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Analysis and modelling

Abstract
Purpose: The application of approximate method for solving the task of assignment the frequency-modal 
analysis and characteristics of flexibly vibrating mechatronic system, because for considered case of boundary 
conditions exact and approximate methods for the coordinates are equivalent.
Design/methodology/approach: Formulate and solve the problem in the form of a set of differential equations 
of motion and state equations of the considered mechatronic model of an object Galerkin’s method was used. 
The considered flexibly vibrating mechanical system is a continuous beam, clamped at one of its ends. An 
integral part of the mechatronic system is a transducer perfectly bonded to the beam surface.
Findings: The parameters of the transducer exert an important influence on the values of natural frequencies 
and on the form of the characteristics of the discussed mechatronic system.
Research limitations/implications: The linear mechanical subsystem and linear electrical subsystem of the 
mechatronic system were analyzed and the theory Euler-Bernoulli is used for the beam; however, this approach 
is sufficient for such systems.
Practical implications: Global approach is presented in the domain of frequency spectrum analysis. The 
methods of analysis and the obtained results my give grounds for designing and investigating this type of 
mechatronic systems.
Originality/value: The mechatronic system created from mechanical and electric subsystems with 
electromechanical bondage has been considered. This approach is different from those considered so far.
Keywords: Applied mechanics; Beam; Piezotransducer; Galerkin’s method; Dynamical characteristic

1. Introduction 

The main interest of industry and scientists in the process of 
machine design is to consider energy conversion, efficiency and 
reliability. Many industrial branches focus on the problem of 
miniaturizing the existing systems and reducing their energy 
absorption. The crucial thing in this matter is to search for new 
solutions enabling the reduction of movable elements and compli-
cated, long kinematical chains. Therefore, in the last few years 
specific development has occurred in the field of technologies 
based on piezoelectricity and electro and magnetostriction phe-
nomena [5, 7, 8, 10-12, 14, 15].  

The first attempt to solve this problem, involving the deter-
mination of the dynamical characteristics of a longitudinally and 
torsionally vibrating continuous bar system and various classes of 
discrete mechanical systems in view of the frequency spectrum, 
by means of graphs and structural numbers methods, and other 
diverse problems have been modelled, examined and analysed in 
Gliwice Research Centre in [1, 2, 13]. Torsionally vibrating 
mechatronic systems were discussed in [3, 4, 9]. The mechatronic 
system, clamped at one of its ends, was analyzed in [5]. The 
system was induced by harmonic electrical voltage from the 
electrical side attached to the converter clips.  

This paper is focused on the dynamical characteristics of a flexi-
bly vibrating continuous mechanical system combined with a piezo-
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electric converter into a mechatronic system, to examine the piezo-
electric influence on the whole complex system. This kind of ap-
proach may provide grounds for examining flexibly vibrating mecha-
tronic systems to generate vibrations with the assumed parameters.  

 
 

2. Mechatronic system induced by  
harmonic force 
 
 

The subject of deliberation is a homogeneous beam with a full 
section of area A and with area moment of inertia I, unchanged 
along its length l (Fig. 1). The beam was made of a material in 
consideration of Young Modulus E and mass density . The 
beam was loaded with harmonic force. The piezoelectric con-
verter was attached in an ideal way to the beam surface.  

The mechatronic system analyzed in this paper was treated 
with bending stress. Therefore, the model of the piezoelectric 
converter was regarded as a bending actuator. The essential equa-
tion of the piezoelectric with changes in its stiffness under the 
influence of the electrical pole is given as [5, 7, 10-12, 14-15]: 
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where: 11C - elastic module of piezoelectric converter measured with 
certain value of excited voltage, 31d - piezoelectric converter constant.  

The moment evoked by transverse electrical loading is de-
scribed as follows [5, 15]: 
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The area moment of inertia of the piezoelectric converter after 
simplifications equals  
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where: pb  - width of the beam section, bh - depth of the beam 

section, bh - depth of the piezoelectric converter section.  
By replacing equations (1) and (3) with (2), and after some 

more transformations, the following form is derived  
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The inducement of the moment is combined with the piezo-

electric converter and determined within the range of 1 2,x x x . 
By inserting Heaviside’s function to the equation, the impact of 
the flexible moment is eliminated outside the range, leading to the 
following expression  
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In the case of the mechatronic system (Fig. 1), the equation of 

the flexibly vibrating beam is given as  
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and, after inserting equation (6) assumes the following form  
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Fig. 1.  Mechatronic system with mechanical excitation 

 

 
 

The equation of the piezoelectric converter is given as  
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1
2 p pd C b h .  

Thus, the considered mechatronic system (Fig. 1) is described by 
the following set of equations  
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Solution (9) must comply with the following boundary conditions  
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where: 0( ) .i tF t F e  

When the excitation has a harmonic shape, the voltage gen-
erated on the piezoelectric clips has the same nature, leading to  
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3. Determination of dynamical  
flexibilities of a vibrating mechatronic 
system  
 
 

The boundary problem of vibrating mechanical subsystem 
without any excitation, that means ( ) 0F t , is following  
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As it is known the solution of (12) takes form  
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l

.  

