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Abstract
Purpose: of this paper is the application of the approximate method called Galerkin’s method to solve the task 
of assigning the frequency-modal analysis and characteristics of a mechatronic system.
Design/methodology/approach: was the formulated and solved as a problem in the form of a set of differential 
equations of the considered mechatronic model of an object. To obtain the solution, Galerkin’s method was used. 
The discussed torsionally vibrating mechatronic system consists of mechanical system, which is a continuous 
bar of circular cross-section, clamped on its ends. The electrical subsystem of the considered mechatronic 
system is a ring transducer to be perfectly bonded to the bar surface.
Findings: this study is that the parameters of the transducer have an important influence on the values of natural 
frequencies and on the form of the characteristics of the said mechatronic system. The results of the calculations 
were not only presented in a mathematical form but also as transients of the examined dynamical characteristic 
which are a function of frequency of the assumed excitation.
Research limitations/implications: is that the linear mechatronic system was considered, for this type of 
systems, such approach is sufficient.
Practical implications: of this researches was that another approach is presented, that means in the domain of 
frequency spectrum analysis. The method used and the obtained results can be of some value for designers of 
mechatronic systems.
Originality/value: of this paper is that the mechatronic system, created from mechanical and electrical subsystems 
with electromechanical bondage was examined. This approach is other than those considered elsewhere.
Keywords: Applied mechanics; Torsionaly vibrating shaft; Approximate method; Flexibility

1. Introduction 
Graphs and structural numbers methods, was presented in the 

Gliwice Research Centre in [1-4,7,9-11], to solving the problem1)

to determine the dynamical characteristic of a longitudinally and 
torsionally vibrating continuous bar system and various classes of 
discrete mechanical systems in view of the frequency spectrum.  

Challenging problems for scientific research are the 
requirements concerning mechatronic systems, for example their 
                                                          
1) Other diverse problems have been modelled by different kind of methods. Next for the last 

several years the problems were examined and analysed in the centre (e.g. [18, 21-25].

exact positioning, working velocity, control and dimensions. The 
problems, cannot always be approached from the point of view of 
traditional principles of mechanics. Calculation of characteristics 
of the mechatronic systems need to investigate new possible 
methods for examination and analysis these systems. 

For finding projects involving new construction solutions, a 
lot of attention has been given especially as far as the technology 
of drives based on the phenomenon of piezoelectricity and 
electrostriction is concerned [8,12-15,17,19,20]. To eliminate 
oscillation the piezoelectric elements are also used [16]. The 
mechatronic system, which has been clamped at one of its end 
(Fig. 1), has been considered in the paper [5]. The system was 
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excited by the harmonic electrical voltage from the electric side 
which was applied to the converter clips.

Fig. 1. The mechatronic system with electrical excitation

2. The torsionaly vibrating shaft with 
piezotransducer and shunting circuit 

The torsionaly vibrating system clamped at of its ends is 
considered in this paper. An ideal piezotransducer ring is perfectly 
bonded at a certain position 1x , to the surface of the shaft  
(see Fig. 2).

Fig. 2. Shaft with piezotransducer with mechanical exitatation and 
shunting circuit

The mechanical part of considered mechatronic system is the 
continuous elastic shaft with full section, constant along the whole 
length l. The shaft is made of a material with mass density  and 
Kirchoff’s modulus G. The system was considered in [6], but in 
this paper the problem have only been signalized. 

The equation of the motion of the mechanical subsystem of 
the mechatronic system, in view of the given system, takes the 
following form [16].  

1 2
i to

o ,tt o ,xx
MI GI U x x x x e x l

l l
 (1) 

or, differently:  

1 2
0

,tt ,xx
o

G MU x x x x x l
I l I l

, (2) 

where:
3 3 152

3 p p
p

dG R h R
l

, pG , pl - transverse 

modulus and length of the piezoelement respectively, 15d  the 
electromechanical coupling coefficient [15,16,19].  

The equation of the of the electrical subsystem of mechatronic 
system, which is piezotransducer, is given in the form:  

2
1521 0p p

,t p
s p p p

R h d G
U U l ,t

R C l C
 (3) 

or in a different way 

1 2 0,t pU U l ,t , (4) 

where: 1515
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l e 1
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s pR C

, 15e - the 

dielectric constant [15, 16, 19].  

Taking into consideration equations (1-4) the considered 
mechatronic system (Fig. 2) is described by the next set of 
equations in form  

1 2
0 0

1 2

1

0

*
,tt ,xx

,t p

G U x x x x M x l
I l I l

U U l ,t
 (5) 

The set of equations (5) will be a starting point of further 
considerations which can be derived. 

The solution sought in this paper will involve the sum 
function, that means the function of the time and displacement 
variables, which are strictly determined and which fulfill the 
boundary conditions [6]. This approach is agreeable to Galerkin’s 
discretisation of the solutions of the differential equation system 
with partial derivative.  

