Seria: ELEKTRYKA z. 78

Nr kol. 7.12

Piotr GAWOR

Instytut Elektryfikacji i Automatyzacji Górnictwa Politechniki Śląskiej

WPŁYW REZYSTANCJI ZŁĄCZA PODŁUŻNEGO SZYN TRAKCJI ELEKTRYCZNEJ NA POWSTAWANIE PRĄDÓW BŁĄDZĄCYCH

Streszczenie: Przeprowadzono analizę teoretyczną rozkładu potencjałów szyn oraz rozpływu prądu w szynach trakcji elektrycznej przewodowej w przypadku, gdy brakuje łącznika podłużnego w obydwu tokach toru. Dokonano analizy wpływu rezystancji pojedynczego złącza podłużnego szyn na powstawanie prądów błądzących.

1. WSTEP

Jednym z czynników, które w sposób istotny wpływają na powstawanie prądów błądzących jest stan sieci powrotnej trakcji elektrycznej przewodowej. Stan ten ilościowo opisuje się wprowadzając pojęcie jednostkowej rezystancji podłużnej szyn r_s, wyrażanej w Ω /km oraz jednostkowej rezystancji przejścia z szyn do ziemi r_p, wyrażanej w Ω .km. Dla potrzeb analizy teoretycznej zjawiska upływu prądu z szyn zakłada się, że obydwie te rezystancje rozłożone są równomiernie na całej długości toru.

W praktyce często zdarza się, że w czasie eksploataoji linii trakcji elektrycznej dochodzi do uszkodzenia pojedynczych łączników podłużnych. W następstwie tego dojść może albo do powstania przerwy elektrycznej w szynach, albo do punktowego wzrostu rezystancji podłużnej szyn.

W dalszej części niniejszego artykułu przeprowadzono analizę wpływu obecności przerwy w szynach oraz wpływu wartości rezystancji złącza podłużnego na rozkład potencjałów i prądów w szynach.

Analiza dotyczy przypadku prowadzącego do największych prądów błądzących, tzn. przypadku jednostronnego zasilania linii trakcyjnej i pojedypczego, skupionego obciążenia. 2. ROZKŁAD POTENCJAŁÓ / I PRĄDU / SZYNACH Z POJEDYNCZĄ PRZERWĄ ELEK-TRYCZNA

Przedmiotem rozważań niech będzie odcinek linii jednotorowej o długości 21. zasilany jednostronnie ze stacji usytuowanej w punkcie O (rys. 1),

Rys. 1. Rysunek poglądowy odcinka linii trakcji elektrycznej zasilanego jednostronnie w punkcie O, obciążonego w punkcie X₁ prądem I_o i posiadającego przer-

wę w szynach w punkcie x_p 2 - stacja zasilająca, p.j. - przewód jezdny obciążony prądem I_o, przyłożonym w dowolnym punkcie x₁ w postaci pojedynczego obciążenia skupionego. Szyny odcinka niech chorakteryzują się równomiernie rozłożonymi rezystancjami: podłużną r_s i przejścia r_s.

Załóżmy, że w dowolnym punkcie x_p rozpatrywanej linii wystąpi przerwa (np. brak łącznika podłużnego w obydwu tokach). Prąd w szynach w punkcie x_p będzie wówczas równy zero.

Rozkład potencjałów i rozpływ prądu w szynach dla tej sytuacji znaleźć można na drodze superpozycji dwóch przypadków:

 a) szyny nie posiadające przerwy, zasilane w punkcie 0 i obciążone prądem I_o w punkcie x₁ (rys. 2a); prąd w punkcie x_p szyn oznaczmy symbolem I(x_n),

- Rys. 2. Przypadki składowe pomocne do analizy pracy linii z przerwą w szynach
- a) szyny bez przerwy, obciążone w punkcie x₁ i zasilane w punkcie 0,
- b) szyny nieobciążone, z zestępczą SEM-ną włączoną w punkcie x

szyny posiadające przerb) we w punkcie x, do której przyłączona jest sika elektromotoryczna E o takiej wartości, że wywołany przez nią prad w punkcie x_ szyn bedzie równy I(x,) i przeciwnie skierowany niż w przypadku a), (rys.2b). Dla przypadku a) wartość potencjału szyn względem ziemi V(x) oraz prądu wszynach I(x) w dowolnym punkcie x określić można z wyrażeń [3]:

Wpływ rezystancji złącza podłużnego...

