QIN YUYUAN

Wuhan Iron and Steel University Wuhan, Hubei, China

ON JAR-METRIC PRINCIPLE
A UNIFIED APPROARCH TO SOLVE OPTIMUM PATHS
PROBLEMS ON MULTISTAGE DIRECTED GRAPH

Streszczenie. In dynamic programing, it is well knowit that there are some drawbacks in Bellman's principle of optimallty, that there exist some gaps between the principle and related. functional equa. tions, and also that the computation for solving the problems of finite type is tedious and lack of mathematical beauty. In this paper we are 1) to give a methematic system -Semi-field - and a computational tool -modi-matrix;2)to consider a multistage directed graph on which each 11 nk corresponds to an element of a semi -field, called jar-metric of the link; to introduce two concepts:the optimum path from initial vertex to final one and optimum path of the graph; and to discuss their relationship; 3) to set up jar-metric principle which is somewhat like Bellman's principle of optimality of finite type ; to give related computational formula which is equivalent to jar-metric principle;4) to solve opt;mum path problem on the graph mentioned above by jar-metric principle, to give an algebraic formula; and from which, to point out that, from compute tional point view, the forward process is not necessarily equivalent to the backward one 5) to solve two kinds of optimum path problems of N -th order in 3 and 4 to solve multi-object optimum path problem in 5 ane 6 by jar-metric principle. Thus we can use our theory to solve all problews of finite type which can be solved by dynamic programming. But the basic of our theory will be firmer than that of Bellman's.And basic con cept is geometric instead of dynamic. Some of algorithms in this paper might be known but they were not put into a unified fashion. Most material in this paper appeared in the papers: On Jar - metric Principle(I), (II),(III),(IV) which are written in Chinese.

1.Semi-field and modi-matrix

Definition 1. A semi-field is a triple $\{S, \oplus, \otimes\}$ where S is set with two operations:modi-addition \oplus and modi-multiplication \otimes satisfying lavis of commutativity,associativity and distributivity and there exists a zero element z in S.

Definition 2. A semi-field with identity e is called to be optimizing If there is finite element in S and if a and b are in S, we have

$$
a \oplus b=a \text { or } b
$$

In an optimizing semi-fleld, if $a \in b=a$, we say that a is not worse then b, denoted by $a \leqslant b$. If $a \oplus b=a$ and b, we say a is better than b. or b is worse than a, denoted by $a<b$. If $a<e, a$ is called a yin eleme$n t$, if a $>e, a$ is called a yang element ${ }^{4 /}$, and e itself , the neutral element. Evidently, in an optimizing semi-field, is a totally orderid set.

Theorem 1. In an optimizing semi-field $\{s, \Theta, \otimes\}$, we have

1) if $a \leqslant b$, and $b \leqslant a$, then $a=b$;
11)if $a \leqslant b$, and $b \preccurlyeq c$, then $a \preccurlyeq c$;

11i) if $a \leqslant b$, and $c \preccurlyeq d$, then $a \oplus c \preccurlyeq b \oplus d$;
iv) if $a \checkmark b$, then $a \otimes c ̧ b \otimes \%$;
v) if $a \leqslant b$ and $c \leqslant d$, then $a<c \leqslant b(3 d$;
vi) if $a \mathfrak{b}$ then for any non-negative integer $k, a^{k} \preceq b^{k}$;
vi1) $e^{k}=e$;
vili) if a is a yang(yin,neutral) esement,then,for any positive k, a^{k} is a yang (yin,neutral) element ;
ix) if k is a positive integer, then ka $=\mathrm{a}$;
x) if for every i, p_{1} and g_{i} are both equal to zero element or both positive integers not necessary equal, then

$$
\sum_{i=0}^{k} p_{i} \cdot a^{i}=\sum_{i=0}^{k} g_{i} \cdot a^{1}
$$

Where \sum means modi-addition.
Proof. By direct computation and matematical induction.
Definition 3. A. semi-field is celled to be strangly optimizing if It is optymizing and if $a \otimes b=b$ and $c \& z$, we always have $a \otimes b \oplus$ $b \otimes c=b \otimes c$.

Definition 4. A semi-field is called to be generalized optímizing 11 for a, b in S.

$$
\begin{aligned}
& (a \oplus b) \oplus a=a \oplus b \\
& (a \oplus b) \oplus b=a \oplus b
\end{aligned}
$$

here $a \oplus b$ will not be necessary fequal to a or b.
Thus in a generalized optimizing semi-field for a and b being in S, we have $a \in b \leq a$ and $a \in b \preceq b$. For a semi-field to be generalized optia mizing, the necassary and suficient condition is that for all a in S,
$a \subset a=a$
In the generalized optimizing semi-field $\{S, \Theta, 0]$, if there is an element h whif is not worse than a and b, that is to say a $9 \mathrm{~h}=\mathrm{h}$; anc $b \in h=h$, then h is also nd worse than $a \in b$, because

$$
(a \oplus b) \oplus h=a \oplus(b \oplus h)=a \oplus h=h
$$

hence $a \oplus b$ is the worst element among all those elements not worse than a and b.
yin and yang are the alphabetic writing of two Chinese terms βf anc限, borrowed from Chinese traditional Yin-yang analysis in an ancient onok hritten by Laozi about. more than two thousqind years ago.Generaily sscaking, these two terms mean the two sides of any antitheses, such as . cocits te anc negative,good and bad, man and woman, sun and moon, and all suct *rings.
$a \oplus b$ mey be called the worst optimel bound of a and b. It is easy to generalize this assertion to any set with finite elements in the generalized optimizing semi-field.
It is evident that a generalized optimizing'semi-field is a partially ordered set.
Now let us definite the concept of modi-matrix.
Let $X=\left\{x_{1}, x_{2}, \ldots x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$ be two given sets and a ($i=1,2, \ldots$ in $; j=1,2, \ldots n)$ are elements taken from 1J
a somi-field $\{s, \Theta, \otimes\}$.
An array. A with III rows and n colums

$$
\begin{gathered}
\\
A= \\
x_{1} \\
x_{2} \\
x_{m}
\end{gathered}\left[\begin{array}{ccccc}
y_{1} & y_{2} & \cdots & y_{\text {ii }} \\
a_{11} & a_{12} & \cdots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
a_{m 1} & a_{m 2} & \cdots & \cdots & a_{m n}
\end{array}\right]
$$

or $A=x_{i}\left[\begin{array}{ll}a_{i j}\end{array}\right] \quad$ or $A=\left[\begin{array}{ll}a_{i j}\end{array}\right]$
is called a m x n modi-matrix over $\{S, \oplus, \otimes\}$ where $x_{1}, x_{2}, \ldots x_{m}$ is called. row margin,X the row set, $y_{1}, y_{2}, \ldots y_{n}$ the column margin and Y the column set.

This arrey determines such a correspondence that from row x_{1} to column y_{j} there corresponds an element a or there is a weight from x to y. . Two modi-matrices A and B over the same semi-field are equal if they have the same row margin, thame column margin and same correspondence. If there is no ambiguity, we may write the modi matrix without writing out the row margin and colum margin. We define modi-addition Θ and modi-multiplication () between modi-matrices in tr same was tar ones tive and associative laws of modi -addition, associative law of modi-multiplication and distributive lav among modi-matrices hold true. In paper [8], we develope the concept of modi-matrix in more general form but it will not be used in this paper.
2. Jar -metric orinciple

Let G be a direct simple graph with following special properties.
The vertex set V can be partitioned into $n+1$ subsets

$$
V=\bigcup_{i=0}^{n} V_{i}
$$

$$
\begin{aligned}
& v^{(1)}=\left\{v_{t}^{(i)}, t=1,2, \ldots . t_{i}\right\} \\
& I v^{(1)},=t_{i}, \quad 1=0,1, \ldots n
\end{aligned}
$$

where $V^{(1)}$ is called the 1 -th state of G and $V(i)$ is called the vertex in the 1 -th state, and each link (directed edge) on G has the property that if it inftiats from some vertex. in $V^{(1-1)}$, then it must terminate at some vertex in $v^{(1)}$, For example, we have a link $v_{\lambda}^{(1-1)} v_{\mu}^{(1)}(1 \leqslant \lambda \leqslant$ $\left.t_{1-1}, 1 \leqslant \mu \leqslant t_{1}\right)$.
$\mathrm{V}^{(0)}$ is called the initial state, $V(n)$ the final state. If $t_{0}=1$ and $t_{n} q$, we usually write $v(0)=\left\{v_{0}^{(0)}\right\}^{\prime}, v v^{(n)}=\left\{v_{0}^{(n)}\right\}$ and call $v_{0}^{(0)}$ and $V_{0}^{(n)}$ initial and final vertices respectively. If $t_{0} \neq 1$ or $t_{n} \neq 1$, we may write $V^{(0)}\left\{V_{t}^{(0)}=1,2, \ldots t\right\}, v^{(n)}\left\{v_{t}^{(n)} \mid\right.$ $\left.t=1,2, \ldots t_{n}\right\}$ 。
The subgraph induced by vertex subset $\mathrm{v}^{(1-1)} \cup \mathrm{v}^{(1)}$ is called the 1 -th stage of graph: Thus our G may be called the directed simple graph of n stages or the n (multi -)stage directed (simple)graph. Frow, to each link on G, there corresponds to an element of a given semi --fields $\left\{S_{s} \oplus, \otimes\right\}$.
For explicity the element corresponding to the link $V \lambda_{\lambda}^{(i-1)} V_{\mu}^{(i)}$ may be denoted by $J\left(\mathrm{v}_{\lambda}^{(1-1)}, \mathrm{V}_{\mu}^{(1)}\right.$), called the jar-metric of the Ink. The multistage directed graph in which each link has a jarmetric is called the jared graph, denoted by $G[0, n]$.Here, we mainly discuss the jared graph with $t_{0}=t_{n}=1$, if it is not stated explicitly.
 ne that it does have a link from $V_{u}^{(k)}$ to $V_{v}^{(0)}$, but its jar-metric
$j\left(V_{v}^{(k)}, V_{v}^{(k)}\right)$ equals zero element z of $\operatorname{semi-field}\{S, \Theta, \otimes\}$.
Then the 1 -th stage can be represented by e $t_{1-1} x$ t_{i} modi-matrix denoted by STAGE $\left(V^{(1-1)} \cdot \mathrm{V}^{(1)}\right)$ or STAGE (i):

$$
\operatorname{STAGE}(1)=v_{\lambda}^{\left(\frac{1-1)}{\text { tron }}\left[J\left(V_{\lambda}^{(i-1)}, V_{\mu}^{(1)}\right)\right] . . .(1)\right.}
$$

If $t_{j-1}=1,(1)$ will be a row modi-vector, and if $t_{1}, 1$, a column !modiesector. In the $t_{i-1} \times t_{i}$ modi -matrix, the λ-th row is denoted by (S TM (1) λ_{λ} ed the v-th colum by (STAGE (1) $)^{\nu}$.

