operations in Figure 4.5 are due to low-
complexity reduction step for the considered irreducible polynomial com-
pared to multiplication iterations complexity. We reported measurements
for complete multiplication (with final reduction) for fair comparison with
other algorithms. In practice, those drops should not appear since reduction
is only used at the end of a sequence of operations (with operands in Mont-
gomery domain). However uniformising reduction step activity variations
leads to uniformisation of activity variations of all finite field operations,
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Figure 4.6.: Useful activity measurement results for random GF (2m) multi-
plications with Mastrovito algorithm (left). Extract for a single
representative multiplication (right).

which is our goal.

The most problematic shape is the one for Mastrovito algorithm in Fig-
ure 4.6. The decreasing “step-wave” shape is due to variation of the com-
putations quantity in the algorithm. In next section, we will present mod-
ifications of this multiplier at algorithmic and arithmetic levels to reduce
information leakage.

4.1.2. Proposed countermeasures, circuit modifications

Analysing the obtained activity variations curves, we can define modification
objectives. First, we have to suppress the peaks at the initialization phase.
This is an architecture issue (i.e. modification of the operator control).
All multiplication algorithms may benefit from this type of modification.
Second, we have to take care of the activity drops during the reduction phase
of Montgomery algorithm. But as stated in previous section, this phase is
only used at the end of long sequence of operations in real ECC applications.
Last, we have to make the “step-wave” shape of useful activity variations
of Mastrovito algorithm less distinguishable. All this modifications aim
at masking the multiplication operations. Aim at making impossible to
localise the operation in time. Below, we describe our modifications for
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each algorithm.

Classical two-step multiplication: The analysis shows that peaks at the
beginning of each multiplication occur due to circuit initialisation. To sup-
press them, we have modified multiplier control and initialisation method.
Initially to ensure the correct work of our circuit we have been resetting all
registers before the start of computation. We have been resetting all reg-
isters also those not used at the beginning of multiplication process. Now
we do not reset all registers in the first cycle but we have spread the reset
activity over several cycles. We reintialise/reset register before it is used, if
it is possible. What is more we have observed that not all registers need to
be reinitialised. Thus we have skipped their initialisation/resetting.
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Figure 4.7.: Useful activity measurement results for random GF (2m) mul-
tiplications with modified classical algorithm.

Figure 4.7 shows useful activity measurements for a sequence of random
multiplications using the modified multiplier. To reduce activity variations,
we have also optimised the reduction step by reducing number of registers
involved in reduction and merging all the steps of algorithm presented in
Algorithm 7 into a chain of XOR operations. In the modified multiplier the
average activity varies between 100 and 120 transitions (see Figure 4.7)
while it was about 150 transitions in the original one (see Figure 4.4). Our
modifications reduce the number of active registers in the operator thus they
reduce also a little the power consumption of the operator. Comparing the
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original operator’s useful activity variations (Figure 4.4) with variations of
modified multiplier (Figure 4.7), we can notice the absence of high initial-
isation peaks. For instance, between cycles 1500 and 2400 it is difficult to
detect the executed operations boundaries.

Montgomery multiplication: If we do not consider the reduction step, we
may say that the activity variations of Montgomery multiplier are more or
less uniform (see Figure 4.5). The only thing, which may still give some
information to the attacker is the initialisation phase. Activity drops at
this phase occur due to a specific way, in which the input data are fetched.
Like for classical algorithm, a modification of the initialisation control re-
moves these drops. Figure 4.8 shows Montgomery activity variations with
improved control (bottom curve) and without reduction (top curve).

Figure 4.8.: Useful activity measurement results for random GF (2m) mul-
tiplications with Montgomery algorithm.
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Mastrovito multiplication: The “step-wave” shape of useful activity vari-
ations of Mastrovito multiplier in Figure 4.6 is specific and can provide the
attacker with a lot of information. Our objective is to modify the algorithm
and the architecture in such a way that single multiplications cannot be too
easily distinguished.

It is clear that the “step-wave” shape occurs mainly due to unequal num-
ber of registers switching in one clock cycle. Thus we have investigated two
types of modifications for Mastrovito multiplier: “uniformisation” of the
number of sub-multipliers’ registers used in each clock cycle and “randomi-
sation” of the starting times of the operator sub-multipliers. “Uniformisa-
tion” aims at making approximately the same number of bits switch in one
clock cycle and “randomisation” at randomising number of bits switching
in one clock cycle. We have derived many versions of those two types of
modifications.

In order to explain modifications we have performed to the initial solution
we recall some details of Mastrovito multiplier solution. Figure 4.9 presents
the way we have divided matrix M into sub-matrices (see Section 3.2.2).
The boxes with same indices Mi denote blocks, which can be multiplied by
parts of vector b, using the same sub-multiplier unit.

