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Abstract

Some of the most common noise sources in the human environment are devices
and machinery. In an industrial scale, a high-level noise may lead to hearing losses
and health problems. On the other hand, noise generated by domestic appliances do
not represent a health threat, but may obstruct work or leisure. Passive methods are
commonly applied to reduce the excessive device noise, however, they are ineffective
for low frequencies and often are inapplicable due to increase of size and weight of the
device and its potential overheating. When passive methods are exhausted, alterna-
tively, active control methods can be applied. They efficiently complement the passive
methods in their weak points—low-frequency noise and heat transfer problems.

The classical active noise control uses loudspeakers and microphones to reduce
noise, but in three-dimensional space it often results in only local zones of quiet. In
case of the device noise, global noise reduction is more desired. To obtain this goal,
an active structural acoustic control can be applied, which uses vibrational inputs to
reduce the actual noise emission. In the literature, such technique was successfully
used for individual noise barriers. The objective of this dissertation is to extend this
approach to whole device casings, hereinafter called an active casing approach.

To graduate the complexity, initially a rigid casing is examined, which limits the
couplings between walls to the acoustic field. Then, a light-weight casing is considered,
characterized by strong additional vibrational couplings. The introduced structures are
analysed from the vibroacoustic and control-related point of view.

The mathematical model of the casing walls is developed and experimentally val-
idated for a wide range of cases. The model unifies the mathematical formulation of
various aspects that were dealt with separately in earlier works available in the liter-
ature. These include thin and thick plate theory, elastically restrained boundary con-
ditions, thermoelastic damping model, and additional elements mounted to the casing
surface—masses, ribs, actuators and sensors.

The developed model is widely used for a series of optimization problems. Starting
with finding efficient locations for actuators and sensors based on controllability and
observability measures. Then, a frequency response shaping method of casing walls is
proposed. It is validated in both simulation and laboratory experiments.

Finally, the developed structures are used for active control experiments. The rigid
casing is evaluated for single- and double-panels. Different error sensors are employed.
The light-weight casing is examined utilizing the previous experiences to properly con-
figure the control system. High levels of reduction are obtained, exceeding 20 dB of
global noise reduction, what confirms a high practical potential of the developed ap-
proach. When examining different active control techniques, a set of recommendations
is formulated for efficient implementation of the active casing method.

v





Streszczenie

Maszyny i urządzenia są często dominującym źródłem hałasu w otoczeniu czło-
wieka. W skali przemysłowej, wysoki poziom dźwięku może prowadzić do utraty
słuchu lub innych problemów zdrowotnych. Urządzenia domowe również mogą być
źródłem hałasu, choć nie charakteryzują się poziomem dźwięku, który wprost za-
grażałby zdrowiu. Mogą one jednak skutecznie utrudniać pracę lub wypoczynek.
Częstym sposobem ograniczenia nadmiernego hałasu urządzeń są metody pasywne.
Jednak są one nieskuteczne dla niskich częstotliwości. Często nie można ich też zas-
tosować ze względu na nadmierne zwiększenie wymiarów i masy urządzenia, a także
ryzyko przegrzania. Kiedy możliwości metod pasywnych zostają wyczerpane, alter-
natywnie zastosować można metody aktywne. Skutecznie uzupełniają one metody
pasywne w ich najsłabszych punktach—niskim paśmie częstotliwości oraz problemach
związanych z odprowadzaniem ciepła.

W klasycznej aktywnej redukcji hałasu stosowane są głośniki i mikrofony w celu
osiągnięcia redukcji, jednak w przestrzeni trójwymiarowej często skutkuje to utworze-
niem jedynie lokalnych stref ciszy. W przypadku hałasu urządzeń, redukcja globalna
jest zdecydowanie bardziej pożądana. W tym celu można zastosować aktywną struk-
turalną redukcję hałasu, w której stosowane są wzbudniki drgań redukujące samą
emisje akustyczną drgającej struktury. W literaturze znane są zastosowania tego pode-
jścia dla pojedynczych barier. Celem niniejszej pracy jest rozszerzenie tego podejścia
dla całych obudów urządzeń, dalej nazywając je metodą aktywnej obudowy.

Aby stopniować złożoność rozważanego problemu, początkowo badano ciężką obu-
dowę o sztywnej konstrukcji szkieletowej, która ogranicza sprzężenia pomiędzy ścia-
nami głównie do pola akustycznego. Następnie, rozważono lekką obudowę pozba-
wioną sztywnej ramy, która charakteryzuje się dodatkowo silnymi sprzężeniami wibra-
cyjnymi. Przedstawione obudowy poddano analizie z punktu widzenia wibroakustyki
i metod sterowania.

Wyprowadzono model matematyczny ścian obudowy, który następnie zweryfiko-
wano eksperymentalnie dla szerokiej gamy przypadków. Model ten łączy opis mate-
matyczny wielu zjawisk, które do tej pory w literaturze były rozpatrywane oddziel-
nie. Obejmują one teorie cienkich i grubych płyt, elastyczne warunki brzegowe, model
tłumienia termoelastycznego, i obciążenie płyty dodatkowymi elementami—masami,
usztywnieniami, elementami wykonawczymi i pomiarowymi.

Opracowany model wykorzystano dla szeregu różnych problemów optymaliza-
cji. Najpierw dla optymalizacji rozmieszczenia elementów wykonawczych i pomia-
rowych, bazując na miarach sterowalności i obserwowalności układu. Następnie, za-
proponowano metodę kształtowania odpowiedzi częstotliwościowej drgających płyt,
którą zweryfikowano zarówno symulacyjne, jak i eksperymentalnie.
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Przedstawione i zbadane obudowy zostały użyte w eksperymentach aktywnej re-
dukcji. Obudowę sztywną zbadano w konfiguracjach ze ścianami jedno- i dwupa-
nelowymi. Różne czujniki zostały wykorzystane, aby pozyskać sygnał błędu. Dla
obudowy elastycznej wykorzystano wcześniejsze doświadczenia, aby właściwie skon-
figurować obiekt. Osiągnięto wysokie poziomy redukcji, przekraczające 20 dB re-
dukcji globalnej, co potwierdza wysoki potencjał metody do praktycznego zastosowa-
nia. Badając efektywność wielu metod sterowania, sformułowano wnioski i rekomen-
dacje pomocne w efektywnej implementacji metody aktywnej obudowy.
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Chapter 1

Introduction

1.1 Background

Acoustic noise has been defined as "sound which is undesired by the recipient" (IEC
60050-801, 1994) and it is consequently a subjective notion. What is sound to one per-
son, it can very well be noise to somebody else, although from the acoustics point of
view, sound and noise is the same phenomenon of atmospheric pressure fluctuations
about the mean value.

The noise is a natural consequence of almost everything that people do. Usually
it is not perceived by them, or at least tolerated. Nevertheless, it has been considered
as an issue since ancient times. First documented noise ordinance dates back to the
6th century BC, when the council of the province of Sybaris, a Greek colony, decreed
that potters, tinsmiths, and other tradesmen must live outside the city walls because
of the noise they make (Goldsmith, 2012). One of the earliest attempts to define noise
regulation policy in the modern era dates back to 1929, when the Noise Abatement
Commission was established in New York. Since then, many other attempts have been
made to use legal instruments for noise regulation (Wolf and Stanley, 2013).

Alongside the technological development the amount of noise sources in the hu-
man environment is constantly growing, making the problem of noise pollution highly
important and better noticed. Also, the tendency towards lightweight solutions makes
the problem of excessive noise more frequent. People are becoming aware of the neg-
ative consequences of prolonged exposure to noise and more often seek to reduce it
(Wolf and Stanley, 2013).

1.2 Device and machinery noise

One of the kinds of noise that is of particular interest in the present work, is the noise
generated by devices and machinery. It can be a significant issue for their users. In an
industrial scale (like in case of factories, electricity plants, etc.), high-level noise or pro-
longed exposure can lead to hearing damage (Talbot-Smith, 2013). Noise often causes
exasperation, negatively affects the nervous system, and as shown by a recent studies,
it affects even a clarity of vision (Lin, 2014). In industrial environments noise is fre-
quently a cause of difficulties in communication between staff, thereby reducing the
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efficiency of the work performed. The inability to hear alarms or sounds associated
with the work of other devices significantly increases the risk of an accident. The ex-
ceeding of current noise regulations results in the necessity to reduce working time,
thereby increasing the costs.

Household appliances can also be a source of noise. Although it is not characterized
by the sound pressure level which can lead to hearing damage, it causes annoyance and
significantly obstructs work or leisure. Also, the noise level is gaining significance as
a criterion in product selection by the consumers.

In order to reduce the noise emitted by devices and machinery, many techniques
have been developed, which can be broadly classified into passive and active control
methods.

1.3 Passive methods

Passive methods are mainly characterized by the fact that they do not require any ex-
ternal source of energy. Among the passive methods, several main approaches can be
distinguished.

1.3.1 Device modification

The best practice to reduce noise is to act directly at the source. Noise and vibration
issues should be always integrated in the design of a device, as then there are more
options available to make the final product quieter. Modification of assembled, work-
ing devices and machinery is much more complicated and expensive (Crocker, 2007).
However, device modification alone is insufficient in many cases, as apart from some
benefit, further improvement requires too far-going redesign of the device, which is
very expensive or even infeasible, and may degrade its other parameters.

1.3.2 Additional passive components

Together with the modification of the device, additional passive components can be
employed to improve the sound quality. If the emitted noise is mainly a structure-borne
sound, excessive vibrations can be treated in the first place. Vibration isolators are used
to reduce the vibratory forces or motions that are transmitted from one structure or
component to another. Also damping materials can be added to increase dissipation
of energy in vibrations. On the other hand, additional components can be added that
directly affects the paths of noise transmission to the environment. Sound-absorbing
materials are used to absorb most of the sound energy striking them and convert it into
the heat. Also sound-insulating barriers can be employed to reflect the incident sound
energy back toward the source.
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Aforementioned components, often combined, provide an acceptable solution to
many noise problems. However, their effectiveness is mostly limited to high frequen-
cies (Nelson and Elliott, 1993). Moreover, such passive components are often inappli-
cable due to increase in size and weight of the device, and its potential overheating
related to high thermal insulation properties of many materials mentioned.

1.3.3 Personal protection

When all other possibilities are exhausted, personal passive means of protection can
be employed. Earplugs, earmuffs or even complete personnel enclosures are used to
mitigate the impact of excessive noise in the areas where humans have to be present.

However, such means of protection often limit the ability to work effectively and
are simply inconvenient to device users or workers. Moreover, they possess a major
disadvantage that the wanted sound is also reduced, including communication and
possible alarm signals (unless active personal hearing protectors are used that supports
verbal communication (Engel et al., 2001; Latos, 2011)).

1.4 Active methods

An alternative way to reduce noise is to use active control methods, which can be
explained by the principle of superposition, acoustic energy absorption or acoustic
impedance modification. In contrast to passive methods, additional energy is intro-
duced to the system through a set of control inputs to obtain a secondary response that
adds to the primary disturbance field. In result, the total response of the system can be
reduced (destructive interference) or altered in the desired manner.

Typically, active control systems consist of a set of sensors and actuators, and an
electronic controller, which drives actuators, basing on sensor signals. The controller
often runs in an adaptive way to follow changes in the primary disturbance field. Ac-
tive control is especially effective for the low-frequency noise, where passive methods
are insufficient (Preumont, 2012). Hence, the complementary use of active and passive
methods is an attractive solution. Alternatively, passive components can be replaced
with an appropriate active control system to reduce the weight or size of the device, or
to improve heat exchange capabilities.

1.4.1 Active Noise Control

The active control approach was first proposed in the 1930s, when Paul Lueg patented
a method to reduce sound with an additional sound (Lueg, 1936). His idea is illus-
trated in Fig. 1.1. The noise source A produces a sound wave S1, which propagates
downstream from left to right. The noise is measured in advance by a microphone M ,
it is later processed by an electronic controller V and drives a loudspeaker L. If the
control system operates correctly, the loudspeaker produces a sound wave S2 identical
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A

M S1 S2

V
L

Figure 1.1: Reproduced diagram from Paul Lueg’s patent (Lueg, 1936).

in amplitude and opposite in phase (180◦ difference) to S1, cancelling the the original
wave. It was a classical feed-forward Active Noise Control (ANC) system.

In 1950s, Olson proposed an electronic sound absorber using a feedback control
(Olson and May, 1953). He employed a collocated microphone and loudspeaker to
produce a "zone of silence" around the microphone. Two years later, Conover proposed
sound cancellation to reduce noise from a transformer (Conover and Ringlee, 1955).

Although the principles of ANC has been known, those analogue controllers did
not allow to develop truly practical solutions. It was not until the the 1980s, when
with the introduction of an adaptive digital filter (Burgess, 1981; Roure, 1985) and the
Filtered-x Least Mean Squares (FxLMS) algorithm (Morgan, 1980; Widrow and Stearns,
1985), the active control became more feasible and modern methods for ANC were
developed (Nelson and Elliott, 1993; Hansen et al., 2012).

Since then, there has been considerable interest in the commercial application of
active noise control (Morzynski and Makarewicz, 2003; Krukowicz, 2013). Some of the
already available products are active headrests or headsets (e.g. by Bose, Sennheiser or
Silentium), active Heating, Ventilation, and Air Conditioning (HVAC) system add-ons
(e.g. by Silentium), or active system to reduce car engine noise and road noise in the
vehicle cabin (e.g. by Lotus Engineering and Harman).

However, classical ANC in three-dimensional enclosures encounters many prob-
lems related to complicated physical phenomena, generation of local zones of quiet
instead of global reduction, high interference with the enclosure, and very high power
consumption. It is especially troublesome, when the noise source is distributed over
multiple surfaces, as in case of structure-borne sound emitted by devices and machin-
ery (e.g. by vibrating plates, walls or casings). Then, numerous loudspeakers and
microphones are required to provide global noise reduction, which is infeasible for
many practical application. Alternatively, control inputs (e.g. mechanical shakers or
piezoelectric actuators) can be applied directly to the vibrating structure responsible
for the sound radiation/transmission. This technique is referred to as Active Struc-
tural Acoustic Control (ASAC) and it was introduced by Fuller in late 1980s (Jones and
Fuller, 1989; Fuller, 1990). In such approach the sound propagating both in air and in
structures have to be considered jointly. The field that consider all vibration and acous-
tic phenomena together is called "vibroacoustics" (Engel, 2010) or "structural acoustics"
in the US (Fahy and Gardonio, 2007).
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1.4.2 Active Structural Acoustic Control

The ASAC approach derives partially from both the ANC and Active Vibration Control
(AVC) methods, which were developed in parallel to ANC. ASAC aims to reduce or
change vibration distribution in order to minimize sound pressure or a pressure-related
variable. In contrast to AVC that aims at vibration reduction to the best possible extent,
with no concern regarding the overall sound, ASAC focuses only on vibrations that
are related to sound radiation. In some cases, overall vibration magnitude can be even
amplified if it result in reduced noise radiation. The frequency range of interest is also
much higher, than typically in AVC.

If the ASAC approach can be applied, it is characterized by several advantages over
classical ANC to globally reduce the noise emitted by devices: (i) it requires generally
a lesser number of control inputs (Mao and Pietrzko, 2013), (ii) it consumes less energy,
and (iii) control inputs are integrated into the vibrating structure, which is more feasible
than using loudspeakers. Under certain circumstances, as e.g. in Virtual Microphone
Control (VMC) technique, sensors can be integrated also, instead of using microphones
(Pawelczyk, 2004). These features makes the ASAC approach well fitted to solve the
problem of excessive noise generated by devices and machinery.

The first applications of ASAC considered a sound radiated by a single plate or
cylindrical structure (Fuller, 1990; Fuller et al., 1991). It was applied also for double-
panel structures, e.g. double glazed windows (Kaiser, 2001; Pietrzko, 2009). Applica-
tions of such active barriers were considered for vehicle cabin, air plane fuselage or
ship hull (Liu et al., 2006; Carneal and Fuller, 2004; Keir et al., 2005). However, there is
a lack of reports in the literature, nor commercial products concerning active control of
multiple walls of a structure (e.g. device casing) to reduce the emitted noise.

1.4.3 Active casing

In cases, where a device generating noise is surrounded by a thin-walled casing, or
if it can be enclosed in an additional casing, such structure as a whole can be used
as a barrier for ASAC system application to enhance acoustic isolation of the device.
When appropriately implemented, it results in a global noise reduction instead of local
zones of quiet. Such solution does not require structural modifications of the device
nor affects its regular operations, but it allows to enclose the source of noise inside the
casing, isolating it acoustically from the environment. Given advantages constituted
a motivation to undertake and develop in this dissertation a technique that is referred
to as active casing approach.
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1.5 Motivation for the research

For numerous environments, structurally radiated noise from devices and machinery
is a persistent problem. The active casing approach is a highly interesting alternative if
passive methods are either ineffective or unfeasible. The active casing method allows
a device to maintain original heat transfer capabilities. Additionally, it preserves the
original size and weight of the device.

Moreover, this approach can also be used in cooperation with other means of noise
reduction. If the device needs to possess ventilation channels, additional ANC systems
can be applied to avoid acoustic leakage through the openings. On the other hand, to
deliver a highest acoustical isolation, an active casing system can be applied together
with passive sound-insulating material.

Considering mentioned above advantages, a high practical potential of the active
casing method is clearly visible. It is also an important topic from the scientific point
of view, because there are no previous research in the literature, known to the author,
that would consider an active control of entire device casings.

1.6 Objective and thesis of the dissertation

The objective of this dissertation is to develop the concept of active casing, as a way to
reduce noise generated by devices and machinery. The main thesis is formulated as:

It is possible to reduce vibrations of device casing walls by the passive method
with optimally arranged additional masses and ribs mounted to the casing walls,
and to decrease globally device noise emission to the environment by the active
method with optimally arranged vibration actuators and sensors.

1.7 Contents of the dissertation

This dissertation consists of seven chapters. The first chapter contains the introduction.
In Chapter 2 the laboratory setup for active control experiments, consisting of sev-

eral different device casings is discussed. To graduate the complexity, initially a rigid
casing is considered, which limits the cross couplings between walls. Then, a light-
weight casing is undertaken, characterized by strong vibrational coupling between the
casing walls. The discussion includes practical application-related aspects of the lab-
oratory stand assembly, vibroacoustic analysis of the introduced structures based on
secondary paths and frequency response functions, and selection of sensors and actua-
tors for the active control systems.

In Chapter 3 the mathematical model of the device casing walls is developed. The
model includes thin and thick plate theory, elastically restrained boundary conditions,
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structural thermoelastic damping model, and additional elements mounted to the cas-
ing surface—masses, ribs, actuators and sensors. These aspects are integrated in a fea-
sible state space model form, which facilitates further analysis. The measures of con-
trollability and observability of the system are also considered.

In Chapter 4 the delevoped model of a casing wall is validated by means of a com-
parison with the examples known from literature and laboratory experiments per-
formed by the author. The comparison includes natural frequencies, modeshapes and
frequency response functions. Among multiple results of simulation and experiments,
the laboratory measurement procedure is also described.

In Chapter 5 the developed model is widely used for a series of optimization prob-
lems. The memetic algorithm is used as an effective optimization algorithm for prob-
lems with complex search spaces and multiple local optima. Initially, a method of iden-
tification of model boundary conditions is proposed and practically evaluated, utiliz-
ing experimental data and the memetic algorithm. Then, the optimization algorithm is
employed to find efficient locations for actuators and sensors based on controllability
and observability measures. Finally, a frequency response shaping method of casing
walls is proposed. It is validated for a set of passive and active control scenarios, in-
cluding both simulation and a laboratory experiment.