[^0]We define the jar-metric from $\mathrm{v}_{\lambda}^{(1-1)}$ to $\mathrm{v}_{\mu}^{(1+1)}$ via $\mathrm{v}_{\mu}^{(1)}$, denoted by $J\left(v_{\lambda}^{(1-1)}, v_{\mu}^{(1)}, v_{\nu}^{(1+1)}\right)$, to be

$$
J\left(v_{\lambda}^{(1-1)}, v_{\mu}^{(i)}, v_{\nu}^{(1+1)}\right)=J\left(v_{\lambda}^{(1-1)}, v_{\mu}^{(1)}\right) \otimes J\left(v_{\mu}^{(1)} v_{\nu}^{(1+1}\right.
$$

and the jar-metric from $V_{\lambda}{ }^{(1-1)}$ to $V_{\nu}^{(1+1)}$ denoted by $J\left(v_{\lambda}^{(1-1)}, v_{\nu}^{(1+1)}\right.$) to be $J\left(v_{\lambda}^{(1-1)}, v_{\nu}^{(1+1)}\right)=\sum_{\mu=1}^{i} J\left(v_{\lambda}^{(1-1)}, v_{\mu}^{(1)}, v_{\nu}^{(1+1)}\right)=$

$$
\begin{align*}
&=\sum_{\mu=1}^{t_{1}} J\left(v_{\lambda}^{(1-1)}, v_{\mu}^{(1)}\right) \otimes J\left(v_{\mu}^{(1)}, v_{\nu}^{(1+1)}\right)= \tag{2}\\
&=(\operatorname{STAGE}(1))_{\lambda} \otimes(\operatorname{STAGE}(i+1))^{\nu}
\end{align*}
$$

We have

$$
\begin{align*}
& \sum_{\nu=1}^{t_{1+1}} J\left(v_{\lambda}^{(1-1)}, v_{\nu}^{(1+1)}, v_{\eta}^{(1+2)}\right)=\sum_{\nu=1}^{t_{1+1}} J\left(v_{\lambda}^{(1-1)}, v_{\nu}^{(1+1)}\right) \mathcal{Z} J\left(v_{\nu}^{(1+1)}, v_{\eta}^{(1+2)}\right. \\
& =\sum_{\nu=1}^{t_{1+1}}\left(\sum_{\mu=1}^{t_{i}} J\left(v_{\lambda}^{(1-1)}, v_{\mu}^{(1)}\right) \otimes J\left(v_{\mu}^{(1)} f_{\nu}^{1+1)}\right) \otimes J\left(v_{\nu}^{(1+1)}\right) v_{\eta}^{(1+2)}\right) \\
& \text { and } \sum_{\mu=1}^{t_{i}} J\left(v_{\lambda}^{(1-1)}, v_{V_{\mu}^{(1)}}^{(1)} v_{\eta}^{(1+2)}\right)=\sum_{\mu=1}^{t_{1}} J\left(v_{\lambda}^{(1-1)}, v_{\mu}^{(1)}\right) \otimes J\left(v_{\mu}^{(1)}, v_{\eta}^{(1+2)}\right) \tag{3}\\
& \sum_{\mu=1}^{t_{1}} J\left(v_{\lambda}^{(1-1)}, v_{\mu}^{(1)}\right) \otimes\left(\sum _ { \nu = 1 } ^ { t _ { 1 + 1 } } J \left(v_{r}^{(1)}, v_{\nu}^{(1+1)} \otimes J\left(v_{\nu}^{(1+1)} v_{\eta}^{(1+2)}\right.\right.\right. \tag{4}
\end{align*}
$$

and by the operation laws on the semi-filed, the right hand sides of (3) and (4) are equal. We define the result to be the jar-metric from $v_{\lambda}{ }^{(1-1)}$

$$
\begin{align*}
\left.t \circ v_{\eta}^{(1+2)}: v_{\lambda}^{(1-1)}, v_{\eta}^{(1+2)}\right) & =\sum_{t_{i=1}}^{t_{i}} J\left(v^{(1-1)}, v^{()}, v^{(1+2)}\right) \\
& =\sum_{\nu=1} J\left(v_{\lambda}^{(1-1)}, v_{\nu}^{(1+1)} v_{\eta}^{(1+2)}\right) \\
& =(\operatorname{STAGE}(1))_{\lambda} \otimes \operatorname{STAGE}(1+1) \otimes(\operatorname{STAGE}(1+2))^{\eta} \tag{5}
\end{align*}
$$

 similar way and be obtained by following formula

$$
\begin{equation*}
J\left(v_{0}^{(0)}, v_{0}^{(n)}\right)=\prod_{1=1}^{n} \operatorname{STAGE}(1) \tag{6}
\end{equation*}
$$

If $t_{0} \neq 1$, or $t_{h} \neq 1$, we still have a formula in the same form

$$
J\left(v^{(0)}: v^{(n)}\right)=\prod_{1=1}^{n} \text { STAGE (1) }
$$

but this result is not an element but just a $t_{0} x t_{n}$ mods -matrix. This is called the jar-metric of the jared graph. fe sometimes call the modi-sum of all elements of the modi-matrix J ($\left.v(0), V^{(n)}\right)$ to be the total jarmetric of the Jared graph G.

On the directed subgraph induced by vertex subset $\left\{\mathrm{v}_{\lambda}^{(1-1)}, \mathrm{v}^{(i)}\right.$. $\left.\mathrm{v}^{(1+1)}, \ldots \mathrm{v}^{(k-1)}, \mathrm{v}_{\tau}^{(k)}\right\}\left(1 \leqslant \lambda \leqslant t_{1-1}, k \geqslant 1+1,1 \leqslant \tau \leqslant t_{k}\right)$ we
have

$$
J\left(v_{\lambda}^{(1-1)}, v_{\tau}^{\left.(k)^{1}\right)}\right)
$$

$$
=\left(\operatorname{STAGE}(1) \frac{1}{\lambda} \otimes \prod_{j=1 \neq 1}^{k} \operatorname{STAGE}(j) \otimes(\operatorname{STAGE}(k))^{\tau}\right.
$$

If we fix an integer s ($1-1<s<k$, by the associative law of modimultiplication, we have

$$
\begin{equation*}
J\left(v_{\lambda}^{(1-1)}, v_{\tau}^{(k)}\right)=\sum_{\xi=1}^{t} J\left(v_{\lambda}^{(1-1)}, v_{\xi}^{(s)}\right) \otimes J\left(v_{\xi}^{(s)}, v_{\tau}^{(k)}\right) \tag{8}
\end{equation*}
$$

If $v^{(1-1)}$ is called the start vertex of the induced graph and $v_{\tau}^{(k)}$ the end vertex of $1 t$, we con express (B) in words:

Jar-metric principle: On a multistage directed graph with jar-metric, the jar metric from any start vertex to any end vertex equals the modi-sum of all modi-products of the jar-metric from the start vertex to all those vertices of some middle state and that from those vertices of the middle state mentioned to the end vertex. This result is independent of all those states before the stert vertex and after the end vertex. As special cases, the start vertex may be the initial vertex of the jared graph, the end vertex may be the final vertex, and the middle state may be Just next to the state thet the start vertex belongs to or just before the one the end vertex belongs to.

Jar-metric principle is a very simple and intuitive one, it is just a kind of statement of the associative law of modi-multiplication of some modi-matrices.

If we develope the result on right hand side of (6), we have

$$
\begin{align*}
& J\left(v_{0}^{(0)}, v_{0}^{(n)}\right)= \\
& =J\left(v^{(0)}, v_{i_{1}}^{(i)}\right) \otimes J\left(v_{i_{1}}^{(1)}, v_{i_{2}}^{(2)}\right)(0) \ldots J\left(v_{i_{n-1}}^{(n-1)} v_{i_{n}}^{(h)}\right) \tag{9}\\
& \\
& \otimes \ldots \otimes J\left(v_{i_{n-1}}^{(n-1)}, v_{0}^{(n)}\right)
\end{align*}
$$

where under the modi-addition symbol Σ we refer to all possible combinations $i_{1}, i_{2}, \ldots i_{n-1}$ where $1 \leq 1_{j} \leq t_{j}(j=1,2, \ldots, n-1)$.

Geometrically, if we define the jar-metric of a path to be the modi-product of jar-metrics of all links on the path. Then the result on (9) equals the rodi-sum of far-metrics of all path from initial vertex to final vertex. Of course, here if there is no link from $\zeta^{(k-1)}$ to $v_{s}^{(k)}$, that is to say,$\dot{J}\left(\dot{Y}^{(k-1)}, v_{s}^{(k)}\right)=z$, then the jar-metric of each path which passes through $y^{(k-1)}$ and $v^{(k)}$ will be zero element.

He ca:- e jar-wetric $J\left(V^{\left(0^{(N)}\right.}, \mathrm{V}^{(n)}\right)$ the jar metric from the

Initial vertex on the graph G, that is the modi-sum of jar-metric of all paths from initial to final vertex.

Example 1. Find the shortest path (s) from A to F its length on the following graph.

Solution: We can solve the problem by finding the jar-metric taken from the semimield $\{\overline{\mathrm{R}}, \lambda,+\}$ the related path (s) in the graph. Let us write down the modi-matrices of stages

$$
\begin{aligned}
& \operatorname{STAGE}(A, B)=A \quad\left[\begin{array}{llll}
\text { from\to } & B_{1} & B_{2} & B_{3} \\
4 & 7 & B_{4} \\
4 & 5 & 5
\end{array}\right] \\
& \text { from to } \quad C_{1} \quad C_{2} \\
& \operatorname{STAGE}(A, B)=\begin{array}{ll}
B_{1} \\
B_{2} \\
B_{3} \\
B_{4}
\end{array}\left[\begin{array}{ll}
4 & 7 \\
3 & 6 \\
6 & 3 \\
& 4
\end{array}\right] \\
& \begin{array}{cccccc}
\text { from } \begin{array}{c}
\text { to } \\
C_{1}
\end{array} & C_{2}
\end{array} \quad\left[\begin{array}{lllll}
D_{1} & D_{2} & D_{3} & D_{4} & D_{5} \\
3 & 1 & & 6 & \\
3 & 4 & 5 & 9 & 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{STAGE}(E, F)= \\
& {\left[\begin{array}{l}
1 \\
5 \\
9
\end{array}\right]}
\end{aligned}
$$

Now we define
$\operatorname{Stage}(A, B) \otimes \operatorname{StaGE}(B, C) \in \operatorname{STAGE}(A, B, C)=,\operatorname{STAGE}(A, C)$
$\operatorname{STAGE}(A, B) \otimes \operatorname{STAGE}(B ; C) \otimes \operatorname{STAGE}(C ; D ;)$ "STAGE (A, B, C, D,) $=S T A G E(A, D)$
and so on. We have fromito

$$
(A, C)=A\left[\begin{array}{ll}
C_{1} & C_{2} \\
B_{1} & \frac{9}{B_{3}} B_{4}
\end{array}\right]
$$

from to $\backslash D_{1} \quad D_{2} \quad D_{3} \quad D_{4} \quad D_{5}$
$\operatorname{STAGE}(A, D)=A\left[\frac{12}{C_{2}} \frac{\frac{9}{C}}{C_{2}} \frac{14}{C_{1}} \frac{11}{C_{2}}\right]$
Here, we have pade two convertions. The first is that all elements which ought to be mritten but not written out are the z s in the semi-field $\{\bar{n}, \wedge,+\}$ - the positive infinity. The second is that the vertex under a number divided by a short line is the one where the shortest path passes through. For example, on $\operatorname{STAGE}(A, C)$, we can read the paths from A to C_{2} via B_{3} or B_{4}, are the shortest amons all (four) possible paths from A to C_{2}, and the lenght will be 9: Again , on STAGE (A, D), we can read that the path from A to D_{4} via C_{1} is the shortest with the lenght 14 . As for the shortest path from A to C_{1}, we can look at $\operatorname{SI} A G E\left(K_{i}, C\right)$ and find that it must pass through vertex E_{1}. Similant we have

$$
\text { fromito } E_{1} \quad E_{2} \quad E_{3}
$$

$\operatorname{STAGE}(A, E)=A\left[\frac{12}{D_{5}} \frac{13}{D_{1}} \frac{1 B}{D_{3}, \frac{D}{4}, \frac{D}{5}}\right]$
$\operatorname{STAGE}(A, E)=A\left[\frac{13}{E_{1}}\right]$
Therefore the shortest length from A to F is 14 and the shortest path can be found out from STAGE (A, F), STAGE (A,E), STAGE (A,D) and $\operatorname{STAGE}(A, C)$ successively , we have

$$
{ }^{B_{3}}\left[\begin{array}{llll}
\mathrm{C}_{2} & D_{5} & E_{1} & F
\end{array}\right]
$$

Hence we have tro shortest paths with the length 14.
Example 2. A reconnaissance olane is going to carry out a bomb task from its base A to the object 5° fis enemy district. All possible flying paths indicated in the follonjng graph. The figere on each link represents the probability in favur that the flaric passes through the $11 n k$. Find the favarest peth from $\&$ to B and its probability in favar.