- dla odcinka - 1≤x≤0

.

$$V(x) = \frac{I_0 r}{sh2\sigma l} \operatorname{ch}\sigma(l+x) \left[\operatorname{ch}\sigma(l-x_1) - \operatorname{ch}\sigma(l)\right]$$
(1a)

$$I(x) = \frac{I_0}{sh2gl} shg(1+x) [chgl - chg(1-x_1)]$$
(1b)

- dla odcinka C≤x≤x1

$$V(x) = \frac{I_0 r}{sh^2 q l} \left[chog(1-x_1) chog(1+x) - chogl chog(1-x) \right]$$
(2a)

$$I(x) = \frac{-I_0}{sh2\alpha l} \left[shog(l+x) chog(l-x_1) + shog(l-x) chogl \right]$$
(2b)

- dla odcinka $x_1 \le x \le 1$

$$V(x) = \frac{I_0^r}{ah2ql} \operatorname{chot}(1-x) \left[\operatorname{chot}(1+x_1) - \operatorname{chot}l\right] \qquad (3a)$$

$$I(x) = \frac{I_0}{sh2g1} shg(1-x) [chg(1+x_1) - chg1], \qquad (3b)$$

w których

$$\alpha = \sqrt{\frac{r_s}{r_p}}, \quad km^{-1} - współczynnik upływu,$$

$$r = V r_s r_p$$
, Ω - rezystancja charakterystyczna szyn,
a pozostałe oznaczenia wynikają z rys. 1 i rys. 2.

W przypadku włączenia do przerwanych szyn siły elektromotorycznej rozkład potencjałów i prądu w szynach opisany jest wzorami [3]: - dla odcinka -l<x<x_</pre>

p

$$V(x) = \frac{-E}{sh2\sigma l} sh\sigma(l-x_p) \cdot ch\sigma(l+x)$$
(4a)

$$I(x) = \frac{x}{r \operatorname{sh} 2o(1)} \operatorname{shop}(1-x_{p}) \cdot \operatorname{shop}(1+x)$$
(4b)

- dla odcinka x_n<x<1

$$V(x) = \frac{B}{shog(1+x_p) \cdot chog(1-x)}$$
(5a)

$$I(x) = \frac{1}{1 + 1} \operatorname{shop}(1+x_p) \cdot \operatorname{shop}(1-x).$$
 (5b)

Wartość siły elektromotorycznej, jaką trzebe włączyć do przerwy w szynach obliczyć można z warunku równości wartości bezwzględnych prądów $I(x_p)$ w punkcie x_p szyn w obydwu przypadkach. Należy w tym celu przyrównać wyrażenia (4b) lub (5b) z jednym z wyrażeń (1b), (2b), (3b), w zależności od położenia punktu x_p .

> Przykładowo, dla sytuacji przedstawionej na rys. 1., tzn. dla

$$x_1 > x_p > 0$$
,

należy przyrównać wyrażenia (4b) i (2b), podstawiając x = x .

Szukana wartość E będzie wówczas równa:

$$E = I_0 r \frac{\operatorname{chor}(1-x_1)}{\operatorname{shor}(1-x_1)} + \frac{\operatorname{chorl}}{\operatorname{shor}(1+x_1)}$$
(6)

Z wyrażenia (6) wynika, że dla określonych parametrów sieci szynowej ojl linii obciążonej prądem I_o wartość E zależy od miejsca położenia obciążenia x_1 oraz od miejsca, którym brakuje łącznika podłużnego x_p . Przyjmując przypadek najniekorzystniejszego obciążenia, tzn. przyłożonego w punkcie $x_1 = 1$, wyznaczono zależność $E = f(x_p)$, którą przedstawiono na rys. 3. Dla wykreślenia zależności

przyjęto następujące parametry linii:

$$l = 10 \text{ km}; \quad \alpha_{p} = 0,316 \text{ km}^{-1} \quad (r_{p} = 0,02 \,\Omega \cdot \text{km}^{-1}; \quad r_{p} = 0,2 \,\Omega \text{ km}^{-1};$$