In Chapter 6 utilizing the previous analysis and considerations, the developed struc-
tures are used to perform active control experiments. Initially, the rigid casing is eval-
uated for single- and double-panel configurations. Different sensors are employed to
provide the error signals. Then, the light-weight casing is examined, utilizing the pre-
vious experiences to properly configure the control system. The obtained results are
presented and discussed to formulate a set of recommendations for efficient imple-
mentation of the active casing approach.

In Chapter 7 conclusions, author’s contribution and an outlook are presented.
In Appendix A definitions of elements of stiffness submatrices are given.
In Appendix B definitions of elements of mass submatrices are provided.





Chapter 2

Laboratory setup

2.1 Background

The performed research is divided into two main stages. Each of them is characterised
by an investigated vibrating structure.

In the first research stage, the rigid casing is evaluated (see Section 2.2), since the
employed heavy frame limits vibrational couplings between walls, facilitating initial
attempts to control their vibrations. Moreover, the structure is designed to be eas-
ily reconfigurable, enabling experiments with different panel materials, thickness, and
single- or double-panel walls.

In the second stage, the light-weight casing is used (see Section 2.3), which in con-
trast to previously employed structure, is made without an explicit frame, resulting
in greater vibrational couplings. The casing is made of metal plates bolted directly
together, therefore the structure is not reconfigurable. However, several versions of
different plate thickness and geometrical dimensions are prepared.

Each of aforementioned casings is described in this Chapter, starting with details
of a mechanical structure. Then, selection and arrangement of applied actuators and
sensors are discussed. Finally, vibroacoustical analysis of the structures based on sec-
ondary paths and frequency response functions is presented.

2.2 Rigid casing

The rigid casing discussed in this Section is presented in Fig. 2.1, where dimensions,
cross-sections and the method of mounting of casing walls are visualised. A photo-
graph of the casing is given in Fig. 2.2. The casing has a heavy cubic frame made
of 3 mm thick welded steel profiles. The high rigidity of the frame results in its res-
onance frequencies to be far above frequencies of the noise considered. The bottom
of the casing is vibrationally and acoustically insulated. All walls of the casing are
made of single or double panels. Each panel is attached to the structure by 20 screws
embedded in the frame, and clamped with an additional steel square frame. Fully-
clamped boundary conditions can be then assumed for the panels, achieving satisfac-
tory modelling accuracy. For double panels the distance between them is 50 mm. The

9
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panel closer to the casing interior is called the incident panel, and the outer panel is re-
ferred to as the radiating panel (Pietrzko, 2009). To avoid unobservable resonances in
the cavity between the double panels (Kaiser, 2001), the incident and radiating panels
are of different thickness (e.g. 1 mm and 2 mm steel plates, respectively, as in (Wrona
and Pawelczyk, 2016a)). Panels of any material can be attached—aluminium, steel,
wood, etc (Wrona and Pawelczyk, 2014a).

600

60
0

60
0

profile cross-section

loudspeaker

(a) A view of the enclosure interior with a loud-
speaker. The cross-section of profiles is also visible.

600

60
0

60
0

heavy cubic frame

screw embedded in frame

(b) A view of the whole frame.

60
0

60
0

500

individual 
panel

(c) A view with a panel mounted to the frame.

420

60
0

60
0

square frame 
clamping panel

500

(d) A view with attached clamping frame.

Figure 2.1: A schematic representation of the rigid active casing.
All dimensions are given in [mm].
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Figure 2.2: A photograph of the rigid active casing (Wrona and Pawelczyk, 2014b).

2.2.1 Actuators and sensors

In this stage of research, a loudspeaker placed on the casing floor is used as the primary
noise source. It allows for creating an environment more suitable for the research than
a real operating device, which is used in due course. For feedfoward control system
implementations, the reference signal is obtained by a microphone placed next to the

600
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heavy cubic frame

screw embedded in frame

square frame 
clamping plate

420

500

500

300

microphone

1650

1650

1800

900

300

1650

1200

600

outer

microphone
cavity(Mic 8)

(Mic 7)

microphone (Mic 6)
room

Figure 2.3: A schematic representation of the laboratory setup with the rigid active casing.
All dimensions are given in [mm].
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(a) A photograph from the outside. (b) A photograph from the inside.

Figure 2.4: Photographs of the rigid active casing with mounted sensors
and actuators (Wrona and Pawelczyk, 2015).

loudspeaker inside the casing enclosure (referred to further as the reference microphone).
In front of each casing wall, a microphone is placed in the distance of 500 mm (referred
to as the outer microphone). If double panels are used, a microphone is also placed in
the cavity between them (referred to as the cavity microphone). These microphones are
used mainly for control-related purposes. Additionally, to evaluate the noise reduction
efficiency, three microphones are placed at several larger distances from the casing,
corresponding to potential locations of the user (referred to as the room microphones).
The laboratory setup is presented schematically in Fig. 2.3. Photographs of the rigid
casing with mounted sensors and actuators are given in Fig. 2.4.

To control vibrations of the casing walls, inertial exciters NXT EX-1 are used (de-
picted in Fig. 2.5a). They weight 115 g and they are of small dimensions (70 mm),
comparing to the size of the casing. In the performed control experiments, they are
mounted on the incident plates from the inner side, three actuators per panel. Their
placement has been optimized using a method that maximizes a measure of the con-
trollability of the system. The impact of the mass of the actuators is included in the
optimization procedure, as it is comparable with the mass of the casing walls and sub-
stantially affects their dynamical behaviour. The method of actuators positioning is de-
scribed in details in Subsection 5.4.3 and in previous publications of the author (Wrona
and Pawelczyk, 2013b; Wrona et al., 2014). The spillover effect has been also consid-
ered, e.g. in (Pawelczyk and Wrona, 2013).

As sensors for control purposes, microphones (Beyerdynamic MM-1, depicted in
Fig. 2.5b) or accelerometers (Analog Devices ADXL203, presented in Fig. 2.5c) are used,
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Properties EX-1
Size, mm � 70
Thickness, mm 19
Mass, g 115
Power handling, W 5

(a) The inertial exciter NXT EX-1 (Wrona and Pawelczyk, 2016b).

Properties MM-1
Size, mm � 19/9
Height, mm 133
Mass, g 88
Polar pattern Omnidirectional
Frequency range, Hz 20 to 20, 000
Max. SPL, dB 128

(b) The microphone Beyerdynamic MM-1.

Properties ADXL203
Size, mm 20× 20× 4
Mass, g 5
Measurement range, g ±1.7
Frequency range, Hz 0.5 to 2, 500

(c) The accelerometer Analog Devices ADXL203.

Properties PDV-100
Size, mm 300× 63× 129
Mass, g 2600
Frequency range, Hz 0.5 to 22, 000
Velocity resolution, µm/s < 0.02
Working distance, m 0.1 to 30

(d) The laser vibrometer Polytec PDV-100.

Figure 2.5: Photographs of an actuator and sensors, along with their relevant parameters.
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depending on the chosen control configuration. In case of single panels, the accelerom-
eters are collocated with the actuators. For double panels, they are mounted on the
radiating plate at locations calculated according to the method that maximizes a mea-
sure of the observability of the system (Wrona and Pawelczyk, 2013a). The placement
of actuators and sensors is identical for each wall. In contrast to the inertial exciters,
the employed accelerometers are light-weight (5 g) comparing to the mass of the casing
walls, and therefore they have a marginal loading effect and their mass can be safely
neglected in the mathematical modelling. However, if heavier sensors were used or an
application would require a highest modelling accuracy, their mass could be modelled
analogously as in the case of inertial exciters.

An additional type of the sensors used, is a laser vibrometer Polytec PDV-100, de-
picted in Fig. 2.5d. As a specialized laboratory equipment, it is not used for active
control experiments as a signal source (it would be infeasible in commercial applica-
tions). But it is used for highly precise non-contact measurement of vibrations in lab-
oratory environment, strictly for the research purposes (the obtained data have been
used mainly to validate the mathematical modelling accuracy). Utilizing that the mea-
surement does not affect anyhow the dynamical behaviour of the vibrating panel, all
of experimentally measured modeshapes of casing walls presented in this dissertation,
are obtained with the laser vibrometer.

2.2.2 Secondary paths analysis

To present the vibroacoustical properties of the structure, a set of exemplary amplitude
responses of secondary paths obtained for the rigid casing with single panels is shown
in Figs. 2.6a-2.6d. It follows from the analysis that the direct paths between actua-
tors and accelerometers mounted on the same wall are of similar magnitude in whole
frequency range considered (see Fig. 2.6a). In turn, the magnitudes of cross paths be-
tween actuators mounted on one wall and accelerometers mounted on the other wall
are many times weaker, comparing to magnitudes of direct paths within the same wall
(see Fig. 2.6b). This is due to the heavy and rigid frame of the casing, isolating vibra-
tionally individual walls. Hence, the interference with each other is mainly through the
acoustic field. Therefore, since such separation has been noticed, for the mathematical
modelling and control purposes, it is justified to consider each of the walls separately.

Analogous behaviour can be observed for the paths between actuators and outer
microphones, but only for low frequencies up to approximately 250 Hz. Above this
frequency, the cross paths between actuators mounted to one wall and an outer micro-
phone placed in front of another wall become of similar magnitude, as the direct paths
between actuators and an outer microphone assigned for the same wall (see Figs. 2.6c-
2.6d). Such couplings affect the performance of active noise control systems and it is
referred to in Section 6.3, where active control experiments for rigid casing are pre-
sented and discussed.
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(a) Direct paths between actuators no. 0-2 and the accelerometer no. 0 mounted on the front wall.
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(c) Direct paths between actuators no. 0-2 and the outer microphone assigned to the front wall.
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Figure 2.6: Exemplary amplitude responses of secondary paths for the rigid casing.
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2.3 Light-weight casing

The light-weight device casing used in this stage of research is presented in Fig. 2.7. In
contrast to the rigid casing used in the previous stage, the light-weight casing is made
without an explicit frame. It is made of steel plates (of 1.0 mm or 1.5 mm thick, de-
pending on version) bolted together, forming a closed cuboid of dimensions 500 mm×
630 mm × 800 mm or a cube of dimensions 500 mm × 500 mm × 500 mm, depending
on version. Such structure results in greater vibrational couplings between individual
walls, in addition to couplings through the acoustic field inside and, to a lesser ex-
tends, outside the casing. Moreover, due to the absence of the rigid frame, the walls are
connected directly to each other, what results in boundary conditions which no longer
behave as fully clamped—boundary conditions elastically restrained against both ro-
tation and translation are more appropriate. Identification of spring constants repre-
senting elastic boundary conditions of light-weight device casing walls are performed
using experimental data and a memetic algorithm. The procedure is described in de-
tails in Section 5.3 and in (Wrona and Pawelczyk, 2016c).

2.3.1 Actuators and sensors

Similarly as in the previous stage, a loudspeaker placed on the sound-insulating ba-
sis is used as the primary noise source. A reference microphone placed next to the
loudspeaker is used to obtain the reference signal. In front of each casing wall, a micro-
phone is placed in the distance of 500 mm (also referred to as the outer microphone).
The room microphones are placed in similar configuration as in case of the rigid casing.

(a) A photograph of the light-weight casing.

800

630

500

light-weight casing
bolts

sound-insulating basis

Front wall

Left w
all

Top wall

loudspeaker

(b) A schematic representation of the light-weight
casing.

Figure 2.7: The light-weight active casing—a photograph and a schematic representation
(Wrona and Pawelczyk, 2016d). All dimensions are given in [mm].
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Photographs of the light-weight active casing with mounted sensors and actuators are
given in Fig. 2.8. The laboratory setup is presented schematically in Fig. 2.9.

Inertial exciters NXT EX-1 are used to control vibrations of the casing walls. They
are mounted on the walls from the inner side. The number of actuators depends on
the particular wall—four actuators are mounted to front, right, back and left wall, and
five actuators to the top wall. Their placement has been optimized using a method that
maximizes a measure of the controllability of the system. The optimization process is

(a) A photograph from the outside. (b) A photograph from the inside.

Figure 2.8: Photographs of the light-weight active casing with mounted sensors and actuators
(Wrona and Pawelczyk, 2016b).
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Figure 2.9: A schematic representation of the laboratory setup with the light-weight active
casing. All dimensions are given in [mm].
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described in Subsection 5.4.4 and in (Wrona and Pawelczyk, 2016d). Boundary condi-
tions elastically restrained against both rotation and translation are used in the math-
ematical modelling (Wrona and Pawelczyk, 2016c). As shown in Fig. 2.8, light-weight
frames are added to the laboratory stand to support the actuators cables (inside the cas-
ing) and sensors cables (outside the casing). These frames are made in such a manner
that they do not affect the vibrational or acoustical behaviour of the casing. The ac-
celerometers used for control purposes (Analog Devices ADXL203) are collocated with
the actuators.

2.3.2 Frequency response functions

The described light-weight casing is a three-dimensional structure. The couplings be-
tween individual walls, of both vibrational and acoustical nature, are significant. How-
ever, noteworthy is an analysis of spatially averaged (over the area of each wall) fre-
quency responses of three walls of the casing, presented in Fig. 2.10 (left, front and top
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Figure 2.10: Spatially averaged frequency responses of casing walls. Two pairs of walls are
symmetrical (left and right, front and back), hence only one of each pair is presented in the
Figure. Initial 12 eigenmodes originating at each wall are marked: eigenmodes originating at
left wall are marked with red circle, at front wall with blue diamond, at top wall with green

square.
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walls; right and back walls are omitted as they are symmetrical to the left and front
walls, respectively). Resonances that originate on one wall, are clearly visible on the
others. However, all of resonances visible as peaks in the given frequency range can be
assigned to one of the walls where they originate. Such assignment of the eigenmodes
is consistent with the mathematical model developed in Chapter 3 and validated for
the light-weight casing in Subsection 4.3.2.

It leads to a conclusion that observed natural frequencies and modeshapes of the
whole structure are a consequence of superposition of resonances of each wall excited
individually (but as a part of the structure). Therefore, it is justified to analyse the
walls separately for the purpose of optimization of actuators locations, considering
only eigenmodes due to the given wall—if the resonance is appropriately modelled at
the wall where it originates, it will be accordingly included in the process of sensors
and actuators arrangement optimization for the whole casing. It means also that if
the given mode is controlled with actuators at the wall where it originates, it will be
reduced for the whole casing.

But it is also worth noting at this point that for the control purposes (see Sec-
tion 6.4), separate control of each wall has more strict limitations, than in case of the
rigid casing—a multichannel control system for the whole casing is more appropriate.

2.3.3 Secondary paths analysis

It follows from the analysis of secondary paths given in Fig. 2.11 that magnitudes of
cross paths between actuators mounted on one wall and accelerometers mounted on
the other wall are weaker than magnitudes of direct paths within the same wall only
up to frequency of approximately 250 Hz (see Figs. 2.11a-2.11b). Above this frequency,
magnitudes of cross paths and direct paths are similar. It confirms, as expected, higher
vibrational couplings between individual walls than in case of the rigid casing (where
cross paths are many times weaker than direct paths in whole frequency range consid-
ered).

On the other hand, for the paths between actuators and outer microphones, cross
paths and direct paths represent a similar magnitude in the whole frequency range (in
contrast to the case of the rigid casing, where for low frequencies direct paths domi-
nated over cross paths). Direct paths between actuators no. 0-3 and the outer micro-
phone assigned to the front wall are shown in Fig. 2.11c. Cross paths between actuators
no. 0 mounted on different walls and the outer microphone assigned to the front wall
are presented in Fig. 2.11d. Such strong couplings generally make the synthesis of ac-
tive noise control systems more difficult and it will be discussed to in Section 6.4.
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Figure 2.11: Exemplary amplitude responses of secondary paths for the light-weight casing.
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2.4 Summary

The laboratory setup for active control experiments consisting of several different de-
vice casings has been discussed in this Chapter. The discussion have included practical
application-related aspects of the laboratory stand assembly, vibroacoustic analysis of
the introduced structures and selection of sensors and actuators for the active control
systems.

Initially the rigid casing has been examined. Following conclusions are formulated
basing on the analysis of secondary paths:

• the direct paths between actuators and accelerometers mounted on the same wall
significantly dominate the cross paths between actuators mounted on one wall
and accelerometers mounted on the other wall, what confirms high vibrational
isolation between walls;

• for the paths between actuators and outer microphones, direct paths dominate
the cross paths only for low frequencies up to approximately 250 Hz (above this
frequency, they become of similar magnitude).

Afterwards, the light-weight casing has been considered. Studying its secondary
paths and frequency response functions, following conclusions are formulated:

• direct vibrational paths dominate the cross paths only up to approximately 250 Hz.
(above this frequency, magnitudes of cross paths and direct paths are similar,
what confirms higher vibrational couplings);

• for the paths between actuators and outer microphones, cross paths and direct
paths represent a similar magnitude in the whole frequency range considered;

• observed natural frequencies and modeshapes of the whole structure are a conse-
quence of superposition of resonances of each wall excited individually (but as a
part of the structure)—therefore, it is justified to analyse the walls separately for
the purpose of optimization of actuators locations, considering only eigenmodes
due to the given wall.





Chapter 3

Modelling of the device casings

3.1 Background

Formulation of a mathematical model of the considered device casings brings a set of
benefits. Firstly, if the model is properly validated, it can be used for simulation and
analysis of the vibrating casing dynamical behaviour what facilitates a better under-
standing of the structure. It can be also used for preliminary evaluations of active con-
trol strategies. Moreover, what is of particular interest in this dissertation, the model
can be used for optimization of the structure—to shape its frequency response to im-
prove its passive properties or to maximize the susceptibility of the plant to the active
control. Also, it can be used to efficiently apply actuators and sensors, so the maximum
advantage could be taken of them. All of the aforementioned benefits constitutes a sig-
nificant value, what justify the undertaken effort to formulate the appropriate model.

The successful application of the mathematical model depends on its accuracy, as it
should appropriately reflect real behaviour of the plant. On the other hand, to facilitate
practical applicability, the model should not be complicated more than it is necessary.
Therefore, usually the model constitutes a trade-off between accuracy and complexity.
In the presented modelling of the device casing, there are several simplifying assump-
tions adopted to obtain such balance.

Most importantly, basing on the vibroacoustical analysis given in the previous Chap-
ter, each wall of the casing is considered separately. It is an intuitive approach for the
rigid casing where the separation of the walls is clearly visible. However, same ap-
proach is adopted in case of the light-weight casing, as its frequency response can be
decomposed into responses of individual walls (see Subsection 2.3.2). Therefore, when
modelling each of the walls separately, the overall behaviour of the casing is also suffi-
ciently reflected. Other assumptions are related to the employed theories of individual
vibrating panels—the assumption of small deflections of the panels, homogeneity of
the panel material, etc. They are described in more details in the following sections.

This Chapter is organized as follows. In Section 3.2 fundamental issues of the thin
and thick plate theories are recalled to set a reference for further reading. Section 3.3
defines the elastically restrained boundary conditions of the casing walls. Section 3.4
describes an impact of additional elements bonded to the wall surface—masses, ribs,
actuators and sensors. In Section 3.5 the total energy functional is formulated. It is
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used in Section 3.6, where the Rayleigh-Ritz method is used to find an approximate
solution of the developed model. Then, in Section 3.7 the model is presented in state
space, what facilitates further application and analysis. Finally, taking advantage of
such representation, in Section 3.8 measures of controllability and observability of the
system are defined.