Solution. This graph can be considered ${ }^{2 s e}$ graph of 6 stages if we look along dotted lines. Thus the probability in favor that the plane flying along the path will be the product of all those of each link on the path.And the path with the greatest probability will be the favourest one:Thus our problem will be to find the jar-metric of the graph on the semi-field $\left\{T, \cap, x_{j}\right\}$ where $I=[0,1]$. Now we write down the modi matrices of the stages :

$$
\begin{aligned}
& \operatorname{STAGE}(1)=\begin{array}{cl}
A
\end{array}\left(0,99 \quad 0.98 j \begin{array}{ll}
\text { from to } A_{20} & A_{11}
\end{array} A_{02}\right. \\
& \operatorname{STAGE}(2)=\quad \begin{array}{llll}
& A_{10}
\end{array}\left[\begin{array}{lll}
0.97 & 0.95 & \\
& A_{01}
\end{array}\right] \\
& \text { from to } \begin{array}{llll}
A_{30} & A_{21} & A_{12} & A_{03}
\end{array} \\
& \begin{array}{lllll}
\\
\text { STAGE }(3)= & A_{20} \\
A_{11} \\
A_{02}
\end{array}\left[\begin{array}{llll}
0.92 & 0.92 & & \\
& 0.96 & 0.97 & \\
& & 0.95 & 0.99
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { STAGE (5) }=\begin{array}{l}
\text { from to } \\
A_{31} \\
A_{22} \\
A_{13}
\end{array}\left[\begin{array}{ll}
A_{32} & A_{23} \\
0.85 & \\
0.88 & 0.93 \\
& 0.92
\end{array}\right] \\
& \text { from to } B \\
& \operatorname{STAGE}(6)=\quad \begin{array}{ll}
A_{32} \\
A_{23}
\end{array}\left[\begin{array}{l}
0.80 \\
0.79
\end{array}\right]
\end{aligned}
$$

In caiculating, we will take four places after decimal point in order to distinguish which is the better one. Then we have

and

$$
\operatorname{STAGE}(1,6)=A\left[\frac{0.6567}{A_{23}}\right]
$$

thus the favorest path for the plane will be

$$
\begin{array}{lllll}
A & A_{01} & A_{11} & A_{12} & A_{13}
\end{array} A_{23} \quad B
$$

and its probability in favor is 0.6567 .
We can use the Jar-metric principle to calculate jar-metric of the optimum path on jared graph on different optimizing semi-fields. Fut the result will have some differences between those on optimizing semi-field and strongly optimizing one.
Suppose we have a multistage directed graph G. From initial vertex $\mathrm{V}_{0}{ }^{(0)}$ to final vertex $V_{0}^{(n)}$, there are several paths. Let

$$
\begin{equation*}
v_{0}^{(0)} v_{1_{1}}^{(1)} v_{1_{2}}^{(2)} v_{1_{k}}^{(k)} v_{0}^{(n)} \tag{10}
\end{equation*}
$$

be any of them, and

$$
\begin{equation*}
L(0, n): v_{0}^{(0)} v_{p_{1}}^{(1)} v_{p_{2}^{0}}^{(2)} \cdot v_{k}^{(k)} \ldots v_{0}^{(n)} \tag{11}
\end{equation*}
$$

be a axed one. Besides the concept of the optimum path from $v_{0}^{(0)}$ to $v_{0}^{(n)}$ on G, we introduce

Definition 5. If $L(0, n)$ is an optimum path from $v_{0}^{(0)}$ to $V_{0}^{(r)}$ and if any subpath say $L(h, k), 1, e$, a subpath from $V_{p}^{(k)}$ to $v_{p}^{(k)}$ on $L(0, n)$.
is an optimum path free $v_{p}^{(h)}$ to $v_{p}^{(k)}$ on the induced subgraph $\left[G h, p_{h} ; k, p\right]$ of G, then we say $L(0, n)$ is the optimum path of G.
There is a bit but quite important difference between the definition and
everyday experience. Let us see the following examele.
Example 3. On a 3-stage directed granh G, according to the following rules, discuss the shortest path from A to F and those of graph G respectively.

1) if length of a patal 13 the sum of lengths of all links on it ;

1i) If length of a path equals the maximum length among those of all links on it;
11i) If length of a path equals the sum of length of all links on it taken $\bmod 4$.
Solutions. 1) There are four paths from A to F. Tite length of the vatia ABCF is 6 and no one of the others is storter than it,so it is the siortest path from A to F. And what is more, we canprove without difeizculty that any. subpath of the path ABCF is the shortest on the corresioncing induced graph. Hence the path ABCF is the shortest of grapla 6 aso.
11) The langth of the path AEEF is 4. It is the shortest petis frow A to F because the length of any other path will not be shorter thar \pm, Eut the subpath BEF on the corresponding incuced subgraph is not tie siontest from B to 5 . Therefore, the path ABEF is not the shortest path of graph G. But the path $A B C F$ is really the shortest path of the graph G. Of course, it is the shortest one from A to F also.
iii)The length of the path ABEF eouals $0(=4+i+3=0$ mod 4). This path is the shortest from A to F , but fots subpath ane is not the shortest on the corresponding induced graph. Actually, according to our rule , there exists no shortest path of the graph G. ///

As aiscussed above, according to our definition , on a cultistage cirected graph, it coes not necessarlly have optimup path of the sraphoind ,even $1:{ }^{\prime}$ there is an optimum from initial vertex to final vertex,it needs not be te optimum. path of the graph.

Theorem 2. i) On a multistage directed graph G, the jarmatric of each link taken from an opt mizing semi-field. If $L(O, n)$ is an ontinu path. from initial vertex to final vertex, then its jer-metric equals J $\left(V_{0}^{(0)}, v_{0}^{(n)}\right)$ which can be computed by (6).
11) On a multistage directed graph, if the daumetric of eacin lirk is taken from a stronely optimizing semi-field, then the optimur path from inf tial vertex to final vertex is ${ }^{4}$ same as that of the graph.

Proofs (1) This is the result of (6) and (9).
11) By deifinition it is evident that the optimum path of G is tiat
from Initial vertex to final vertex.
in contrast let $I(0, n)$, as (10), be an optimal path $V_{0}^{(0)}$ to $V_{0}^{(n)}$,
and

$$
I(h, k): V_{p_{h}}^{(h)}: V_{p_{h+1}}^{(h+1)} V_{p_{k}}^{(k)}
$$

be any subp: th of $L(0, n)$. Suppose $L(0, h), L(h, k)$ and $L(k, n)$ have Jar-metric P, Q and R respectively.Then the jar-metric of $L(O, n)$ equals $P \otimes Q \otimes R$.
on $L(0, n), 1 f$, we delet the subpeth $L(h, k)$ and join $V(h), V(k+1)$.
$\left.V_{k-1}^{(k \quad 1)} V_{R_{k}}^{k}\right)_{\text {where }}$ vertexes $V(k-1) \ldots V_{i_{k-1}}^{k-1)}$ may be any in the $(h+1) \ldots$
$=(k-1)-$ th state respectively. The fath from v(0) to $V(h)$ thus constructed will not be better than $L(0, n)$. inen

$$
P \otimes Q \otimes R=\Sigma P \otimes J\left(V_{p_{h}}^{(h)}, V_{i_{h+1}}^{(h+1)}\right) \otimes \cdots J\left(v_{i_{k-1}}^{(k-1)}, V_{p_{k}}^{(k)}\right) \otimes R=
$$

$$
=P \otimes\left(\sum J\left(v_{p_{h}}^{(h)}, V_{h+1}^{(h+1)}\right) \otimes \ldots J\left(v_{i_{k-1}}^{(k-1)}, v_{p_{k}}(k)\right)\right) \otimes R
$$

Then we may essert that the quantity in the brackets must be Q.Tl.at is to say, $L(h, k)$ is an optimum path from $V_{P_{h}}(h)$ to $V(k)$ on the corresponding induced subgraph.
Ey conrradiction , if not so, we put the quantity in the brackets to be T, thet is

$$
T=J\left(V_{p_{h}}^{(h)}, V_{q_{h+1}}^{(h+1)}\right) \circledast J\left(V_{q_{h+1}}^{(h+1)}, V_{q_{h+2}}^{(h+2)}\right)(刃) \ldots(X) J\left(V_{q_{k-1}}^{(k-1)}, V_{p_{k}}^{(k)}\right)
$$

then there exists path, say

$$
I^{\prime}(n, k): v_{p_{h}}^{(n)} v_{q_{h+1}}^{(h+1)} \cdot V_{q_{k-1}}^{(k-1)} V_{p_{k}}^{(k)}
$$

which would be better than $L(h, k)$. Then we would have
$T+Q \notin Q$, and $T+Q=T$
Since the semi-field is strongly optimizing, we would have
$P \otimes T \otimes R+P \otimes Q \otimes R \approx P \otimes Q \otimes R$
The path $L(0, h) L^{\prime}(h, k) L(k, n)$ would be better than $L(0, n)$. This is contrary to hypotesis.

Thus every uppath $i(h, k)$ on $L(0, n)$ is an optimum peth from $V_{p_{h}}$ to V_{p} on the corresponding induced subgraph. Therefore $L(0, n)$ is an optimun? path of G.
At the end of the section, wed like to make some comments. To a chain of ordinary matrices, the problem of finding its best association has been discussed by some scholars. Some of their results can be transplanted to our theory and make something clear.

