Qin Yuyuan
Huban Iron and Steel University Yuhan, Mubei, China

\triangle TABLEAD STRUCTURE OF DYNAMIC PROGRAMMETG

Abstract

Sumary. Dynamio programing is a usaful tool to solve wultistage decision problems. But there are still several polnts worth to be improved. One of them may bo how to oelculato those results for muerical problems in a reasomable way.

In this paper wo sugeest a tableau structure whioh can be used to treat such problens of finite type of ubioh the atate set at each stage is either finite or infinite in number.

1. Type 1 Findto State Set

The most practioal problems of this type oan always be converted into solving shortest path problems on weighted multi- m- stage digraphs [1].

Suppose wo have a multi-stage digraph G. Its vortox set has an ($a+1$) partition

$$
F^{(0)} v_{v}^{(1)} \ldots \ldots v^{(n)}
$$

where

$$
\begin{aligned}
& v^{(1)} \equiv\left\{v_{t}^{(1)} \mid t=1,2, \ldots t_{i}\right\} \\
& \left|\nabla^{(i)}\right|=t_{1}, 1=0,1, \ldots n
\end{aligned}
$$

The length of the link $v_{r}^{(i-1)} v_{s}^{(i)}$ is denated by $d\left(v_{r}^{(i-1)}, v_{s}^{(i)}\right)$ or are (i) If there is no link from $\mathrm{v}_{\mathrm{p}}^{(1-1)}$ to $\mathrm{v}_{\mathrm{q}}^{(1)}$, vo may imagine that it does havea link with the length $+\infty$. The i-th atage oan be vritten as a modi-matrix /also oalled revised matrix by T.C. by A.Shimbel/, dencted by $\operatorname{STAGE}\left(\nabla^{(1-1)}, \nabla^{(1)}\right)$, or $\operatorname{STAGE}(1)$:

$$
\begin{aligned}
& \nabla_{1}{ }^{(1)} \nabla_{2}{ }^{(i)} \ldots \nabla_{k}^{(i)} \ldots \nabla_{t_{1}}{ }^{(1)} \\
& \operatorname{stage}(1)=
\end{aligned}
$$

If the length of path is defined in the form of the sum of all lengths on it, the lengths ar shortest paths from any stato/vortar/ in $V^{(0)}$ to another in $\nabla^{(1)}$ can be found as:

$$
\prod_{i=1}^{n} \operatorname{stage}(1)
$$

Since the asoolative law for modi-produot of modi-matrioes is valid, there are eeremal vars for performing tho oorprutations. The moat straight way: may be the forward process and the backward one. Then you geod to solve mumerion problem by hand, and ono you have deolded to take the forward ar backward process, the following two tabular forms are reorgmended, which will help you to eave yourself oonsiderable writing effort by organising the computations in a convenient and compact form.

Backward process tableau for computing $d\left(v^{(0)}, v^{(n)}\right)$

The terms within the reotangles in the tableaux are the given moimatrices and the others are intermediate and final results of the compotatione which you must fill in.

Example 1. Find the shortest paths and their length on the following itgura.

Solution: Write down the modi-matrices of these stages:

We define

$$
\begin{gathered}
\operatorname{STAGE}(A, B) \odot \operatorname{STAGE}(B, C) \equiv \operatorname{STAGE}(A, B, C) \equiv \operatorname{STAGE}(A, C), \\
\operatorname{STAGE}(A, B) \otimes \operatorname{STAGE}(B, C) \otimes \operatorname{STAGE}(C, D) \equiv \\
\equiv \operatorname{STAGE}(A, B, C, D) \equiv \operatorname{STAGE}(A, D),
\end{gathered}
$$

and so on. We have

$$
\begin{aligned}
& C_{1} \quad \mathrm{C}_{2} \\
& \operatorname{sTaGE}(A, B)=4 \cdot\left[\frac{8}{B_{1}} \times \frac{9}{B_{3}, B_{4}}\right] \\
& \operatorname{stage}(A, D)= \pm\left[\begin{array}{lllll}
D_{1} & D_{2} & D_{3} & D_{4} & D_{5} \\
\frac{12}{C_{2}} & \frac{9}{C_{1}} & \frac{14}{C_{2}} & \frac{14}{C_{1}^{4}} & \frac{11}{C_{2}}
\end{array}\right]
\end{aligned}
$$

Ye have made two conventions above. The first one is that the only elements canted are positive infinity. Second, the vertioes under a number divided by a short line are those through whin the shortest path passes. They are not entries of the modi-watrix, hence do not take part in the computation.