Znając wartość siły elektromotorycznej niezbędnej do zrównoważenia prądu $I(x_p)$ w szynach, wywołanego obciążeniem I_0 , można wyznaczyć wypadkowy rozkład potencjałów oraz prądu w szynach posiadających przerwę w punkcie x_p . Na rysunkach 4 i 5 przedstawiono przykładowe (dla $x_p = 0,5$ l i $x_1=1$) wykresy poszczególnych wielkości dla obydwu przypadków składowych oraz wykresy wypadkowego rozkładu potencjałów i prądu w szynach (rys. 4c i rys. 5c).

Na podstawie rozkładu potencjałów i prądu w szynach można scharakteryzować efekt powstawania prądów błądzących. Ogólny kierunek wektora natężenia przepływowego pola elektrycznego w ziemi określony jest rozkładem

ły elektromotorycznej, jaką należy włączyć do przerwy w punk-

cie x, aby zrównoważyć prąd po-

chodzący od obciążenia I.

1 - dla or = 0,316 km

 $2 - dla \propto = 0.141 \text{ km}^{-1}$

Rys. 4.Rozkłady potencjałów szyn z przerwą w punkcie x_p dla linii zasilanej jednostronnie w punkcie O i obciążonej pojedynczym obciążeniem skupionym w punkcie l;

a). b) - przypadki składowe, c) - wypadkowy rozkład potencjałów

strefy anodowej i katodowej szyn. Wartość prądu wypływającego z szyn i rozpływającego się w ziemi w postaci prądów błądzących nie jest jednakowa wzdłuż odcinka linii. Rozkład sumarycznych prądów błądzących przedstawiono na rys. 5 linią przerywaną. Sumaryczne prądy błądzące w danym punkcie $\sum I_b(x)$ należy rozumieć jako sumę prądów w ziemi, przepływających przez płaszczyznę poprowadzoną prostopadle w tym punkcie do osi torów. Dla odcinka pomiędzy punktem przyłożenia obciążenia i stacją zasilającą wartość sumarycznych prądów błądzących wynika z zależności:

$$\sum I_{b}(x) = I_{0} - I(x)$$

69

(7)

Rys. 5. Rozpływ prądu w szynach I(x) oraz wartości sumarycznych prądów błądzących ZI (x) wywołanych pracą linii zasilanej jednostronnie i obciążonej pojedynczym obciążeniem skupionym w punkcie l, posiadającej przerwę w punkcie x_n;

a), b) - przypadki składowe, c) wypadkowy rozpływ prądu

Największą wartość przyjmują prądy błądzące w punkcie rozgraniczającym strefę anodową od strefy ketodowej (w którym potencjał szyn jest równy zero). Istnienie przerwy w szynach sprawia, że największą wartość prądów błądzących jest równa prądowi obciążenia linii I₀.

Prądy w nieobciążonych odcinkach szyn (dla sytuacji podanej na rys. 1 będą to odcinki określone nierównościami x 0 oraz x x_1) sąw całości prądami błądzącymi. Prąd I(x_1 +) w całości wypływa z szyn do ziemi, natomiast na prąd I(0-), wpływający do stacji zasilającej, składają się prądy, które wpłynęły z ziemi do szyn w strefie katodowej. Wartości tych prądów okreś-

Wpływ rezystancji złącza podłużnego ...

lić można z równań (1b), (3b), (4b), (5b) lub, znając wartość potencjałów szyn w punktach (0-) i (x_1+) , z wyrażeń:

$$I(0-) = \frac{V(0-)}{r \text{ cthal}}$$
(8)

$$I(x_{1}+) = \frac{V(x_{1}+)}{r \operatorname{cthq}(1-x_{1})}$$
(9)

Przedstawiona metoda analizy rozkładu potencjażów i pradu w szynach zastosowana może być dla dowolnego innego usytuowania punktu przyłożenia obciążenia oraz przerwy w szynach x_p. d przypadku większej liczby obciążeń skupionych analizę należy powtórzyć dla każdego obciążenia z osobna, a wyniki zsumować.

