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iON JAR-METRIC PRINCIPLE
A UNIFIED APPROARCH TO SOLVE OPTIMUM PATHS
PROBLEMS ON MULTISTAGE DIRECTED GRAPH

Streszczenie.ln dynamic programming,it is well know)that there are

some drawbacks in Bellman’s ?rinciple of optimality,that there exist
some gaps between the principle and related- : functional equa-
tions ,and also that the computation for solving.the problems of finite
type is tedious and lack of mathematical beauty. In this paper we are
1)to give a mathematic system -Semi-field - and a computational, tool -
modi-matrix;2)to consider a multistage directed graph on which each li-
nk corresponds to an element of a semi -field .called jar-metric of the
link;to introduce +two concepts:the optimum path from initial vertex to
final one and optimum path of the graph; and to discuss .their relation-.
ship;3)to set up jar-metric principle which is. somewhat like Bellman’s
principle of optimality of finite type ; to give related computational
formula which is equivalent to_jar-metric principle;4)to solve optimum
path*problem on_the graph mentioned above by .jar-metric principle,, to.
give an algebraic formula;and. from which,to point out that,from compute
tional point viev.T,the forward process is not necessarily equivalent to~
the backward one .5)to solve two kinds of optimum path problems, of N-th
order in 3 and 4 to solve multi-object optimum ﬁath problem in 5 and

6 by jar-metric principle. Thus we can use our theory to solve all pro-
blems of finite type.which can be solved by dynamic programming.But the
basic, of our theory will be firmer than that of Bellman’s.And basic con- -
cept is geometric instead of dynamic. Some of algorithms in this paper
might be knownbut they were not put into a unified fashion. Most materi-
al in this paper appeared in"the papers;. On Jar - metric Principle(l) ,
an,arn,av) which are written in Chinese.

1.Semi-field and modi-matrix =
Definition 1. jA Semi-field is a triple {S ,0 ,®j where S is a
set with two operations:mpdi-addition® and modi-multiplication ® satis-
fying" law/s of commutativity,associativity and distributivity and there ex-
ists .a"zero element z in S.
"Definition 2. A semi-field with Identity e is called to be optimizing
if there is. cFinite element In S and if a and b are in S,we have

a©b aorb -
In, an optimizing semi-field ,if a® b » a we say that a is notworse than
b .denoted by a«b . If a®© b=aand Kb ,we say a is better than b .-
or b is worse than a,denoted by akb. . If ake , a is called a yin eleme-
nt, ifaye , a is called ayang element” ,ahd e ltself mthe neutral® ele-
ment.Evidently, in an optimizing semi- field , S is a totally orders! st
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« Theorem 1 In-an optimizing semi-field[s , © ,® J , we have

.Dif a4b ,and b4 a, then . a=b ;

inDif. a$b ,and. b4 c, then- ac; m
iin)if a<b , ad c4d , then a© c4boOdnm.
iv ) if b,then a® c4b®c ; =

v) 1f a<b and c4d»then a® c4bod ;

vi) If a”b then for any non-negative, integer k , akdbk;

vi). &k =¢e ;

viii)if a is "ayang(yin,neutral) element,then,for any positive k ,
ak is a yang (yin,neutral) element - '

iX) if k is a positive integer ,then ka =a .;

x) if for every "1 ,Pjand g~are both equal tozero element, or both
;positive .integers not necessary equal ,then-

" mk k
.2 - 1 * * T3
izo Pi @ B 9 7 @

where H means modi-addition.

Proof. By direct computation and matematical-induction.

Definition 3. A-semi-field is called to-be strongly optimizing if
it is, optimizing and if a®© b &b and c W 2,we always have a@ b©
b<&Sc&«b® c .

Definition 4. A semi-field is called to be generalized optimizing
if ,for a ,bin S,

(a®0b)©a«xaOb,

@ ©b)Ob=a® b,,
here a© b will not be necessary .4equal toa or b.
Thus in. a generalized optimizing semi-field ,for a and b being IinS ,
we have a@ b4 aand aSb4db . For a semi-field to be generalized opti-
mizing,the necessary and suficient condition is that for all a in S,

a@ a*a "

In the generalized optimizing semi-field [s , © ,®] , if there is an
element h whiifc is notworse than a and b ,that is to say ., a® h =h >
and b ® h « h ;,then h is also nd worse than a © b , because

(a®b M0 h«a® (b® h )«a®©h *h.
Hence a© b Is the worst element among all those elements not worse than a
ana b.

*/Yin and yang are the alphabetic writing of two Chinese terms /i
and ,borrowed from Chinese traditional YIn-yang analysis in an ancient
oook written by Haozi about.more than two thousand years ago.Generally
speaking,these two terms mean the"two sides of any antitheses, such as .
pcciti »e- and negative,good and bad,man and woman,sun and moon,and all
such  tidings.
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mO b may be called the worst optimal bound of a and b . It is easy to

generalize this assertion to anyset with finite elements in the generalized
. optimizing semi-field.

It Is evident that a generalized optimizing-semi-field is a partially

ordered set.

Now let us definite the concept of modl-matrix.

Let X 2k R xm]ANA@ Y ={¥1 * Y2 * ** yrbbe two Siven sets
a (i=1,2, ... d ; ¢=1,2, ... n ) are elements taken from

a semii—*ield {s ,0 , .
An array. A with, m rows and n colums

yi  y2 ..---- Yl

X a a
1 1 12 mln
X2 a2l a2 -
: eoce LX)
xm al am2 7 **" mnJd

or Aex [a 1] orA =a 1

1 id id
is called a m x n modi-matrix over |s ,©0,®J where x , X , X is.

27 H "
palled row margin ,X the row set , v t y , ... y the column margin

and Y the column set.
This array determines such a correspondence that from row x» to column y»
there corresponds an element a or there is a weight- from x toy

Two modl-matrices A and E over'dthe same semi-Field are equal'if thgy have tre
same row margin”~G”me column margin and same correspondence.
If there is no ambiguity ,we may write the modi -matrix without writing out
the row margin and column margin.
\ie define modi-addition © and modi-multipllcatlon ® betweenmodi-matrices in tt
same at5 >ttie “De"fv;een ordinary matrices. It is easy to prove that commuta-
tive and associative lav's of modi -addition,associative law of modi-multi-
plication and distributive Bb," among modi-matrices hold true.
In paper [8].,we develope the concept of modi-matrix in more general form
but it will not be used in this paper.
2. Jar -metric principle
Let G be a direct simple graph with following special properties.
The vertex set V can be partitioned into n + 1 subsets

vV = v,

i=0
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vih = {vimkp =1 ,2, ....tj ,
Ivhv = .t o, 1=0,1, ... n
where V" “is called the i-th state of G and V is called the vertex

in the i-th state ,and each link (directed edge) on G has the property
that if it initiats from some vertex, inV (1_I)(thenlt mustterminate at

some vertex in VA.For example ,we have a link an xn
il EARV. VR o o

is calledHhe initial state ,V*"~the final state.li t =1 and
t= 1,we Usually write V ~ ={Vv0 } "V ~ { and call vc/°®
and ven> initial and final vertices respectively.If tQ™ 1 or 1, we
may write.v(02 {"VvV~ = 1,2, e o S AI2{ve)|
=1,2, , tn}. . n
The subgraph induced by vertex subset V Vv is called the i -th

stage of grgh”™,. Thus our G may be called the directed simple graph of n

stages or the_n (multi -)stage directed (simple)graph. ) B
..fAowv,to each link on G,thére corresponds to an .element of.a given semi -

-fields {s,>
For. explicity _,the element corresponding to-the link ~ may be
denoted by J ( <) ,called the jar-metric of the link? The

multistage "'directed graph in which each link has a jar-metric Is called
the jared .graph,denoted by G[O , n] .Here ,we mainly discuss the jared graph
with tQ».tn» 1 ,if it is not stated explicitly.