For example, on $\operatorname{STAGE}\left(\Lambda_{*} C\right)$, we can read tho patin from A to C_{2} via B_{3} or B_{4} is a shortest ane among all /sour/ possible paths from A to C_{2}, and the length 1: 9. Açajn, on STAGE (A, D), we oas read that the shortest path from A to D_{4} passes through C_{3} which has the length 14 . As for the ahortast path from A to C_{1} : wo on s look at STAGR(A,C) and that it must pas through vertex B_{1}. Similarly, wo have

$$
\operatorname{s\operatorname {Tacs}(\Lambda ,E)=A[\begin{array} {ccc}
{E_{1}}&{E_{2}}&{E_{3}}\\
{\frac {12}{E_{5}}}&{\frac {13}{D_{1}}}&{\frac {18}{D_{3}{}^{2}D_{4},D_{5}}}
\end{array}].}
$$

and $\left.\quad \begin{array}{c}F \\ \operatorname{Stage}(A, F) \\ \end{array} \frac{13}{E_{1}}\right]$

By using the formard process tableau, we hate

$\begin{array}{lllll} & \mathrm{B}_{1} & \mathrm{~B}_{2} & \mathrm{~B}_{3} & \mathrm{~B}_{4} \\ \mathrm{~A} & {[4} & 7 & 6 & 5] \end{array}$	$\begin{aligned} & \\ & B_{1} \\ & B_{2} \\ & B_{3} \\ & B_{4} \end{aligned}\left[\begin{array}{ll} C_{1} & C_{2} \\ 4 & 7 \\ 3 & 6 \\ 6 & 3 \\ \hline \end{array}\right]$
$\begin{array}{r} c_{1} \quad c_{2} \\ \& \quad \frac{8}{B_{3}} \frac{9}{B_{3} \cdot B_{4}} \end{array}$	$\begin{aligned} & C_{1} \\ & C_{2} \end{aligned}\left[\begin{array}{ccccc} D_{1} & D_{2} & D_{3} & D_{4} & D_{5} \\ 3 & 1 & & 6 & \\ 4 & 5 & 9 & 2 \end{array}\right]$
$\left.\begin{array}{c} D_{1} \\ \& \\ \& \end{array} \begin{array}{cccc} \frac{12}{} & D_{3} & D_{4} & D_{5} \\ C_{2} & C_{1}^{2} & \frac{14}{i_{2}} & C_{1}^{14} \\ C_{2} & \frac{11}{C_{2}} \end{array}\right]$	$\begin{aligned} & \quad \\ & D_{1} \\ & D_{2} \\ & D_{3} \\ & D_{4} \\ & D_{5} \end{aligned}\left[\begin{array}{lll} E_{2} & E_{3} \\ 4 & 1 & \\ 6 & & 3 \\ 1 & & 4 \end{array}\right]$
$\begin{array}{lll}E_{1} & E_{2} & E_{3}\end{array}$ \& $\left[\begin{array}{ccc}\frac{12}{D_{5}} & \frac{13}{D_{1}} & \frac{18}{D_{3}, D_{4}, D_{5}}\end{array}\right]$	$\begin{gathered} \\ E_{1} \\ E_{2} \\ E_{3}\end{gathered}\left[\begin{array}{l}1 \\ 5 \\ 9\end{array}\right]$.

z
 A $\left[\frac{13}{E_{1}}\right]$

Corteiniy, the rosult is the gace as that obtainod sbova.

 STack $(~ a, C)$ aucosaively. He have

Hance we have two shortest paths with the length 13.

2. Type 2 Infinite State Sot

The besio recursive relationship for backward induotion is

$$
\left\{\begin{aligned}
f_{k}\left(a_{k}\right)=o p t ._{u_{k}} \in D_{k}\left(u_{k}\right) \begin{array}{l}
\left\{o_{k}\left(s_{k}, u_{k}\right), r_{k+1}\left(s_{s+1}\right)\right\} \\
k x i, 2, \ldots N
\end{array} \\
r_{N+1}\left(s_{N+1}\right)=0
\end{aligned}\right.
$$

where on the k-th stage, ${ }^{3} x$ ie the state variable u_{k} io the decision variable subject to the reetriotione $p_{k}\left(u_{k}\right)$. Tho transition frmotion

$$
\varepsilon_{\mathbf{k}+1}=\mathbf{T}_{\mathbf{k}}\left(\varepsilon_{\mathbf{k}}, \mathbf{u}_{\mathbf{k}}\right)
$$

Then tho state aet la /or, at least, theoretically/ not finite, wo cannot use modt-matrioes as computational tool. We suggest to solve the problem by $/ 1 /$ and $/ 2 /$ an tho tableau as following:

Surely, we also have an analogous tableau for forward taduotian. Ye wald sec the role of the tableau method playing in solving the following musical example.