It can be observed that some sub-multipliers are used more than the
others. In initial solution we utilise one instance of each sub-multiplier
(compare for example occurence of M0 and M3 on Figure 4.9), thus if we
start them all at the same time, the activity is higher at the beginning of the
operation (where all sub-multipliers are used) and lower at the end (almost
all sub-multipliers are already switched off).

Our first proposition for “uniformisation” is to make the utilisation, in
one clock cycle, of the number of sub-multipliers more uniform. We have
tried not to change the total computation time of original multiplier, i.e.
the number of states of FSM controlling the sub-multipliers work. The best
obtained for this type of modification activity variation curve is shown on
Figure 4.10, see curve V1.
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Figure 4.9.: Illustration of Mastrovito matrix partitioning for m = 233

Further, due to the fact that sub-multipliers use different number of dif-
ferent size registers, we have tried to uniform number of registers used in
one clock cycle. Finally we have tried to consider not only number of regis-
ters used but also their sizes, thus the number of bits which possibly switch
in each clock cycle. We have performed various attempts and tests. Then
due to many dependencies between data we have decided to change num-
ber of states of control FSM and increase number of sub-multipliers used.
The results obtained were very promising however we have found another
problem. The other problem was the control of the circuit. We find that
it causes drops to 0 in certain points. We have tried to modify the control
algorithm and the idle, transient state (moment between the end of com-
putation and the start of the new one) of the multiplier in order to avoid
those sudden drops to zero, which may give information about operation
time location. After unification of number of bits switching in one clock
cycle and modification of circuit control we have obtained activity variation
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Figure 4.10.: Useful activity measurement results for random GF (2m) mul-
tiplications with 4 versions of modified Mastrovito algorithm.

curve V0, see Figure 4.10.

Our next objective was to randomise the starting moment of each sub-
multiplier. This should “spread more” the activity over the whole com-
putation. In order to randomise the beginning of sub-multiplications, we
have used 8-bit LFSR (Mastrovito V2) and pseudo-random start sequence
generator based on 4-bit LFSR (Mastrovito V3), which initialisation val-
ues depend on some bits of a and b operands. In order to avoid blocking
the multiplier we exchange the initialisation values (seed) many times at
random moments throughout multiplication operation. We have also tried
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other methods but the best, according to us, results so far were achieved
with use of our random start sequence generator based on 4-bit LFSRs, see
Figure 4.11.

Figure 4.11.: Random start sequence generator based on 4-bit LFSR.

Due to the randomisation, the time needed to perform the complete mul-
tiplication, depending on which sub-multiplier is started first, will either
decrease or increase randomly. The average number of clock cycles for Mas-
trovito V2 is 116 (minimal value: 98, maximal value: 126), whereas for
Mastrovito V3 average number of clock cycles needed is 80 (minimal value:
64, maximal value: 108). Useful activity measurements for V2 (middle
curve) and V3 (bottom curve) modifications are presented in Figure 4.10.
As one can observe on Figure 4.10, the shapes of useful activity variations
are more irregular and not easily predictable compared to the curve for the
initial version in Figure 4.6.

The presented analysis and modifications aimed at masking the character-
istic shapes of finite field multipliers activity variations curve. Additionally
we have investigated the dependency on values of operands on the activity
variations shape. In Figure 4.12 we present how the change of 1-bit and
16-bit in both operands affects the activity variation curves. As it can be
observed it is difficult to predict where the curve changes and the variations
of shapes are very low.

Implementation results for the modified multipliers: All modified multi-
plication algorithms have been implemented in FPGA. The corresponding
results are reported in Table 4.2. Three optimisation targets were used
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Figure 4.12.: Data dependency on activity variations curves for Mastrovito
multiplier

for the synthesis tool: balanced area/speed, area and speed optimisations.
In order to compare the modified multipliers to the original ones (see Ta-
ble 4.1), we report a comparison factor α such as modified = α×original

both for area and frequency.