3.2 Vibration of individual plates

A plate is a structural element with a small thickness compared to the planar dimen-
sions. In most cases, the thickness is no greater than one-tenth of the smaller in-
plane dimension (Reddy, 2006). The theory of plates is an approximation of the three-
dimensional elasticity theory to two dimensions, which assumes that a mid-surface
plane can be used to represent deformation of every point of the plate. The aim of the
plate theory is to study the deformation and stresses in plate structures subjected to
loads.

In this Section, fundamental issues of two-dimensional mathematical models of
plates are recalled to set a reference for further reading, where the final form of a model
used for analysis of the casing walls is presented. Detailed derivations of presented
models can be found, e.g. in (Timoshenko and Woinowsky-Krieger, 1959; Reddy, 2006;
Rao, 2007).

3.2.1 Kirchhoff–Love plate theory

The Kirchhoff–Love theory is a most elementary mathematical model of plates con-
sidered in this dissertation. This theory is an extension of Euler-Bernoulli beam theory
and was developed in 1888 by Love using the Kirchhoff hypothesis (Love, 1888), which
consists of the following assumptions:

• straight lines perpendicular to the mid-surface (i.e. transverse normals) before
deformation remain straight after deformation;

• the transverse normals rotate such that they remain perpendicular to the mid-
surface after deformation;

• the transverse normals do not experience elongation (i.e. the thickness of the
plate does not change during a deformation).

Such assumptions are eligible for thin plates with small deflections, where shear energy
is negligible.

Due to the application of plate models for modelling of casing walls, hereinafter the
plate theories are considered and presented for rectangular plates (as a most common
shape of device casing walls). Hence, all following mathematical models are given in
Cartesian coordinates system. However, presented theories are valid for plates of any
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shape and they can be easily expressed in different form, more suitable for other plate
shapes.

Isotropic Kirchhoff plate

For an isotropic and homogeneous plate, which occupies the X−Y plane in the refer-
ence stress-free state, free vibrations are governed by a differential system:

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ ρph

∂2w

∂t2
= 0 , (3.1)

for
x ∈ (0, a) , y ∈ (0, b) , t > t0 > 0 , (3.2)

where

D =
Eh3

12(1− ν2)
. (3.3)

Initial conditions are defined by:

w(x, y, t0) = 0 ,
∂w(x, y, t)

∂t

∣∣∣∣
t=t0

= 0 . (3.4)

In Eq. (3.1)-(3.4) the function w(x, y, t) denotes the displacement of the plate from the
reference state to the z-direction at time t > 0 and position (x, y); the lengths of rect-
angular plate sides are assumed to be equal to a and b, respectively; D is the flexural
rigidity; E is the Young’s modulus; ν is the Poisson’s ratio; ρp is the mass density of the
plate material; and h is the plate thickness.

The definitions of domains of spatial variables and time given in Eq. (3.2), for the
sake of brevity, are not repeated in following considerations in this Section. However,
they are the same for all presented plate models.

Considering only the transverse motion and neglecting the effect of rotary inertia,
the kinetic and strain energies of the plate, Tp and Up, can be written as:

Tp =
ρph

2

∫∫
S

(
∂w

∂t

)2

dx dy , (3.5a)

Up =
D

2

∫∫
S

{(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2
+ 2(1− ν)

(
∂2w

∂x∂y

)2
}
dx dy , (3.5b)

where S is the surface of the plate. The definition of the kinetic and strain energies
of the plate is particularly important in this dissertation, as the Rayleigh-Ritz method
(see Section 3.6) is used to find an approximate solution of the differential system (the
method is based on the definition of an energy functional).
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Orthotropic Kirchhoff plate

Equation (3.1) can be extended to a case of orthotropic plates, which have material
properties that differ along two orthogonal axes (in contrast to isotropic materials that
have the same properties in every direction). It is an important subset of anisotropic
plates. An example is a sheet metal formed by squeezing thick sections of metal be-
tween heavy rollers. Its properties differ between the direction it was rolled in and
each of the two transverse directions. Sheet metal is commonly used for device cas-
ings, which are of particular interest in this dissertation.

Assuming that the orthotropic plate material have axes of symmetry along x and y
directions, free vibrations of such plate are governed by the equation:

Dx
∂4w

∂x4
+ 2 (Dxνy + 2Dxy)

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
+ ρph

∂2w

∂t2
= 0 , (3.6)

where

Dx =
Exh

3

12(1− νxνy)
, Dy =

Eyh
3

12(1− νxνy)
, Dxy =

Gh3

12
. (3.7)

In (3.6)-(3.7) Dx, Dy, and Dxy are orthotropic rigidities of the plate; Ex and Ey are the
Young moduli along the x and y directions, respectively;G is the shear modulus; νx and
νy are the Poisson’s ratios corresponding to x and y direction, respectively. Four elastic
constants Ex, Ey, G, νx are independent (while the isotropic plate model needs only
two elastic constants to be defined). The coefficient νy can be determined according to
the following relation:

νx
Ex

=
νy
Ey

. (3.8)

It can be easily shown that if Ex = Ey and νx = νy, then Eq. (3.6) simplifies to (3.1).
It is also helpful to express the shear modulus G in terms of Young modulus E and
Poisson’s ratio ν as:

G =
E

2 (1 + ν)
. (3.9)

The kinetic energy of the orthotropic plate can be calculated according to Eq. (3.5a),
as in case of an isotropic plate. However, the strain energy is expressed as:

Up =
1

2

∫∫
S

{
Dx

(
∂2w

∂x2

)2

+Dy

(
∂2w

∂y2

)2

+ 2Dxνy
∂2w

∂x2

∂2w

∂y2
+ 4Dxy

(
∂2w

∂x∂y

)2
}
dx dy .

(3.10)

3.2.2 Mindlin–Reissner plate theory

The Mindlin–Reissner theory is an extension of Kirchhoff–Love theory that takes into
account rotary inertia and shear deformations of a plate (Mindlin, 1951). It is obtained
by relaxing the Kirchhoff’s normality restriction and allowing for arbitrary but constant
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rotation of transverse normals after deformation (it is an analogy of extension of Euler-
Bernoulli beam theory to Timoshenko beam theory). The Mindlin–Reissner theory is
especially suitable for thick plates (i.e. with side to thickness ratios of the order of 20
or less), since Kirchhoff–Love theory tends to underpredict deflections and overpredict
natural frequencies of such plates.

Isotropic Mindlin plate

Assuming that the functions Θx(x, y, t) and Θy(x, y, t) denote the rotations of a trans-
verse normal at position (x, y) in the x and y directions, respectively, free vibrations the
isotropic Mindlin plate are governed by the equations:

ρph
3

12

∂2Θx

∂t2
− D

2

[
(1−ν)

(
∂2Θx

∂x2
+
∂2Θx

∂y2

)
+ (1+ν)

(
∂2Θx

∂x2
+
∂2Θy

∂x∂y

)]
+ κhG

(
∂w

∂x
+Θx

)
= 0 ,

(3.11a)

ρph
3

12

∂2Θy

∂t2
− D

2

[
(1−ν)

(
∂2Θy

∂x2
+
∂2Θy

∂y2

)
+ (1+ν)

(
∂2Θy

∂y2
+
∂2Θx

∂x∂y

)]
+ κhG

(
∂w

∂y
+Θy

)
= 0 ,

(3.11b)

ρph
∂2w

∂t2
− κhG

(
∂2w

∂x2
+
∂2w

∂y2
+
∂Θx

∂x
+
∂Θy

∂y

)
= 0 ,

(3.11c)

where κ is the shear coefficient. Initial conditions are defined by:

w(x, y, t0) = 0 ,
∂w(x, y, t)

∂t

∣∣∣∣
t=t0

= 0 , (3.12a)

Θx(x, y, t0) = 0 ,
∂Θx(x, y, t)

∂t

∣∣∣∣
t=t0

= 0 , (3.12b)

Θy(x, y, t0) = 0 ,
∂Θy(x, y, t)

∂t

∣∣∣∣
t=t0

= 0 . (3.12c)

Kinetic and strain energies of the plate, Tp and Up, can be calculated as:

Tp =
ρph

2

∫∫
S

{
h2

12

[(
∂Θx

∂t

)2

+

(
∂Θy

∂t

)2
]

+

(
∂w

∂t

)2
}
dx dy , (3.13a)

Up =
1

2

∫∫
S

{
D

[(
∂Θx

∂x

)2

+

(
∂Θy

∂y

)2

+ 2ν
∂Θx

∂x

∂Θy

∂y
+

1

2
(1− ν)

(
∂Θx

∂y
+
∂Θy

∂x

)2
]

+κhG

[(
∂w

∂x
+ Θx

)2

+

(
∂w

∂y
+ Θy

)2
]}

dx dy. (3.13b)

It is noteworthy that by setting Θx = −∂w
∂x , Θy = −∂w

∂y , and neglecting the effect of
rotary inertia in (3.13a) and (3.13b), the energy definitions (3.5a) and (3.5b) for Kirchhoff
plate can be obtained.
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Orthotropic Mindlin plate

Assuming that the orthotropic Mindlin plate material have axes of symmetry along x
and y directions (analogously like in case of an orthotropic Kirchhoff plate), free vibra-
tions of such plate are governed by the equations:

ρph
3

12

∂2Θx

∂t2
−Dx

(
∂2Θx

∂x2
+νy

∂2Θy

∂x∂y

)
−Dxy

(
∂2Θx

∂y2
+
∂2Θy

∂x∂y

)
+ κxhGxz

(
∂w

∂x
+Θx

)
= 0 ,

(3.14a)

ρph
3

12

∂2Θy

∂t2
−Dy

(
∂2Θy

∂y2
+νx

∂2Θx

∂x∂y

)
−Dxy

(
∂2Θy

∂x2
+
∂2Θx

∂x∂y

)
+ κyhGyz

(
∂w

∂y
+Θy

)
= 0 ,

(3.14b)

ρph
∂2w

∂t2
− κxhGxz

(
∂2w

∂x2
+
∂Θx

∂x

)
− κyhGyz

(
∂2w

∂y2
+
∂Θy

∂y

)
= 0 ,

(3.14c)

where

Dx =
Exh

3

12(1− νxνy)
, Dy =

Eyh
3

12(1− νxνy)
, Dxy =

Gxyh
3

12
. (3.15)

In Eqs. (3.14a) - (3.15), Gxy, Gxz and Gyz are the shear moduli in X−Y , X−Z and
Y−Z planes, respectively; κx and κy are the shear coefficients in the x and y directions,
respectively. It can be easily shown, similarly as in case of Kirchhoff plate, that if given
elastic constants corresponding to different directions become equal, then Eqs. (3.14)
simplifies to (3.11).

The kinetic energy is calculated in the same manner as for isotropic Mindlin plate,
given in Eq. (3.13a). However, the strain energy Up is expressed by:

Up =
1

2

∫∫
S

{
Dx

(
∂Θx

∂x

)2

+Dy

(
∂Θy

∂y

)2

+ (νyDx+νxDy)
∂Θx

∂x

∂Θy

∂y
+Dxy

(
∂Θx

∂y
+
∂Θy

∂x

)2

+κxhGxz

(
∂w

∂x
+ Θx

)2

+ κyhGyz

(
∂w

∂y
+ Θy

)2
}
dx dy.

(3.16)

As the most general of the considered models, the orthotropic Mindlin plate model
is used in the following considerations and analysis. Therefore, it is helpful to ex-
press the kinetic and strain energies of the plate, given in Eqs. (3.13a) and (3.16), in
non-dimensional coordinates, which facilitate the solution of the differential system
(described in Section 3.6). Introducing non-dimensional coordinates ξ = x

a , η = y
b , and

a non-dimensional parameter αp = a
b , the kinetic and strain energies of the plate can be

calculated as:

Tp =
ρphab

2

1∫
0

1∫
0

{
h2

12

[(
∂Θx

∂t

)2

+

(
∂Θy

∂t

)2
]

+

(
∂w

∂t

)2
}
dξdη , (3.17a)
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Up =
1

2αp

1∫
0

1∫
0

{
Dx

(
∂Θx

∂ξ

)2

+ α2
pDy

(
∂Θy

∂η

)2

+ αp (νyDx + νxDy)
∂Θx

∂ξ

∂Θy

∂η

+Dxy

(
αp
∂Θx

∂η
+
∂Θy

∂ξ

)2

+κxhGxz

(
∂w

∂ξ
+aΘx

)2

+α2
pκyhGyz

(
∂w

∂η
+bΘy

)2
}
dξdη.

(3.17b)

3.3 Boundary conditions

Type of mounting of the plate edges affects strongly its behaviour (both natural fre-
quencies and modeshapes). Therefore, the boundary conditions should be always
carefully considered and appropriately modelled. In the literature, classical bound-
ary conditions have been thoroughly evaluated—simply-supported, fully-clamped or
free edges (e.g. in (Leissa, 1969)). However, the actual boundary conditions of a real
system are mostly not classical, but somewhere in between these conditions. In this
dissertation, a general formulation of boundary conditions is employed—plate edges
are elastically restrained against both translation and rotation. Such mounting is rep-
resented by translational and rotational springs distributed linearly along plate edges
and defined by spring constants (it corresponds to a majority of practical application
of plates, including casing walls). It can be easily showed that the classical boundary
conditions of the plate can be obtained as limiting cases when the spring constants ap-
proach their natural limits of zero or infinity (it is schematically presented in Tab. 3.1).
Detailed considerations and derivation of elastic boundary conditions can be found e.g.
in (Rao, 2007).

For the sake of brevity, necessary definitions of the boundary conditions are pre-
sented strictly for the purpose of application of the Rayleigh-Ritz method. In this
method, appropriate admissible functions, which satisfy the geometric boundary con-
ditions have to be chosen. These functions, in fact, determine, which geometry of the
plate is considered, and what boundary conditions are adopted (together with an ap-
propriate energy functional). To obtain the admissible functions, in this dissertation
products of characteristic orthogonal polynomials having the properties of Timoshenko
beam functions are used (a rectangular plate is considered, hence there are two beams
assumed, corresponding to x and y directions). Therefore, equations representing the
boundary conditions are presented as for the Timoshenko beam, but in fact, an edge of
the beam represent homogeneous boundary conditions of a corresponding edge of the
plate.

To describe in such manner boundary conditions of four plate edges, eight spring
constants needs to be defined, as shown in Fig. 3.1. Translational spring constants in the
x direction at x = 0 and x = a, and in the y direction at y = 0 and y = b are designated
as ktx0, ktx1, kty0 and kty1, respectively. Rotational spring constants for plate edges
given in the same manner as above, are noted as krx0, krx1, kry0 and kry1, respectively.
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Table 3.1: Summary of different boundary conditions, depending on spring constants, at the
exemplary plate edge x = 0. The dashed line represents the reference state of the plate.

ktx0 = 0 0 < ktx0 <∞ ktx0 =∞

k
r
x

0
=

0

z
x

free edge

ktx0

z
x

z

x

simply-supported edge

∂2Θx

∂x2
= 0, ktx0w = −Dx

∂2Θx

∂x2
, w = 0,

∂Θx

∂x
= 0.

∂Θx

∂x
= 0.

∂Θx

∂x
= 0.

0
<
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r
x

0
<
∞

krx0

z
x

krx0

ktx0

z
x

krx0

z

x

∂2Θx

∂x2
= 0, ktx0w = −Dx

∂2Θx

∂x2
, w = 0,

krx0Θx = Dx
∂Θx

∂x
. krx0Θx = Dx

∂Θx

∂x
. krx0Θx = Dx

∂Θx

∂x
.

k
r
x

0
=
∞

z
x

ktx0

z
x

z

x

fully clamped edge

∂2Θx

∂x2
= 0, ktx0w = −Dx

∂2Θx

∂x2
, w = 0,

Θx = 0. Θx = 0. Θx = 0.
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Figure 3.1: A multiview orthographic projection of the rectangular plate with boundary con-
ditions represented as rotational and translational springs.

With such notation, the boundary conditions for elastically restrained edges are:

ktx0w = −Dx
∂2Θx

∂x2
, krx0Θx = Dx

∂Θx

∂x
at x = 0, (3.18a)

ktx1w = Dx
∂2Θx

∂x2
, krx1Θx = −Dx

∂Θx

∂x
at x = a, (3.18b)

kty0w = −Dy
∂2Θy

∂y2
, kry0Θy = Dy

∂Θy

∂y
at y = 0, (3.18c)

kty1w = Dy
∂2Θy

∂y2
, kry1Θy = −Dy

∂Θy

∂y
at y = b. (3.18d)

A summary of the equations representing boundary conditions depending on spring
constants (at the exemplary plate edge x = 0) are given in Tab. 3.1.
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As needed in the Rayleigh-Ritz method, the strain energy stored in translational
and rotational springs, Ub, utilizing the non-dimensional coordinates (ξ, η), is given by:

Ub =
1

2αp

 1∫
0

a

{(
ktx0w

2 + krx0Θ2
x

) ∣∣∣∣
ξ=0

+
(
ktx1w

2 + krx1Θ2
x

) ∣∣∣∣
ξ=1

}
dη

+α2
p

1∫
0

b

{(
kty0w

2 + kry0Θ2
y

) ∣∣∣∣
η=0

+
(
kty1w

2 + kry1Θ2
y

) ∣∣∣∣
η=1

}
dξ

]
.

(3.19)

3.4 Additional elements

The casing walls considered in this dissertation are a subject of both passive and active
control. For this purpose, different kinds of element are bonded to the walls surface—
actuators, sensors, additional masses and ribs (stiffeners). They have strong impact on
the plate dynamical behaviour and have to be included in the mathematical modelling,
so the model remains valid after the elements are attached to the plate surface.

In this section, mathematical modelling of additional masses and ribs bonded to
plate surface is considered. Presence of sensors and actuators is also modelled as addi-
tional masses. Modelling of ribs includes the Engesser theory associated with the con-
sideration of torsion (Engesser, 1891). The idea is presented schematically in Fig. 3.2.
The symbols are summarized in the List of Symbols and discussed in details in this
Section.

(ξm,i,ηm,i )

x,ξ

z

y,η

h
a

bO

(ξa,i,ηa,i )

(ξs,i,ηs,i )

(ξr0,i,ηr0,i )
(ξr1,i,ηr1,i )

(ξr1,i+1 ,ηr1,i+1 )

(ξr0,i+1,ηr0,i+1 )

1

45

2

3

Figure 3.2: Rectangular plate (1) with actuators (2), sensors (3), additional masses (4) and
ribs (5) bonded to its surface—a visualization in an isometric projection.
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For the sake of brevity, mathematical modelling of additional elements is presented
apart from differential system of the vibrating plate, defining only the kinetic and po-
tential energy related to the elements (as they are most important for the Rayleigh-Ritz
method used to solve the differential system).

3.4.1 Energy related to additional masses

Elements represented by additional masses in this dissertation (actuators, sensors and
passive masses), can be for simplification (not limiting the analysis) considered of small
size, compared to the dimensions of the plate. Therefore, an influence of strain caused
by these elements bonded to the plate surface is neglected. Moreover, assuming perfect
bonding, the total energy introduced to the system by the additional masses is consid-
ered to be the kinetic energy, expressed in the non-dimensional coordinates (ξ, η) as:

Tm =

Na∑
i=0
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2

{
ma,i

(
∂w

∂t
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)2

+ Isx,i

(
∂Θx

∂t
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(
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)2
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i=0

1

2
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∂t

)2
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(
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)2

+ Imy,i

(
∂Θy
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)2
}∣∣∣∣ξ=ξm,i

η=ηm,i

,

(3.20)

where NΓ, mΓ,i, IΓx,i, IΓy,i, ξΓ,i and ηΓ,i (depending of the kind of elements - Γ stand
for: a for actuators, s for sensors and m for passive masses) are the number of ele-
ments bonded to the plate surface, mass of the i-th element, moments of inertia of the
i-th element with respect to x and y directions, and coordinates of the i-th element,
respectively.