Example 2. As agriculture product company that sell a single product would ike to consider es ix month period inventory problem. At the beglunteg of enol period, k, the oompeny review the Inventory level,
moet the demand requirement in the period, d_{k}, and then derides how many units to buy from its supplier for next period. The price ok af the product oharges violently from time to time, but the company has an. accurate forecast of d_{k} and o_{k}, they are

period x	0	1	2	3	4	5	6
demand d_{k}	0	8	5	3	2	7	4
price c_{k}	11	18	13	17	20	10	

Suppose the initial and final inventory levels are 2 and 0 respeotively. The capacity of the warehouses H, is 9 units.

The objective of the company is to devise a schedule that mintmires the total buy cost subject to the restriction that all the demand requirements are satisfied on time.

Solution: we take the inventory level at the beghming of stage k as the state variable, s_{k}, and the amount to buy as the decision variable, u. According to the given conditions, we have
(1) transition function: $s_{1+1}=s_{1}-d_{k}+u_{k}$,
(ii) constraints:

$$
s_{7}=0,
$$

$$
a_{k+1} \leq z_{k+1} \leq H
$$

where $\mathrm{H}=9$.
By $/ 3 /$, when $k=6$, wm have $u_{6}=0$, and than $8_{6}=d_{6}=4$.
By $/ 3 /, / 4 /$, we have

$$
d_{k+1}+a_{k}-s_{k} \leqslant u_{k} \leqslant H+a_{k}-s_{k}
$$

But un suit bo nom-nesative, so wo get

$$
p_{k}\left(u_{k}\right): \max \left(0, d_{k+1}+d_{k}-a_{k}\right) \leqslant u_{k} \leqslant H+d_{k}-n_{k}
$$

The recursive relationship for backward induation is

$$
r_{k}\left(s_{k}\right)=\min _{u_{k}}^{\min }\left\{g_{k} u_{k}+r_{k+1}\left(n_{k+1}\right)\right\} .
$$

Thea we cen solve the numartion example on the following tableau.

Tableau		Computation
Answar: The mindmun total buy cost: 357	$\begin{aligned} & r_{0}\left(s_{0}\right) \\ & u_{0}^{*}=7 \\ & 357 \end{aligned}$	optimal stratogy: 7, 4, 9, $3,0,4,0$. and its inventory lovol sequenoe: $9,5,9,9,7,4 .$

3. Conclusions

In this paper has been suecested a tableau struoture for computations of dynamio programming problems. It is an appendix to the theory presented in [f]. The tableau struoture can be used to treat finito or infinito problems.

LITERATURA

[1] Qin Yuyuan: On Jar - Metrio Principle A Unified Approaoh to Solve Optimum Paths Problems on Multistage Direotod Graph

Reoenzent: Dr.hab.int.F.Mareoki
Uplynelo do Rodakaji do dnia 1988-04-30.

TABELARYCZNA STRUKTURA EROGRAHORANIA DYIRAMCZNEGO

Stroszozenie
Artykuz stanowi uzupelaleaie do opublikowanef woześnioj ra VIKKADPP pracy MON JAR - METRIC PRTNCIPLE" [f]. Pruedstawiono w nim tabolaryczna forme obliozoń dla problemu "najkrótszej drogi". Ponadto vskazano mozliwó́ wykorzyatania proponowanego podejscia do rogwiazywania tnaych problesón programowania dynamiomego.

ТАБЛИЧНАЯ СТРЭКТУРА ДННАМИЧЕСКОГО ПРОІРАММПРОВАНИЯ
P日 3 DH
Статья являепся приложением к ранее опубливованноу на У Конференцив A ADII paбore " On JAR - METRIX Principle" [I]. पредетавлена таблпиная
 пспользования програмяного подхода к решенно другшх проблем дпнамическоги программвровянвя.