Evaluation of activity variation reduction To evaluate our modifications
we have used signal processing tools. To do this the measured activity
traces were transformed from time domain to frequency domain using Fast
Fourier Transform (FFT), see [87]. Figure 4.13 presents those results for
unprotected and protected versions of some of our multipliers. It represents
the mathematical power for each frequency bin. The same logarithmic scale
is used for all versions. One can observe an important reduction in the
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Table 4.2.: Implementation results of GF (2m) multipliers with reduced ac-
tivity variations.

balanced area speed #
Algorithms area freq. area freq. area freq. clock

LUT MHz LUT MHz LUT MHz cycles
Classical 2868 270 2778 228 3444 420 260
×α factor ×0.79 ×0.89 ×0.76 ×0.75 ×0.95 ×1.39 ×0.98

Montgomery 2099 323 2093 338 2099 423 264
×α factor ×0.96 ×1.00 ×0.96 ×1.05 ×0.96 ×1.31 ×0.98

Mastrovito v0 3889 225 3894 197 3933 308 48
×α factor ×1.04 ×0.75 ×0.97 ×0.66 ×1.05 ×1.04 ×0.64

Mastrovito v1 3463 414 3439 343 3489 384 75
×α factor ×1.09 ×1.39 ×1.09 ×1.15 ×0.93 ×1.29 ×1.00

Mastrovito v2 3700 306 3667 253 3717 388 avg.116
×α factor ×1.02 ×1.03 ×0.98 ×0.85 ×0.99 ×1.3 ×1.55

Mastrovito v3 3903 319 3837 250 4335 375 avg.80
×α factor ×1.03 ×1.07 ×1.02 ×0.84 ×1.15 ×1.26 ×1.07

potential information leakage for all frequencies.

In order to numerically compare solutions, we have computed the spectral
flatness measure (SFM) [87]:

SFM =
n
√∏n

i=1 p(i)
1
n

∑n
i=1 p(i)

∈ [0, 1]

SFM is the ratio of the geometric mean to the arithmetic mean for a col-
lection of n frequency bins p(i) (power for frequency bin i). A SFM close to
1 indicates a spectrum with power well distributed in all frequency bins (flat
curve) while a SFM close to 0 indicates that power is concentrated into a few
bins (curve with peaks). SFM values are reported on Figure 4.13. Improve-
ment is limited for classic algorithm, but for Mastrovito, our modifications
lead to significant improvement (from 0.31 for unprotected version to 0.58
for the best protected version). The obtained results are rather satisfying.
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Figure 4.13.: FFT analysis results for unprotected and protected versions of
multipliers (top: classic algorithm, middle and bottom: Mas-
trovito algorithm for various versions).

We can see that there is a way to reduce information leakage.

Lastly we have tried to implement point doubling operation, using Lopez-
Dahab projective coordinates for elliptic curve point representation, (for al-
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gorithm see [36] section 3.2.3) with our basic finite-field operators to see if
it is easy to distinguish the sequence of operations performed. Figure 4.14
presents activity traces for calculation of double of elliptic curve point (2P )
performed by our protected and unprotected Mastrovito multiplier. Look-
ing at the activity traces of unprotected multiplier (upper trace) it is easy
to notice each multiplication performed. This information may allow dis-
tinguishing between point addition (P + Q) operation and doubling (2P )
operation, thus recovering the sequence of those operations and eventually
retrieving the secret key.
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Figure 4.14.: Useful activity measurement results for 2P operation for un-
protected (top figure) and protected (bottom figure) GF (2m)
operators.

Comparison of obtained activity traces with current measurements In
order to finally evaluate obtained protection results the instantaneous cur-
rent consumed by the device performing finite-field operations was mea-
sured. We have measured current supplied to the Virtex-II Pro device
mounted on SASEBO-G side-channel attack standard evaluation board which
allows for taking such specific measurements with use of Lecroy Waverunner
104Xi-a oscilloscope and Tektronix CT1 current probe. The measurement
station is controlled by HP Z800 computing server. To ease the measure-
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ments the FPGA board is supplied from low noise HP E3610A power supply.
Figure 4.15 shows comparison of multiplication activity traces obtained us-
ing activity counters and the ones obtained by current probe measurement.
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Figure 4.15.: Comparison of activity traces and current measurements for:
Mastrovito multiplier unprotected version – 5 multiplications
in a row and protected version (uniformised) – 3 multiplica-
tions in a row

Analysing measurements results we can see that the activity traces ob-
tained by observation of internal switching are rather accurate. The evalu-
ation of activity of multipliers done with activity monitors and ChipScope
seems to reflect the real activity of multipliers. Figure 4.15 presents ac-
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tivity traces for protected unprotected multiplier (top curves) and (bottom
figures). It is easy to observe that our modifications yielded desired results.
Observing traces obtained for protected multiplier it is hard to distinguish
single multiplications.

4.1.3. Conclusions

Activity measurements analysis revealed that the implemented multipli-
cation algorithms (classical, Montgomery and Mastrovito) lead to specific
shapes for the curve of activity variations which may be used as a small
source of information leakage for some side channel attacks.