On the. jared graph ,if there is no link from ANNMo VWK ™we may  Imagi-
ne that it does have a link from V~to Yv»Ddt its Jar“nlatric
3 (N equals zero element z of semi-field JS , Q .G}~

Then the 1 -th stage can be represented by a X N modi-matrix
denoted by STAGE (y(i“1),’v (i) ) or STAGE (i)

from\ to .- i
STAGE(1) =V.MD[JI ( j 1 = - 0)
If £~ 1 =1, @ ) -will be a ron. modi-vector ,and if t8 = 1., a column
imodindfector. In-the t™ ™ x tj.modi -matrix,the «\-th row Is denoted by
SI*™ O the P-th column by(STAGE (i) ),
+

_Jar-metric _is a transliteration from the Chinese term % _
ie term originally means a kind of standard containers used in the Han

Dynasty about two thousend years ago. ) )
The reproducts are still exhibited in the Palace Museum in Beijing,China.

We interpret it as an abstract measure in our theory.
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We define the Jar-metric f r o m t o VAI+1N via , denoted by
JCVr-D , vii-} , VPi+D;ftObe
J Cw@n , vint L,v<I+D) ) = §J( v*1* )@ J (viiv*"

and the jar-metric from V™ i_17to VA i+l ~denoted by J ¢ i_1DWI+1Mto

be J (vii_l) , ,i+l) ) »E lJ (vj;1-1), . N+ W

-S J (C vilLl) «v>5-) (vj”™ ,W(+l))=

y**4 = (STAGE (i))* ® (STAGE(i + )*
We have
JHJOCVL D), v +DTFVv(+2)) - ¢ +LIVL ~ D),vy + 1))g>I(v<i+l>,vi+2)
P= 1 v et
¢ +1( 22 J(vhiil) . vils )eJ;(viiv/+Hw j  ( vJi+2))
g4 Ax ) ; ‘
: ti: . W vyy.v :;;;V,y T " > 19 VvC3)-
T dE J ( v1-1), Vu*. LV, (i+2))=2fj( V*12)® J( V*1*, vjl+2)j
;o ﬁ [ | ti+i
H j (vr"D ,vi® )O(E. IV (D»VA+INI (;YGHIM  1+2)
. >< PH r '—:‘:'- -_o VA oA
V L. L (4

and by the operation laws on the semi-filed ,the right hand sides of (3)
and (4) are egual,We define the result to be the Jar-metric from

toV >2> . 4
J ( VvEl-1l) , VvHI+2)) = X,J ( V( v(i+2) )-
; =2 J( y<i+2>
»(STAGE(i)"® STAGE(i+1) ® (STAGE (1+2))"

If tb . trl =1 , the jar—metrig/from ~/P ~to vln" can be defined in the
similar way and be obtained by "following formula

J ( vVE°V Vjn) ) =TT STAGE O ®)
- i-1 -

;IF T ,or 4 1 ,we still have a formula in the same form

Jv@OvV V(@) ) =Tr STAGE (O 1
- S 1=1. .-
but this result is not an element but just a t" X th modi —matrix, ihis
Is called the jar-metric of, the Jared gf-aph.We sometimes call the modl-sum
of all elements of.the modi-matrix J ( vP°" ,Vv"n)) to be the total jar-
emetric of thé jared graph G.
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On the directed subgraph induced by vertex subset {v/-1",V~" .

V@a+l) , ... v&D , VIO 1 th1 ,k»i+1.,1 we
have J (Vf~I\ VK )
= (STAGE(i)1© V  STAGE (gXg) ( STAGE(K)T (©)
- j=i*l
If we fix an integer s (1 --1< s Kk , by the associative law of modi-

multiplication,we have

J ( V&*D) , VvEk) Y=£ J( vji_l) , v<s) (Vrs) \VK))
- n . (&>
IfV i_1? is called the start vertex of the induced graph and V[k~the end

vertex of it,we can express IB) -In words:
. Jar-metricjDrincifle:_On a multistage directed graph: with oar-metric,

the Jar metric from any start vertex to any end vertex equals the modi-sum
of all modi-products of the jar-metric from the start vertex to all those
vertices, of some middle state and that from those vertices of the middle
state mentioned to the end vertex.This result is independent of all those
states before the start vertex and after the end vertex.
As special cases,the start vertex may be the Initial vertex of the jared
graph,the end vertex.may be the final vertex ,and the middle state may be
Just next to the state thet the start vertex belongs-to or just before the one
the end vertex belongs to.

Jar-metric principle is a very simple and intuitive one, it is just
a kind.of statement of the associative law of modi-multiplication of some
mmodi-matrices.

If we develope the result on right hand side of (6),we have

J C )=
-3 WOTE v S AL V()0 ..gI(P Y hY)
J( VA=1D , vEn) ) ©

where under the modi-addition symbolf we refer to all possible combinations
X , 0 5 --- where 12N ij-t) ( 3=1»210 mees» n-1)* .
Geometrically,if we define the Jar-metric of a path to be the modi-product

of jar-metrics of all links on the path. Then the result on (9) equals the
modi-sum of Jar-metrics of all oath from initial verte§i J)'o final vertex.

Of course,here ,if there is no link from it0 V ,
that is to say ,J (N k-1~ , k® ) = z, then the jar-metric of each path
which passes through *Nk~” and will be zero element. "

We call - e Jar-metric- J ( ) the jar metric from the
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Initial vertex on the graph-G,that is the modi-sum. of Jar-metric of all
paths from initial to final vertex.

Example 1 _FIn™~the shortest path(s) from A to F its length on the
following graph.

Solution; We can solve the problem by finding the jar-metric taken
from the semi-field {r , A , +} the related path(s) in the graph. Let
.us write down the modi-raatrices of stages

fromNto B,,
STAGE (A,B )= A C 4

from\to C

-B1
B,
STAGE (A.B) m B

B,.
from\ to d3 V
C. 6

STAGE(C,D) 0 5 9 .

from\ to
STAGE(D,E)

from \ to
. STAGE (E,P).

Now we define
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«STAGE (A, B)© STAGE (B , C )"E£ STAGE (A ,B ,C ,) = STAGE (& .C)
STAGE (A, B) gi STAGE ((B, C )© STAGE (C ,.Dy) "
SSTAGE (A ,B.C, D,)=STAGE (A ,D)

and-so on. We have e from\to r r
Ul 2
STAGE m (A ,C H)*A - B B
- from\tp °"SD, -d2 D5, Ph b5
(A,D ) m> A "12 g9 -aite 14
- - 7= C C c c c
2 w1 "2 1 2

Here,we have made two.convertions.The.first is that all elements which ought
to be written but not writtenout are the ¢s in"the semi-field |r,A , +}
—® the positive infinity,The second is that the vertex under a number
divided by a short line is the one where the shortest path passes through.
For "example ,on STAGE ,(A,C)we can read the paths from A to C2 via dr

, are the shortest among allm( four ) possible paths from A to C2 ,"and
the"lenght will"be 9; Again ,on STAGE (A, D) ,we can read that the path
from a"to via Cle"is the shortest with the lenght 1A. e~
As for the shortest path from A toCy ,we can look.at STAGE (A ,C ) and
find that it.must pass through vertex Similaii/ we have

-froayto ¢4

STAGE( A,E ) » A 12 15_'16 1"
BD,D,DJ.
i3
fromVto
STAGE (A,F )« A

m

Therefore the, shortest length from A" to F is 14 and the shortest path can
be found out*from STAGE (A, F)," STAGE (A,E) ,STAGE (A,D) and"STAGE(A,C )
Successively ,we have
®3
mA m[C2 D5 E1 F]
3a
Hence we have two shortest paths with the length ™j4.