The boundary conditions on the mechanical subsystem ends 
(Fig. 2) are given in the form of   

0 0;,t 0 0 0 0T t  (6) 
and

0;l ,t 0 0l T t l . (7) 

The angle of the torsion of the cross-section takes the 
following form:  

1 1

( ) ( ) sin ei t
j j

j j

n xx,t x,t A
l

. (8) 

Mechatronical system is additionally excitated by moment as 
follows:

0
i tM M e . (9)

The voltage generated in the transducer as a piezoelectric 
effect will have a harmonic character, because the mechanical 
excitation (9) has the same character, that means 

2
i t

U Be . (10)

3. Frequency-modal analysis of 
mechatronic system  

3.1. The dynamical flexibility for the any 
vibration mode 

For the any vibration mode, the angle of torsion (8) takes the 
form of  

( ) sin i t
j j

j xx ,t A e
l

. (11) 

The solution of the examined set of differential equations (5), 
leads to appropriate derivative, as follow  
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By substituting the derivatives (12) in equation (5) the set 
algebraic equations is given in form 
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or, in the form  
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where: =sin xK
l

, sin pC l
l

, 1 2D x x x x , E x l

for predetermined x, 1x and 2x

After arrangement (13) takes character  
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and after transformations the set of algebraic equations is given as 
follows
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(16)

To designate the dynamical characteristic, the time function 
must be eliminated from the set of equations (16), using Euler’s 
theorem in form  

cos sini te t i t . (17) 

Using (17) after transformation the set of equations (16) is 
obtained as follows 
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Equations (18), as far as the matrix shape is considered  
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or
W A F . (20) 

By substituting in square matrix W, the first column by matrix 
F, is obtained  

0

0jA
M E i D

W . (21) 

The determinant of matrix AW  equals to

0jA M EW . (22) 

Thus, the amplitude of the dynamical characteristic is 
obtained as  

jA
jA

W

W
, (23) 

2.	�The torsionaly vibrating 
shaft with piezotransducer 
and shunting circuit
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excited by the harmonic electrical voltage from the electric side 
which was applied to the converter clips.

Fig. 1. The mechatronic system with electrical excitation

2. The torsionaly vibrating shaft with 
piezotransducer and shunting circuit 

The torsionaly vibrating system clamped at of its ends is 
considered in this paper. An ideal piezotransducer ring is perfectly 
bonded at a certain position 1x , to the surface of the shaft  
(see Fig. 2).

Fig. 2. Shaft with piezotransducer with mechanical exitatation and 
shunting circuit

The mechanical part of considered mechatronic system is the 
continuous elastic shaft with full section, constant along the whole 
length l. The shaft is made of a material with mass density  and 
Kirchoff’s modulus G. The system was considered in [6], but in 
this paper the problem have only been signalized. 

The equation of the motion of the mechanical subsystem of 
the mechatronic system, in view of the given system, takes the 
following form [16].  

1 2
i to

o ,tt o ,xx
MI GI U x x x x e x l

l l
 (1) 

or, differently:  

1 2
0

,tt ,xx
o

G MU x x x x x l
I l I l

, (2) 

where:
3 3 152

3 p p
p

dG R h R
l

, pG , pl - transverse 

modulus and length of the piezoelement respectively, 15d  the 
electromechanical coupling coefficient [15,16,19].  

The equation of the of the electrical subsystem of mechatronic 
system, which is piezotransducer, is given in the form:  

2
1521 0p p

,t p
s p p p

R h d G
U U l ,t

R C l C
 (3) 

or in a different way 

1 2 0,t pU U l ,t , (4) 

where: 1515

1

2
2 1 p

p p
p

d GeC Rh
l e 1

1
s pR C

, 15e - the 

dielectric constant [15, 16, 19].  

Taking into consideration equations (1-4) the considered 
mechatronic system (Fig. 2) is described by the next set of 
equations in form  
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The set of equations (5) will be a starting point of further 
considerations which can be derived. 

The solution sought in this paper will involve the sum 
function, that means the function of the time and displacement 
variables, which are strictly determined and which fulfill the 
boundary conditions [6]. This approach is agreeable to Galerkin’s 
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with partial derivative.  
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3.	�Frequency-modal analysis of 
mechatronic system 

3.1.	�The dynamical flexibility for the 
any vibration mode
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where:
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The angle of the torsion of the cross-section for the first vibration 
mode, i.e. j=1, after substituting (24) to (11) is determined  
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The dynamical flexibility for the first vibration mode, on the 
base (25) takes the form of  
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Finally (26), the dynamical flexibility for the first vibration 
mode at the end of the shaft, i.e. when x=l takes the following 
form  
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In Fig. 3 and 4 the transients of characteristics-dynamical 
flexibility are shown for the following parameters of bar: 1ml ,
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3.2. The dynamical flexibility for the second 
vibration mode 

For the second vibration mode, i.e. when n=2, the angle of 
torsion (8) takes the form of  

2 2
2( ) sin i txx ,t A e

l
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By substituting the derivatives of expressions (8), (10) and 
(28) to the set of equation (5) the dynamical characteristic, after 
steps (11-24) is derived as  

2 2
2
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l
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The transient of expression (29) are shown in Fig. 5 and 6.  

3.3. The dynamical flexibility for the third 
vibration mode 

For the third vibration mode, i.e. when n=3, the angle of torsion 
(8) takes the form of   

3 3
3( ) sin i txx,t A e

l
. (30) 

As previously, by substituting the derivatives of expressions 
(8), (10) and (28) to (5), the dynamical characteristic after steps 
(11-24), has the following form  

3 2
2
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3

l
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. (31) 

The graphical presentation of expression (31) are shown in 
Fig. 7 and 8.  

4. Conclusions 
On the base of transients of dynamical flexibilities the poles of 

the characteristic calculated with the use of mathematical exact 
method and Galerkin’s method have approximately the same 
values. The presented frequency-modal approach makes it possible 
to consider the behavior of the mechatronic system in a global way. 

Mathematical formulas, those which concern the dynamical 
characteristics-dynamical flexibilities make it possible to investigate 
the influence of the change in values parameters, which directly 
depend on the type of the piezoelement and on its geometrical size 
in view of the characteristics, the sort of vibrations of the 
mechatronic system, mainly as far as the piezoelectric converter 
“activation” is concerned, however the problems shall be discussed 
in further research works. 
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