We have proposed modifications of selected GF (2m) multipliers to reduce
this information leakage source at two levels: architecture level by removing
activity peaks due to control (e.g. reset at initialisation) and algorithmic
level by modifying the shape of the activity variations curve. Due to op-
timisatons performed at a very low-level of a circut there is no significant
area and delay overhead.

Analysing activity traces obtained for protected multipliers we may con-
clude that proposed modifications lead to masking the trace of multiplica-
tion operation.
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5. Summary and Conclusions

In this work GF (2m) arithmetic operators dedicated to elliptic curve cryp-
tography applications have been studied. Conducted researches aimed at
providing efficient and secure against some side-channel power analysis at-
tacks GF(2m) hardware arithmetic operators which can be integrated
in ECC processor.

The first goal was to provide efficient hardware arithmetic operators units.
To do this we have performed vast research on existing algorithms and their
improvements/optimisations/variations. The first requirement for the oper-
ators was that they should be dedicated to reconfigurable hardware. Thus
during the analysis we have implemented many of described finite field arith-
metic operations algorithms in order to notice their features which may be
efficiently utilised in hardware (such as: decomposition schemes, compu-
tation order, internal coding, operands represenation, etc.). The second
requirement was that they should serve ECC applications thus they should
operate on 150–600 bit numbers (i.e. large numbers) and should be efficient
in terms of speed, area and energy. The analysis allowed us to find and
combine such features thus leading to design of our own GF (2m) hardware
arithmetic operators based on known algorithms and dedicated to FPGA
circuits (see Chapter 3).

Second goal was to evaluate the efficiency and overall cost of designed
operators. The evaluation aimed at providing final speed and area efficient
GF (2m) arithmetic operators solutions. The GF (2m) operators are vital
part of cryptographic systems and their effectiveness strongly impacts the
effectiveness of the whole system. The designed operators should work as a
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part of ECC system thus in order to do not degrade its performance they
should be small and fast. Comparing our hardware arithmetic operators to
other solutions found in literature we may conclude that we have succeeded
in providing efficient and low cost operators which will not degrade perfor-
mance of the cryptographic system they will be part of (see Chapter 3).

The final goal of was to secure elaboratedGF (2m) arithmetic units against
some of popular passive attacks: side-channel attacks. According to known
sources no one yet attempted to secure the lowest level operations of ellip-
tic curve cryptographic systems that is the finite-field operations. However
there were developed many countermeasures against side-channel attacks
for protecting curve- and protocol-level operations neglecting information
leakage existing at the lowest level of ECC operations. We have chosen
to secure the operators against some of power analysis attacks which by
observation of power consumed by the device performing cryptographic op-
erations aim at revealing the secret. However we presume that our coun-
termeasures may be extended to countermeasures against electromagnetic
attacks. Before providing protections we had to evaluate the security of pre-
viously elaborated efficient operators in order to identify information leak-
age sources. The operators security was evaluated in two manners: using
FPGA emulation with activity counters on standard Xilinx FPGA board
and monitoring of internal signals using Chipscope; and by measurement
with use of very fast LeCroy WaveRunner 104Xi-A oscilloscope and high
frequency Tektronix CT1 current probe of instantaneous current supplied
to the FPGA performing finite field operations mounted on SASEBO-G
side-channel attack standard evaluation board. The evaluation of security
of the unprotected operators showed specific activity trace shapes which
may be used as a small source of information leakage. The shapes may
enable the attacker to localise operations time boundaries or identify the
point doubling (2P ) or point addition (P + Q) operation and thus to re-
veal the secret. To avoid information leakage in GF (2m) operators we have
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performed their algorithmic and architectural modifications. In Chapter 4
we have presented and illustrated that inserted countermeasures diminish
significantly observed sources of information leakage in the operators. Both
methods of evaluation confirmed that after inserting the countermeasures
it is difficult to distinguish specific shapes of operations and what is more
to localise their time boundaries.

Summarising, as a result of conducted researches the following original
results were obtained:

• efficient in terms of speed and area GF (2m) hardware arithmetic
operators dedicated to ECC applications were proposed;

• successful protections against some power analysis side channel
attacks for GF (2m) hardware arithmetic operators were developed;

• the tradeoff between efficiency and security of GF (2m) hardware
arithmetic operators was found.

Concluding it can be claimed that we have succeeded in providing speed,
area and energy efficient GF (2m) hardware arithmetic operators dedicated
to FPGA circuits and ECC applications. We have detected sources of infor-
mation leakage in the operators and have modified the operators to reduce
the information leakage. Thus we claim that it is possible to create
not only efficient but also secure against some side channel power
analysis attacks elaborated GF (2m) arithmetic operators.
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