3.4.2 Energy related to ribs

Assuming Nr stiffening ribs mounted on the plate surface, the total energy functionals
related to the ribs can be expressed as:

Tr =

Nr∑
i=0

Tr,i , (3.21a)

Ur =

Nr∑
i=0

Ur,i , (3.21b)

where Tr,i and Ur,i are kinetic and potential energy of the i-th rib, respectively.
In the present considerations, the ribs can be mounted on the plate surface with any

orientation, defined for the i-th rib by angle αi. Therefore, a local coordinates (x̃r,i, ỹr,i)

system have to be introduced (shown in Fig. 3.3), in which the energy functionals of
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Figure 3.3: Rectangular plate with the i-th rib bonded to the plate surface, utilizing global and
local coordinates systems.

the i-th rib are expressed as:

Tr,i =
1

2
Ar,iρr,i
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ỹr,i=ỹr0,i
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(3.22a)

Ur,i =
1

2
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∂Θx̃r,i
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Gr,iAr,i
βr,i

(
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+Gr,iJr,i
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ỹr,i=ỹr0,i

dx̃r,i ,

(3.22b)

where x̃r0,i and x̃r1,i are the coordinates of the start and end points of the i-th rib,
assuming that the ribs is mounted along the x̃r,i direction; ỹr0,i is the location of the
i-th rib along the ỹr,i direction; the functions Θx̃r,i and Θỹr,i denote the cross-sectional
rotations of the plate mid-plane in the x̃r,i and ỹr,i directions, respectively; Er,i is a
Young modulus; Ir,i is a second moment of inertia about the plate mid-plane; Gr,i is
a shear modulus; Ar,i is a cross-sectional area; βr,i is a shape factor; Jr,i is a torsional
constant; ρr,i is a mass density; and kr,i is a radius of gyration of the i-th rib.

The relation between the global (x, y) and the local (x̃r,i, ỹr,i) coordinate systems
can be expressed as:

x = x̃r,i cosαi − ỹr,i sinαi , (3.23a)

y = x̃r,i sinαi + ỹr,i cosαi . (3.23b)



Chapter 3. Modelling of the device casings 35

The partial derivatives are related by:

∂

∂x̃r,i
= cosαi

∂

∂x
+ sinαi

∂

∂y
. (3.24)

The relationship between the rotations of the plate mid-plane in global coordinates and
in local coordinates may be derived as:

Θx̃r,i = Θx cosαi + Θy sinαi , (3.25a)

Θỹr,i = −Θx sinαi + Θy cosαi . (3.25b)

Considering (3.23)-(3.25), the energy functionals (3.22) for the i-th rib can be trans-
formed from the local coordinate system into the global coordinate system as below:

Tr,i =
1

2 cosαi
Ar,iρr,i

xr1,i∫
xr0,i

{(
∂w

∂t

)2

+ kr,i

[(
∂Θx

∂t

)2

+

(
∂Θy

∂t

)2
]} ∣∣∣∣

y=fr,i(x)

dx ,

(3.26a)

Ur,i =
1

2 cosαi

xr1,i∫
xr0,i

{
Er,iIr,i

[
cos2 αi

∂Θx

∂x
+ sinαi cosαi

(
∂Θx

∂y
+
∂Θy

∂x

)
+ sin2 αi

∂Θy

∂y

]2

+
Gr,iAr,i
βr,i

[
cosαi

(
Θx +

∂w

∂x

)
+ sinαi

(
Θy +

∂w

∂y

)]2

+Gr,iJr,i

[
cos2 αi

∂Θy

∂x
− sinαi cosαi

(
∂Θx

∂x
− ∂Θy

∂y

)
− sin2 αi

∂Θx

∂y

]2
}∣∣∣∣

y=fr,i(x)

dx .

(3.26b)

Then, utilizing the non-dimensional coordinates (ξ, η), (3.26) can be expressed as:

Tr,i =
a

2 cosαi
Ar,iρr,i

ξr1,i∫
ξr0,i

{(
∂w

∂t

)2

+ kr,i

[(
∂Θx

∂t

)2

+

(
∂Θy

∂t

)2
]} ∣∣∣∣

η=gr,i(ξ)

dξ ,

(3.27a)

Ur,i =
a

2 cosαi

ξr1,i∫
ξr0,i

{
Er,iIr,i

[
cos2 αi
a

∂Θx

∂ξ
+ sinαi cosαi

(
1

b

∂Θx

∂η
+

1

a

∂Θy

∂ξ

)
+

sin2 αi
b

∂Θy

∂η

]2

+
Gr,iAr,i
βr,i

[
cosαi

(
Θx +

1

a

∂w

∂ξ

)
+ sinαi

(
Θy +

1

b

∂w

∂η

)]2

+Gr,iJr,i

[
cos2 αi
a

∂Θy

∂ξ
− sinαi cosαi

(
1

a

∂Θx

∂ξ
− 1

b

∂Θy

∂η

)
− sin2 αi

b

∂Θx

∂η

]2
}∣∣∣∣

η=gr,i(ξ)

dξ .

(3.27b)
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3.5 Total energy functional

In the previous three sections of this Chapter, the mathematical model of the vibrating
plate, elastic boundary conditions and additional elements bonded to the plate surface
is presented. To employ the Rayleigh-Ritz method, the total energy functional have
to be defined. Summarising, the maximum strain energy of the system, U , can be
expressed as:

U = Up + Ub + Ur , (3.28)

where Up, Ub and Ur are potential energies corresponding to plate strain, boundary
restrains, and ribs, respectively.

The maximum kinetic energy of the system, T , can be defined as:

T = Tp + Tm + Tr , (3.29)

where Tp, Tm and Tr are kinetic energies of the plate, additional masses and ribs, re-
spectively.

3.6 The Rayleigh-Ritz method

The Rayleigh-Ritz method is used to calculate approximate solution of the presented
differential system, obtaining natural frequencies and modeshapes of the system. To
utilize this method, the total energy of the system needs to be defined (which is derived
in the previous sections) and appropriate admissible functions, which satisfy the geo-
metric boundary conditions have to be chosen. More detailed informations regarding
the Rayleigh-Ritz method are provided in (Young, 1950).

For free vibration of the plate, the solution of w, Θx and Θy can be expressed in a
required form using a set of appropriate trial functions:

w(ξ, η, t) =
N∑
i=1

φi(ξ, η)qi(t) = φTq , (3.30a)

Θx(ξ, η, t) =
N∑
i=1

ψx,i(ξ, η)px,i(t) = ψT
xpx , (3.30b)

Θy(ξ, η, t) =

N∑
i=1

ψy,i(ξ, η)py,i(t) = ψT
y py , (3.30c)

where q, px and py are a generalized plate displacement vector, generalized plate ro-
tations vectors in the x and y directions, respectively; φ, ψx and ψy are vectors, which
represent a set of time-invariant trial functions—in this dissertation, characteristic or-
thogonal polynomials having the property of Timoshenko beam functions are used; the
superscript T denotes the transpose. All of mentioned vectors are of dimension (N×1).
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The procedure for forming orthogonal polynomial trial functions for Mindlin plates is
described in details in (Kim et al., 2012).

3.6.1 Energy definition

Utilizing (3.30), the total potential and kinetic energies defined in (3.28) and (3.29) can
also be written as functions of generalized plate displacement and rotations vectors q,
px, py, mass matrix M of dimension (3N × 3N ) and stiffness matrix K of dimension
(3N × 3N ) :

U =
1

2

 q
px
py


T

K

 q
px
py

 , (3.31)

T =
1

2

 q̇
ṗx
ṗy


T

M

 q̇
ṗx
ṗy

 , (3.32)

where matrices K and M are defined in following Subsections.

3.6.2 Stiffness matrix

The overall stiffness matrix K is calculated as a sum of stiffness matrices related to
different energy components:

K = Kp + Kb + Kr , (3.33)

where Kp, Kb and Kr correspond to strain energy of the plate, potential energy stored in
boundary restrains and potential energy related to ribs mounted on the plate surface,
respectively.

Stiffness matrices introduced in (3.33) are defined as:

Kp=

 Kpcc Kpcd Kpce

Kpdd Kpde

symm. Kpee

, Kb=

 Kbcc 0N,N 0N,N
Kbdd 0N,N

symm. Kbee

, Kr=

 Krcc Krcd Krce

Krdd Krde

symm. Kree

 ,
(3.34)

where 0N,N denotes a zero matrix of dimension (N × N ). Detailed definitions of sub-
matrices used in (3.34) are given in Appendix A for convenience of the reader. They,
in fact, can be obtained for the considered problem based on the literature (Liew et al.,
1994), but the derivation is nontrivial and combines more components.
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3.6.3 Mass matrix

The overall mass matrix M is calculated similarly to the stiffness matrix - as a sum of
matrices related to different energy components:

M = Mp + Mm + Mr , (3.35)

where Mp, Mm and Mr correspond to kinetic energy of the plate, kinetic energy of
additional masses and kinetic energy related to ribs, respectively.

Mass matrices introduced in (3.35) are defined as:

Mp=

 Mpcc 0N,N 0N,N
Mpdd 0N,N

symm. Mpee

, Mm=

Mmcc 0N,N 0N,N
Mmdd 0N,N

symm. Mmee

, Mr=

 Mrcc 0N,N 0N,N
Mrdd 0N,N

symm. Mree

.
(3.36)

Detailed definitions of submatrices used in (3.36) are given in Appendix B. Similarly,
as in case of Appendix A, they could be obtained using (Nicholson and Bergman,
1985), but presented definitions are given in a convenient form consistent with pre-
vious derivations.

3.6.4 Equation of the vibrating structure and a harmonic solution

When the stiffness and mass matrices are defined, by using the Lagrange equation of
the second kind, the equation of a vibrating structure can be obtained as:

M

 q̈
p̈x
p̈y

+ K

 q
px
py

 = Q , (3.37)

where Q is the vector of generalized forces of dimension (3N × 1). In this dissertation,
inertial actuators are considered. Hence, for the purpose of positioning, their action
can be simplified and taken into account as a force acting on a point. Therefore, the
control vector u of dimension (Na × 1) can be defined as:

u = [f1, f2, ..., fNa ]T , (3.38)

where fi is a force generated by a i-th actuator. Then, the vector of generalized forces
can be expressed as:

Q =


φ∣∣∣∣ξ=ξa,1

η=ηa,1

,φ

∣∣∣∣ξ=ξa,2
η=ηa,2

, ...,φ

∣∣∣∣ξ=ξa,Na
η=ηa,Na

u

02N,1

 , (3.39)
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The harmonic solution to (3.37) gives the eigenvector matrix Φ of dimension (3N ×

3N ) and (3N ) eigenfrequencies ωi. Replacing
[

q , px , py
]T

by Φv, and multiplying

(3.37) on the left by ΦT, it gives:

ΦTMΦv̈ + ΦTKΦv = ΦTQ , (3.40)

where v denotes a modal displacement vector of dimension (3N × 1):

v =
[
v1, v2, ..., v(3N)

]T
. (3.41)

Taking advantage of the orthonormality of eigenvectors in matrix Φ, the modal mass
matrix becomes a unit matrix I(3N) of dimension (3N × 3N ) and the corresponding
modal stiffness matrix becomes a diagonal matrix Ω of (3N ) eigenvalues ω2

i (Craig and
Kurdila, 2006):

ΦTMΦ = I(3N) , (3.42)

ΦTKΦ = Ω =
[
diag(ω2

1, ω
2
2, ..., ω

2
(3N))

]
. (3.43)

Then, by substituting (3.42) and (3.43) to (3.40), it gives:

v̈ + Ωv = ΦTQ . (3.44)

For a better reference to a real system behaviour this equation is extended to the fol-
lowing one:

v̈ + Ξv̇ + Ωv = ΦTQ , (3.45)

where Ξv̇ is a term introduced to include the damping in the system, and Ξ is a diago-
nal matrix of dimension (3N × 3N ) defined as:

Ξ =
[
diag(2ξd,1ω1, 2ξd,2ω2, ..., 2ξd,(3N)ω(3N))

]
. (3.46)

In (3.46) the damping ratios, 0 < ξd,i < 1, are calculated with use of the thermoelastic
damping model for elastic plates described in details in (Norris and Photiadis, 2005).
The damping mechanism could be also included at the beginning of the modelling in
the form of complex bending rigidities. However, it would substantially complicate
the derivation. Introducing it at this point preserves the brevity of derivation and leads
to equivalent solution. Such approach was also used in (Leleu et al., 2001).

3.7 State space model

Equation (3.45) can be written in the usual state-space form:

ẋ = Ax + Bu (3.47a)

y = Cx + Du (3.47b)
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with the output vector y of dimension (Ns × 1):

y = [y1, y2, ..., yNs ]
T , (3.48)

and the state vector x of dimension (6N × 1):

x = [v̇1, ω1v1, v̇2, ω2v2, ..., v̇3N , ω3Nv3N ]T . (3.49)

The state matrix A = [diag(A1,A2, ...,A3N )] of dimension (6N × 6N ), is defined by:

Ai =
[
−2ξd,iωi −ωi

ωi 0

]
, i = 1, 2, ..., 3N . (3.50)

Matrix B of dimension (6N ×Na) can be expressed as:

B = [diag(b1,b2, ...,b3N )]ΦT


φ∣∣∣∣ξ=ξa,1

η=ηa,1

,φ

∣∣∣∣ξ=ξa,2
η=ηa,2

, ...,φ

∣∣∣∣ξ=ξa,Na
η=ηa,Na


02N,Na

 , (3.51)

where bi = [ 1 0 ]T.
Considering accelerometers as the sensors, the output matrix C of dimension (Ns×

6N ) is defined by:

C =



φT

∣∣∣∣ξ=ξs,1
η=ηs,1

φT

∣∣∣∣ξ=ξs,2
η=ηs,2
...

φT

∣∣∣∣ξ=ξs,Ns
η=ηs,Ns

, 0Ns,2N


Φ [diag(c1, c2, ..., c3N )] , (3.52)

where ci = [−2ξd,iωi, −ωi ]. Matrix D of dimension (Ns ×Na) can be calculated as:

D =



φT

∣∣∣∣ξ=ξs,1
η=ηs,1

φT

∣∣∣∣ξ=ξs,2
η=ηs,2
...

φT

∣∣∣∣ξ=ξs,Ns
η=ηs,Ns



φ∣∣∣∣ξ=ξa,1
η=ηa,1

,φ

∣∣∣∣ξ=ξa,2
η=ηa,2

, ...,φ

∣∣∣∣ξ=ξa,Na
η=ηa,Na

 . (3.53)
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3.8 Controllability and observability

Taking advantage of the fact that the model is expressed in the state-space form, classi-
cal methods can be used to describe the controllability and observability of the system
(Klamka, 2013). The method presented in this Section represents the energy-based ap-
proach, and it is used later in the optimization process for active control scenarios (see
Section 5.4).

The control energy required to reach the desired state xT1 at time t = T1, assuming
the optimal solution, can be expressed as:

Ec =

T1∫
0

uT(t)u(t) dt = (eAT1x0 − xT1)TW−1(T1)(eAT1x0 − xT1) , (3.54)

where W(T1) is the controllability Gramian matrix of dimension (6N × 6N ). To mini-
mize control required energy with respect to the actuators locations, a measure of the
Gramian matrix should be maximized. It has been shown in the literature that instead
of using W(T1), a steady state controllability Gramian matrix, Wc, can be used for stable
systems, when time tends to infinity (Anderson and Moore, 2007).

Analogously, the output energy received by the sensors, when the system starts in
initial state x0 and is not controlled, can be written as:

Eo =

∞∫
0

yT(t)y(t) dt = xT
0

 ∞∫
0

eATtCTCeATt dt

 x0 = xT
0 Wox0 , (3.55)

where Wo is the observability Gramian matrix of dimension (6N × 6N ). To maximize
output energy with respect to the sensors locations, again a measure of the Gramian
matrix should be maximized.

Both controllability and observability Gramian matrices can be calculated by solv-
ing the Lyapunov equations:

AWc + WcAT + BBT = 0 . (3.56a)

ATWo + WoA + CTC = 0 . (3.56b)

The controllability and observability Gramian matrices are convenient to use, because
if the (2i)-th value at the diagonal of the matrix, corresponding to the i-th eigenmode
is small, the eigenmode is difficult to control (it can be regulated only if a large control
energy is available) or is not observable well, respectively. Such information can be an
important criterion in the optimization process of actuators and sensors placement.

Formally, controllability and observability are dichotomous properties, but "con-
trollable" and "observable" does not say how high control effort is needed to reach the
final state and how much energy is received by the sensors.
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3.9 Summary

The mathematical model of the device casing walls has been developed in this Chapter.
The model includes thin and thick plate theory, elastically restrained boundary condi-
tions, structural thermoelastic damping model, and additional elements mounted to
the casing surface—masses, ribs, actuators and sensors. These aspects are integrated in
a state space model form, which facilitates further analysis and numerical simulation.

The model can be used to predict natural frequencies and modeshapes of a casing
walls or other panels. If active control is concerned, it can be used also to calculate
measures of controllability and observability of the system.



Chapter 4

Validation and analysis of the model

4.1 Background

Before the mathematical model developed in the previous Chapter can be used for
an extensive analysis and optimization of vibrating structures, it have to be carefully
validated. For this purpose, results obtained by the model for various cases are com-
pared with results of other numerical methods and laboratory experiments (including
results obtained with the Finite Elements Method (FEM) utilizing ANSYS, experiments
performed by the author and reports of other authors available in the literature). The
model is validated by means of a comparison of natural frequencies, modeshapes and
frequency response functions.

In experiments performed by the author, measurements of natural frequencies and
modeshapes are made with a laser vibrometer PDV-100 (measuring the normal plate
velocity in a large number of points). A loudspeaker placed on the bottom of the cas-
ing is used as the noise source exciting the casing walls and making them vibrate. A
random wideband signal is used as the excitation. Due to the close distance between
the walls and the loudspeaker, not all of the eigenmodes in the considered frequency
range are excited equally. Some of the less excited eigenmodes are even difficult to ob-
serve, because of vicinity of more excited ones. This is, however, a problem met if a real
device is enclosed in the casing, and therefore it should not be artificially mitigated.

This Chapter is structured as follows. Firstly, in Section 4.2 the results obtained
with the developed model are compared with results available in the literature for in-
dividual plates—including theoretical and experimental results. Both unloaded and
loaded plates are considered. Subsequently, in Section 4.3 experiments performed by
the author are used to validate the model accuracy for active casing walls.

4.2 Comparison with the individual plates

In this Section, the developed model is evaluated for different individual plates con-
sidered in the literature. Many of them constitute benchmarks for evaluation of plate
models and they are used broadly in a number of publications. The studied examples
are presented starting with simple scenarios. Subsequently, more complex ones are
considered.

43



44 Chapter 4. Validation and analysis of the model

4.2.1 Unloaded plate

In this Subsection, the comparison is made by means of the non-dimensional frequency
parameters λ, as they are commonly used in the literature. Different formulations for
the λ parameters are used, depending on the considered case (the formulation is always
given for each of the tables presenting results). For the sake of brevity, for each case
initial six eigenmodes are evaluated. However, they are representative as a similar
accuracy is obtained for following ones.