For example, there is a directed graph of 4 stagel with the vertex set

$$
\begin{gathered}
\left\{v_{1}^{(0)} \mid 1=1,2, \ldots 10\right\} \quad \cup \quad\left\{v_{1}^{(1)} \mid 1=1,2, \ldots 20\right\} \cup\left\{v_{1}^{(2)} \mid 1=1,2 \ldots 50\right\} \\
\\
\cup\left\{v_{1}^{(3)}\right\} \cup\left\{\left.v_{1}^{(4)}\right|_{i=1,2, \ldots 100\}}\right.
\end{gathered}
$$

to each link there is a jar-metric taken from some optimizing semi-fiela. Now we want to find the jar-metric of the optimum one among all 1.000.000($=10 \times 20 \times 50 \times 1 \times 100$) paths, $1 . e$, the total jar-metric of the graph. If the modi-matrices of the four stages be $M_{1}, M_{2}, M_{3}, M_{4}$, with orders $10 \times 20,20 \times 50,50 \times 1,1 \times 100$. Ve must first calculate

$$
M=M_{1} \otimes M_{2} \otimes M_{3} \otimes M_{4}
$$

and then we search for the optimum one among all elements on Now, how do we calculate M ? In dynamic programming , we do not make any difference between forward procedure and backward one.But,actually, things are not quite so. Ve can easily calculate by backward procedure

$$
M_{1} \otimes\left(M_{2} \otimes\left(M_{3} \otimes M_{4}\right)\right)
$$

here we must do $117,000(=50 \times 1 \times 100+20 \times 50 \times 100+10 \times 50 \times 100$ $\bigotimes^{*} s$ and (118,000-1) ©'s.If we calculate K by forward procedure

$$
\left(\left(M_{1} \otimes M_{2}\right) \otimes M_{3}\right) \otimes M_{4}
$$

we will do $11,500,0$ s and $10,989 \oplus$'s only. Koreover, it is easily +0 check that the best association of the chain will be.

$$
\left(M_{1} \otimes\left(M_{2} \otimes M_{3}\right)\right) \otimes H_{4}
$$

In this case we need only to $10,2,2000$'s and $2,169 \oplus$ s. Thus , if re consider the number of \otimes 's only, those of the best association will be 19% of those by backward procedure; and $1,76 \%$ of those by forvard one. forward and backwerd procedures will not be the same in the sense of cor putation complexity.
The second point is ajout R.Belimans principle of optimality. It is. Well known that some optimum processes do not have such a property mentionec in the principle anc also processes which have the property mentioned above need not be optimum. In general, there is no universal equivalent relation between the principle and the formula. Nay be the result obtained by forward ; formula will not necessarily be the same as those ontalned by backward \because.. one.Example. 3 shows the matter Here, we'd like to take jarmetric principle as a basis instead of Eeliman's princivie of . optimality. Ve know that jar-metric ; principle will be keld true on some strict basis and it is equivalent to formula (6) which has an effective algebralc structure, Horeover, the formula can be: to solve some other \%omplicate problem which will be discussed in following sections.

In dynamic programming, people like to consider as ε basis,all those problems depending on time , and put all problems which can be converted into multistage graph into those depending on time. In our theory , we"d like to discuss all those geometrical problems as a basis and then put those problems depending on time into geometrical ones.Thus ,in our theory,"dynamic"feature disappears.

3. Semi -field N-THOPT and the first N-th order optimum paths of first kind

Pansystem Analysis,motivated and developed by professor wu Xuemou and his colleagues,has been obtained a great deal of results and theorems. One of those is so-called optimum primciple of li-th order. Putting his word into our framework, it says that : There are meny paths from the initial vertex to the final vertex on a multistage directed graph, with jar-metric taken from a strongly optimizing semi-field: To each path, there corresmonds an element the jarmetric of strongly optimizing somi-field. The optimum path in the sense as mentioned in section 2 , is called that of zero ... or -
 pay no attention to all those optimum paths mentioned, there will be some optimum paths among the remaining ones. We call those the optimum path of first order of the graph. Similary, if we pay no attention to all paths of all first $N-1$ 'th order, we may find the optimum amone the remaining path which will be called the optimum path of H-th order. Then we have

Cptimum principle of N-th order (ih Xuemou) [4]. If, L $(0, n)$ is an optimum path of N-th order in a multistage directed graph G and if the subpath $L(h, k)$ of $L(0, n)$ is the optimus path of m-th order in the related induced subgraph, then we have.:

$$
m \leqslant N
$$

Theorem 3. (Qin Foukaung) [5]. If $L(0, n), L(0, h)$ and $L(h, n)$ are the optimum paths of Nath. m-th and m -th order respectively on the related (induced sub-) graphs, then we have

$$
m_{1}+m_{2} \leqslant N
$$

Cocollary 1. If $0=h_{0}<h_{1}<h_{2}<\ldots<h_{s-1}$
L. $(0, n)$ and $L\left(h_{j-1}, h_{j}\right)$ are the optimum peths of N-th and $m_{j}-t h$ order on related (induced sub-) graphs respectively, then we have

$$
\sum_{i=1}^{1+q} m_{1} \leqslant N(0 \leqslant 1<1+q \leqslant s)
$$

Patticulary we have

$$
\sum_{i=1}^{s} m_{j} \leq N
$$

Corollary 2 If $0<m_{i}<N$, then for all 1 , we have $m_{i}<N$. If $m_{1_{0}}=N$, then for all $i \neq 1_{0}$, we have $m i=0$,

Now us a i these result to developed" our theory.
On strongly optimizing semi-field $\{S, \Theta, \otimes\}$, we take ${ }^{-}(N+1)$ yang elements or identity elements to form a sequence. If it satisfies the conditions

$$
\left.a_{0} \prec a_{1}\right\} \cdots\left\{a_{k} \prec a_{k+1}=z=\ldots=z\right.
$$

where $0 \leqslant k \leqslant N+1$ and if we define that $z=z$ can be written as $z \prec z$, then we call this sequence with $N+1$ elements to be strictly monotonic to bad and write as

$$
\begin{equation*}
\left\{a_{0}, a_{1}, \ldots a_{k+1}, z, \ldots z\right\} \tag{1}
\end{equation*}
$$

where the 0 -th term a_{0} is called the optimum element of 0 -th order of the sequence, the k-th term. a_{k} is the optimum element of k-th order. a_{1} is called suboptimum element also.

The family which contains all strictly monotonic to bad sequences like
(.1) is denoted by $N-t h$ and the sequence will be called the element of the family.
Let $\left.A=\left\{a_{0}, a_{1}, \ldots, a_{N}\right\}, \quad B=, b_{O}, b_{1} \ldots b_{N}\right\}$
belong. to $N-t h$. We call them to be equal, if and only if $a_{1}=b_{1}(=0$, 1,N).

Given two elements A and $N-T h$, we rearrange all those $2 N+2$ terms monotonic to bad and take the first $N+1$ non-repeared (except zero.) elements, to form a new sequence which is unique and is an element of NeTh. We define this to be modi-sum $A \oplus B$ of A and B. For example, in a strongly optimizing semi-field $\{\bar{R}, \Lambda,+\}$, there are two strictly monotonic to bad sequences with 4 terms $\{1,3,4,6\}$ n nd $\{2,3,4,7\}$ Rearranging these 8 elements $1,2,3,3,4,4,6,7$, we have a new sequence $\{1,2,3,4\}$ and denote $\{1,3,4,6\} \Theta\{2,3,4,7\}=\{1,2,3,4\}$ The modi -addition thus defined satisfies laws of commutativity. and associativity,
To A and B, we rearrange $(N+1)^{2}$ modi-products $a_{i} \otimes b_{j}(0 \leqslant 1, j \leqslant N)$ monotonic bad.
Then taking the first $N+1$ non -repeated (except zero) elements to form a new sequence, we define this.by A Q .
For example, we have two sequences $\{1,3,4,6\}$ and $\{y, 3,2,2\}$ on
$\left\{\overline{\mathrm{R}}, \mathrm{N}_{2},+\right\}$. Doing the all modi-products, we have

$$
\begin{array}{lll}
2, & 4, & 7 \\
4, & 6, & 7 \\
2, & 2, & 2 \\
2, & 2 & 2
\end{array}
$$

the inst 4 non- repeated elements are 2,$4 ; 5,6$, then we have $\{1,3,4,6\} \otimes\{1,3,2,2\}=\{2,4,5,6\}$

The law of commatativity is evidently true for the modi multiplication thus defined.

Now, we are going to discuss the law of associativity. If $a_{i} \prec a_{i+1}$
and $a_{1} \neq z$, we have

$$
a_{1} \oplus a_{1+1}=a_{1} \text { and } a_{1} \oplus a_{1+1} \Rightarrow a_{1+1}
$$

by the strong optimal, for ary n म z, we heve

$$
\begin{aligned}
& a_{1} \otimes h \oplus a_{1+1} \otimes h=a_{1} \otimes h \\
& a_{1} \otimes h \oplus a_{1+1} \otimes h \neq a_{1+1} \otimes h
\end{aligned}
$$

Thus we have $a_{i} \otimes h \gamma_{1+1}^{\infty} h$. If $a_{1}=z$ or $h=z$, by our convention on symbol $z \alpha z$, we still have $a_{1} \otimes h-\left\{a_{1+1} \otimes h\right.$. Thus for

$$
\left.(e \prec) a_{0}<a_{1}\right\} \ldots \alpha_{N} \nless a_{N+1}
$$

$$
(e \otimes n \nprec) a_{0} \otimes h\left\langlea _ { 1 } \otimes n \prec \ldots \left\{ a_{N} \otimes h \prec a_{N+\uparrow} \geqslant n\right.\right.
$$

That is to say, if a_{N+1} is worse than all $a_{i}(i=0,1, \ldots N)$, then
$a_{N+1} \otimes h$ is worse also then all $a_{1} \otimes h(1=0,1, \ldots N)$.
Suppose $A \otimes B=\left\{a_{1_{0}}\right.$ (20 $\left.b_{j_{0}} ; a_{1_{1}} \otimes b_{j_{1}}, \ldots a_{i_{N}} \otimes b_{j_{N}}\right\}$ and a_{t} © b_{s} be an element of $\left\{a_{1} \otimes b_{1} \mid 1, j=0,1, \ldots, N\right\}$ which $1 s$ worse than all those terms in $A \otimes B$. Then, to any element $h,\left(a_{t} \otimes a_{s}\right) \otimes h$
must be worse than any term in $A \otimes B$ modi-multiplied by h. Therefore, ($A \otimes B$) \otimes is a sequence in which each term is taken from the first N optimum modi -product of some term of A B and c_{k} of C, also those modi-product of some terms $\left(a_{i} \otimes b_{j}\right) \otimes c_{k}$. Since $\left(a_{1} \otimes_{i} b_{j}\right)$
(8) $c_{k}=a_{i} \otimes\left(b_{j}\right.$ ($\left.c_{k}\right)$. Therefore we have
$(A \otimes B) \otimes C=A \otimes(B \otimes C)$
Similary we can prove that the law of distributivity holds also.
Elements $E=\{e, z, \ldots z\}$ and $Z=\{z, z, \ldots z\}$ are identity and zero element of the final N-th.

Therefore the family N-th is a semi-field with identity. We denote it by N-THOPT or $\{\mathrm{N}-\mathrm{Th}, \oplus, \otimes\}$ or more clearty, $\{\mathrm{S}, \infty, \otimes\}$ - N-THOPT.

When $N=0, N-T H O P T$ will reduce to the strongly optimizing semi-field Itself.

In semi-field N-THOPT, A \oplus R equals, in general, neither A nor B. But it has the following properties

$$
(A \oplus B) \oplus A=A \oplus B,(A \oplus B) \oplus B=A \oplus B
$$

thus N-THOPT 1s a generalized optimizing-field, called Shier semi-ifeld [6]
If a sequence like (1) contains some zero elements, we can ouit those germs, for simplicity. For example $\left\{a_{0}, a_{1}, e_{2}, 2, \ldots, z\right\}$ may be writtem as $\left\{a_{0}, a_{1}, a_{2}\right\} ;\left\{b_{0}, z, \ldots, z\right\} a s\left\{b_{0}\right\}$ or b_{0}. Of course, for $\{z, \ldots z\}$, it would be better to write as z.

Suppose the jar metric of each link on a multistage directed graph be a yang element or e taken frow e strongly optimizing semi-field $\{S, \oplus, \otimes\}$

If there are links with different jar-metric from V_{1} to V_{j}, we can arrange these in a monotonic to bad order. If there are more than $N+1$ terms, we taken the first $N+1$ terms. If there are only k ($\leqslant N$) terms, we can add $N+1$-k zero elements to them. Thus, in short, we can write the first $N+1$ jar-metrics, from V_{i} to V_{j}, as an element $A=\left\{a_{0}, a_{1}, \ldots a_{11}\right\}$ which belongs to N -THOPT . We may say a being a jar-metric taken from N THOPT. If there are two groups of links from V_{1} to V_{f}, their jar-metric are A and B respectively.Then $A \notin B$ will be the jar-metric of these two groups of links and, geometrically,it represents the jar-metrics of the first $N+1$ non-repeated optimum links from these two groups of links.