3. REZYSTANCJI ZAĄCZA PODAUŻNEGO NA ROZKAAD POTERCJAZÓN I PRĄDU N SZYNACH

Przybadek wystąpienia przerwy clektrycznej (o rezystancji nieskończenie dużej) w szynach jest przybadkiem skrajnym. Jest on istotny z punktu widzenia teoretycznego, jednakże w praktyce zdarza się rzadko. Znacznie częściej mamy do czynienia z uszkodzeniem lub pogorszeniem się stanu złącza podłużnego szyny, w wyniku którego pojawia się w danym punkcie rezystancja R. Stan taki przedstawiony jest na rys. 6.

Voływ rezystancji nojedynczego złącza R (w każdym toku) na rozkład potencjałów i rozoływ prądów w szynach i w ziemi przedyskutować można na przykładzie rys. 4 i rys. 5. Rysunki 4a i 5a potraktować można jako jeden przynadek graniczny, tzn. taki, w którym rezystancja złącza równa jest zero. Z kolel rysunki 4c i 5c dotyczą, jak już wspomniano, drugiego przypadku granicznego, w którym rezystancja złącza jest nieskończenie duża. Dla pośrednich wartości rezystancji złącza wykresy rozkładu potencjałów i pradu w szynach będą zatem miaży przebieg pośredni pomiędzy przedstawionymi na rys. 4a i 4c oraz rys. pa i 5c.

draz ze zmianą rezystancji i zmieniać się będzie wartość prącu płynącego przez uszkodzone złącze i odnowiednio - wartość prądów bładzących płynących w ziemi w punkcie x₀.

dartość przed pływiecego przez rozystanoję R obliczyć można obosując twierdzenie Thevenina:

71

(12)

gdzie:

- napięcie pomiędzy końcemi łączonych szyn przed włączeniem rezystancji R.

R1, R2 - rezystancje zastępcze odcinków torów odpowiednio po lewej i prawej stronie punktu xp.

Jartość napięcia U odpowiada napięciu na przerwie w szynach i równa jest zastenczej sile elektromotorycznej E. która oblicza sie wg zasad przedstawionych w rozdziale 2. Rezystancje zastępcze szyn zgodnie z teorią linii o parametrach rozłożonych wynoszą:

$$R_2 = r \operatorname{cthos}(1-x_R) \quad (11b)$$

Przykładowo, dla przypadku przedstawionego na rys. 6, gdy 0<x_R<x₁, napięcie U obliczyć można ze wzoru (6) i wówczas prąd płynący w uszkodzonym złączu o rezystancji R określony jest wyrażeniem:

Rys. 6. Rysunek poglądowy linii z pojedynczym złączem podłużnym o rezystancji R

$$I_{R} = I_{0}T \frac{\frac{chog(1-x_{1})}{shog(1-x_{R})} + \frac{chog1}{shog(1+x_{R})}}{R + r \left[chog(1+x_{R}) + chog(1-x_{R})\right]}$$
(12)

Dla zilustrowania zależności (12) przyjęte sytuację przedstawioną na rys. 4 i rys. 5 (x = 1; x = 0,51) .1 obliczond, zgodnie z wyrażeniem (7), sumaryczną wartość prądów błądzących w punkcie xp:

$$\sum I_b(x_R) = I_o - I_R$$
(13)

Zależność (13) przedstawiono wykreślnie na rys. 7.

Rezystancja uszkodzonego złącza podana została w jednostkach względnych, przy czym jako rezystancję odniesienia przyjęto wartość dopuszczalnej rezystancji złącze podłużnego Ra, równą rezystancji dwóch metrów szyn 2].