Isotropic thin plate with classical boundary conditions

The first example for evaluation of the developed model is an isotropic thin plate with
classical boundary conditions. The utilized notation of boundary conditions is similar
to the one defined in (Leissa, 1969), where S denotes a simply-supported edge, C stands
for a fully-clamped edge and F means a free edge (these classical boundary conditions
are limiting cases of elastically restrained boundary conditions, as described in Sec-
tion 3.3). For a complete plate definition, four symbols have to be used, e.g. SCSF
identifies a rectangular plate with edges x = 0, y = 0, x = a, y = b having simply-
supported, fully-clamped, simply-supported, and free boundary conditions, respec-
tively.

The obtained results are compared with values given in following publications:

• (Leissa, 1969), where the classical Kirchhoff-Love thin plate theory has been used;

• (Mindlin et al., 1956), where analytical solutions for the Mindlin-Reissner thick
plate theory are given;

• (Dawe and Roufaeil, 1980), where Rayleigh-Ritz method is used with the Mindlin-
Reissner plate theory (analytical solutions are available only for selected cases of
boundary conditions);

• (Dawe, 1978), where Finite Strip Models are used, also utilizing Mindlin-Reissner
plate theory.

The results calculated for a set of four boundary conditions, SSSS, SCSC, CCCC, CCCF,
are given in Tabs. 4.1-4.4, respectively. Although there are differences in values cal-
culated with different methods, they are of negligible magnitude and all of evaluated
methods provide consistent results.
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Table 4.1: Frequency parameters λ = ω
√

2(1 + ν)ρpa2/E for thin square SSSS plate:
h/a = 0.01, ν = 0.3, κ = 0.822.

Present dissertation (Mindlin et al., 1956) (Dawe, 1978) (Leissa, 1969)

Mode Developed model Mindlin’s FSM Classical

1 0.0963 0.0963 0.0963 0.0963
2 0.2407 0.2406 0.2406 0.2408
3 0.2407 0.2406 0.2406 0.2408
4 0.3850 0.3847 0.3847 0.3853
5 0.4808 0.4807 0.4807 0.4816
6 0.4808 0.4807 0.4807 0.4816

Table 4.2: Frequency parameters λ = ω
√

2(1 + ν)ρpa2/E for thin square SCSC plate:
h/a = 0.01, ν = 0.3, κ = 0.822.

Present dissertation (Dawe and Roufaeil, 1980) (Dawe, 1978) (Leissa, 1969)

Mode Developed model Mindlin’s FSM Classical

1 0.1411 0.1411 0.1411 0.1413
2 0.2668 0.2668 0.2668 0.2671
3 0.3373 0.3377 0.3376 0.3383
4 0.4602 0.4608 0.4604 0.4615
5 0.4977 0.4979 0.4977 0.4988
6 0.6270 0.6279 0.6279 0.6299

Table 4.3: Frequency parameters λ = ω
√

2(1 + ν)ρpa2/E for thin square CCCC plate:
h/a = 0.01, ν = 0.3, κ = 0.860.

Present dissertation (Dawe and Roufaeil, 1980) (Leissa, 1969)

Mode Developed model Mindlin’s Classical

1 0.1754 0.1754 0.1756
2 0.3570 0.3576 0.3581
3 0.3570 0.3576 0.3581
4 0.5259 0.5274 0.5280
5 0.6390 0.6402 0.6421
6 0.6421 0.6432 0.6451

Table 4.4: Frequency parameters λ = ω
√

2(1 + ν)ρpa2/E for thin square CCCF plate:
h/a = 0.01, ν = 0.3, κ = 0.860.

Present dissertation (Dawe and Roufaeil, 1980) (Leissa, 1969)

Mode Developed model Mindlin’s Classical

1 0.1168 0.1171 0.1171
2 0.1948 0.1951 0.1953
3 0.3081 0.3093 0.3094
4 0.3732 0.3740 0.3744
5 0.3922 0.3931 0.3938
6 0.5671 0.5695 0.5699
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Isotropic thick plate with classical boundary conditions

In subsequent evaluation, a thick plate is considered, where plate thickness to length
ratio h/a = 0.1. The same set of boundary conditions is used as for thin plate. The
results are given in Tabs. 4.5-4.8.

The results obtained with the method using Mindlin-Reissner plate theory pro-
vided consistent results (including the developed model). However, classical Kirchhoff-
Love plate theory is no longer valid for plates of such thickness (the obtained errors
may exceed 20%).

Table 4.5: Frequency parameters λ = ω
√

2(1 + ν)ρpa2/E for thick square SSSS plate:
h/a = 0.1, ν = 0.3, κ = 0.822.

Present dissertation (Mindlin et al., 1956) (Dawe, 1978) (Leissa, 1969)

Mode Developed model Mindlin’s FSM Classical

1 0.930 0.930 0.930 0.963
2 2.218 2.218 2.218 2.408
3 2.218 2.218 2.218 2.408
4 3.403 3.402 3.402 3.853
5 4.145 4.144 4.144 4.816
6 4.145 4.144 4.144 4.816

Table 4.6: Frequency parameters λ = ω
√

2(1 + ν)ρpa2/E for thick square SCSC plate:
h/a = 0.1, ν = 0.3, κ = 0.822.

Present dissertation (Dawe and Roufaeil, 1980) (Dawe, 1978) (Leissa, 1969)

Mode Developed model Mindlin’s FSM Classical

1 1.296 1.302 1.300 1.413
2 2.398 2.398 2.394 2.671
3 2.922 2.888 2.885 3.383
4 3.878 3.852 3.839 4.615
5 4.250 4.237 4.232 4.988
6 4.951 4.939 4.936 6.299

Table 4.7: Frequency parameters λ = ω
√

2(1 + ν)ρpa2/E for thick square CCCC plate:
h/a = 0.1, ν = 0.3, κ = 0.860.

Present dissertation (Dawe and Roufaeil, 1980) (Leissa, 1969)

Mode Developed model Mindlin’s Classical

1 1.588 1.594 1.756
2 3.073 3.046 3.581
3 3.073 3.046 3.581
4 4.314 4.285 5.280
5 5.024 5.035 6.421
6 5.071 5.078 6.451
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Table 4.8: Frequency parameters λ = ω
√

2(1 + ν)ρpa2/E for thick square CCCF plate:
h/a = 0.1, ν = 0.3, κ = 0.860.

Present dissertation (Dawe and Roufaeil, 1980) (Leissa, 1969)

Mode Developed model Mindlin’s Classical

1 1.077 1.089 1.171
2 1.740 1.758 1.953
3 2.694 2.673 3.094
4 3.192 3.216 3.744
5 3.320 3.318 3.938
6 4.578 4.615 5.699

Isotropic plate with elastically restrained boundary conditions

In this evaluation, elastically restrained against rotation boundary conditions are used
(uniform for all edges). Four values of rotational spring are used, starting with a
value close to simply-supported edges, and finishing with a value approaching fully-
clamped boundary conditions. Calculations are performed for a thick plate. Results
obtained by the developed model are compared with results provided in (Chung et al.,
1993), where authors used the Rayleigh-Ritz method. Comparisons are presented in
Tabs. 4.9-4.12. It follows from the analysis that the developed model is highly consis-
tent with the results reported in (Chung et al., 1993).

Table 4.9: Frequency parameters λ=ω
√

2(1 + ν)ρpa2/E for square plate with edges elastically
restrained against rotation: krx0 =krx1 =kry0 =kry1 =10D/a, h/a=0.1, ν=0.3, κ=0.822.

Present dissertation (Chung et al., 1993)

Mode Developed model Timoshenko beam functions Polynomials

1 1.305 1.303 1.302
2 2.629 2.616 2.619
3 2.629 2.618 2.620
4 3.803 3.792 3.791
5 4.522 4.517 4.526
6 4.535 4.532 4.539

Table 4.10: Frequency parameters λ=ω
√

2(1 + ν)ρpa2/E for square plate with edges elastically
restrained against rotation: krx0 =krx1 =kry0 =kry1 =50D/a, h/a=0.1, ν=0.3, κ=0.822.

Present dissertation (Chung et al., 1993)

Mode Developed model Timoshenko beam functions Polynomials

1 1.500 1.499 1.498
2 2.918 2.887 2.889
3 2.918 2.891 2.890
4 4.121 4.092 4.085
5 4.824 4.818 4.826
6 4.859 4.857 4.861
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Table 4.11: Frequency parameters λ=ω
√

2(1 + ν)ρpa2/E for square plate with edges elastically
restrained against rotation: krx0 =krx1 =kry0 =kry1 =100D/a, h/a=0.1, ν=0.3, κ=0.822.

Present dissertation (Chung et al., 1993)

Mode Developed model Timoshenko beam functions Polynomials

1 1.540 1.540 1.538
2 2.986 2.949 2.950
3 2.986 2.954 2.952
4 4.200 4.166 4.156
5 4.902 4.893 4.900
6 4.942 4.938 4.941

Table 4.12: Frequency parameters λ=ω
√

2(1 + ν)ρpa2/E for square plate with edges elastically
restrained against rotation: krx0 =krx1 =kry0 =kry1 =1000D/a, h/a=0.1, ν=0.3, κ=0.822.

Present dissertation (Chung et al., 1993)

Mode Developed model Timoshenko beam functions Polynomials

1 1.582 1.582 1.580
2 3.058 3.016 3.016
3 3.058 3.021 3.018
4 4.287 4.246 4.234
5 4.984 4.977 4.982
6 5.031 5.028 5.029

Orthotropic plate

The following evaluation is made for an orthotropic plate case. For the purpose of com-
parison, results given in (Dozio, 2011) and (Xing and Liu, 2009) are used, where two dif-
ferent orthotropic plate materials were considered—graphite/epoxy and boron/epoxy.
Values of calculated frequency parameters are given in Tabs. 4.13-4.16. A satisfactory
consistency have been obtained for all evaluated cases.

Table 4.13: Frequency parameters λ = a 4
√
ρphω2/Dx for graphite/epoxy SSCC plate:

a/b = 0.833, Ex = 185 GPa, Ey = 10.5 GPa, Gx = 7.3 GPa, νx = 0.28, κ = 0.860.

Present dissertation (Dozio, 2011) (Xing and Liu, 2009)

Mode Developed model Trigonometric Ritz method Exact solutions

1 4.016 4.019 4.02
2 4.384 4.386 4.38
3 5.092 5.098 5.09
4 6.042 6.064 6.06
5 7.101 7.115 7.12
6 7.124 7.168 7.17
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Table 4.14: Frequency parameters λ = a 4
√
ρphω2/Dx for graphite/epoxy SCCC plate:

a/b = 0.833, Ex = 185 GPa, Ey = 10.5 GPa, Gx = 7.3 GPa, νx = 0.28, κ = 0.860.

Present dissertation (Dozio, 2011) (Xing and Liu, 2009)

Mode Developed model Trigonometric Ritz method Exact solutions

1 4.048 4.051 4.04
2 4.504 4.500 4.49
3 5.303 5.293 5.28
4 6.300 6.310 6.30
5 7.109 7.123 7.12
6 7.293 7.307 7.30

Table 4.15: Frequency parameters λ = a 4
√
ρphω2/Dx for graphite/epoxy CCCC plate:

a/b = 0.833, Ex = 185 GPa, Ey = 10.5 GPa, Gx = 7.3 GPa, νx = 0.28, κ = 0.860.

Present dissertation (Dozio, 2011) (Xing and Liu, 2009)

Mode Developed model Trigonometric Ritz method Exact solutions

1 4.798 4.806 4.80
2 5.099 5.102 5.08
3 5.706 5.704 5.68
4 6.560 6.573 6.56
5 7.594 7.612 7.60
6 7.887 7.895 7.89

Table 4.16: Frequency parameters λ = a 4
√
ρphω2/Dx for boron/epoxy CCCC plate:

a/b = 0.5, Ex = 208 GPa, Ey = 18.9 GPa, Gx = 5.7 GPa, νx = 0.23, κ = 0.860.

Present dissertation (Dozio, 2011) (Xing and Liu, 2009)

Mode Developed model Trigonometric Ritz method Exact solutions

1 4.738 4.749 4.75
2 4.818 4.827 4.82
3 5.002 5.008 5.00
4 5.323 5.329 5.32
5 5.796 5.796 5.78
6 6.381 6.384 6.37

4.2.2 Plate loaded with additional elements

In this Subsection, a plate with ribs and additional masses mounted on its surface is
evaluated. There are no exact solutions for the eigenfrequencies and modeshapes of
a finite rectangular plate loaded with such additional elements. Therefore, results of
numerical simulations and laboratory experiments are reported.
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Isotropic plate stiffened with ribs

Firstly, a case of an isotropic stiffened plate is considered. It is due to the fact that
a number of works in the literature refer to (Olson and Hazell, 1977), where authors
presented theoretical and experimental study of the vibrations of integrally machined
rib-stiffened plates. Certain structural configurations that they introduced became over
the years a benchmark for modelling the stiffened shell structures. Two of these con-
figurations are selected to be used in this dissertation (a general schematic of the plate
configuration is shown in Fig. 4.1).

The parameters of the fully-clamped plate and the rib are as follows:

a = b = 203 mm, h = 1.37 mm, E = 68.9 GPa, ρp = 2670 kg/m3 , ν = 0.3,

with a rectangular cross-section of the rib, in case 1a:

hr = 8.28 mm, er = 4.83 mm,

and in case 1b:

hr = 11.33 mm, er = 6.35 mm,

where hr and er are height and width of the rib, respectively. The rib in both cases is
placed in the y direction, at the centre of the plate.

In (Olson and Hazell, 1977) authors utilized Finite Elements (FE) to calculate natu-
ral frequencies and modeshapes of the plate. In (Koko and Olson, 1992) authors used
Super Finite Elements (SFE), reducing the number of variables in the mathematical

x,ξ

z

y,η

h

a

bO
hr

er

Figure 4.1: Configuration of stiffened plate for comparisons with (Olson and Hazell, 1977),
(Koko and Olson, 1992) and (Barrette et al., 2000).



Chapter 4. Validation and analysis of the model 51

Table 4.17: Natural frequencies for case 1a (Hz).

Present dissertation (Barrette et al., 2000)

Developed model ANSYS HFE

Mode Unstiffened Stiffened Stiffened Unstiffened Stiffened

1 285.2 679.9 679.8 292.8 671.2
2 581.3 714.9 694.8 597.2 744.4
3 581.3 982.6 994.8 597.6 984.6
4 856.8 988.8 1025.4 881.3 1027.2
5 1041.5 1394.6 1459.0 1071.3 1434.4
6 1046.5 1411.1 1441.7 1076.5 1451.9

(Koko and Olson, 1992)

SFE FE (Olson and Hazell, 1977) Experiment

Mode Stiffened

1 679.1 670.7 627
2 716.9 724.0 662
3 990.1 977.2 924
4 1022.9 1002.1 953
5 1469.3 1408.7 1370
6 1442.3 1414.1 1338

Table 4.18: Natural frequencies for case 1b (Hz).

Present dissertation (Barrette et al., 2000)

Developed model ANSYS HFE

Mode Unstiffened Stiffened Stiffened Unstiffened Stiffened

1 285.2 743.5 746.1 292.8 727.8
2 581.3 752.6 781.4 597.2 783.2
3 581.3 993.8 1035.6 597.6 1015.5
4 856.8 1015.3 1050.6 881.3 1033.8
5 1041.5 1400.7 1466.3 1071.3 1450.0
6 1046.5 1427.4 1470.9 1076.6 1457.9

(Koko and Olson, 1992)

SFE FE (Olson and Hazell, 1977) Experiment

Mode Stiffened

1 736.8 718.1 689
2 769.4 751.4 725
3 1019.6 997.4 961
4 1032.3 1007.1 986
5 1483.7 1419.8 1376
6 1488.3 1424.3 1413
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Figure 4.2: The initial 6 eigenmodes shapes and frequencies calculated by the developed
model for case 1a (size of the plate is in [m], and the z-axis depicts normalized amplitude).

model, when compared to (Olson and Hazell, 1977). In more recent work (Barrette
et al., 2000), authors used the same benchmark and employed Hierarchical Finite Ele-
ments (HFE) with a set of local trigonometric interpolation functions. Results obtained
by these authors are compared with results calculated according to the model devel-
oped in this dissertation. Additionally, calculations performed with ANSYS are also
included in the comparison.

Natural frequencies are presented in Tabs. 4.17-4.18 (for a better comparison, an un-
stiffened plate is also considered). Modeshapes calculated with the developed model
are shown in Fig. 4.2.

The coherence of results obtained by the developed mathematical model with the
numerical and experimental results reported by references (Koko and Olson, 1992) and
(Barrette et al., 2000) is satisfactory, both in terms of eigenfrequencies and modeshapes.

Isotropic plate loaded with concentrated masses

In this Subsection, the developed model is compared with theoretical and experimen-
tal results published in (Stokey and Zorowski, 1959) and (Amabili et al., 2006), where
authors studied the effect of concentrated masses with rotary inertia on vibrations of
rectangular plates.

In the first comparison, the configuration introduced in (Stokey and Zorowski,
1959) is considered (the case 2a), which was also adopted in (Amabili et al., 2006) for
verification. Only the fundamental frequency is evaluated. However, it is done for dif-
ferent types and placement of the additional mass. Parameters of the simply-supported
plate used in this comparison are as follows:

a = b = 508 mm, h = 2.31 mm, E = 70.0 GPa, ρp = 2749 kg/m3 , ν = 0.33.
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Table 4.19: Fundamental frequencies of the plate with an additional mass, case 2a (Hz).

Mass
(kg)

Rotary
inertia
(kg m2)

Position

Present dissertation

Developed model ANSYS

Unloaded Loaded Loaded

0.91 0.0 ξm = 0.50
ηm = 0.50

43.4 23.5 23.5

5.40 0.0 ξm = 0.50
ηm = 0.50

43.4 10.9 10.9

1.34 0.00237 ξm = 0.25
ηm = 0.50

43.4 23.8 23.8

1.34 0.00237 ξm = 0.25
ηm = 0.25

43.4 27.6 27.4

Mass
(kg)

Rotary
inertia
(kg m2)

Position

(Stokey and Zorowski, 1959) (Amabili et al., 2006)

Experiment Stokey Amabili

Loaded Loaded

0.91 0.0 ξm = 0.50
ηm = 0.50

23.4 23.5 22.9

5.40 0.0 ξm = 0.50
ηm = 0.50

11.0 11.0 10.6

1.34 0.00237 ξm = 0.25
ηm = 0.50

26.0 25.1 23.75

1.34 0.00237 ξm = 0.25
ηm = 0.25

28.5 28.7 27.3

Parameters of the additional mass and obtained fundamental frequencies for different
configurations are given in Tab. 4.19.

In the second comparison (case 2b), the present model is evaluated for the config-
uration analysed theoretically and experimentally in (Amabili et al., 2006). Similarly
to the previous case, only one additional mass is considered, however, initial 7 eigen-
modes are analysed. Moreover, plate edges elastically restrained against rotation are
adopted with krx0 = krx1 = kry0 = kry1 = 4.5 N/rad. The parameters of the plate used in
this comparison are as follows:

a = 210.0 mm, b = 208.5 mm, h = 0.3 mm, E = 198 GPa, ρp = 7850 kg/m3 , ν = 0.3.