Example 2« A reconnaissance plane is going to carry out a bomb task
fromaﬁs base A.to the object -5 his enemy district,. All possible flying
paths indicated in the following graph,The figure on each link represents
the probability® in fevmr that -the plane’passes, through the-link.

Find the fawirest path, from A to B and "its probability in"favwr.
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0,9¢ 0,93
yFi*>
. oo
AN s i 090% w7/
AAOI-—————— 7 h« 7"<
81 - AT |
B oF: = S \s "0.9%E 0.98 '' -
~Oo1 12
s |
s 0- 8]
! 3 ?
cor O AT s . a?9 33

Solution. This graphgcan be co
along dotted lines. Thus the probab

nsidered -£raph of 6 stages If we look
ility in favour that the plane, flying al-

ong the path will be the product of all those of each link on the path.And

the path with the greatest probabil
problem will be to find the jar-met
where 1 =[0, 1] . Now we write down

ity will be the fawurest oneiThus our
ric of the graph on the semi-fieldjl,A,Xj
the modi -matrices of the stages

fromNto A10 AL .
STAGE (O & A (3.9 0.9GJ
from\to A20 A1l A2
STAGE (@ Alq [0.97 0.95
TAGE &
AOL m 0.97  0.96,
from\to o A2l  ALl2 AQ3
_A20 *0.92 0.92
STACE (3®) = Ag—; 0-96 8:857) 0.99
from\to A3l A2 A13
A30 0.89
STAGE (4) a A2z 0.87 0.91 0.8
A12 0.96 .
AO3 0-96
from\to 3P o3
A3l 0.85
STAGE (5) A22 0.88 0.93
A13 0.92
from\to B
STAGE (6) A2 0.80
a23 0.79

In calculating ,we will take four places after decimal point iIn order to
distinguish which is the better one.Then we have
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from\ to 20 "1 02
STAGE (1,2 ) 0.9603 0.9506 0.9408
"10 m AOL A0l
m XromxXto A30 s A Al2 . 03
(_).883|_§ 0.9126 0.9221 0.9514
SIMGE(, 2,)=A - A" a A
20 1 11 . 02
fromXto o A2 «13
0.7940 m:0.8852 0.9036
5TAGE(1,4)=A
. 21 al2 . A2
N\
fronNto  AN2 A23
0.7790 0.8313
STAGE(1,5)=A
A13
-from\to B
and .
STAGE (1,6 ) 0.6567
s i A23
thus the favwrest path for the plane will be
A Agi All al2 a-,3; A23 B .. ) ‘

and its probability in Xawrar is 0.6567.

We"can use the jar-metric principle to calculate .jar-metric of the optimum
path on jared graph on different optimizing semi-fields.-But the result Will
have some differences between those on optimizing semi-field and strongly
optimizing one, n
Suppose we have a multistage directed graph G. From initial vertex VA "to
final vertex VY  there are. several paths.lLet

v(0) 0) \_/§-2) ()

w1 2. \ (10)

be any of them,and
HSORY w0 . P VR LY (11

be a fixed one.Besides the.concept of the optimum path from® vjO) "to v<n>
on G, we introduce

Definition 5. IF.L (O,n) is an optimum path from /(0 to V*and if any
—isubpath ,say L (h,k), i . e,, a subpath from VAk) to v£k)on L (O,n).
is an optimum path ire* to V~onthe induced subgraph [g h.iyk,~"]

of G ,then we say L (0,n) is the optimum path of G.
There is @ bit but quite important difference between the definition and
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everyday experience.Let us see the following example.

mBample”™ 3.. On a 3-stage directed graph G,according to the following
rules,discuss the shortest path from A to F and those of graph G respecti-
vely.

i) if length of a pethds the sua of lengths of all links on it ;

ii)- if length of a path equals the maximum length among those of all

. links on it;

iii) if length of a path equals the sum of length of all links on it taken
mod 4,

sBSolutions, 1) There are four paths from A to F.The length of the path
ABCF is 6 and no one of the others is shorter than it,so it is the srot
est path from A to F. And what is more ,we canprove without difficulty
that any subpath of the path ABCF is the shortest on the corresponding in-
duced graph.Hence the path ABCF is the shortest of graph C also .

ii) The langth of the path ABEF is 4. It Is the shortest path fic."

A to F because the length of any other path will not be shorter than it.

But. the subpath BSF on the corresponding induced subgraph is r.ot the shortest
frco B to F. Therefore ,the path ABEF is not" the shortest .path cf graph G.
But the path ABCF is really the shortest path of the graph 0. CF course.it
is the shortest one from A to F also,

iii)The length of the path ABEF equals O (=4 + i+ 3 = 0.mod 4).

This path is the shortest from A to F,but its subpath ABE is not the short-
est on the corresponding induced graph.Actually,according to our rule _there
exists no shortest path of the graph G, ///

As discussed above,according to our definition ,or..a multistage directed
graph.it does not necessarily have optimum path of the graph.And ,even if .
there is an optimum from initial "vertex to final vertex,it, needs not be "tie
optimum.path of the graph.

Theorem 5« 1 ) On a multistage directed graph G, the Jar-metricof
each link taken from ar opt mizing semi-field. If L(O,n)is an gotiau:.".path
from initial vertex to final vertex,then its jar-metric equals J(
which can be computed by (6).

ii) On a multistage directed graph ,if the jar-metric, of each link is
taken from a strongly optimizing semi-field,then the optimum path from ini
tial vertex to final vertex is same as that of the graph.

Proofs. .1) This 1is the result of (6) and (9). =

1i)-By definition ,it is evident that the optimum pathof G is that
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iron initial vertex to final vertex.

tn contrastlet L (0O,n),as (10),be an optimal path to Vgt
815G L(h.,k): vEh) VAFD V (K
ph Ph+1 k

be any subpath of L (O ,n ).Suppose L (O0,-h ), L (h ,k )andL (k, n)
have Jar-metric P,Q-and R respectively.Then the Jar-metric of L (0,n)
equals P® Q@ R . ]

OnL (© ,n),if'we delet the subpath L ( h,k ) and Join > VAk+1).

VA l1* VAwhere vertexes v(k-") ,... ~k-1) may be any in the (h+l)...

».»(k-1)- th state respectively.The path from V/~°) to V~h) thus®constru-
cted will not be better than L (0O , n 1. Then

«P® Q®R -Z P® J( V;E)E) ,,v[ﬂ:l:I.P)® e g>d (V’(L<:11)’YSI|§) )®R=
»P® (£ J (V(h) ,v(+1))® ..J3$J (V (k-1), V ®R
( ( SFh) .V(h:l)_) $J3 ( Ig—l ) 'plgk) D))

Then we may assert that the quantity in the brackets must be Q.Tl.at is to
say, L (h , k ) is an optimum path from V*h) to V~k) on the correspon-

ding induced subgraph.” h k
By contradiction ,if not so ,we put the quantity in the brackets to be
T ,that is
r-J¢( » VAt i ( ,VAY® . L. g (VIT) ,ve )
Ph gh+1 gh+1 gh+2 qk-1 pk
then there exists path,say ,

L-(h’k)’vpﬁ qh+1l (qté

which would be better than L ( h,k ).Then we would have
meT +Q/ O ,and T+Q =T
Since the semi-field is Sirongly optimizing,we would have
P® T®RR+P®Q®RA PR>QA®R
The path L ( 0,h ) L*(Ch, K L (k,n ) would be better than L (0,n).
This is contrary to hypotesis.
Thus every upDath h (h,k)on L (O,n) is an oDtimum oath from V_

to V on the corresponding induced subgraph.Therefore L (0O,n)is an E))ptimum
path BF G.
At the end of the section,well like to make some comments. To a chain of
ordinary matrices , the problem of finding its best association has been

e discussed .by some scholars.Some of their results can be transplanted to our
theory and make something clear.
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for example ,there Is a directed graph of h stage/with the vertex set

v/0) 1i-12,...10y u {v[D |i=1,2,...20}u {v<2) | i=1,2..50}

U{vij*} U {Vi<AdiE 1,2,... 100]

t. each link there 1is a jar-metric taken from some optimizing semi-field.
Now we want to find the jar-metric of the optimum one among all 1.000.000(
=10 x 20 x 50 x 1 x 100 ) paths, i.e. , the total jar-metric of the graph.
IT the modi-matrices of the four stages be Mj , Mg , Mj , ,with orders