If the jar-metric from V_{i}, to V_{j} be A, and that V_{j} to V_{k} be C, then the jar-metrics from V_{i} to V_{k} via V_{j} will be $A O C$.
For a n-stage directed graph G, if each lirk corresponds to jar-inetric taker from N-THOPT, then the jar-metric from the initial vertex $V_{0}^{(0)}$ to the final vertex $V_{0}^{(n)}$ of the graph G can be calculated by jar-metric principle. In this result we can find the optimum paths of Oth, 1 th, ... and Nth orden ers. We refer this as a problem of finding optimum paths of first N order of first kind.

When $N=0$, it is our fundamental result obtained in [2] and when N $=1$, we have established an algoritm in the paper [3].

Since on semi-field N-THOPT , the computational complexities of calculating $A \oplus B$ and $A \otimes B$, are two numbers depending only on N. Thus we have:

Theorem 4. The computational complexity of calculating the jer-metri. cs of optimum paths of the first N order of first k order kind is the same as that of zero order.

Example 4. On the 5-stage directed graph shown in example 1, every link corresponds to a real number, as its length. To find the shortest path of the $0-$ th, $1-$ th, $2-$ th, $3-$ th order ($1, e$. , the shortest , second, third and fourth shortest) and their lengths.

Solution. We may consider the length of each link being an element of the generalized optimizing semi-field $\{\bar{R}, \lambda,+\}-3$-THOPT. Then our problem has been converted into that of finding the jar-metric from A to B of the graph. We may write the modimmatrices of these five stages as those in exmple 1.

Let us find the jar-metric from A to C_{1}. Caloulating 4 \&, 7 3. $6 \$ 6$ and $5 \otimes z$, we have $\{8,10,12, z\}$. Note that, for example 10, it is the far-metric of the path from A to $C_{1} \forall 1 a . B_{2}$ and which is modi-product of 7 , taken from the optimum of 0 -th order of $\{7,2, z, z\}$, and 3 , taken $\operatorname{Irom}\{3, z, z, z\}$, thus we can write $\frac{10}{B_{2}^{10\}}}$, and so on.
Thus ve can write the jar -retric from A to C as $\left\{\frac{8}{B_{1}^{10\}}} \frac{10}{B_{2}\{0\}}: \frac{12}{B_{3}\{0\}}\right\}$

Similary, the jar-metric from A to C_{2} is equal to $\left\{\frac{9}{B_{3}^{[0]} B_{4}^{[0]}}, \frac{10}{B_{1}^{[0]}}, \frac{12}{B_{2}^{\{0\}}}\right\}$.
Thus we have

$$
\begin{aligned}
& \operatorname{STAGE}(A, C)=\operatorname{STAGE}(A, B) \otimes \operatorname{STAGE}(B, C)= \\
& \quad \text { from\to } \quad C_{1} \\
& =A \quad\left[\left\{\frac{8}{B_{1}^{\{0\}}}, \frac{10}{B_{2}^{[0]}}, \frac{12}{B_{3}^{\{0\}}}\right\} \quad\left\{\left\{\frac{9}{B_{3}^{\{0]} B_{4}\{0\}}, \frac{11}{B_{1}^{00}}, \frac{13}{B_{2}^{\{0}}\right\}\right]\right.
\end{aligned}
$$

Notice that alphebats (a -.under bars will not participate in any operations henceforth.

For simplicity, we stipulate that all $\{0\}$ on the upper-right corner will be deleted , for example $B_{3}=B_{3}$. Therefore we have

$$
\begin{gathered}
\text { from to } C_{1} \\
\operatorname{STAGE}(A, C)= \\
A
\end{gathered}\left[\left\{\frac{8}{B_{1}}, \frac{10}{B_{2}}, \frac{12}{B_{3}}\right\},\left\{\frac{9}{B_{3}, B_{4}}, \frac{11}{B_{1}}, \frac{13}{B_{2}}\right\}\right]
$$

We cen obtain

$\operatorname{STAGE}(A, D) \equiv \operatorname{STAGE}(A, C) \otimes \operatorname{STAGE}(C, D)$

$$
\text { from to } D_{1} \quad D_{2}
$$

$$
=A\left[\left\{\frac{12}{c_{2}}, \frac{13}{c_{1}}, \frac{14}{c_{2}^{[1,}, \frac{15}{\left.c_{1}^{\{1]}\right]}}\right\}\left\{\frac{9}{c_{1}}, \frac{11}{c_{1}^{[1]}} \frac{13}{c_{1}^{2}}, \frac{15}{c_{2}} \frac{c_{2}^{\{1\}}}{}\right\}\right.
$$

$$
=A\left[\left\{\frac{13}{E_{4}} \cdot \frac{15}{E_{y}\{1\}} \frac{16}{E_{1}^{\{2\}}} \frac{17}{E_{1}(3)}\right.\right.
$$

$$
\begin{aligned}
& D_{3} \\
& D_{4} \\
& \mathrm{D}_{4} \\
& \left\{\frac{14}{c_{2}}, \frac{16}{c_{2}^{\{1]}}, \frac{18}{C_{2}^{2}}\right\}:\left\{\frac{14}{C_{1}}, \frac{16}{c_{1}^{\{1\}}}, \frac{18}{c_{1}^{2\}}}, c_{2}, \frac{20}{c_{2}}\right\},\left\{\frac{11}{c_{2}}, \frac{13}{c_{2}^{\{1\}}}, \frac{15}{\left.c_{2}^{\{2\}}\right\}}\right], \\
& \operatorname{STAGE}(A, E)=\operatorname{STAGE}(A, D) \otimes \operatorname{STAGE}(D, E) \\
& \text { fromlo } \\
& -A\left[\left\{\frac{12}{D_{5}} \cdot \frac{14}{D_{5}^{(1)}} \cdot \frac{15}{D_{2}} \cdot \frac{16}{\left.\left.D_{1} D_{3} D_{5}^{(2)}\right\}\right\}\left\{\frac{13}{D_{1}}: \frac{14}{D_{1}^{(1)},} \frac{15}{D_{1}^{(2)}}, \frac{16}{\left.D_{1}^{(3)}\right\}}\right\}, ~, ~, ~}\right.\right.
\end{aligned}
$$

Therefore, there are two optimum (i.e., the shortest) paths xith lerrih 13. They are

$$
\mathrm{AB}_{3} \mathrm{C}_{2} \mathrm{D}_{5} \mathrm{E}_{1} \mathrm{~F} \quad \text { and } \mathrm{AB}_{4} \mathrm{C}_{2} \mathrm{D}_{5} \mathrm{E}_{1} \mathrm{~F}
$$

There is an optimum path of first order with length 15. That is

$$
A B_{1} C_{2} D_{5} E_{1} F
$$

'He have optimum path of second order with length 16. That is

$$
A B_{1} C_{1} D_{2} E_{1} F
$$

And ,finally we have 5 optimum paths of third order with length 17. They are

$$
\begin{array}{lll}
\mathrm{AB}_{3} \mathrm{C}_{2} \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F} & \mathrm{AB}_{3} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{1} \mathrm{~F} & \mathrm{AB}_{4} \mathrm{C}_{2} \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F} \\
\mathrm{AB}_{4} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{1} \mathrm{~F} & \mathrm{AB}_{2} \mathrm{C}_{2} \mathrm{D}_{5} \mathrm{E}_{1} F &
\end{array}
$$

4. Semi -field and optimun paths of first N order of second kind

In this section, it is supposed that all letters $a, b, a_{1 j} ; b_{i}$ and p_{i} ari non-zero elements of an optimizing semi-field $\{S, \omega, \otimes \in$, Suppose ne have a_{k}, a parameter t and a non-negative integer k. We call the formal product $a_{k} t^{k}$ a term of k power with coefficient a_{k}. ie derine

$$
a_{0} t^{0}=a_{0}, e t^{k}=t^{k}, z t^{k}=z
$$

We say two terms are equal, $a_{i} t^{1}=a_{j}{ }^{1} J$
$1 f$ and only if

$$
a_{1}=a_{j} \quad \text { and } \quad 1=j
$$

We define the modi-sum of $a t^{r}$ and $b t^{s}$, where $r \neq s$, to be $a t^{r}\left(\oplus t^{5}\right.$ or $b t^{5} \oplus a t^{r}$. If $r=s$, we define $a t^{r} \oplus b t^{s} t o$ be (a $\oplus b$) t^{s}. Again $a t^{r} \otimes b t^{s}$ is defined to be $(a \otimes b) t^{r+5}$. Thus our definition are the seme in form as those in ordinary sense. If p_{i} belongs to $\{S, \oplus, \otimes\}(1=0,1, \ldots n)$ and $p_{0} \notin z$, we call

$$
p_{0} t^{n} \oplus p_{1} t^{n-1} \oplus \ldots \oplus p_{n-1} t \in p_{n}
$$

a modi -polynomial of degree n. Two modimpolynomials are equal if and only If all corresponding terms of the same pover are equal.
We can define modi-addition \oplus and modi multinlication θ betweer nocipolynomials thevway like those in ordinary sense. low we constrict a set which contains all modi-polynomials with non-yin elements as coefficients on an optimizing semi-field with identity and contains also z and ef the semi-field as identity and zero elements respectively. This set is a serifield called a semi -field of modi-polynomial on $\{S, \Theta, \theta\}$, denoted by $\{\rho(t), \oplus, \phi\}, \operatorname{or}\{S, \oplus, \theta\}=\{\rho(t), \oplus, \otimes\}$.
If in the modi-polynomial

$$
a_{0} t^{n} \oplus a_{1} t^{n-1} \oplus a_{2} t^{n-1_{2}} \oplus \ldots \oplus a_{p} t^{n-1_{n}}\left(0<1_{1}<1_{2}<\ldots<1_{p}<n\right)
$$

the coefficients $a_{1}, a_{2}, \ldots, a_{p}$ are strictly monotonic to bad: $a_{1}<a_{2} \prec \cdots<a_{p}$, we call it an essential modi~polynomial and denote by $\vec{P}(t)$. We virile the symbol \rightarrow above to emphasize that when an essential nodi--polynomial $/$ /written in decreasing power, the coefficient sequence will be stricthy monotonic to bad. Let the set off all essential modi-polyromials be denoted by $\vec{P}(t)$. Evidently, identity e and zero element $z \ln \{S, \mathcal{Q}, 0\}$ belong to $\vec{f}(t)$ and $\vec{\rho}(t) c \rho(t)$,

To any element $P(t)$ of $\{P(t), \oplus, \infty\}$, we can use so-called badinizinc process II I to construct an essential modi-polynomial $\mathbb{I P}$ (t)]. The process is defined as follows for monononial $a_{i} t^{1}$ we nave

$$
\left[a_{1} t^{1} \rrbracket=a_{1} t^{1}\right.
$$

and, particularly

$$
[z]=z \quad \text { and } \quad[e]=e
$$

For binomial $a_{1} t^{i} \oplus a_{j} t^{j}$ and $1 \geqslant j$, we have

$$
\mathbb{I} a_{1} t^{1} \oplus a_{j} t^{j} \mathbb{I}= \begin{cases}a_{i} t^{1} \oplus a_{j} t^{j}, & 1>j, a_{1}\left\{a_{j}\right. \\ a_{j} t^{j} & , 1>j, a_{1} \not \varepsilon_{j} \\ \left(a_{i} \oplus a_{j}\right) & t^{j}, 1=j\end{cases}
$$