An additional mass of 0.0112 kg with the moment of inertia Imx = Imy = 0.205 ·
10−5 kg m2 has been placed at ξm = 0.25 and ηm = 0.25. Natural frequencies for
this configuration are presented in Tab. 4.20, and eigenmodes shapes calculated by the
developed model are shown in Fig. 4.3.

The results obtained by the present model are consistent with theoretical and ex-
perimental results reported in cited papers, both regarding the natural frequencies and
modeshapes.
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Table 4.20: Natural frequencies for case 2b (Hz).

Present dissertation (Amabili et al., 2006)

Developed model Amabili Experiment

Mode Unloaded Loaded Unloaded Loaded Unloaded Loaded

1 38.0 35.7 38 36.0 38.1 36.0
2 84.9 70.4 87.1 70.6 81.1 69.7
3 90.3 87.3 88.0 87.0 91.4 88.4
4 137.0 118.3 137 118 136 114
5 166.3 152.3 169 156 165 148
6 173.4 156.5 171 157 168 154
7 217.6 183.0 218 188 212 173
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Figure 4.3: The initial 7 eigenmodes shapes and frequencies calculated by developed model
for case 2b (size of the plate is in [m], and the z-axis depicts normalized amplitude).

The comparisons presented in this Section confirm the versatility and accuracy of
the developed model for modelling of individual plates.

4.3 Comparison for active casing walls

In this Section, the developed model is evaluated for active casing walls, which are
considered separately, but constitute a part of the three-dimensional structure. The
experimental measurements performed by the author are used. Firstly, several config-
urations utilizing the rigid casing are evaluated. Then, suitability and accuracy of the
developed model for light-weight casing walls are investigated.



Chapter 4. Validation and analysis of the model 55

4.3.1 Rigid casing walls

In this Subsection, the measurements and simulation results are presented, obtained for
various configurations of rigid casing wall. The experiments were performed utilizing
a laboratory setup shown in Fig. 4.4. In all performed experiments, single wall has
been acoustically excited with a random wideband signal. The response of the plate
has been measured in 400 uniformly distributed points (the distance between adjacent
points was equal 20 mm). Remaining walls have been either removed or passively
insulated to minimize the interference at this stage of the research.

Unloaded casing wall

Firstly, an unloaded casing wall is evaluated. It is a 1 mm thick brushed aluminium
plate. Due to the manufacturing process, the plate represents orthotropic properties—
it follows from the analysis of initial 11 eigenmodes presented in Fig. 4.5 that de-
spite square shape of the plate, e.g. 2nd and 3rd natural frequencies are not equal.
Depending on the application, the wall could be satisfyingly approximated with an
isotropic plate model. However, to obtain the highest modelling accuracy, the or-
thotropic Mindlin plate model is used. The parameters of the plate used for the purpose

Figure 4.4: The laboratory setup with the laser vibrometer and the rigid casing used to measure
modeshapes of the casing walls.
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Simulation Experiment Simulation Experiment
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Figure 4.5: A comparison of initial 11 natural frequencies and modeshapes of rigid casing
wall, calculated with the mathematical model and experimentally measured—1 mm thick alu-

minium unloaded plate.
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of modelling are as follows:

a = 0.420 m, b = 0.420 m, h = 0.001 m,

Ex = 91.2 GPa, Ey = 60.8 GPa, Gxy = 29.2 GPa,

ρp = 2770 kg/m3 , νx = 0.3, κx =5/6.

For the rigid casing walls, fully-clamped boundary conditions offer generally satisfac-
tory results. However, in this case, boundary conditions elastically restrained against
rotation are used. The stiffness coefficients of rotational springs have been assumed
close to completely rigid (as it is for fully-clamped boundary conditions), but a minor
softening of the springs offered better fitness to the real measurement data.

Assessing the fitness of theoretically calculated natural frequencies and modeshapes
to the real measurements of rigid casing wall (see Fig. 4.5), it can be considered as en-
tirely sufficient. Therefore, a model evaluated in such way for the unloaded plate can
now be used to investigate behaviour of the plate when the additional elements are
attached to its surface.

Casing wall with additional mass

The next case is an evaluation of the casing wall with an additional mass attached. In
this investigation, a mass of mm,1 = 0.080 kg is used. It is rigidly bonded to the plate
surface at location xm,1 = 0.340 m and ym,1 = 0.340 m. Measurements were performed
in the same manner as for the unloaded plate. Rotary inertia of the attached mass is
taken into account. Theoretically calculated and experimentally measured natural fre-
quencies and modeshapes are compared in Fig. 4.6. A high consistency of both results
is obtained.

Casing wall with inertial actuators

In this investigation, the inertial exciters EX1 are considered. Their weight (0.115 kg)
is often comparable with the weight of the wall itself, hence they are significantly af-
fecting its dynamical behaviour when mounted. To correctly determine their efficient
locations for the purpose of active control, this effect have to be accordingly taken into
account in the mathematical modelling. The correctness of this aspect of the model is
now validated. Firstly, a single actuators is mounted to the plate surface at location
xa,1 = 0.340 m and ya,1 = 0.340 m (the same as the previously tested additional mass).
Rotary inertia of the inertial exciter is also taken into account. Theoretically calculated
and experimentally measured natural frequencies and modeshapes are compared in
Fig. 4.7. Similarly as in case of an additional mass, a high accuracy of theoretical pre-
dictions is shown.
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Simulation Experiment Simulation Experiment
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Figure 4.6: A comparison of initial 11 natural frequencies and modeshapes of rigid casing
wall, calculated with the mathematical model and experimentally measured—1 mm thick alu-
minium plate with an additional mass of mm,1 = 0.080 kg mounted at xm,1 = 0.340 m and

ym,1 = 0.340 m.
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Simulation Experiment Simulation Experiment
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Figure 4.7: A comparison of initial 12 natural frequencies and modeshapes of rigid casing
wall, calculated with the mathematical model and experimentally measured—1 mm thick alu-
minium plate with an inertial actuator EX1 of mass ma,1 = 0.115 kg mounted at xa,1 = 0.340 m

and ya,1 = 0.340 m.
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Figure 4.8: A comparison of initial 12 natural frequencies and modeshapes of rigid casing
wall, calculated with the mathematical model and experimentally measured—1 mm thick alu-

minium plate with three inertial actuators EX1 mounted to the surface.
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Secondly, three actuators are mounted to the plate surface at locations:

xa,1 = 0.260 m, ya,1 = 0.072 m,

xa,2 = 0.171 m, ya,2 = 0.110 m,

xa,3 = 0.135 m, ya,3 = 0.312 m.

The arrangement is a result of optimization process described in Subsection 5.4.3. Theo-
retically calculated and experimentally measured natural frequencies and modeshapes
of the plate are compared in Fig. 4.8. In the considered case, theoretical and experimen-
tal results are also satisfyingly consistent.

Casing wall with ribs and additional masses

In the last scenario evaluated for the rigid casing, a configuration with ribs and ad-
ditional masses is studied. The arrangement is obtained by the frequency response
shaping method. The considered goal is to move natural frequencies of the plate away
from given frequency of 175 Hz, as far as possible, by mounting additional elements
in an appropriate arrangement. Details of the optimization procedure itself are given
in Subsection 5.4.5. What is studied here, is the natural frequencies and modeshapes
of the unloaded plate, their modification after mounting the elements, and the consis-
tency of measurements with theoretical calculations.

Firstly, the unloaded 1 mm thick steel plate is evaluated. Similarly as in case of alu-
minium plate, the steel plate represents some orthotropic properties. However, in this
case an isotropic plate model is used to approximate the casing wall. The parameters
of the plate used for the purpose of modelling are as follows:

a = 0.420 m, b = 0.420 m, h = 0.001 m,

E = 200 GPa, G = 76.9 GPa,

ρp = 7850 kg/m3 , ν = 0.3, κ =5/6.

Boundary conditions are assumed to be fully-clamped.
Assessing the accuracy of theoretically calculated natural frequencies and mode-

shapes in comparison to the real measurements of steel casing wall (see Fig. 4.9), it
can be considered as satisfying. Therefore, the next step is to evaluate the plate with
the additional elements attached to its surface. A comparison of theoretically calcu-
lated and experimentally measured natural frequencies and modeshapes are given in
Fig. 4.10. The laboratory setup prepared for this purpose is shown in Fig. 4.11. The
mass and the first rib are bonded to the outer surface of the plate, whereas the second
rib is bonded for technological simplicity to the inner side. In a professionally assem-
bled casing, all these elements could obviously be bonded to the same side. Similarly
as for the unloaded case, a high consistency of the results is observed.

In addition, experimentally measured frequency responses of the unloaded and
loaded plate are given in Fig. 4.12. It is obtained by averaging frequency responses in
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Figure 4.9: A comparison of initial 12 natural frequencies and modeshapes of rigid casing
wall, calculated with the mathematical model and experimentally measured—1 mm thick steel

unloaded plate.
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Figure 4.10: A comparison of initial 12 natural frequencies and modeshapes of rigid casing
wall, calculated with the mathematical model and experimentally measured—1 mm thick steel

plate with ribs and additional masses mounted to the surface.
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Figure 4.11: The laboratory setup with the rigid casing to measure natural frequencies and
modeshapes of the casing walls with ribs and additional mass mounted to the plate surface.

all measurement points distributed uniformly over the plate surface. It follows from
the analysis of the response that the given goal is satisfyingly achieved. The valley
created in the proximity of frequency of 175 Hz is slightly moved to lower frequencies
than in the theoretical calculations. However, still a significant margin to the nearest
eigenmode of 203 Hz has been preserved, resulting in a good enhancement of noise and
vibration isolation around the assumed frequency. Minor differences between mea-
surements and calculations can be explained by imperfect bonding of the additional
elements to the plate surface with a market available glue. Obviously, the precision of
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Figure 4.12: Experimentally measured frequency response of the plate (solid line–loaded plate;
dashed line—unloaded plate) and visualization of additional elements mounted on the plate

(circle—a mass; lines—ribs).
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material parameters needed for modelling had also an impact. However, this exper-
iment validates the suitability of the employed frequency response shaping method,
described in Subsection 5.4.5.

4.3.2 Light-weight casing walls

In this subsection, the light-weight casing is under consideration. A variant of dimen-
sions 500 mm × 630 mm × 800 mm with 1.5 mm of plate thickness is used. The casing
with accompanying laboratory setup is shown in Fig. 4.13. During the measurements
of the natural frequencies and modeshapes, the whole casing was excited together with
a random signal by a loudspeaker placed inside. The response of the casing was mea-
sured in uniformly distributed points with the distance between the adjacent points
equal 20 mm (as in the case of the rigid casing walls). Such dense grid resulted in
many measurement points: 1280 points for the top wall, 1000 points for the front wall
and 800 points for the left wall. Hence, a high accuracy of the measured modeshapes
is obtained. They can be presented for the whole casing together, as in an example
for frequency of 155 Hz given in Fig. 4.14. However, as it was discussed in previous
Chapters, the light-weight casing constitutes a three-dimensional structure with strong

Figure 4.13: The laboratory setup with the laser vibrometer and the light-weight casing to
measure modeshapes of the structure.
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Figure 4.14: Three-dimensional visualization of experimentally measured modeshape of the
whole light-weight casing, for an exemplary frequency of 155 Hz. All dimensions are given

in [m].

couplings, but due to its specific dynamical behaviour, it can be studied with each of its
walls separately. Therefore, due to methodology of the modelling, theoretical calcula-
tions and measurements are further compared for each wall separately (right and back
walls are omitted as they are symmetrical to the left and front walls, respectively).

The mathematical modelling of the loading of the casing walls with additional ele-
ments is validated in previous Subsections. Therefore, to justify the application of the
developed model for the light-weight casing, only results for the unloaded casing are
presented.
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Unloaded casing walls

Mathematical model parameters used here can be divided into two groups. First group
includes dimensions and material properties of the plates that are known, and in this
research they are represented by following values:

h = 0.0015 m,

E = 200 GPa, G = 76.9 GPa,

ρp = 7850 kg/m3 , ν = 0.3, κ =5/6.

All of these values are common for all walls of the casing. The width and height of
each plate (denoted by a and b, respectively) are defined by corresponding dimensions
of the casing given earlier in the Subsection.

The second group consists of parameters, which cannot be measured or calculated
directly. Therefore, for the purpose of fitting the model to the behaviour of real whole
vibrating structure, an optimization algorithm is used to identify them. In this research,
such parameters are spring constants describing boundary conditions of each wall.
Plate edges are assumed to be elastically restrained against both rotation and trans-
lation, hence there are four rotational spring constants krx0, krx1, kry0, kry1, and four
translational spring constants ktx0, ktx1, kty0, kty1, defined as in Section 3.3, to be iden-
tified for each casing wall (as the two pairs of walls are symmetrical—left and right,
front and back—the same configuration is calculated for a given pair). The obtained re-
sults and process of identification procedure is described in more details in Section 5.3
and in (Wrona and Pawelczyk, 2016c). What is important, four natural frequencies and
modeshapes of each wall were selected in the optimization process for the model to fit
to (in following figures they are marked with a red arrow).

A comparison of initial 12 eigenmodes (simulated for optimal set of spring con-
stants and measured experimentally) of the top, front and left wall are given in Figs. 4.15-
4.17, respectively. It was expected that frequencies of eigenmodes selected for the opti-
mization would be consistent (they are marked with an red arrow). However, remain-
ing eigenmodes that were observed, but were not used in the identification process, are
also consistent with the model, confirming the correctness of the proposed procedure
of identification.

Summarizing the results obtained and presented in Figs. 4.15-4.17, the coherence of
the developed model and real behaviour of the light-weight casing walls is confirmed.
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Figure 4.15: A comparison of initial 12 natural frequencies and modeshapes of the top wall
of the light-weight casing, calculated with the mathematical model and experimentally mea-

sured. The red arrow marks well recognized modes selected for model fitting.
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Figure 4.16: A comparison of initial 12 natural frequencies and modeshapes of the front wall
of the light-weight casing, calculated with the mathematical model and experimentally mea-

sured. The red arrow marks well recognized modes selected for model fitting.
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Figure 4.17: A comparison of initial 12 natural frequencies and modeshapes of the left wall
of the light-weight casing, calculated with the mathematical model and experimentally mea-

sured. The red arrow marks well recognized modes selected for model fitting.
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4.4 Summary

In this Chapter, the developed model of a casing wall has been validated by means of
a comparison with the benchmarks known from literature and laboratory experiments
performed by the author. The comparison includes natural frequencies, modeshapes
and frequency response functions. Among multiple results of simulation and experi-
ments, the laboratory measurement procedure has been also described.

The model provides satisfactory results for all considered examples. For some ap-
plications, even simple isotropic plate model with classical boundary conditions pro-
vided results consistent with a real plant. However, to obtain highest modelling accu-
racy for real structures, often orthotropic plate model with elastically restrained bound-
ary conditions should be used.

It is also noteworthy that the model accurately predicts the impact on frequency
responses of additional elements mounted to the plate surface (for both additional
masses and ribs). Hence, it can be considered as validated and it can be now employed
for the optimization procedures described in the following Chapter.





Chapter 5

Optimization process

5.1 Background

The response of a physical object excited to vibrations is determined by its mechanical
structure. Even slight modifications of the structure may strongly affect its frequency
characteristics. On the other hand, the performance of an active noise/vibration con-
trol system is highly dependant on both the plant structure itself and an arrangement
of actuators and sensors applied to it. Therefore, the active control of an object like
the considered device casing should be preceded by thorough investigation of its me-
chanical structure. Firstly, it is to maximize the susceptibility of the plant to the active
control by plausible modifications (e.g. by mounting some additional passive elements
on the casing walls to appropriately shape the frequency response). Secondly, it is to
efficiently apply actuators and sensors, so the maximum advantage could be taken of
them (e.g. by maximizing measures of controllability and observability of the obtained
system).

Sometimes an intuition, expert knowledge, or simply trial and error method can
be used to improve the properties of a vibrating structure and/or its active control
system. But it is rather limited for simplest cases. Any more complicated scenario gen-
erally would require more sophisticated method to obtain expected results. One of the
approaches is to apply an optimization algorithm. To employ it, firstly, a form of theo-
retical model of the investigated structure have to be constructed and validated. Then,
the objectives and constrains need to be defined in an appropriate form. Finally, an
optimization algorithm is chosen and launched utilizing the aforementioned elements.
The quality of obtained results depends both on the accuracy of modelling and the
effectiveness of employed optimization algorithm.

In the following considerations, the mathematical model of a casing wall is used
(developed and validated in previous Chapters). Different scenarios are evaluated and
various objectives are considered, including both passive and active applications. The
memetic algorithm is used to optimize the given structure according to defined cost
functions. It is generally assumed in all evaluated cases that a particular structure is
already available and it can modified by adding some elements to the system, rather
than to be modified at a level of a redesign (although, presented approach could be
also applied for such considerations). Moreover, any actions undertaken should not
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interfere with the device regular operations (should not affect noticeably any device
parameters, including heat transfer, dimensions or total mass).

In the beginning of this Chapter, a memetic algorithm is introduced and described
in Section 5.2. In Section 5.3, the optimization algorithm is used to identify the model
boundary conditions for the light-weight casing walls. Then, in Section 5.4, the memetic
algorithm is employed for structure optimization. Initially, an optimization of actua-
tors and sensors arrangement for the rigid casing is considered. Subsequently, the same
problem for the light-weight casing is investigated. Afterwards the frequency response
shaping method is presented, which is suitable both for passive and active control ap-
plications.

5.2 Memetic algorithm

The search spaces followed from the problems discussed in this Chapter are very com-
plicated. An efficient algorithm should be chosen to find a solution satisfying defined
demands. Evolutionary Algorithms (EA) have proven to be a versatile and effective
technique for solving nonlinear optimization problems with multiple optima (Gold-
berg et al., 1989). However, they usually require evaluation of numerous solutions
resulting in high computational cost. To mitigate this drawback, a Memetic Algorithm
(MA) can be utilised, which is a hybrid form of population-based approach coupled
with separate individual learning. The MA combines advantages of a global search,
like for EA, and local refinement procedures, which enhance converge to the local op-
tima (Neri et al., 2012). Because of complementary properties, they are particularly
useful in solving complex multi-parameter optimization problems, such as placement
of additional elements on a vibrating plate (Wrona and Pawelczyk, 2013b,a).

The memetic algorithm flowchart is presented in Fig. 5.1. It starts with a randomly
generated population. The fitness function is evaluated for each individual in the pop-
ulation. A part of the existing population is selected for further reproduction depen-
dent on the fitness value (individuals fitting better are more likely to be chosen). Chil-
dren solutions are generated by applying a crossover operator for two or more parents.
To maintain genetic diversity, the mutation operator is used dependent on a predefined

Initialize Selection Crossover Mutation Local
search

Converged?

Finish

yes

no

Figure 5.1: A memetic algorithm flowchart.
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probability. Then, a local search operator is employed to improve individual fitness. To
maintain a balance between the degree of evolution (exploration) and individual im-
provement (exploitation), only a portion of the population individuals undergo the
learning. Afterwards, a selection is performed, and the process is repeated until a cer-
tain termination criterion is met.

The size of the population is kept the same in each iteration step. Best individuals
are kept unchanged in the next generation (elitist selection). The "Hill climbing" tech-
nique (Neri et al., 2012), is chosen as the individual learning strategy. The termination
criterion is satisfied if no improvement is found in a number of following iterations, or
if the maximum number of iterations is reached.