10 x 20,20 x50 ,50 x1 ,1 x 100 .We mustfirst calculate
M=R,® M2® M3®@ M4

and then we search for the optimum one among all elements on M® _Now.howd o *
we calculate M ? In dynamic programming ,we do not make any differencebe-
tween forward procedure and backward one.But,actually .things are not quite
so.We can easily calculate by backward procedure

=K : r, ( m2® (h3®ma)) ; ;

here we must do 117,000 ( » 50 x 1.x 100 + 20 x 50 x .100 + 10.x 50 x 100
®" s and ( 1.18,000 -1 ) ®"s.ITf we calculateK by forward procedure
(ER,® H2 )® M3)®
we will do 11,500.® "s and 10,989® only. Moreover ,it is easily to
check that the.best association of” the chain will be -
-(R,® (M2 ® M3) )< Ka ;
In this case we need onlyto 10, 2,200 ® "s and 2,169 © "s.Thus ,if we
consider the number of(c "s only .those of the best association will be
19 % of those by backward procedure ¢and 1,76 % of those by forward one.
forward, and backward procedure will not be the saoce in the sense of com -
putation complexity.
<The- second point is about R.Bellmans principle of optimality. It is.
-well knownthat some optimum processes do not have such a property mentioned
=in the principle and also processes™ which have the property mentioned above
.need not be optimum.. In general,there is no universal equivalent relation
between theprinciple and the formula, toy be the result obtained by
forward * «"formulawill not necessarily be the. same as those dbtaii-
,hed by backward® ,one.Example.3 shows the matter. Kere , we’d
like to take jar-metric principle as a basis instead of Bellman"s .principle
of . .optimality. We know that_jar-metric principle will be held true on
some strict basis-and it is equivalent to formula ( 6”which has an effec-
tive algebraic structure.Moreover ,the formula can be:to solve some other
complicate problem which will be discussed "in. following, sections.
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In dynamic programming,people like to consider as a basis,all those problems
depending on time ,and put all problems .which can be converted into multi-

stage graph into those depending on time.In our theory ,we"d like to dis-
cuss all those geometrical problems as a basis and then put those problems
depending on time into geometrical ones.Thus ,in our theory,"dynamic'!eature
disappears.

3.Semi -field H-THOPT and the Ilnst N-th order optimum paths of first
JilQd

mPansystea’Analysis,motivated and developed by professor Wu Xuemou and
his colleagues,has been obtained a great deal of results and theorems

One of those is so-called optimum principle of N-th order. Putting his word

into our-framework, it says that : There are many paths from the initial ver-
tex to the final vertex on a multistage directed graph,with jar-metric tak-
en from a strongly optimizing semi-field* To each path,there corresponds
an element .-the_jar-metric wmeof strongly optimizing semi-field.The optimum
path in the sense.as mentioned in section 2 , is called that of zero ...jor -

der .OfF course suohwath will not necessarily be unique.In this graph ,we
pay no attention to all .thoseeoptimum paths mentioned,there will be some
optimum paths among-the remaining ones.Vie call those the optimum path of
first order of -the graph. Similary,if we pay no,attention to all paths of
all first N-1"th order ,we may find the optimum among the.remaining path
ewvhich will be called the .optimum path of li-th order. Then we have

Optimum principle of K-th order (Yiu Xuemou®™ ) [43, If L (O,n) is an
optimum path of N-th order in a multistage directed graph G and if the sub-*
path L (h,k ) of L (O,n ) is the optimum.path of m-th order in the related
induced subgraph,then we have.: *
m ~ K
Theorem 3. ( Qin Koukaung )[53. IfX @O,n ),L (O, h ) and L(h,n)
are the optimum paths of N-th., m -th and m -th order respectively on ti
related ( induced sub- ) graphs,then we have
m + mgi N

Com!iarv LIfF0 =hp h”rh-.d" ...<hs 1

L ¢ O,n ) ardX ( h ~ , hj) are the optimum paths ofN-th and m™-th
on related (induced sub-) graphs respectively,then we" have

1 +0l
.22 «-¢N (0< 1<1 +g< S)
i<l

Particulary, .we have

22m-<N

1«d N
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Corollary 2. If N ,then for all i ,we have m~"<N . jf
,m= N, then for all i 220’6 "ave m 1 “

Now..us a "«"these result to developed our theory.

On strongly optimizing semi-field [S ,@ ,©0} , we takew"( N + 1)
myang elements or identity elements to form a sequence. If it satisfies the
conditions

aQ '( a®” ""ak ak+l °z=... =*z
where 0~ K S N + 1 and ifwe define that z = z can be written as 2 * z ,
. then we call this sequence with N +1 elements to be strictly monotonic to
bad and write as
Ja©® t .aj » ee= aktle z» eee 7z} ()
where the O-th term aQ iscalled the optimum element of O-th order ofthc-
sequence,the k-th term- a” is theoptimum element of k-th order,
a™.is called suboptimum element also.
The family which contains all strictly monotonic to bad sequences like

(-1 ) is denoted by N-th and the sequence will be called the element of the
family.

Let A sijlaQ,a ... aa N, B« m.{ 1
belong, to N-th.We call them to be equal,if and only if = b= 0,
T,---N).

Given two elements A and N-Th ,we rearrange all those 2N + 2 terms
monotonic to bad and take the-first.N + 1 non-repeared(except zero )
elements ~to form a new sequence .which is unique and is an element of N-Th.
We define this to be modi-sum.A © B of A and B.

F.or example,in a strongly optimizing semi-field {r , A, +),there are two
strictly monotonic to bad sequences with .4 terms {1 3, 4, 6} "nd{2,3,"\,7}.
Rearranging these 8 elementsl,2,3,3,4,A,6,7, we have-a new sequence

{1 ,2,3 ,A} and denote {1,3 ,A , 6} ®[2,3, A, 7p{1, 2 ,3, A}
The modi -addition thus defined satisfies laws of commutativity, and
associativity,
To A and B ,we rearrange ( N + 1)2 modi-productsa™® by (0 ™ i , J-£H)
monotonic bad. .
Then taking the first N + 1 non -repeated (except zero ) elements to form®
a new sequence,we define this.by A@B ,
For example,we have tvo sequences{l , 3 , A , 6}and{l, 3, 2 »Z} on
Ir, A. , +}, Doing the all modi-products,we have

2, A ,.5,7

A, 6,7 ,9

Z» Ze 7z »Z

z. Z .z .2
.the firit A non- repeated elements are 2., A , 5 » 6, then we have

[, 3, A, 6 ®{1,3,z,z} -{2.4,5,6}
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The law of commutativity is evidently time for the modi -multiplication thus

defined, R ) o _
"Now,we are going to discuss the law of associativity.If al ai+l

and z ,we have

ai® al+l “ ai eand ai ® akl N ai+l
by thestrong optimal, for any h ~ z ,we have

&i ® HO ai+ 10 h = aM® h
™ ®Sho al+l @ h A aA +50 h
Thus we have a”@h-j a~ @& h.,1f a~ = z or-h = z ,by our convention on
symbol z 4 z ,we still have © h<ai +1© h . Thus ,for
- (en.)a0Mal-"_.~aN"™a il
(e® h"4)aQ Oh-"® h< ...{a&K @ h<aN+l@ h
That is to say,if ali+l is worse than all &~ ( 1=0,1,,,. N),then

an © h is worse also than all ai oh (G =0, 1 , »5-N),
Suppose A © B =ia,® b. A, © b. , .,. a® b. \and a+(b.
PP (1ie Jo 1 " N “fT X +C S

be an element of [@*© b" |i,J= 0,1,... Njwhich is worse than all those
terros"in A© 3.Than,to any element h ,(at® ag)©® h
must be worsethan any term inA ® B modi-multiplied by h.Therefore ,
(A® B )® C is asequencein which each term istaken from thefirst
N optimum modi -product of some term of A ® Band ck of C ,also those
modi-product of some terms(@* ® b, )© ¢ . Since ( &9g) bj )
© cr=ar0 (bj & c™ ) . Therefore we have
(A®OB)YOC-A®(BOC)

Similary we can prove that the law of distributivity holds also.