Then after total check, we can prove that

$$
\mathbb{\llbracket} a_{i} t^{i} \oplus a_{j} t^{1} \rrbracket \oplus a_{k} t^{k} \rrbracket=\llbracket a_{i} t^{i} \oplus \mathbb{I} a_{j} t^{j} \oplus a_{k} t^{k} \mathbb{I} \mathbb{L}
$$

Thus we can write the result to be $\llbracket a_{i} t^{i} \oplus a_{j} t^{j} \oplus a_{k} t^{k}$. \rrbracket
To a mod -polynomial of degree n

$$
p(t)=a_{0} t^{n} \oplus a_{1} t^{n-1} \oplus a_{2} t^{n-1_{1}} \oplus \ldots \oplus \varepsilon_{p} t^{n-1_{p}}
$$

where $0<1_{1}<1_{2}<\ldots<i_{p} \leqslant n, a_{0} \neq z$, if the sequence of the coefficients $a_{c}, a_{1}, \ldots a_{p}$ is strictly monotonic to good, ie., $a_{i-1} \geqslant a_{i}$
 coefficients is not strictly monotonic to good, we can partition the sequence into several subsequences each of them is strictly monotonic to good.
This partition may not be necessarily unique and some subsequences may contain only one term. To each subsequence, we retain the term with the optimum coefficient. Thus we obtain a new sequence of coefficients called the first badinized sequence and the related modi-polynowial inf the seguece is not strictly monotonic to pad, we can do the same process as above and so on, After doing finitely many operations, we will at last obtain a strictly monotonic to bad sequence and a related modi-polynomial -the essential mod -polynomial . $\mathfrak{F o r}$ example, we have a modi-polynomial on the semi-field $\{\overline{\mathrm{R}}, \mathrm{h},+\}$:
$5(t)=3 t^{30} \oplus 2 t^{9} \oplus t^{8} \oplus 7 t^{7} \oplus 5 t^{6} \oplus 4 t^{5} \oplus 6 t^{4} \oplus 3 t^{3} \oplus 4 t^{2} \oplus 8 t$
we have

\mathbf{i}	0	1	2	3	4	5	6	7	8	9
a_{i}	3	2	1	7	5	4	6	3	4	8
first badinization			1			4		3	4	9
second badinization			1					3	4	8

therefore $\mathbb{R}(t) \mathbb{Z}=t^{8} \oplus 3 t^{3} \oplus 4 t^{2} \oplus 3 t$.
Evidently ,to a given modi-polynomial ,the coefficient sequence and its first,second, ... badinized sequences and related modi-polyncmial will correspond to a fixed essential modi -polyriomial. The badinization process makes each modi-polynomial of $\rho(t)$ correspond to an essential modi-polynomial and each essential modi-polynomial corresponds to a subset of modi-polynomials in $p(t)$.
P (t) will be devided into several disjoint subsets, and subset corre sponds to an essential moci-polynomial. All those zodi -polynomials forn a set $\vec{p}(t)$. z is a special essential modi-poiynomial to which there corresponds only one modi-polynomiel z itseli in $p(t)$, and e is another special essential modi-polynomial to which there correspond all modipolynomiels with the constant term (i.e., the coefficient of t^{0}) e.

Now, we can define the modi-addition of and modi-multiplication © in the set $\vec{\rho}(t)$. If $F(t)$ and $G(t)$ belong to $\vec{\rho}(t)$, evidently, we heve

$$
\llbracket P(t) \mathbb{I}=F(E) \text { and } \mathbb{I G}(t) \mathbb{H}=G(t)
$$

and

$$
F(t) \oplus_{0} G(t)=\mathbb{F}(t) \mathbb{\rrbracket} \oplus_{0} \mathbb{C}(t) \rrbracket \equiv \mathbb{I} F(t) \oplus G(t) \mathbb{Z}
$$

:ie define

$$
e_{F}(t) \theta_{0} G(t) \equiv[r(t) \otimes G(t)]
$$

Be can prove without difficulty that the $\left\{\vec{P}(t), \oplus_{0}, \hat{Q}_{0}\right\}$ is a ge:eralized optimizing semi-ricld.

A traveller may take quite different ways by different trailc tool from city V_{i} to city v_{j},
For exemple, by ship along a river, it will take him n days to complete the travel end will cost him a dollars;by express train it will ta'e \because : $\mathrm{n}-\mathrm{i}_{1}$. days and will cost $\mathrm{h} 1 \mathrm{~m} \mathrm{a}_{1}$ dollars and so on.
For simplicity, we make a stipulation that the time consumed is denoted tr apositive integer. Of course, if there are several ways to comelete the travelling with the same cost, then he must like to take thet wey with shorter time. Thus, if $0<i_{1}<i_{2}<\ldots<i_{p} \leqslant n$ then $a_{0} \alpha a_{1} \not \ldots \ldots a_{p} \cdot$ Then we may denote the matter happened on the way from γ_{i} to V_{j} as an essential modi-polynomial, called the cost polynorial fro: V_{1} to V_{j} :

$$
\vec{A}(t)=a_{0} t^{n} \oplus a_{1} t^{n-1_{4}} \oplus a_{2} t^{n-i_{2}} \oplus \cdots \oplus a_{p} t^{n-i_{p}}
$$

Suppose we have another cost polynomial for the other way from V_{f} to $v_{j}: \quad \vec{B}(t)=b_{0} t^{\eta} \oplus b_{1} t^{m-\mathcal{H}_{1} \oplus b_{2} t^{m-j_{2}} \oplus} . \oplus_{0} b_{s} t^{n-j_{5}}$
If the traveller likes to spend ($n-i$) days to complete the travel, then the least cost will be found in $\vec{A}(t) \oplus \vec{B}(t)$, the coefficient of t^{k} which is the nearest nonzero one before the term. If from V_{1} to V_{j}; we have $\vec{A}(t)$ and from V_{j} to V_{k}, we have $\vec{B}(t)$, then from v_{1} to V_{k} via v_{j}, the cost and time will be found in $\vec{A}(t) \oplus \vec{B}(t)$.

On a multistage directed graph, each link corresponds to a jar -metric taken from $\{S, \oplus, \otimes\}-\{\vec{P}(t), \oplus, \otimes\}$. Then we can find the jar-metric from the initial vertex to the final vertex by our jar-metric principle from which we can find out the ways to complete the path in prescribed time with least cost or prescribed cost with least time.

We call it the problem'finding optimum paths of all first N-order of second kine.
5. Semi-field R and Generalized optimizing operator

Suppose that there are 1 semi-fields

$$
\left\{s_{1}, \oplus_{1}, \otimes_{1}\right\} \quad(1=1,2, \ldots 1)
$$

and $R^{I}=S_{1} \times S_{2} \times \ldots S_{1}$ is the 1 dimensional direct product of S_{1}. Particulars, if $1=1$, we put $R^{1}=S_{1}$. We call

$$
a=\left[a_{1}, a_{2}, \ldots a_{1}\right] \quad\left(a_{1} \in S_{1}\right)
$$

to be a vector or an element of R^{l} and a_{i} to be the i-th component of the vector a . Of course, we may define operations between such vectors :
$a \oplus b=\left[a_{1}, a_{2}, \ldots a_{1}\right] \oplus\left[b_{1}, b_{2}, \ldots b_{1}\right]$

$$
\begin{aligned}
& =\left[a_{1} \oplus_{1} b_{1}, a_{2} \oplus_{2} b_{2}, \ldots a_{1} \oplus_{1} b_{1}\right] \\
a \otimes b & =\left[a_{1}, a_{2}, \ldots a_{1} \otimes_{[} b_{1}, b_{2}, \ldots b_{1}\right] \\
& \left.=a_{1} \otimes_{1} b_{1}, a_{2} \otimes_{2} b_{2}, \ldots a_{1} \otimes_{1} b_{1}\right]
\end{aligned}
$$

It is easy to verify that R^{l} is a semi-field with zero element $Z=$ $\left[z_{1}, z_{2}, \ldots z_{1}\right]$ where z_{1} is zero element of S_{1}. If in each sem 1field S, there exists identity element e_{1},then R^{1} has identity element $\Sigma=\left[e_{1}, e_{2}, \ldots e_{1}\right]$.

Generally speaking, even if all semi-field are strongly optimizing, the modi-sum of two vectors and b in $R^{1}(1 \nmid 1)$ is not necessarily. equal so a or b. If $a \oplus b \neq a$ or b, we say a and b to be incomparabile, and we -denote that by $a+b$.

From now , we shall confine ourselves to study our problems on strongly Optimizing seai-fields $S_{i}(1=1,2, \ldots, I)$.

Evidently , R^{1} is a generalized optimizing semi-field, and in R^{1}, we have

1) $a \preccurlyeq a$;
i1) if a$\} \mathrm{b}$ and b s a , then $\mathrm{a}=\mathrm{b}$;
iii) if $\mathrm{a} \preceq \mathrm{b}$ and $\mathrm{b} \downarrow \mathrm{c}$, then $\mathrm{a} \npreceq \mathrm{c}$;
if $a \prec b$ and $b \leqslant c$, then $a \prec c$.
In R^{1}, given a finite set Y of vectors:

$$
\begin{equation*}
Y=\{y(1) \mid i=1,2, \ldots n\} \tag{1}
\end{equation*}
$$

The family formed by all such sets like Y is denoted by SET.
In this and next section, we put that small latin letter, such as a, b, x, y, represent vector in R^{1}, and that small latin letter with subscript,such as a_{i}, a_{j}, always represents some component of the vector denoted by the same letter , such as a, b, and that capital letter such as A , B , always represent element (the finite sets of vectors) of SET.

Now we suppose that Y is a set in R^{l}, say , it is (1).
Definition i. If q in Y and there exist no such - vector x in Y that $x . \int q$ holds, we call q an extreme vector (point) in Y or non-worse element in Y. We denote Y^{*} the set formed by all such non-repeated extreme vectors in Y and call it the extreme set of Y,or the non -worse set of Y.
If $Y^{*} \cdot=, Y$, we call Y an elementary of SET.
If $I=1, S_{1}=R^{1}=\{S, \oplus, \otimes\}$, the extreme vector in $Y(\neq \phi)$ is its optimum element (1 dimensionel vector) and Y contains only one vector. In this case, the process from Y to Y^{*} is an optimization operation. If $1 \neq 1$, we can still consider this process which makes Y correspond to $Y *$ being an optimization operation. Thus the symbol is a kind of generalizer. optimizing operator.

Theorem 5. Suppose thatY is in SET,

1) if $Y \neq \varnothing$, then $Y^{*} \not \neq \varnothing$;
i1) if $|Y|=1$, then $Y^{*}=Y$;
iii) if eech two elements of Y are incomparable, then $Y^{*}=Y$;
iv) Y^{*} is unique;
v) $\left(Y^{*}\right)^{*}=Y^{*}$.

Proof. They come fron the definition directly.
In SET, two different elements may have the same non-worse elesent. In SET, each element Y corresponds to an unique elementary element Y^{*} All of those Y in SET which the same elementary element from a category . Then the set SET can be partitioned into several categories according to elementary element.

Theorem 6. To each Y in SET and any vector \bar{y} in R^{1}, the necessary and sufficient condition for existing such a w in Y that $w<\bar{y}$ holds, is that there exists such a in Y^{*} that $u\langle\overline{\mathrm{y}}$ holds.