5.2.1 Comparison of evolutionary and memetic algorithms

In this Subsection, to justify the employment of the MA, performance test of evolu-
tionary and memetic algorithms in application to the problem of actuators placement
is presented. The rigid casing is taken as an example for the purpose of the compari-
son (details of the problem specific parameters are described in the Subsection 5.4.3).
Due to built-in local search procedures, the MA involves more operations than EA in
each generation. An extend of the additional computational load depends on adopted
parameters and chosen procedures. For the study to be adequate, both algorithms
should posses the same computational budget. Therefore, during the test, population
in EA consisted of 90 individuals, while MA population had only 20 individuals. Such
arrangement resulted in similar average computation time. Maximum number of gen-
erations was set to 30.

Both algorithms were started with randomly generated initial population, which
affects strongly convergence rate. To obtain statistical measures of their performance,
each algorithm was run 100 times. Each particular run is presented in gray in Fig. 5.2,
for distribution of possible results to be visible. The average result is shown as the bold
black line.

It follows from the analysis of characteristic values (see Tab. 5.1) that both algo-
rithms are capable of reaching similar level of best value of the fitness function. How-
ever, EA best solution is worse than MA average solution. This indicates that both of
them could be used successfully in solving the optimization problem, but MA provides
better solution. To ensure that obtained solution is near the global optimum, consis-
tency of MA might also be considered as an advantage over EA. Less runs would be
necessary in the case of MA, what indicates a better computational efficiency. Addition-
ally, if more complicated structures and with more actuators are considered, benefits of
using the MA algorithm are even more significant (Garg, 2009).
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Figure 5.2: Multiple runs of optimization algorithms.

Table 5.1: Comparison of characteristic values.

Properties Evolutionary algorithm Memetic algorithm
Runs 100 100
Generations 30 30
Population size 90 20
Best final fitness 0.114 0.119
Average final fitness 0.102 0.116
Worst final fitness 0.068 0.108

5.3 Identification of model boundary conditions

In this Section, the optimization algorithm is used to identify the model parameters, to
better fit it to the real plant. It is a step that often is inevitable, and should precede the
application of the model, e.g. to objectives presented in the following Section.

5.3.1 Formulation of the optimization problem

The goal of the optimization here is to find eight spring constants (considered as opti-
mization variables) describing elastically restrained boundary conditions in the math-
ematical model of the light-weight casing walls. They are optimized in the sense of
fitting the theoretically calculated natural frequencies and modeshapes to their corre-
sponding values of real casing obtained by experimental measurements.

Although only the spring constant are considered here, the same approach can be
used to identify other model parameters, depending on the application. What com-
plicates the process, is that the mathematical model is recalculated each time, when
different set of parameters is evaluated (even the trial functions, as the boundary con-
ditions changes).
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5.3.2 Cost function

The cost function is expressing the discrepancy between theoretically predicted natural
frequencies and those obtained by experiments. In this considerations, it is formulated
as follows:

J =
∑
i

(
ωe,i − ωs,i

ωe,i

)2

, (5.1)

where ωe,i and ωs,i are the i-th corresponding natural frequencies, measured experi-
mentally and simulated with the model, respectively. The sum is over the set of se-
lected resonances, which are not necessarily consecutive. Generally speaking, the cost
function (5.1) expresses an error of modelling—difference between the experiment and
the model. It is noteworthy that corresponding natural frequencies ωe,i and ωs,i are
not associated according to the order in frequency domain, but according to the dis-
tinguished modeshape (identified by the number of the nodal lines reduced by one,
parallel to y and x directions, respectively). Hence, for the example of the top wall—
the 1st, 2nd, 10th and 11th resonances are identified by their modeshapes (1, 1), (2, 1),
(4, 2) and (3, 3), and their natural frequencies 23 Hz, 38 Hz, 146 Hz and 155 Hz, respec-
tively.

5.3.3 Preparation of experimental data

As it was pointed out in the previous Chapters, not all of the eigenmodes in the con-
sidered frequency range were excited equally. Some of the less excited eigenmodes
were even difficult to observe, because of vicinity of more excited ones. Hence, for
each casing wall, four of well observed eigenmodes are selected for the identification
process. For the top wall (used as an example here), 1st, 2nd, 10th and 11th eigenmodes
are chosen for the purpose of identification. Remaining eigenmodes are used only for
evaluation of the model accuracy.

5.3.4 Results

A memetic algorithm is used to find the optimal values of model parameters. As a
result, following spring constants were obtained for the top wall:

krx0 = 27.0, krx1 = 27.0, kry0 = 61.8, kry1 = 61.8,

ktx0 = 1.1, ktx1 = 1.1, kty0 = 8.7, kty1 = 8.7,
(5.2)

for the front wall:

krx0 = 53.6, krx1 = 53.6, kry0 = 1.5, kry1 = 50.7,

ktx0 = 24.7, ktx1 = 24.7, kty0 = 26.9, kty1 = 28.3,
(5.3)

and for the left wall:

krx0 = 63.2, krx1 = 63.2, kry0 = 19.0, kry1 = 23.1,

ktx0 = 1.2, ktx1 = 1.2, kty0 = 24.8, kty1 = 22.2.
(5.4)
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Due to a symmetry of the casing structure, identity of opposite symmetrical boundary
conditions parameters were assumed. Value of the optimization index (5.1) obtained
for the exemplary top wall is:

Jopt = 0.001678 . (5.5)

A comparison of initial 12 eigenmodes (simulated for optimal set of spring constants
and measured experimentally) of the top, front and left wall are given in previous
Chapter, in Figs. 4.15-4.17, respectively. It was expected that frequencies of eigenmodes
selected for the cost function would be consistent. However, remaining eigenmodes
that were observed, but were not used in the identification process, are also consistent
with the model, confirming the correctness of the proposed procedure.

5.4 Optimization of a vibrating structure

In this Section, the introduced memetic algorithm is used to optimize the vibrating
structure itself (and/or its active control system) by an appropriate placing of addi-
tional elements on its surface.

5.4.1 Formulation of the optimization problem

Shape and placement of additional elements bonded to a vibrating structure surface
are considered as a set of optimization variables. They are optimized in the sense of
minimizing an arbitrarily chosen cost function. The cost function corresponds to de-
sired frequency response of the plate and/or controllability/observability measures of
an active system, depending on the given application. Four kinds of elements are con-
sidered:

• Additional masses

They are passive elements. A significant amount of different items can be uti-
lized in this role, including custom-made elements. Hence the shape, weight and
placement are considered as optimization variables.

• Ribs

They are passive elements. It is assumed for practical reasons that one of their
dimensions is much greater than the others, and that their cross-sections are con-
stant along this direction. Therefore, the length, cross-section, location and orien-
tation are considered as optimization variables.

• Actuators

For the purpose of this research, electrodynamic shakers are adopted as actuators,
although other kinds can also be considered and appropriately introduced in the
model, e.g. PZT films, PZT stacks or MFC (Leniowska and Mazan, 2015). The
actuators are used to generate sound by the vibrating panel or for active control
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purposes. Their shape is often imposed by a manufacturer, and therefore only
the placement becomes an optimization variable.

• Sensors

Accelerometers are used in this research to monitor vibration or provide signals
for a control algorithm. Other sensors can also be considered and appropriately
introduced in the model, e.g. strain gauges, MFC elements or PVDF films. Due
to the same reason as in case of actuators, only the placement is considered as an
optimisation variable.

Furthermore, the variables specified above, are subjects to various restraints - the
number, weight and dimensions of the elements are limited due to plate shape and
other constraints dependent on the application.

A property of the optimization algorithm is that if one or more of the elements do
not allow obtaining a better fitness, these elements are either placed at the plate border
where they do not affect the plate in practice, or their parameters like weight or length
are reduced to negligible values. Hence, the number of optimized elements often acts
in fact like an upper bound.

5.4.2 Cost function

The cost functions used in the present considerations should reflect discrepancy be-
tween the desired and actual frequency responses of the plate. Various approaches
can be utilized to define the cost function. They can be defined on the basis of natu-
ral frequencies, ωi, and magnitudes of the response, where i stands for the eigenmode
number. On the other hand, overall transmission in a whole bandwidth can also be
specified to be either amplified or attenuated, depending whether the role of the plate
is to act as a structural noise source or a noise barrier, respectively.

If an active structural control application is considered, measures of controllabil-
ity and observability of the system expressed in the form of diagonal elements of the
controllability and observability Gramian matrices, λc,i and λo,i, respectively, can also
be introduced in the cost function, as it was done in the previous work of the author
(Wrona and Pawelczyk, 2013b,a). Therefore, in the general form the cost function can
be presented as:

J = f(ωi, λc,i, λo,i, Θ) , (5.6)

where Θ is a vector representing parameters of the elements to be mounted to the
plate, including their shapes and locations. More detailed forms of particular cost func-
tions are presented in the following Subsection, where results for different scenarios are
shown and discussed.

In the present analysis, the numbers of subsequent elements mounted to the plate,
for simplification, are not a subject of optimization. They are chosen at the beginning as
initialization parameters, in a similar manner as the structure of a model for the system
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identification process. If the result obtained for certain numbers of elements is not
satisfactory, the numbers should be increased (similarly as the orders of a model would
be increased). However, simpler configurations are usually more desired. Therefore,
if the goal is reached, the possibility of reduction should be explored - sometimes a
satisfactory result can be obtained for lower numbers of elements (like the lower order
of a model). It means that the chosen final number of elements should be a trade-off
between the quality of obtained result and the complexity of the solution. Therefore, it
can be defined in a similar way as the Akaike Information Criterion (AIC) for system
identification.

In the exemplary cases reported in the following Subsection, the choice of numbers
of elements is made according to the guidelines described above. However, for the
sake of brevity, this process is not discussed for particular cases.

5.4.3 Actuators and sensors arrangement for the rigid casing

The developed model and the memetic algorithm are used in this Subsection to opti-
mize locations of three inertial actuators mounted to the rigid casing wall. The objective
is to ensure controllability of initial six eigenmodes, by maximizing following criterion:

J = min
i
λc,i , i ∈ {1, 2, ..., 6} , (5.7)

where λc,i is the i-th diagonal element of the controllability Gramian matrix, corre-
sponding to the i-th eigenmode (Wrona and Pawelczyk, 2013b). Such optimization in-
dex expresses a measure of controllability of the least controllable mode. The optimiza-
tion is performed in a continuous spatial domain for admissible actuators placement.
What complicates the process, is that the mathematical model is recalculated each time,
when different arrangement of actuators is evaluated (as the actuators’ mass is taken
into account in the plate model). Actuators locations found are shown in Fig. 5.3a. Ob-
tained diagonal elements of the controllability Gramian corresponding to eigenmodes
are presented in Fig. 5.3b.

After the optimization process, the actuators have been mounted on the casing wall
in the obtained arrangement and experimentally evaluated. Each of the actuators have
been individually excited with a random signal. Frequency responses of the panel due
to excitation by individual actuators were measured at a number of points, uniformly
distributed over the plate surface. The distance between the measurement points (de-
termining the number of them) has been adopted to be considerably smaller than the
distance between the nodes and antinodes of the plate eigenmodes in the frequency
range considered. Results averaged over all of the measurement points are presented
in Fig. 5.4.
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Figure 5.3: Results of the optimization.

The given eigenmode is considered practically controllable (with acceptable control
effort) if the corresponding peak is distinguishable in the frequency response graph.
It follows from analysis of Fig. 5.4 that individual actuators complement each other.
Every actuator excites the first mode, but e.g. the forth mode is well excited only by
the actuator no. 1. Hence, each desired eigenmode is controllable with an acceptable
margin, what experimentally confirms suitability of the proposed method.
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Figure 5.4: Magnitudes of surface-averaged frequency responses of the plate due to excitation
by individual actuators (the numbers in parentheses depict eigenfrequencies).
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5.4.4 Actuators and sensors arrangement for the light-weight casing

As the mathematical model has been validated for the light-weight casing walls, it is
now employed for the process of optimization of arrangement of actuators. Each wall
is evaluated in this process separately, therefore it is performed in the same manner
as in previous Subsection or in (Wrona and Pawelczyk, 2013b), where the individual
casing wall is considered.

The optimization itself is performed with a memetic algorithm. The optimization
variables are the coordinates of actuators on the plate surface. The optimization index
J is a measure of controllability of the least controllable mode:

J = min
i
λc,i , i ∈ {1, 2, ..., Nmod} , (5.8)

where λc,i is the i-th diagonal element of the controllability Gramian matrix, corre-
sponding to the i-th eigenmode (Wrona and Pawelczyk, 2016e).

The goal is to maximize the controllability of eigenmodes in the frequency range
up to 300 Hz. Hence, depending on the number of eigenmodes included in the given

Wall Act. xa,i (m) ya,i (m)

Top

1 0.100 0.066
2 0.322 0.445
3 0.389 0.564
4 0.610 0.091
5 0.695 0.247

Left

1 0.077 0.455
2 0.424 0.152
3 0.542 0.222
4 0.565 0.304

Front

1 0.134 0.065
2 0.307 0.164
3 0.674 0.445
4 0.735 0.263
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Figure 5.5: Arrangement of actuators on the light-weight casing walls. Two pairs of walls are
symmetrical (left and right, front and back), hence only one of each pair is presented.
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frequency range, different number of eigenmodes was considered for each wall of the
casing: Nmod = 25 for top wall, Nmod = 21 for front and back wall, Nmod = 17 for left
and right wall. Five actuators locations have been optimized for the top wall and four
actuators locations for remaining walls.

As the two pairs of walls are symmetrical (left and right, front and back), the same
configuration have been calculated for a given pair. The obtained arrangement of actu-
ators is presented in Fig. 5.5.

5.4.5 Frequency response shaping method

Vibrating plates can be used as structural sound sources, highly resistant to unfavourable
environmental conditions. On the other hand, they can be used as noise barriers,
which limit the acoustic energy transmission/emission (Rdzanek, 2014; Rdzanek and
Witkowski, 2014; Leniowska and Rdzanek, 2014; Batko et al., 2015). In the latter case
their vibration can be appropriately controlled with the aid of actuators to enhance
their noise isolation (Pawelczyk, 2013). However, they exhibit complex frequency re-
sponse, which can make it difficult to achieve satisfactory performance. Therefore, for
both kinds of applications, it would be great to have an ability to shape the frequency
response as desired. By locating resonance modes at excited frequencies the sound
power radiated could be significantly increased (Mazur, 2013; Zawieska et al., 2007;
Zawieska and Rdzanek, 2007). In case of noise barriers, by relevant shaping of the
frequency response a higher passive attenuation could be obtained or active control
ability could be improved. Frequency response shaping can also enhance efficiency of
energy harvesting from vibrating structures (Kowal et al., 2008).

General rules are known—additional masses lower the natural frequencies of the
plate, whereas ribs elevate them. This can be easily observed in simulations with soft-
wares for modal analysis. However, besides the previous publications of the author
(Wrona and Pawelczyk, 2016e,f), presence of additional masses and ribs has not been
analysed and used together, especially for shaping the frequency response according
to precisely defined demands.

It is proposed to simultaneously optimise arrangement of additional masses and
ribs in order to reach precisely defined desired properties of the plate. The limits are
related mainly to the maximum dimensions and mass of the created structure. More-
over, this approach can be employed for active structural control applications to reduce
vibration and/or noise as well. In such case, actuator and sensors bonded to the plate
are modelled as additional masses of imposed shapes and weights. However, they
are distinguished from the passive masses in notation, because locations of these ele-
ments determine the controllability and observability of the system. In this research,
accelerometers and inertial actuators are considered, as examples of sensors and actu-
ators. However, this general idea can easily be applied for other kinds of sensors and
actuators. Such sophisticated optimisation, and shaping properties of the structure
according to demands of various character followed from defined cost functions and
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constraints, would not be possible with available softwares for modal analysis. Hence,
both the memetic algorithm and mathematical model of the plate are implemented in
authors’ original software, utilizing C language and GPU support.

In this Subsection, exemplary optimization scenarios, and corresponding different
cost functions are presented and discussed. Beginning with simple intuitive cases to
evaluate correctness of obtained configuration, and then more complex cases are con-
sidered to demonstrate full potential of the method.

Plate parameters for all cases considered in this Subsection are as follows:

a = 0.420 m, b = 0.420 m, h = 0.001 m,

E = 200 GPa, G = 76.9 GPa,

ρp = 7850 kg/m3 , ν = 0.3, κ =5/6.

Plate edges are assumed to be fully-clamped. This is due to the fact that such boundary
conditions correctly represent structures often encountered in practice. Moreover, they
are commonly used in many different plate models, which would facilitate a compar-
ison with the reported results. However, the model derived in this dissertation can be
used for any boundary conditions (Pawelczyk and Wrona, 2016).

The frequency bandwidth is considered up to 350 Hz, and initial 12 eigenmodes of
the plate are compared for each case. For unloaded plate, natural frequencies are given
in Tab. 5.2. The frequency response of such plate is given in Fig. 5.6.

For each optimization, the population consist of 50 individuals. Maximum number
of generations is set to 10. Probability of crossover, mutation and individual learning
is 0.2, 0.3 and 0.1, respectively.

Weights of additional masses are limited to maximum value of 0.2 kg. The concen-
trated masses are assumed to be placed directly at the place surface, therefore moments
of inertia are defined by:

Imx,i = Imy,i = mm,i

(
h

2

)2

, (5.9)

where mm,i is the weight of the i-th additional mass. The ribs are assumed to have a
constant cross-section of square shape, defined by dimensions:

er,i = hr,i = 0.004 m , (5.10)

where er,i is the width and hr,i is the height of the i-th rib. Such cross-section implies
that geometric properties of the ribs are given by:

Ar,i = er,i hr,i , Ir,i =
1

12
er,i hr,i

3 + er,ihr,i

(
h+ hr,i

2

)2

,

Jr,i =
1

12
er,i hr,i

3 +
1

12
hr,i er,i

3 , kr,i =
1

12
hr,i

2 ,

(5.11)
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Table 5.2: Natural frequencies of unloaded plate.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

ωi (Hz) 49.7 101.4 101.4 149.5 181.8 182.6 227.9 227.9 290.8 290.8 303.9 334.5
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Figure 5.6: The frequency response of unloaded plate and visualization of additional elements
mounted on the plate (there are no elements for the unloaded plate).

where Ar,i is the cross-sectional area; Ir,i is the second moment of inertia about the
plate mid-plane; Jr,i is the torsional constant; kr,i is the radius of gyration of the i-th
rib. The material of the ribs is considered to be the same as of the plate.

Minimization of the fundamental frequency

As an intuitive example, minimization of the fundamental frequency is considered
firstly. Such goal implies the following cost function:

J = ω1 . (5.12)

Only passive elements are considered in this case. The number of additional masses
and ribs is set here to Nm = 1 and Nr = 1, respectively. Results of the optimization are
given in Tab. 5.3 and Fig. 5.7, where circles and lines represent placements of additional
masses and ribs, respectively.

It follows from the optimisation that to minimize the fundamental frequency, the
maximum possible amount of additional mass should be mounted on the plate surface,
considering the modeshape, at its centre. The algorithm reached such solution, with

Table 5.3: Results of optimization of cost function (5.12) for Nm = Nr = 1. Natural frequencies
of the plate and placement of additional elements.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

ωi (Hz) 35.4 94.4 94.4 132.8 149.4 181.7 195.8 195.8 243.9 243.9 270.0 334.4

Masses xm,i (m) ym,i (m) mm,i (kg) Ribs xr0,i (m) yr0,i (m) xr1,i (m) yr1,i (m)

1 0.210 0.212 0.200 1 0.238 0.235 0.240 0.235
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Figure 5.7: Results of optimization of cost function (5.12) for Nm = Nr = 1. The frequency
response of the plate (solid line - plate with elements; dashed line - unloaded plate) and vi-
sualization of additional elements mounted on the plate (circles - additional masses; lines -

ribs).

cost function value Jopt = 35.4. This value was limited by assumed in a constraint
that the largest allowed mass of the additional element is 0.2 kg. Moreover, a typical
behaviour of the algorithm can be observed in this example. The optimisation process
resulted in a plate rib of negligible length, what means that its employment here is not
justified.