Elements E = |e, z, ... Z] and Z ={z , z, ... Z] are ldentity and zero
element of the final N-th.

Therefore the family N-th is a .semi-fiel”™ with identity. Vie denote ..it by
N-THOPT or{N-Th, ®,® ] or more cleaxi/, (s,® ,©]- N-THOPT.

V.ben- N « O , N-THOPT will reduce to the strongly optimizing semi-field
itself.

In semi-field N-THOPT , A ® E equals ,in general _.neither A nor B. But
it has the following properties c

(A®B))® A»AO B, (A®B)YO B«AOB

thus N-THOFT is a generalized optimizing-field ,called Shier semi-field [63

. IT a sequence like ( 1 ) contains some zero elements,we can.omitthose

terms,for simplicity.. For example j8q , & , a2 > 2 »eee Z]msy be
writt=ffl as |JaQ , al , a2] ;jb0 , z , ... z}as{bQ}or bQ .OF course , for
{z , ... zj , it would be better to write as z.

Suppose the jar -metric of each link on a multistage directed graph be
a yang element or e taken from a strongly.optimizing Bemi-field{s,ffi,®]|
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If there are links with different Jar-metric from VAto V/,we can arrange
these in a monotonic to bad order. If there are more than N + 1 terms,we
taken the first N + 1 terms.If there are only Kk N ) terms ,we can
add N + 1 -k zero elements to them. Thus ,in short ,we canwrite the first
N + ljar-metrics, from to V*,as an element A =jaQ , al , ... aVj
which belongs to N-THOPT .We may say a being a jar-metric taken from N -
THOPT.1"f there are two groups of links from to Vj .their jar-metric
are A and B respectively.ThenA © B will be the jar-metricof these two
groups of links and, geometrically,it represents the jar-metrics of the
first N + 1 non-repeated optimum links from these two groups of links.

If the jar-metric from , to WV be A ,and that ™ to be C,then the
Jar-metrics from to via will be A© C.
For a n-stage directed graph G,if each link corresponds to jar-metric taken
from N-THOPT,then the jar-metric from the initial vertex Vq°* to the final
vertex V™nV of the graph G can be calculated by jar-metric principle.
In this result “we can find the optimum paths of Oth, 1th, ... and Nth orek
ers . We refer this as a problem of finding optimum paths of first N -
order of first kind.

When N w0 ,it is our fundamental result obtained in [23 and when N
= 1 ,we have established an algoritm in the paper [5],

Since on semi-field N-THOPT ,the computational complexities of cal-

culating AO B and A© B ,are two numbers depending only on N.Thus we have:

m Theorem 4. The computational complexity of calculating the jar-rcetrl
cs of optimum paths of the first N order of first N order kind is the same

as that of zero order.

pvamnle U. mOn the 5-stage directed graph, shown in example 1,every
link corresponds to a real number ,as its length.To find the shortest path
of the 0-th,1-th,2-th,3-th order (i.e.,the shortest ,second,third and fourth
shortest ) and their lengths.

Solution.We may consider the length of each link being an element of
the generalized optimizing semi-field [R ,A , +} -3-THOPT.Then aur- problem
has been converted, into that of finding the jar-metric from A to B of the
graph.We may write the modi—-matrices of these five stages as those in ex-
ample 1,

Let us Find the jar-metric from A to Cl. Calculating U@ A , 7® 3,
6& 6 and 5® z,we have -[8, 10, 12 , z), Note that,for example 10,it is
the Jar-metric of the path from A to djVia. which- is modi—product of
taken from the optimum of O—th order of |7, z,z,z J ,and 3 ,taken
from {3,z,z,z \ ,thus we can write 10 ,and so on.

Thus we can write the Jar -metric fromA to Cas 1 8 »12- >H-—1
" ,r.
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Similary.the Jar-metric from A to Cpis equal to] 9 ,10 , 12
Thus we have
STAGE (A,C) = STAGE (A,B) @ STAGE (B,C) =
from\to C1 Cg
- A Irfs - 10 12 1 . 9 L11 13 11
if ifii

Notice that alphabet"s ,am ,,".under bars will not participate in any operations

henceforth.
For simplicity,we stipulate that all [o}on the upper-right corner will

be deleted ,for example = Bj.- Therefore we have

from\to Cg
,f_8 10 121 fR- 1 13]-3
STAGECA.C) - A[(~3B2 '~ 1 11 ACTA >b2
We can obtain
STAGE (A,D) & STAGE (A,C)®STAGE(C,D)
from\to D., 2
rfi12- 13 14 15 T f 9 1 , 13 13 1]
"A-1cg @ ’~W CWI>1l¢c, 1?2c2, c272
[] D3 =] V
f 14 . 16. 18->,f14 , 16 18 20 | 13 15
iC2 C « f c2 c2/7 | c2
STAGE (A,E ) s STAGE (A,D)® STAGE (D,E)
fromNto
eV . . V. ec2,
.orr 12 14 15. 16 1 f 13 14 15 , 16 w.,
.« - A ip> if sp ip) ip>]
Ei . = * —- - ]
18 20 22 24
1d3,Da, D5 D~>4 40« D3 dJ3}

STAGE (A,P)
from\to

-Aft

b . STAGE (A,E) © STAGE (E,F )

F

13 ~15 16

17

£N1Y} £123-
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Therefore ,there are two optimum ( i.e., the shortest ) paths with length
13.They are
AB3C2D5R1F and ABADANF

There is an optimum path of first order with length 15. That is
A BNC2D3ENF

We have optimum path of second order with length 16. That is

AB1G1D2E1F
And _finally we have 5 optimum paths of third order with length 17.
Whey are
ab3c2dlelf Ab3c2d2e 1f ab4c2dle 1f
ABNC2D2ENF ABJCgDNENF

4_.Semi -field and optimum paths of first N order Of second Kind

In this section,it «""supposed that all letters a , b , a” 4b: and p* at”
non-zero elements of an optimizing semi-field |s , © , . Suppose we
have a , a parameter t and a non-negative integer k. We call the formal
product a™t" a term of k power with coefficient a*.V/e define

a0t°maQ , etk =tk , ztk =2z

We say two terms are equal |, cli(i ~ 3j J
if and only if

than onyla"=aj and i=]
We define the modi-sum of atr and bts, where r 4 s ,tobeatr © bts
or bts ® atr .IF r = s, wedefineatr © btsto be (a& b) ts. Again
atr @ bts is defined to be (a® b ) tr+s _Thus our definition are the same
in form as those inordinary sense.

If p3 belongs to"S ,® ,65] (i=0.,l, ...n )and pQ4 =z ,we call

POtr; ® ® _-~Pn_i t® Pn

a modi -polynomial of degree n . Two modl-polynomials are eo.ual if and only
if all corresponding terms of the same pover are equal.