This considered beam has natural frequency equals zero, for 
k = 0, then own function takes form  

 
0X x Cx , (13) 

and the the beam arounds the joint “0”. 

The own functions for 0k following  
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The functions (14) fulfill boundary conditions for the coordi-
nates for x = 0 and x = l and then the solution of the set of equations 
(9) of considered mechatronic system (Fig. 1) can obtain using 
approximate method referred to as: Galerkin’s method. According 
the method, the solution is searched in the form of the function 
sums, which are the function of the time and the coordinates  
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3.1. The dynamical flexibility for the first,  
second and third vibration mode  

 
 

When n=1 i.e. for the first vibration mode, deflection (15) 
takes the following form  
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The solution of the examined set of differential equations (9) 
is obtained by substituting the adequate derivatives, as follows  
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By substituting the derivatives (17) for n=1 to the set of 
equations (9) and by considering the boundary conditions, equa-
tion (10) is derived as  
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first, second and third 	
vibration mode

3.	�Determination of dynamical 
flexibilities of a vibrating 
mechatronic system



Research paper162

Journal of Achievements in Materials and Manufacturing Engineering

A. Buchacz

Volume 28 Issue 2 June 2008

where: 14
5sin K

l
x , 14

5cos Cl
l p , 2 1( ) ( )x x x x D 

(when lxlxlx 03,0,01,0, 21 ), 
A

b 1 ,
RC
1 . 

 
Putting in (19)  
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and dividing by tie , the set of equations (19) after some trans-
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Inserting the derived amplitude 1A  (30) to (136) the deflec-
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The modulus of expression (35) is equal to  
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In Fig. 2 the increase of resonance zone at first natural frequency 

of the transients of dynamical characteristics (36) are shown.  
For the second vibration mode, i.e. when n=2, the deflection 
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For the third vibration mode, when n=3, the dynamical flexi-
bility takes the following form  
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A graphical representation of the dynamical flexibility deter-
mined for mechanical and mechatronic system, for the sum of  
i=1, 2, 3 vibration mode, is shown in Fig. 5.  
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Fig. 2. Transient of characteristic - the increase of resonance zone at first natural frequency 
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The modulus of expression (35) is equal to  
 

2 2
1 1 1Re ImY Y Y .  (36) 

 
In Fig. 2 the increase of resonance zone at first natural frequency 

of the transients of dynamical characteristics (36) are shown.  
For the second vibration mode, i.e. when n=2, the deflection 

(16) takes the following form  
 

2
9( ) sin
4

i txy x,t A e
l

. (37) 

 
Likewise, by inserting the derivatives of expressions (37) to (17), 

the set of equations (9), after steps (18-31) takes the following form  
 

1 1
2 4 4

2 2
1 1 1

9 9 9
4 4 4

bK i bKY
a K d C D i a K

l l l

. (38) 

 
After transforming (38) in accordance with (34-36), the in-

crease of resonance zone at second natural frequency of the tran-
sient of expression (38), which is the absolute value (36) in the 
form of a complex number (35) is shown in Fig. 3. 

For the third vibration mode, when n=3, the dynamical flexi-
bility takes the following form  

 
1 1

3 4 4
2 2

1 1 1
9 9 9
4 4 4

bK i bKY
a K d C D i a K

l l l

. (39) 

 
Using substitutions (34, 35), the dynamical flexibility is ob-

tained as (36). The increase of resonance zone at third natural 
frequency of transients of the absolute value (36) of expression 
(39) are presented in Fig. 4. 

A graphical representation of the dynamical flexibility deter-
mined for mechanical and mechatronic system, for the sum of  
i=1, 2, 3 vibration mode, is shown in Fig. 5.  

In Figs. 2-5 the transients of characteristics-dynamical flexi-
bility are shown for the following parameters of mechatronic 
system: 0,064mbb , 0,0016mbh , 0,2111l m , 0,04mpb , 

0,0004mph , 0,02 mpl , 11
2

N2,1 10
m

E , 3
3

kg7,8 10
m

, 

12
31

C3,0 10
N

d , 11
11 2

N2,3 10
m

C .  
 

 

 
 

Fig. 2. Transient of characteristic - the increase of resonance zone at first natural frequency 
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Fig. 3. Transient of characteristic - the increase of resonance zone at second natural frequency 
 
 

 
 

Fig. 4. Transient of characteristic - the increase of resonance zone at third natural frequency 

 

 
 

Fig. 5. Transients of the dynamical characteristics for the sum of n=1, 2, 3 vibration mode  

4. Conclusions 
 

An innovative approach is presented, involving the domain of 
the frequency spectrum analysis and enabling a global outlook on 
the behavior of a mechatronic system. On the grounds of the 
transients (Figs. 2-5), the poles of the dynamical characteristics 
calculated by the exact mathematical method and Galerkin’s 
method have the same values. The derived mathematical formu-
las, concerning the dynamical characteristics make it possible to 
investigate the influence of changes in the values of the parame-
ters that directly depend on the type of the piezoelement and on its 
geometrical size in view of the characteristics, mainly as far as the 
piezoelectric converter “activation” is concerned. The problems 
will be discussed in further research works. 
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