Dodatkowo, linia przerywaną wykreślono zależność sumarycznych pradów błądzących, odniesioną do wartości prądu, jaki płynąłby w szynach w punkcie x_R, gdyby one posiadały złącze podłużne wykonane zgodnie z wymaganiami normy [2], tzn. dla R = Rd.

Rys. 8. Zależność wzrostu sumarycznej wartości prądów błądzących w następstwie zwiększonej rezystancji pojedynczego złącza podłużnego od długości linii

Wpływ zwiększonej rezystancji pojedynczego złącza podłużnego (występującej jednocześnie w obydwu tokach toru) na wzrost prądów błądzących jest różny w liniach trakcyjnych o różnej długości. Zobrazowano to na rys. 8, odnosząc sumaryczną wartość prądów błądzących w punkcie o współrzędnej x_R (rys. 6) przy złączu o rezystancji $R - \Sigma I_b(R)$ do tejże wartości - $\Sigma I_b(R_d)$ w linii o prawidłowo wykonanych złączach, tzn. przy $R = R_d$.

4. WNIOSKI

1. Zastępcza siła elektromotoryczna E, jaką należy uwzględnić przy analizie rozkładu potencjałów i rozpływu prądu w szynach posiadających przerwę, zależna jest od parametrów torów, rodzaju obciążenia i wartości prądu oraz od miejsca wystąpienia przerwy w szynach.

2. Obecność przerwy w szynach, zwłaszcza na odcinku pomiędzy stacją zasilającą a punktem przyłożenia obciążenia, powoduje zmianę rozkładu potencjałów szyn; zmianie ulegają zarówno wartości potencjałów, jak i granice stref anodowej i katodowej szyn.

3. Wartość prądów błądzących zależy od rezystancji pojedynczego złącze podłużnego szyn. W praktyce jednak odczuwalnego wzrostu prądów błądzących należy się spodziewać dopiero przy ok. 100-krotnym wzroście rezystancji pojedynczego złącza podłużnego w stosunku do rezystancji złącza wykonanego prawidłowo.

4. Wpływ zwiększonej rezystancji pojedynczego złącza podłużnego (w każdym toku) na wzrost prądów błądzących jest istotniejszy w liniach krótkich. Przy długości linii l <1 km spodziewać się można kilkakrotnego wzrostu prądów błądzących; w liniach o długości l >10 km prądy błądzące wzrosnać moga o kilka do kilkunastu procent.

LITERATURA

- GAWOR P.: Badania źródeł prądów błądzących i ich wpływ na zagrożenia w kopalniach ROW. Praca doktorska.Politechnika Sląska, Gliwice 1976.
- [2] PN-66/E-05024 Ochrona podziemnych urządzeń metalowych przed korozją powodowaną prądami błądzącymi.
- [3] STRIŻEWSKIJ I.W.:Tieoria i rasczot drienażnoj i katodnoj zaszczity magistralnych truboprowodow ot korrozii błużdajuszczimi tokami. Moskwa 1963.

Jpłynęło do redakcji 29.V.1981 r.

Recenzent: doc. dr inż. Władysław Dziuba

Woływ rezystancji złącza podłużnego ...

ВЛИЯНИЕ СОПРОТИВЛЕНИЯ ПРОДОЛЬНОГО РЕЛЬСОВОГО СТЫКА ЭЛЕКТРОТЯГИ НА ВОЗНИЖНОВЕНИЕ БЛУЖДАЮЩИХ ТОКОВ

Резюме

Проведен теоретический анализ распределения потенциалов рельсов, а также токораспределения в рельсах электропроводной тяги в случае, когда отсутствует продольный стык в двух токах пути. Проведен теоретический анализ влияния сопротивления отдельного продольного стыка рельсов на возникновение блуждающих токов.

THE INFLUENCE OF RAIL BOND RESISTANCE OF ELEKTRIC TRACTION ON STRAY CURRENTS FORMATION

Summery

There has been carried out a theoretical analysis of rail potential distribution and current propagation in rails of electric traktion in case when there is no rail bond in both rails. Also the influence of a single rail bond resistance on the formation of stray currents, has been analysed.