We can define mol%i_ dition © and modi -multiplication @ between modi-
polynomials thevway like those in ordinary sense, ”~ov we .construct a set
-which contains all modi-polynomials.with non-yin elements as coefficients
on an optimizing semi-field with ldentity and contains.also z and e of the
semi-field as ldentity and zero elements respectively .This set is a semi-
field called a semi r-field of modi-polynomial on {S, © , denoted by

[ ® ., © , ® } or {s ,;06 ,0%}"r ,[?7(Ct) ,a , R

IT in the modi-polynomial [
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a0tn ® altn_i» © a2tn i2® .. .0 aptn-i« (0 < 1i,«£ ,i2< ... <ipC n )

the coefficients , a2>_..,, are strictly monotonic to bad:

alka2 < .. ."ap ,we call it an essential modi-polynomial and denote by
P-*"()i Vie "«rite the symbol above to emphasize that when an essential modl-
-polynomial”~Tltten in decreasing power,the coefficient sequence will be stric-
tly monotonic to bad.Let the set off all essential modi-polynomials be denoted
by P(t).Evidently, identity e and zero element z in{s,®,s}belong to fit)and

To any element P (t) of (® .®,8} we can use so-called badinizing

process £ J to construct an essential modi-polynomial Cp (t )J.

The process is defined as follows :For monononial &5 we have

| antl

and ,particularly , -
£zj = z and Tlegj=¢e

For binomial a™1® a™M™ and 1> 3 ,we nave

aitl®  ta, i> 3 , -aaj

A - _
Eartl@a Y a.t*3 , 1>3 a1>,@3
(ajoaj )t5, 1=3

Then after total check,we can prove that

E]l[aiti © ajtH < aktkJ= @ £ ajtr @ a~t k]il
Thus we cBH M7ed th® Peliie 9 M8 Miti 6 a. W O "}
To a modi -polynomial of degree n

F (t)=atnh g t"PO a2 tn-ijo...® Ept”-~

where 0 I1l<cl,~.. .<ip$ n, aQ™ z , if the sequence of the coefficients”
ac , , --- ap is strictly monotonie to good, i.e., ai_l ~ ai
(1=1 ,2, ... p) thencave JP (t)J =3pt" F ITf the sequence of the
coefficients is not strictly monoE%]ie to good ,ve car. partition the
sequence into several subsequences (back of them is strictly monotonie to
good.
This partition may not be necessarily unique and some subsequences may =
contain only one term. To each subsequence ,we retain the term with the
optimum coefficientsThus we obtain a new sequence of coefficients called
the First badinized sequence and the related"modi-polynomial -ilf the seque-
ce is not strictly monotonie to ,cad,*r can do the sane process as above and
so on. After doing finitely many operations,we will at last obtain a strictly
nonotonic tc bad sequence and a related modi-polynomial -the essential nodi
-polynomial .For example ,we have a modi-polynomial on the semi-field

R A+
R(t) » 3tl00 2t t°07t7 fi 5t60 A t"® 6tV 3t30 At 8 t
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we have

-
—_

First badinization
second badinization

N
NI
~
NN
[e)]
W o w N
O NN
© W o ©

therefore HR (t jJ « 80 3 t304t20St.

Evidently ,to a given modi-polynomial _the coefficient sequence and its
first.second, ... badinlzed sequences and related modi-polyncmial will
correspond to a fixed essential modi -polynomial.

The badinization process makes each modi-polynomial of p ( t ) correspond
to an essential modi-polynomial and each essential modi-polyncsial corre-
sponds to a subset of modi-polynomials inf (t ).

P (t ) will be devided into several disjoint subsets,andsubset corre -
spor.ds to an essential moci-polynomial. All those modi -polynomials form

a set > (©). z is a special essential modi-poiynomial to which there cor-
responds only one modi-polynomial z itself in f (t) .and e isanother
special essential modi-polynomial to which there correspond all modi-
polynomials with the constant term ( i. e. , the coefficient of t° )e.

Now ,we can define the modi-addition and modi-multiplication < in

the set P (t) If F *) and G (t) belong to ? (tj-evidently ,we have

£2 {DI =F (

) and Cg (DN =6 (D

F@® ©OG@® =1F @®I 60 [G (M3 s iF (O 6C.(1t)3
Vie define r
F@)®G (D s[p (DO G (B
Ve can prove without difficulty that the [P (© ,00,ajis a generali-
zed optimizing semi-field.
A traveller may take quite different "/as by different trafic tool
from city to city W,

For example ,by ship along a river ,it will take him n days to complete
the travel and will cost him a0 dollars;by exoress train it will take him
n-i-j days and willcost him & dollars and so on.

For simplicity,we make, a stipulation that the time consumedisdenotedby

.apositive integer. OF course ,if there are several ‘ras to comolete the
travelling with, the sane cost , then he must like to take that way with
shorter .time. Thus ,if 0< I"~C ™2 < *r*<~”~ R "pboen A al{...
Then we may denote the natter happened on the way from Vjto as an
essential modi-polynomial,called the cost polynomial from to V<

T(C t ) » adtn© ait n-ii © a 6 © apt n~ir
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Suppose we have another cost nolynomial for the other way from to
VA T (t)c b t28 N tn"s,Eb2tBNSi . N)hEn >

ITf the traveller likes to - .spend ( n-i ) days to complete the travel ._then
the least cost will be found in A (©) $B*(t) ,the coefficient of tkwhich
is the nearest non-zero one before the term. n
ITf fronVl to Vj ,we have A (O and fror, to V~,we have B (t),then
from to via ,the cost and time will be found in A(t) © B(b).

m On a multistage”"directed graph ,each link corresponds to a Jar -metric
taken from {s ,® - {p"®, ® ,8}y _.Then we can find the jar-metric
from theinitial vertex to the final vertex by our jar-metric principle
from which we can find out the ways to complete.the path in prescrlbed
time-" with least cost or prescribed cost with least time.

m We call it".the-problem”finding optimum paths of all first N- order of

second kind,

. S.- Semi-field R-and Generalized optimizing operator

mSuppose that-.there .are 1 semi-fields
¢ 12# **e 1 ) -
«and-rV * X SJ X ... Sj is the 1 dimensional direct product of SN .
Particulary.if 1 «1 ,we put R1 « S, . Me call
a* Tr2 9 X A A AR

..to be a vector or an element of R* and a” to be the i -th component of the
vector- a . OF course,we may define operations between such vectors

a.® bm« T ma2 ., = a*3@ [ 9 b2 , . b
> » @202 N2 etk
a b . *G@j,a2 , ... a®Cbh ,b2 , ... b4
-na n ,a2s2.&2 , ... AN

It is easy to verify that R*is a semi-field, with zero element z =
[Zw z2 , ... Zz°] where z* is zero element of .S. AFf in. each m sini -
field S ,there exists identity element e”~then Rlhas identity element
S “C , €2 , ... -

Generally speaking .even if all semi-field are-strongly optimizing ,
the modi-sum of two vectors a-"and b in R1(\¢ 1.) is not necessarily,
equal 0o a .or b. If a® b fiaort .,vesay aand b to be incompara-

ble, and we-denote that by a*Vb .
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From now ,we shall coniine ourselyes to study our problems on strongly
optimizing semi-fields Si (i =1,2,...,1 ),
Evidently , R1 is a generalized optimizing semi-field ,and in R”,we
have
i)ad anm
i) ifarb and b4a ,then a=»>b ;
iii) ifad4db and b4c , then a4 c;

ifa-<b and b~ c ,then a4 c.
In R1 , given a finiteset Y of vectors:

Y =Fy (@) |i=12, ... h} (@)

The family formed by all such sets like Y Is denoted by SET.

In this and next section ,we put that small latin letter ,such as
a, b ,x ,y , represent vector in R1 ,and that small latin letter
with subscript,such as an , & .always represents some component of the
vector denoted by the same letter ,such as a, b , and that capital letter
such as A , B , always represent element ( the finite sets of vectors) of SET.

Now we suppose that Y is a set in R*,say ,it is @ ).