Proof. Necessarity: If there exists such a w in Y that $w \prec \bar{y}$ holes then for w, Y^{*} contains a vector u which is either w itself or a vector, say u,better than $w: u \preccurlyeq w$. Therefore we have $u \prec \bar{y}$, ie., there exists such a vector $u{ }^{1}$, Y^{*} that $u\langle\overline{\mathrm{y}}$ holds.

Sufficiency: It is evident, if we notice that $X^{*} \subseteq Y$.
Corollary. For reach Y in SET and any \bar{y} in R^{1}, the necessary and sufficlient condition for existing no element in in Y^{*} such that $u \preccurlyeq \bar{y}$, is that there exists no such element w in Y that $w \preccurlyeq \bar{Y}$ holds.

Theorem 7. (Wu Cangpu) Floor Y in SET and \bar{Y} in R^{1}, if

$$
\begin{equation*}
Y_{y}=\{y \mid y \preccurlyeq \bar{y}, y \in Y\}, \tag{2}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left(Y_{\bar{y}}\right)^{*}=\left(Y^{*}\right) \bar{y} \tag{3}
\end{equation*}
$$

Proof. We discuss the situations first where some sets happen to be empty.

If $Y=\varnothing$, (3) is evidently true.
If $Y \notin \emptyset$ and $Y_{\bar{y}}=\phi$, then $\left(Y_{\bar{Y}}^{*}\right)=\varnothing$. On the other hand, we have $Y^{*} \subseteq Y$, so $\left(Y^{*}\right)_{\bar{y}} \subseteq Y_{\dot{Y}}$. Then $\left(Y^{*}\right)_{\bar{y}}=\phi$, and (3) is true.

If $Y^{*} \notin \emptyset \quad$ and $\left(Y^{*}\right) \bar{y}=\varnothing$, then there exists no element w in Y^{*} such that $* \mathcal{Y}$. By the corollary of theorem 2 , we have $Y_{\bar{y}}=\phi$. Thus $\left(X_{\bar{y}}\right)^{*}=\emptyset \quad$, so (3) holds also.
In short, if any of $Y, Y_{\bar{y}}$ and $\left(Y^{*}\right)$ y is empty, (3) is always true Now we suppose that the sets on both sides of (3) be nonempty. He prove $\left(Y_{\bar{y}}\right)^{*} S\left(Y^{*}\right)_{\bar{y}}$ first . Let a be in $\left(Y_{\bar{y}}\right)^{*}$. Then we have

$$
\begin{equation*}
q \ln Y_{Y} \tag{4}
\end{equation*}
$$

and there exists no element w in $Y{ }_{y}$ such that $w \prec q$. We assert that q is in Y^{*}. If not, by definition, there exists v in Y^{*}, such that $v\{q$. and by (2) we have $v<\bar{y}$. But it is impossible to have v in X_{y} and q in $\left(Y_{\bar{y}}\right)^{*} \therefore$ simultaneously. Thus q is in Y^{*}. Noticing (4), we have q in $\left(Y^{*}\right)_{g}$, then

$$
\left(x_{\bar{Y}}\right)^{*} \subseteq\left(x^{*}\right)_{\bar{y}}
$$

Next we prove $\left(Y^{*}\right)_{y} \subseteq\left(Y_{\bar{y}}\right)^{*}$. Let u be in $\left(Y^{*}\right){ }_{\bar{y}}$. We have $u \leqslant y$ and u in Y^{*}. Then there exists no such. ? element t in Y that $t \prec u$. Since $Y_{\bar{y}} \subset Y$, therefore there exists no t in Y^{*} that $t<u$.
holds . Hence we have

$$
\left(Y_{\bar{Y}}\right)^{*} \supseteq\left(\Psi^{*}\right)_{\tilde{Y}}
$$

Thus we have (3).

Theorem 8 (Xu Cangpu)[7]For each pair Y_{1} and Y_{2} in SET, we have

$$
\begin{equation*}
\left(Y_{1} \cup Y_{2}\right)^{*}=\left(Y_{1}^{*} \cup Y_{2}^{*}\right)^{*} \tag{5}
\end{equation*}
$$

Proof: If any - of Y_{1} and be Y_{2} empty, by theorem $4 \quad v$), (5) is evidently true.

Now we suppose that Y_{1} and Y_{2} be nonempty.
We prove first $\left(Y_{1} \cup Y_{2}\right)^{*} \varsigma\left(Y_{1}^{*} \cup Y_{2}^{*}\right)^{*}$. Let $q e\left(Y_{1} \cup Y_{2}\right)^{*}$.
 that $u \prec q, w i t h o u$, u generality, we might say q being in Y_{\uparrow}, thus there is no such u in Y_{1} that $u \nless q$. Therefore $q \in Y_{1}^{*} \subseteq Y_{1}^{*} \cup Y_{2}^{*}$. Since $Y_{1}^{*} \cup Y_{2}^{*} \subseteq Y_{1} \cup Y_{2}$, and there is no such u in $Y_{1}^{*} \cup Y_{2}^{*}$ that $\mathrm{u}<\mathrm{q}$.
Therefore q is in $\left(Y_{1}^{*} \cup Y_{2}^{*}\right)^{*}$. Thus we have

$$
\left(Y_{1} \cup Y_{2}\right)^{*} \subseteq\left(Y_{1}^{*} \cup Y_{2}^{*}\right)^{*} .
$$

Next we will prove $\left(\mathrm{Y}_{1}^{*} \cup \mathrm{Y}_{2}^{*}\right)^{*} \subseteq\left(\mathrm{Y}_{1} \cup Y_{2}\right)^{*}$. But this is evident since $Y_{1}^{*} \cup Y_{2}^{*} \subseteq Y_{1} \cup Y_{2}$. Thus we have (5)
Corollary For $Y_{1} \in \operatorname{SET}(1=1,2, \ldots$ II) , we have

$$
\left(\bigcup_{i=1}^{m} Y_{i}\right)^{*}=\left(\bigcup_{i=1}^{m} Y_{i}^{*}\right)^{*}
$$

Theorem 9. For YeSES and $y \in R$, if we write

$$
\begin{equation*}
Y^{\otimes y}=\{a \otimes y \mid a \in Y\} \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(Y^{\otimes y}\right)^{*}=\left(\left(Y^{*}\right)^{\otimes y}\right)^{*} \tag{7}
\end{equation*}
$$

Without any loss of generality, we my write
and let $\left.\quad \begin{array}{l}Y=\{y(1) \\ Y^{*}=\left\{y^{(1)} \quad 1=1,2, \ldots h\right.\end{array}\right\}$,
then

$$
\begin{equation*}
\left(Y^{*}\right)^{8 y}=\left\{y^{(1)} \text { by } \mid i=1,2, \ldots t\right\} \tag{8}
\end{equation*}
$$

If $Y=Y^{*},(7)$ is certainly true. If $Y \not Y^{*}$, we have $t<h$ and $Y \backslash Y^{*}$ $=\left\{y^{(i)} \mid 1=t+1, \ldots h\right\}$. To each vector $y^{(s)}(t<s \leq h)$ there always exists such a vector $y(k)$ in $Y^{*}(1 \leqslant k<t)$ that $y(k)_{\alpha}^{\text {there }}{ }^{(s)}$. $y^{(k)}$ can be zero element. Then, by our assumption, the given semi-fields s_{1} are strongly optimum therefore we have

$$
y^{(k)} \otimes y<y^{(s)} \otimes y
$$

so in $Y^{\otimes y}, y^{(s)} \otimes(t<s \leq h)$ will not be in $\left(Y^{\otimes y}\right)^{*}$.
Therefore we have (7).

5.Semi-field PARETO and Multi -objective far -metric principle

In the last section, we denote the family of all finite subset in R^{2} by SET , To each Y. SET, there corresponds an elementary element Y. . Hie denote the family formed by all of those elementary elements by plorio. Non let us define modi-addition or it. For i, S, C in Pinto,

$$
A \cdot B=\{A \cup B\}^{*}
$$

The law of commutativity evidently holds true :

$$
A \oplus B=B \oplus A
$$

Since we have

$$
\begin{array}{rlrl}
(A \oplus B) \oplus C & \left.=(A \cup B)^{*} \oplus C=(A \cup B)^{*} \cup C\right)^{*} \\
& =\left(\left((A \cup B)^{*} \cup C^{*}\right)^{*}\right. & (\text { theorem } 8) \\
& =\left((A \cup B)^{*} \cup C^{*}\right)^{*} & & (\text { theorem } 5 \mathrm{v})) \\
& =((A \cup B) \cup C & & (\text { (theorem } 8)
\end{array}
$$

and similarly, we have

$$
A \oplus(B \oplus C)=(A \cup B \cup C)^{*}
$$

Therefore the law of associativity holds :

$$
(A \oplus B) \oplus C=A \oplus(B \oplus C .)
$$

We define modi-multiplication on PARETO as follows : for
and define

For brevity ; Writ write

$$
A \otimes B=\left\{U_{1, j=1} a b^{(j)}\right\}^{*}
$$

For brevity , we write
$\because A \otimes B=A \otimes B$

Since we have

$(A \otimes B) \otimes C-\left\{\prod_{S=1} \quad(A \otimes B)^{\otimes C^{(s)}}\right\}^{*}$
$=\left\{\int_{8=1}^{\infty}\left((A \otimes B)^{\otimes C(s)}\right)^{*}\right\}^{*} \quad$ (theorem B)
$=\left\{\bigcup_{s=1}^{m}\left\{\left(\left\{\bigcup_{1 ; j=1}^{n, k} a^{(1)} \otimes b^{(j)}\right\}^{*}\right) \otimes c^{(k)}\right\}^{*}\right\}^{*}$
$=\left\{\bigcup_{s=1}^{m}\left\{\int_{1, j,=1}^{h, k,} a^{(1)} \otimes b^{(j)} \otimes c^{(k)}\right\}^{*}\right\}^{*}$
$=\left\{\bigcup_{a 1}^{W}\left\{\bigcup_{i, j=1}^{n, k} \quad(1) b^{(j)} \otimes c^{i s}\right\}^{*}\right\}^{*}$

$$
\begin{aligned}
& \begin{array}{l}
A=\left\{a^{(1)} 1 \quad 1=1,2, \ldots{ }^{n}\right\} \\
B=\left\{b^{(j)} \mid j=1,2, \ldots k\right\} \quad C=\left\{c^{(s)} \mid s=1,2, \ldots \ldots\right\}
\end{array} \\
& A \otimes B=\left\{a^{(1)} \otimes b^{(j)} i_{1}=1, \ldots n ; J=1, \ldots k\right\}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\bigcup_{s=1}^{m}\left(\bigcup_{i, j=1}^{h, k} a^{(1)} b^{(j)} \otimes c^{(s)}\right)\right\}^{*} \\
& =\left\{\begin{array}{l}
h, k, m \\
\left.U_{1, j, s=1} a^{(1)} \otimes b^{(j)} \otimes c^{(s)}\right\}^{*}
\end{array}\right.
\end{aligned}
$$

He can check easily that $A \otimes(B \otimes C)$ has the same result . Therefore the law of associativity holds :

$$
(\mathrm{A} \otimes \mathrm{~B}) \otimes \mathrm{C}=\mathrm{A} \otimes(\mathrm{~B} \otimes \mathrm{C})
$$

The law of distrutivity holds true also :

$$
(A \oplus B) \otimes C=(A \cup B)^{*} \otimes C
$$

$$
=\left\{\bigcup_{s=1}^{m}\left((A \cup B)^{*}\right) \otimes c^{(s)}\right\}^{*}
$$

$$
=\left\{\bigcup_{s=1}^{m}\left(\left((\operatorname{AUB})^{(s)}\right)^{*}\right\}^{*}\right.
$$

$$
=\left\{\bigcup_{s=1}^{m}\left((A \cup B)^{\otimes e^{(S)}}\right)^{*}\right\}^{*}
$$

$$
=\left\{\cup^{m}(A \cup B)\left(\mathcal{L} C^{(S)}\right\}^{*}\right.
$$

$$
s=1
$$

$$
\left.=\left\{\bigcup_{s=1}^{m} A^{\otimes} C^{(s)} \cup \bigcup_{s=1}^{m} B C^{(s)}\right)\right\}^{*}
$$

$$
=\left\{\left(\cup_{s=1}^{m} A \otimes C^{(s)}\right)^{n} \cup\left(U_{s=1}^{m} B C^{(s)}\right)^{*}\right\}^{*}
$$

$$
=\{(A \otimes C) \cup(B \otimes C)\}^{*}
$$

$$
=\Lambda \otimes \mathrm{C} \oplus \mathrm{~B} \otimes \mathrm{C}
$$

and finally,$E=\{e\}=\left\{\left[e_{1}, e_{2}, \ldots e_{1}\right\}\right.$ and $z=\{z\}=\left\{\left[z_{1}, z_{2}, \ldots z_{1}\right]\right\}$ are identity and zero element in PARERO.