Definition b. If g InY and there exist no such -vector x in Y that
x.4q holds ,we call g an extreme vector ( point ) in Y or non-worse ele-
ment inY . We denote Y* the set formed by all such non-repeated extre-
me vectors in Y and call it the extreme set of Y ,or the non -worse set
of Y.

If Y*=*Y _we call Y an elementary of SET.

If 1=1, S1=R1=|s ,0,@} ,the extreme vector In Y(*M ) is
Its optimum element ( 1 dimensional vector) and Y contains only one vector.
“In this case,the process from Y to Y™ 1s an optimization operation.

If1:1 ,we can still consider this process which makes Y correspond to Y*
being .an optimization operation.Thus the symbol is a kind of generalized
optimizing operator. -

Theorem 5. Suppose thatY isin SET , e

D if Y A0 ,"thenY*J O

i) if IYJ=1 thenY*=Y ; \
i) if_.each two elements of Y are Incomparable ,then Y*=Y :
V) Y*Is unique;

V) L,(Y* )= Ys. ¢

Proof.They come from"the definition directly.
In SET ,two different elements may have the same non-worse element.

In SET ,each element Y corresponds toan unique elementary elementY?
All of those Y in SET which the same elementary element from acategory .
Then the set SET can be partitioned into several categories according to
elementary element.
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Thpnrpin 6. To each Y in SET and any vector y in R1,the necessary and
sufficient condition for existing such a w inY that w<y holds ,is that
there exists such au in Y that Wy holds.

Proof. Mecessarity: If there exists such aw in Y thatw-"y holes,
then for v , Y*cbntains a vector u which is eitherwitself or avector ,
say u .better than w :u 4 w _Therefore we have u 4 y, i.e., there
exists such a vector u in Y"thatu xy holds.

Sufficiency: It is evident ,if we notice that Y* C. Y

Corollary. For\,each Y in SET and anyy in R1 ,thenecessary and suffi-
cient condition for existing no element u inY*such that" y ,is that
there exists ho such element w in Y that w4 y holds.

. Theorem 7. ( Wu Cangpu XIIForY in SET 21y in R1 , if

-y \y"\"*4y , vy ey } , -

then we have

Proof. We discuss the situations first where some sets happen® to be

empty .

"If Y &0 , (3 is evidently true.

If Y 40 and Y- ,then (YY) =<.0n the other hand ,we have
Y*Cy ,s0 (YDy £ Yy . Then (Y* )- .=¢@ ,and ( 3)is true.

If y» "and (Y* ) <0 , then there exists no element w in Y*
such, that w 4 y. By the corollary of theorem 2 ,we have Y- =$ |,
Thus (Y- )*>» 4 , SO (3 holds also.

In short ,ifany of Y ,Y» and (Y* ) - is empty , ( 3) is always true
Now we suppose that the setson both sides of ( 3) be nonempty.
We prove (Y — *£ (Y* )first .Let g be in (Y )*.Then we have

mqg inY - ()
and there exists no element w in Y - such that w<q . We assert that
q is in Y*. If not ,by definition, there exists v in Y*. such
that v4 g . and by (2 we have v 4 y . Butitis impossible to have
v in Y- and g in Y.- -simultaneously. Thus q is in Y*.

Noticing (4) .,we have q in; (Y*)- ,then

(Y2 ) C (Y* )-

Next ye prove (Y*)- £ (Y-)*. et u be in (Y* ) -.
We have u4 7 and u "in Y*. Then thereexists no such mx»element t
in Y that t-<u . SinceY y?Y".therefore there exists not inY*that t—<u

holds .Hence we have

(yyy 2 (y* »y
Thus we have (3).
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Theorem 8 ( Viu Cangpu )P,IFor each pair Y~and Ygln SET ,we have

(Y,ui2 f=(Y“uYVYpy (©)

Proof. If any - eof Y~ and be Y2empty,by theorem 4v)y ,5)
is evidently true.
Kow we suppose that Y1 and Y2 be nonempty.

Vie prove First (Y1lu Y2 )*2 ( Y* g Y**_.Let ge( mY1l UY2)~
Then q is in Y. O Y- and there exists nosuch --element uin Y.tiv
- arcl)é loss of, . - _ R
that u <q .Without ~generality ,we might say q being in Y. ,thus there

is no such u in Y~ that u tq. Therefore g6 Y~ £ Y u Y 2 .
Since Y*u Y2 £ YA u Y2 ,and there is no such u in Y*uY 2 that
u < g-
Therefore q isin (Y* u Y2)* . Thus we have

(YLV X2t £ (X*u Y* )* .

Wext we will prove (Y* u Y2 e @F2YjJ)*., But this is evident

since Y* u Y2 £ Y1l u Y2. Thus we have (5)
Corollary."For Yle SET (1* 1,2, ... m) ,we have

(¢1 Yi > " (¢l Y i>*
Theorem g- For YeSET and y e R ,if we -write

)

Y m={a® y|] &GX]

® »
we have
Cye/ > . C (Y* )» ) Q)
Without any loss of generality, we my write
Y=y ~ I i»1.,2, ... h]
and let Y*=[y™ jJi=1,2, ... t],
then
(X*) = ey 1 i=1,2,..t} ®
If Y =Y*, (7) is certainly true. If Y i Y*,we have Y@< h and Y Sy
=jy() i =t + 1, ... h} . To each vector y(s) (t fsih ) .there

always exists such a vector y ~ in Y*( 1& k<at ) that y Kk y .
y~h) can be zero element . Then ,by our assumption ,the given semi-fields

are strongly optimum therefore we have .
yC ® vy < y”"® y =
so in Y®T, y N ®y (t.-dSith ) will not.be in (Y )*
Therefore we have ( 7)
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® _Seni-fleld PARETO and Kulti -objective ,iar -metric principle

In the last section ,we denote the family of all finite subset in Rl
by SET > To each Y € SET .there corresponds an elementary element Y
& denote the family formed by all of those elementary elements by. PARETO.
How let us define moai-addition on it. “or A.B.C in PARETO ,
A.® B ={a u B}* -
The lav of commutativity evidently holds true
A@,B=30A

Since we have
.(A®GB)OC

(AvB. @0 C «x( (AVvB Y u C )
((( AyB H*uC?)* (theorem 8)
(. (CAuB Yu C* M (theorem5 v )).
=CCAuB )u C )* (theorem 8)
e = (AuBvjC )*
and similarly ,we have

A® (BO® C ) «:( AuBuC ) -~
Therefore the-law of associativity, holds -
" (A®B)O0.C-AO (BOC)
We define modi-multiplication on PARETO as follows : for

A-fa @ I- Tegs20 e ha

B={b".i«1, 2, ... k} ,=C=Jc Is> 1,2, ... m}
and define -
. A0 B> {aM?.®@b"<% « 1, ... h; .= -1, _..Kj

For brevity ,“e write .
A® B {U a , ®b

For brevity ,we write
.A@ B <A@ B

Since we have N
*

B A® B )® C «{tf .(A® B)®C S }
os«l

43 ((AOB )Y® (O Y*}* (theorems )
s=1
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(U (U a”~ b~ ®cr)]*

={h,5,m (@) & b(i)®c "<->r
iJs =1
We can check easily that A® (B® C ) has the same result . Therefore the
law of associativity holds :
(A®B)®C=A®(B®C)
The law of distrutlvity holds true also
(AOB)® C=(AO0OB fg>C
m
-fu ( (AN B) )®c (s)}*
=1
m (s\
={u ((caub p c >*r
Sl

" >» - c (®
IU ( aub ) fy
=1

1

_fip A c®d U 30 c(S))iy
o s*1

={(U A®C fv (¢ B®C > j
s« s=1 . e

I(A® C )u (B® C )}

A© COB®C

and finally ,E - (¢] = fCel, e2 , ... ej}and 2 =(tj = [C*i *1?

are identity and zero element in PARETO.
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Y<hat"s more ,we have
(AOB)@ A= A® B
m " m (AOB) $B= A& B
Thus we have =
theorem 10 .For mA, B, C being in PARETO ,we define
A@ B= fA u B}

A®B=Ffh"u a(i"® b
i»0 =1

then PARETO is gerieralized optimizing semi-field with identity.

J¥y*we also have

liulti-ob.iectlve .jar-metric»principle. Cn a multistage directed graph,

to each link ,there corresponds a jar -metric an element taken-from the

semi-field PARETO.
Then the jar-metric from a start vertex to an end vertex in the graph will
be the modi-sum of all modi-proauct of those jar-metrics from the start ver-
tex to all vertices on a certain middle state and these from the vertices
mentioned to the end vertex. And this modi-sum is independent of all those
states before the start vertex and after the end vertex.

IfFY is iIn SETand g is inY , then there exists no such a vector w
that w q - Now ,we say q is a Pareto solution of Y . Then ,on a mul-
tistage directed graph,the modi-sum of jar-metrics of all the path from
Initial vertex to final vertex is a set of all Pareto solutions from initial
vertex to final vertex of the graph.And we can calculate them by the multi-
pbjective jar-metric principle. ofe

Example 5- The multistage directed graph is the following ¢Suppose that

={R ,A, + 3} . The jar-metric of each link .be denoted on the
graph. ":Find the set of Pareto solution from A to D.
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Pnint.inn. We can consider the jar-metric on each link being taken from
the semi-field PARETO of 3 dimension. Then we have

fromvVto Bl B2 b3
STAGE (A, 3) A8, 1 kI fA 3 33 16 2 133
fromvto (':'f 2
Bl R 19B 3 2
STAGE (B 1€ ) » B P 13d 3
B B A a8 1 7]
8
from\to
cc 6 0A
STAGE (C ,D F
2 0A
Then we do
STAGE ( A,C ) =STAGE (A , B ) @STAGE (B , C )
Since, the jar-metric from A to equals

G 1 A1 5 &E@E3 3@ to 133
©[6 2 1o A 7]
=b 2 9 OJAA 6]® [12 6 8]
= { [5 2]/B1f[A A 6]/ Bz]
and that from A to Cj is
[3 1 AI®[33 2J0[A 3 3106[1 037
® [[62 1198 171
=[6 A 6]® [65 3 6]I°[1A 3 a]
=(b 3 63 /B2]

fromvto . C
so STAGE (A,C )= A " ({5 29, ,I[A A 6]/.B2]

2
{5 3 6}/ B2D
STAGE ( A~ D )=STAGE ( A ,C )<»STAGE (C,D )
fromvto fromvto D

A fG 2 91 & A 61 [5 3 6110 c1 B 0 Al
o 2 0A
fromvto D

A [{[112 137/ C,” ,[10 A 101/C1 [7 3 10]/ c2¥J

from Vto B
A [{[112 13yc1 , [7 3 107/ C2}]

_Therefore the Fareto solution» are
yC) » [11 2 13] y =[7 3 103
and the related paths are AB"C"D and AB2C2D .
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MPHHUMH METFHKH TM& M&P* nPHMEHEBHE K ODPEHEHEHUD OOTMAHL -

HoronmcB haupabiehhom ipase

Pi 8DH t
B padOTe npenoiaBneH hobhA dphthhrjibhhS Mero# onpenejieHim onrHVB(t&HO-

ro nyra b HanpaBlieHHou rpa$e , ROTopua mosst dhtb Hcnojn>30BaH nna oirraMHaa-
rera MHornaTBmtmrr fIHOKpeTHHI npopeccoB . MeTOn 3TDT oohobbh Ha oJopMyijfflpo-
BOHHOM B HHHHCOt CT3TB9 " npHHEgine THHH flXap". OnOBO jpeap HB8 KHiaflOKOM H3H-
S9 0003HaHaeT cocyn x Onao b ynoTpeOjieHHa dojise 2000 jieT Hasan. B aaHHO8
paOosa ohobo 8TO ynoTpedjraeTCH b KaieoTBe adCTpasiiaoHHOft «epH , CBHsamoft
¢ OTyajitimVvH pedparai HanpaaneHHoro rpa$a. isa onpeaejieHHH MeTpHKH Tana
aaap aBTopoa BBOHHTca pas iidhsth8 k3 aCcTpaKUHOHHoS aareCpH treek esk:
0eMH-nojiH, «osE-aeflcTBHH a Tarase Monz-aaTpsHH.

npaHEHH ueTpHEH tzub asap Hcnojo.3yeTCH b naHHOfi padoTe jpiE onpeaeireBW
OHTHMeaBHofi topora Meaacy asy«a H3OpaHHHVH BepmoHajaa HanpaBlieHHoro rpa$a a
TaKse jpta onpenejieHHH onTwautHOZ aopona jyia Bcero rpa$a. fleTanBHO oroBO-
peHH BsasMOsaBHCHUocTH Mesay H3BecTHHM es BHTepaTypH npEHmmoM BejuiwaHa
a B@3fIsHHKM aBTopoa HpSHQBIIOM MeTpERS THH8 RSap. 7KB3aHH OOHCOBHHG paBffiTBIH
ae«ny hheh a TaKce cjiynaS, Korna o0<Sa npHHtpma panHO3HaHHH.
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Heotaojpnso nojmepKHyTB, hto npe“CTaBJieHEKS b padoTe iseTOa , ocHOBaa-
hh3 Ha npmmms MeTpaKH rana ffsap, naeT bosmdkhoctb o0606a$Th h ymiiimnipo-
BSTE nO«XOfl E paSHHM UpoCjieMaM OnTHMZ3aHHH MHOrO3TaiinEHX FIHCKpeTHHI npouec-
cdb. B padOTe npmatwiTCH MHoroancneHHHe npmepu xoporao ajunocTpapyDrae npea-
CTaBJitiHHe TeopeMH e onpenejierHji. HpBMepa ara cnocodcraym npaBEULHOMy no-
HHMaHE® Tpyiprmc n a(3cTpaKTHHX noHuraid npeacTaBJiaeMta b pa<toxe.

O ZASADACH METRYKI "JAR" - ZUNIFIKOWANE PODEJSCIE DO ROZWIAZYWANIA PROBLE-
MOW POSZUKIWANIA OPTYMALNEJ SCIEZKI NA WIELOETAPOWYCH GRAFACH SKIEROWANYCH

Streszczenie

W pr8cy przedstawiono nowg, oryginalng metode wyznaczania optymalnej
drogi w grafie skierowanym, ktora moze by¢ wykorzystywana do optymalizacji
wieloetapowych proceséw dyskretnych. Metoda ta oparta jest na sformudowa-
nej w artykule '"'zasadzie metryki typu jar'. Termin "jar' oznacza w jezyku,
chinskim pojemnik stosowany powszechnie w Chinach okoto 2000 lat temu.

W pracy termin ten stosowany jest jako abstrakcyjna miara zwigzana z po-
szczegllnymi krawedziami grafu skierowanego. W celu zdefiniowania metryk®,
typu jar, wpiowadzono wiele poje¢ z dziedziny algebry abstrakcyjnej takie .
jak: semi-pola, modi-dziatania orsz modi-macierze.

Zasada metryki typu jar wykorzystywana jest w pracy do “"wyznaczania
optymalnej drogi pomiedzy dwoma wybranymi wierzchotkami grafu skierowanego,
jak rowniez do wyznaczania optymalnej drogi w cakym grafie. Szeroko dysku-
towane;sg wzajemne relacje pomiedzy znang z literatury zasada optymalnosci
Bellmana a wprowadzong przez Autora zasada metryki typu jar. Przedstawiono
zasadnicze roznice pomiedzy nimi, a takze przypadki, w ktdérych obie te zasa-
dy sa sobie réwnowazne.