What's more , we have

$$
\begin{aligned}
& (A \oplus B) \oplus A=A \oplus B \\
& (A \oplus B) \oplus B=A \oplus B
\end{aligned}
$$

Thus we have
Theorem 10 . For A, B, C being in PARETO , we define
$A \oplus B=\{A \cup B\}^{*}$
$A \otimes B=\left\{\begin{array}{l}h, k \\ 1, j=1\end{array} a^{(i)} \otimes b^{(j)}\right\}^{*}$
then PARETO is generalized optimizing sem-field with identity. And we also have
Kulti-obiective far-metric.princiole. On a multistage directed graph, to each link, there corresponds a jar -metric an element taken. from the semi-field FARETO.
Then the jer-metric from a start vertex to an end vertex in the graph will be the modi-sum of all modi-product of those jar-metrics from the start ver, tex to all vertices on a certain middle state and these from the vertices mentioned to the end vertex. And this modi-sum is indepencent of all those states before the start vertex and after the end vertex.

If Y is in . SET and q is in Y, then there exists no such a vector \ddot{o} that $w<q$. Now, we say q is a Pareto solution of Y. Then ,on a multistage directed graph, the modi-sun of jar-metrics of all the path from initial vertex to final vertex is a set of all Pareto solutionsfrom initial vertex to final vertex of the graph. And we can calculate then by the multiobjective jar-metric principle.

Example 5. The multistage directed graph is the iollowing \%ouppose that $S_{1}=S_{2}=S_{3}=\{\bar{R}, \Lambda,+\}$. The jar-metric of each link be denoted on the graph. Find the set of Pareto solution from A to D.

Solution. We can consider the jar-metric on each link being taken from the semi-field PARETO of 3 dimension. Then we have

Then we do
$\operatorname{STAGE}(\mathrm{A}, \mathrm{C})=\operatorname{STAGE}(\mathrm{A}, \mathrm{B}) \otimes \operatorname{STAGE}(\mathrm{B}, \mathrm{C})$
Since the jar-metric from A to C_{1} equals
$\left[\begin{array}{lll}3 & 1 & 4\end{array}\right] \otimes\left[\begin{array}{lll}2 & 1 & 5\end{array}\right] \oplus\left[\begin{array}{lll}4 & 3 & 3\end{array}\right] \otimes\left[\begin{array}{lll}0 & 1 & 3\end{array}\right]$
$\oplus\left[\begin{array}{lll}6 & 2 & 1\end{array}\right] \otimes\left[\begin{array}{lll}6 & 4 & 7\end{array}\right]$
$=\left[\begin{array}{lll}5 & 2 & 9\end{array}\right] \oplus\left[\begin{array}{lll}4 & 4 & 6\end{array}\right] \oplus\left[\begin{array}{lll}12 & 6 & 8\end{array}\right]$
$=\left\{\left[\begin{array}{lll}5 & 2 & 9\end{array}\right] / B_{1},\left[\begin{array}{lll}4 & 4 & 6\end{array}\right] / B_{2}\right\}$
and that from A to C_{2} is
$\left[\begin{array}{lll}3 & 1 & 4\end{array}\right] \otimes\left[\begin{array}{lll}3 & 3 & 2\end{array}\right] \oplus\left[\begin{array}{lll}4 & 3 & 3\end{array}\right] \otimes\left[\begin{array}{lll}1 & 0 & 3\end{array}\right]$
$\oplus\left[\begin{array}{lll}6 & 2 & 1\end{array}\right] \otimes\left[\begin{array}{lll}8 & 1 & 7\end{array}\right]$
$=\left[\begin{array}{lll}6 & 4 & 6\end{array}\right] \oplus\left[\begin{array}{ccc}5 & 3 & 6\end{array}\right] \oplus\left[\begin{array}{lll}14 & 3 & 8\end{array}\right]$
$=\left\{\left[\begin{array}{lll}5 & 3 & 6\end{array}\right] / B_{2}\right\}$
so $\operatorname{STAGE}(A, C)=A \quad\left\{\left\{\left[\begin{array}{lll}5 & 2 & 9\end{array}\right] / B_{1}, C_{1}\left[\begin{array}{lll}4 & 4 & 6\end{array}\right] / B_{2}\right\}\right.$
$\left.\left\{\left[\begin{array}{lll}5 & 3^{C_{2}} 6\end{array}\right] / B_{2}\right\}\right]$
$\operatorname{STAGE}(A \cdot D)=\operatorname{STAGE}(A, C)(2) \operatorname{STAGE}(C, D)$
from\to from ito D
$\left.=A \quad\left[\begin{array}{lll}5 & 2 & 9\end{array}\right],\left[\begin{array}{lll}4 & 4 & 6\end{array}\right]\left[\begin{array}{lll}5 & 3 & 6\end{array}\right] \otimes \otimes \begin{array}{lll}C_{1}\end{array}\left[\begin{array}{lll}{\left[\begin{array}{lll}6 & 0 & 4\end{array}\right]} \\ C_{2} & 0 & 4\end{array}\right]\right]$

$$
\begin{aligned}
& \text { from } \backslash \text { to } \\
& \text { D } \\
& \text { A. }\left[\left\{\left[\begin{array}{lll}
11 & 2 & 13
\end{array}\right] / C_{1},\left[\begin{array}{lll}
10 & 4 & 10
\end{array}\right] / c_{1}\left[\begin{array}{lll}
7 & 3 & 10
\end{array}\right] / c_{2}\right\}^{*}\right] \\
& \text { from } \backslash \text { to } D \\
& \text { A }\left[\left\{\left[\begin{array}{lll}
11 & 2 & 13
\end{array}\right] \mathrm{C}_{1},\left[\begin{array}{lll}
7 & 3 & 10
\end{array}\right] / \mathrm{c}_{2}\right\}\right]
\end{aligned}
$$

Therefore the Pareto solution are
$y^{(1)}=\left[\begin{array}{lll}11 & 2 & 13\end{array}\right] ; y^{(2)}=\left[\begin{array}{lll}7 & 3 & 10\end{array}\right]$
and the related paths are $A B_{1} C_{1} D$ and $A B_{2} C_{2} D$.

References
[1] Dreyfus, S.E. and Lew ,A.M., The Art and Theory of Dynamic Programming, Academik Press, 1977.
[2] Qin Yuyuan , On Jar -metric Principle.Science Exploration, (I) 1(1981)
59-76; (II) 3(1981) 101-108; (III) 1(1984) 91-102 i (IV) 1 (1985) 53-64 (Chinese).
[3] Qin Yuyuan , Modi-matrix and Shortest Path Problem,Jou. of Huhan Iron and Steel University, 2(1979) 1-21 (Chinese).
[4] Wu Xuemou , Pansystems Metodology : Concepts,Theorems and Applicetions (IV) . Science Exploratin, 1 (1984) 107-116.
[5] Qin Guoguang, Some Applications of Pangraph and Pansystem Operation Projection Principle to Karkov Process and Optimization Problems , Science Exploratin , 3(1981) 55-62 (Chinese).
[6]. Shier.D.R., Iterative Methods for Determining the k Shortest Path in a Network,Networks ; 6 (1976) 205-230.
[7] Wu Canpu ; On Multiobjective Dynamic Programming ,Scientia Sinica, 4(1980) 388- 395 (Chinese)!
[8] Qin Yuyuan Algoritmus on Optimal Path Problems, Science Exploration, 4(1981) 61-94 (Chinese).

Recenzent: Doc.dr h.inz. Jerzy Klamka
Wplynęzo do Redakcji do 1986.04. 30
 НОГО ІІТИ: В ПАПРАВПЕННОМ ІРАФЕ

P•8 8 ํ

В работе предотавлен повни оритнвлвнй метод определенвя оптвмалвно-

 с отдельнмн рйорамі направленного графа. Іля определения метринп типа
 семи-поля, модд-действия а тагхе модғ-матркдд.

 такхе дли определения оптвядной дороги для всего графа. Детално огово-

Необходнио подчерннуть, что представленния в работе цетод , основап-

 сов. В работе првводятая меогочислевяые прмеры хорошо илпострпруощде представлєвнве теоремд у определенвл. Прииеры эти способствуот правдиному по-

O ZASADACH METRYKI "JAR" - ZUNIFIKONANE PODEJSCIE DO ROZTIAZYTANIA PROBEEKOTM POSZUKIWANIA OPTYMALNEJ SCIESKI NA WIELOETAPOTYCA GRAFACH SKLEROTATYCH

Streszczenie

TH pracy przedstawiono nowa, oryginalna metode wyznaczania optycanej drogi w grefie skierowanym, która może bye wjorzystywana do optymalizacji wieloetaporych procesóm dyskretnych. Metoda ta oparta jest na sformuzowanej w artykule "zasadzie metryki typu jar". Termin "jar" oznacza 7 języku. chifskim pojemnik atosowany powszechnie w Chinach okozo 2000 lat temu. W pracy termin ten stosowany jest jako abstrakcyjna miara zwiazana z poszczegblnymi krawędziami grafu skierowanego. W celu zdefiniowania metry: ${ }^{\circ}$ typu jar; wpz owadzono wiele pojecc z dziedziny algebry abstrakcyjned takic jak: semi-pola, modi-działanie oraz modi-macierze.
zasada metryki typu jar wykorzystywana jest w pracy do wyznaczania optymalnej drogi pomiędzy dmoma wybranymi mierzcholkami grafu skierowanego. jak rownież do wyznaczania optymalnej drogi w calym grafie. Szeroko dyskutowane:sa mzajemne relacje pomiędzy znanq z literatury zasada opijmelnosci Bellmana a wprowadzona przez Autora zasada metryki typu jar. Przedstawiono zabadnicze róznice pomiędzy nimi a takice przypadki, w ktorych obie te zesedy sa sobie romowatne.

[^0]: J/Jarmetric is a transilteration from the Chinese term 羔 The term originality means a kina of standard containers used $1 \frac{1}{n}$ the han Dynasty about two thousend years ago.
 The reproducts are still exhibited in the Palace Museum in Beijing, China. We interpret it as an abstract measure in our theory.