For the same cost function, the optimization was performed again, but for doubled
number of elements, setting Nm = 2 and Nr = 2. Results of the optimization are given
in Tab. 5.4 and Fig. 5.8.

Table 5.4: Results of optimization of cost function (5.12) for Nm = Nr = 2. Natural frequencies
of the plate and placement of additional elements.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

ωi (Hz) 28.7 86.8 86.8 123.0 149.4 165.4 165.5 181.7 238.5 238.5 265.5 333.6

Masses xm,i (m) ym,i (m) mm,i (kg) Ribs xr0,i (m) yr0,i (m) xr1,i (m) yr1,i (m)

1 0.210 0.212 0.200 1 0.367 0.392 0.371 0.392
2 0.211 0.211 0.200 2 0.415 0.000 0.420 0.000
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Figure 5.8: Results of optimization of cost function (5.12) for Nm = Nr = 2. The frequency
response of the plate (solid line - plate with elements; dashed line - unloaded plate) and vi-
sualization of additional elements mounted on the plate (circles - additional masses; lines -

ribs).
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As it could be predicted, even more mass is concentrated at the plate center, achiev-
ing Jopt = 28.7. Moreover, the ribs are thrown to the plate corners. It is also worth
noting that despite increasing number of dimensions of the search space, the algorithm
easily reaches a proper solution. The solutions obtained in this subsection are in accor-
dance with intuition and with results known from the literature.

Maximization of the fundamental frequency

Considering the opposite goal to that from the previous case, maximization of the fun-
damental frequency is of concern now. It implies the following cost function:

J = −ω1 . (5.13)

Again, only passive elements are considered. The number of additional masses and
ribs is set to Nm = 1 and Nr = 1, respectively. Results of the optimization are given in
Tab. 5.5 and Fig. 5.9. The value of the cost function is Jopt = −88.4. It follows from the
optimisation that the rib has been placed in the most efficient position, i.e. to split the
plate into two. Moreover, the additional mass was placed at the plates edge, indicating
that its presence is not justified. The solution is again in accordance with intuition and
with results known from the literature.

Table 5.5: Results of optimization of cost function (5.13) for Nm = Nr = 1. Natural frequencies
of the plate and placement of additional elements.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

ωi (Hz) 88.4 106.5 160.0 164.0 191.8 239.9 243.7 296.7 311.5 346.7 348.7 353.6

Masses xm,i (m) ym,i (m) mm,i (kg) Ribs xr0,i (m) yr0,i (m) xr1,i (m) yr1,i (m)

1 0.420 0.024 0.027 1 0.210 0.000 0.210 0.420
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Figure 5.9: Results of optimization of cost function (5.13) for Nm = Nr = 1. The frequency
response of the plate (solid line - plate with elements; dashed line - unloaded plate) and vi-
sualization of additional elements mounted on the plate (circles - additional masses; lines -

ribs).
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Setting natural frequencies at desired values

In cases presented above, the optimal arrangements of masses and ribs could be pre-
dicted without the optimization process. However, it was conducted to evaluate the
performance of the algorithm before considering more complex scenarios, where intu-
itive answers are no longer available.

Here, it is assumed that exact values of desired natural frequencies are arbitrary
chosen. The aim of the optimization is to find arrangement of the additional elements
mounted on the plate for it to respond accordingly. To represent such goal the cost
function, two approaches can be distinguished. Distances with respect to the nearest
natural frequencies, or with respect to particular ones, e.g. determined by the number
of the mode are minimised. Selection of the approach depends on the given applica-
tion, whether the goal is to place any of the modes at desired position or to shape the
frequency characteristic precisely as desired.

In the given example, the second scenario is adopted as a more general. The ex-
emplary requirement is to place the initial four natural frequencies at desired values
ωsp,1 = 75 Hz, ωsp,2 = 125 Hz, ωsp,3 = 175 Hz and ωsp,4 = 225 Hz. Then, the cost function

Table 5.6: Results of optimization of cost function (5.14) for Nm = Nr = 3. Natural frequencies
of the plate and placement of additional elements.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

ωi (Hz) 75.2 125.6 174.5 224.9 233.4 257.7 329.1 334.2 364.4 371.5 383.8 429.6

Masses xm,i (m) ym,i (m) mm,i (kg) Ribs xr0,i (m) yr0,i (m) xr1,i (m) yr1,i (m)

1 0.003 0.031 0.161 1 0.165 0.017 0.314 0.339
2 0.002 0.031 0.200 2 0.121 0.046 0.154 0.384
3 0.003 0.032 0.200 3 0.142 0.023 0.399 0.262
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Figure 5.10: Results of optimization of cost function (5.14) for Nm = Nr = 3. The frequency
response of the plate (solid line - plate with elements; dashed line - unloaded plate) and vi-
sualization of additional elements mounted on the plate (circles - additional masses; lines -

ribs).
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reflecting that is expressed as:

J =
4∑
i=1

|ωi − ωsp,i| . (5.14)

Only passive elements are considered. The number of additional masses and ribs was
set toNm = 3 andNr = 3, respectively. Results of the optimization are given in Tab. 5.6
and Fig. 5.10. The value of the cost function that was obtained is Jopt = 1.4.

It has been proven that the given values of desired natural frequencies have been
achieved with a high accuracy. Moreover, it follows from the analysis of the obtained
solution that the additional masses can be excluded from the final application, and the
3 ribs only allow to reach the goal defined by (5.14). It is an understandable behaviour,
because each of the natural frequencies has been moved to higher values than in case
of the unloaded plate.

Setting natural frequencies away from the given value

In this example, the opposite scenario to that from the previous Subsection is consid-
ered. The goal is to keep natural frequencies as far as possible from the given frequency.
For instance, it corresponds to a practical application, where the frequency of the dis-
turbance is known and the aim is to avoid the excitement of natural frequencies of
the plate, thereby increasing its passive isolation. Assuming that such frequency is
ωd = 175 Hz and the mode closest to this given frequency ωd is the i-th mode, the cost
function is expressed as:

J = − |ωi − ωd| , i ∈ {1, 2, ..., N} . (5.15)

The number of additional masses and ribs is assumed as Nm = 2 and Nr = 2,
respectively. Results of the optimization are given in Tab. 5.7 and Fig. 5.11. The value
of the cost function obtained is Jopt = −38.3. It means that the disturbance frequency
ωd can fluctuate in the range of 15% around its nominal value, without the risk of
approaching the natural frequencies. Moreover, if the safety margin should be even
higher, the number of optimized elements should be increased.

Table 5.7: Results of optimization of cost function (5.15) for Nm = Nr = 2. Natural frequencies
of the plate and placement of additional elements.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

ωi (Hz) 64.8 97.0 134.3 136.7 213.4 214.2 224.3 257.8 281.5 333.8 340.1 351.7

Masses xm,i (m) ym,i (m) mm,i (kg) Ribs xr0,i (m) yr0,i (m) xr1,i (m) yr1,i (m)

1 0.000 0.113 0.200 1 0.186 0.036 0.369 0.176
2 0.069 0.122 0.159 2 0.055 0.248 0.290 0.075
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Figure 5.11: Results of optimization of cost function (5.15) for Nm = Nr = 2. The frequency
response of the plate (solid line - plate with elements; dashed line - unloaded plate) and vi-
sualization of additional elements mounted on the plate (circles - additional masses; lines -

ribs).

It is noteworthy that this exemplary scenario was used in an experiment validating
the suitability of the employed frequency response shaping method. It is described in
the previous Chapter, in Subsection 4.3.1.

Simultaneous optimization of arrangement of actuators, sensors, and passive ele-
ments

In this subsection, an active control scenario is considered. Among the additional
masses and ribs, actuators and sensors need to be arranged. Hence, the cost function
should express not only the frequency response of the plate, but also controllability and
observability measures, as a function of actuators and sensors placement, as discussed
Section 3.8. Therefore, the optimization process becomes a multi-objective problem, be-
cause control related goals are not necessarily in line with requirements imposed on the
frequency response of the plate. On the other hand, the active elements have non-zero
masses and they influence frequency response of the plate.

Masses of actuators and sensors are assumed as (corresponding to electrodynamic
actuators and accelerometers, respectively):

ma,i = 0.115 kg, ms,i = 0.010 kg,

where ma,i and ms,i are masses of the actuators and sensors, respectively. Moments of
inertia are calculated according to Eq. (5.9).

In the considered case, the goal is to keep one of the natural frequencies as close
as possible to the given value ωsp = 200 Hz. Moreover, it is required that this mode
should be controllable and observable well. It corresponds to a situation, where an effi-
cient structural sound source of particular frequency is tried to be achieved. Assuming
that the mode closest to this given frequency ωsp is the i-th mode, the cost function is
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Table 5.8: Results of optimization of cost function (5.16) for Nm = Nr = 2 and Na = Ns = 1.
Natural frequencies of the plate and placement of additional elements.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

ωi (Hz) 65.2 105.2 138.4 184.5 200.9 221.0 248.6 276.5 312.0 328.3 343.1 377.0

Masses xm,i (m) ym,i (m) mm,i (kg) Ribs xr0,i (m) yr0,i (m) xr1,i (m) yr1,i (m)

1 0.003 0.227 0.000 1 0.013 0.286 0.410 0.284
2 0.245 0.410 0.147 2 0.243 0.022 0.363 0.200

Actuatorsxa,i (m) ya,i (m) ma,i (kg) Sensors xs,i (m) ys,i (m) ms,i (kg)

1 0.117 0.294 0.115 1 0.286 0.333 0.010
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Figure 5.12: Results of optimization of cost function (5.16) for Nm = Nr = 2 and Na = Ns = 1.
The frequency response of the plate (solid line - plate with elements; dashed line - unloaded
plate) and visualization of additional elements mounted on the plate (circles - additional

masses; lines - ribs; circles with "X" inside - actuators; diamonds - sensors).
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Figure 5.13: Results of optimization of cost function (5.16) for Nm = Nr = 2 and Na = Ns = 1.
Values of the diagonal elements of the controllability and observability Gramian matrices.

expressed as:

J = −max

{(
1− df

|ωi − ωsp|
ωsp

)
, 0

}
· λc,i · λo,i , i ∈ {1, 2, ..., N} , (5.16)

where df = 10 is a parameter defining desired proximity of the i-th mode to the given
frequency ωsp. The number of additional masses, ribs, actuators and sensors was set
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Table 5.9: Results of optimization of cost function (5.17) for Nm = 2 and Nr = Na = Ns = 3.
Natural frequencies of the plate and placement of additional elements.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

ωi (Hz) 66.9 101.3 125.9 148.4 197.5 200.4 202.1 253.6 282.4 288.6 309.7 320.7

Masses xm,i (m) ym,i (m) mm,i (kg) Ribs xr0,i (m) yr0,i (m) xr1,i (m) yr1,i (m)

1 0.042 0.157 0.014 1 0.272 0.296 0.372 0.241
2 0.239 0.100 0.065 2 0.417 0.181 0.024 0.065

3 0.348 0.280 0.104 0.152

Actuatorsxa,i (m) ya,i (m) ma,i (kg) Sensors xs,i (m) ys,i (m) ms,i (kg)

1 0.035 0.197 0.115 1 0.270 0.339 0.010
2 0.049 0.309 0.115 2 0.300 0.338 0.010
3 0.132 0.051 0.115 3 0.188 0.316 0.010
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Figure 5.14: Results of optimization of cost function (5.17) for Nm = 2 and Nr = Na = Ns = 3.
The frequency response of the plate (solid line - plate with elements; dashed line - unloaded
plate) and visualization of additional elements mounted on the plate (circles - additional

masses; lines - ribs; circles with "X" inside - actuators; diamonds - sensors).
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Figure 5.15: Results of optimization of cost function (5.17) for Nm = 2 and Nr = Na = Ns = 3.
Values of the diagonal elements of the controllability and observability Gramian matrices.

to Nm = 2, Nr = 2, Na = 1 and Ns = 1, respectively. Results of the optimization are
given in Tab. 5.8 and Figs. 5.12-5.13, where circles with an "X" inside and diamonds
represents actuators and sensors, respectively.

Such a multi-objective optimization problem can also be defined in many ways.
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However, the way presented in (5.16) leads to a solution which clearly meets the re-
quirements for the frequency response, and provides controllability and observability
for the particular mode at a high level (when compared with other modes).

In the second case considered in this Subsection, a slight modification is made to the
cost function. Now not only one mode is desired near the frequency ωsp, but as many
modes as possible to maximize the effect. Therefore, a sum is introduced. Moreover, to
focus more on the frequency response of the plate, the values describing controllability
and observability are raised to the powers of 0.5 and 0.25, respectively, leading to the
cost function given as:

J = −
3N∑
i=0

[
max

{(
1− df

|ωi − ωsp|
ωsp

)
, 0

}
· (λc,i)0.5 · (λo,i)0.25

]
. (5.17)

The number of additional masses, ribs, actuators and sensors was set to Nm = 2, Nr =

3, Na = 3 and Ns = 3, respectively. Results of the optimization are given in Tab. 5.9
and Figs. 5.14-5.15.

The value of the cost function that was obtained is Jopt = −3.1. The goal regarding
the frequency response of the plate has been achieved with high precision. Moreover,
for the modes in the proximity of the given frequency ωsp, both controllability and
observability have been assured, guaranteeing usefulness of these modes for active
control purposes.

5.5 Summary

In this Chapter, the developed model has been widely used for a series of optimiza-
tion problems. The memetic algorithm has been employed as an effective optimization
algorithm for problems with complex search spaces and multiple optima.

Firstly, a method of identification of model boundary conditions has been proposed
and practically evaluated. It is successfully used to identify boundary conditions of the
light-weight casing walls.

Afterwards, the structure optimization has been concerned. The efficient locations
for actuators and sensors have been found, basing on controllability and observability
measures. It is a crucial step in preparation of the active control system (if omitted,
the overall performance may be significantly affected with lacks of controllability and
observability).

Finally, a frequency response shaping method of casing walls has been proposed. It
is validated for a set of passive and active control scenarios, including both simulation
and a laboratory experiment. It represents a high practical potential, as it can be used
for passive control to improve the dynamical properties of the casing walls. On the
other hand, the method can be used to maximize the susceptibility of the plant to the
active control.





Chapter 6

Active control

6.1 Background

After proper evaluation of the vibrating structures, when actuators and sensors (and
masses and ribs, if needed) arrangement is accordingly optimized, the active control
is undertaken. The general objective is common for all performed experiments—to
reduce noise emission of the device, achieving global reduction instead local zones of
quiet. However, to reach this goal, different signals and different strategies are utilized
and compared.

In all control experiments, the adaptive feedforward control algorithm is used. It
is based on Leaky Normalised Filtered-x Least Mean Square (LNFxLMS) method, em-
ployed to update control filter parameters. The adaptivity is introduced to respond to
possible nonstationarity of the disturbance and changes of the plant, e.g. due to tem-
perature variation (Mazur and Pawelczyk, 2011). Among the chosen control strategies,
two general approaches can be distinguished. First approach is an independent control
system for each casing wall (Wrona and Pawelczyk, 2014b, 2016b). Second approach
is an integrated system for the whole casing, employing the Switched-error modifica-
tion (Mazur and Pawelczyk, 2015). It is used to obtain a trade-off between inclusion
of cross couplings of the plant and computational complexity. A drawback of this ap-
proach is a prolonged convergence time, however, it is a matter of a increase from
several seconds (in case of an independent control) to tens of seconds in case of an inte-
grated control system. It is still in accordance with practical implementation constrain
(the system could be working for many hours, hence tens of seconds for initial conver-
gence are acceptable). The control algorithm is further described in the Section 6.2.

The first structure considered is the rigid casing. Taking advantage of vibrational
and acoustical isolation between walls, each casing wall is controlled independently
(utilizing the first control approach). Outer microphones, cavity microphones or ac-
celerometers are used as error sensors, depending on the particular configuration. Also,
both single- and double-panel structures are considered, creating in total five configu-
rations to examine (employment of cavity microphones for single-panel casing is not
possible). Results are presented and discussed in Section 6.3.

Afterwards, the light-weight casing is under consideration. Due to the strong vibra-
tional and acoustical couplings, both control approaches are evaluated (independent

95
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and integrated). Only outer microphones are used as error sensors (cavity microphones
are not possible and accelerometers performed similarly as for the rigid casing, there-
fore their results are omitted). Obtained results are presented, compared and discussed
in Section 6.4.

6.2 Adaptive feedforward control system

A multi-channel feedforward control system is presented in this Section, which is used
in laboratory experiments described in the following Sections. It is noteworthy that
sometimes a useful reference signal (used in a feedforward system) is impossible to ac-
quire due to, e.g. device structure preventing to place a sensor at appropriate location.
In such a case, alternatively to feedforward control, a feedback control strategy in the
Internal Model Control (IMC) architecture can be employed (Wrona and Pawelczyk,
2015; Mazur and Pawelczyk, 2016a). It generally provides equivalent results as a feed-
forward system if the primary noise is a deterministic signal (e.g. tonal or multi-tonal
signals, which are very common). However, for the sake of brevity, only feedforward
control system is considered in this dissertation, as a more general approach.

The presented control system is an adaptive control strategy, based on the Leaky
Normalised Filtered-x Least Mean Square algorithm used to update control filter pa-
rameters. The adaptivity is introduced to respond to possible nonstationarity of the
disturbance and changes of the plant, e.g. due to temperature variation (Mazur and
Pawelczyk, 2011). The stability and convergence of LMS algorithm have been studied,
e.g. in (Bismor, 2015).

The control algorithm is schematically presented in Fig. 6.1. Symbol X is the refer-
ence path, W is the adaptive control filters vector (of dimension (I × 1), where I is the
number of actuators), P is the primary paths vector (of dimension (J × 1), where J is
the number of error sensors), defined between the reference and error sensors. Figure
S stands for the secondary paths matrix of dimension (J × I) defined between the in-
puts of the actuators and outputs of the error sensors. These paths include electronics
necessary for signal conditioning and data conversion. The symbol Ŝ stands for the
secondary path model.

In turn, x(n) is the scalar reference signal, r(n) is the filtered-reference signals ma-
trix of dimension (J×I), u(n) is the control signals vector of dimension (I×1). Further,
signals d(n) and e(n) are the primary disturbances vector and the error signals vector,
respectively, both of dimension (J × 1), at positions of the error sensors where noise
reduction is desired. In the control system for each rigid casing wall, number of ac-
tuators I = 3. If a light-weight casing wall is considered, I = 4 or I = 5 depending
on particular wall. On the other hand, depending if microphones or accelerometers are
used, the number of error sensors is J = 1 or J = I , respectively. Actuators and sensors
are more specifically described in the Subsection 2.2.1. Depending if the microphones
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Figure 6.1: Multi-channel feedforward control system with the FxLMS algorithm.

or accelerometers are used as error sensors, the control algorithms are referred to as
ASAC algorithm or AVC algorithm, respectively.

The i-th control signal at the (n+ 1)-st sample, ui(n+ 1), is obtained as follows:

ui(n+ 1) = wi(n)T xu(n) , (6.1)

where xu(n) = [x(n), x(n− 1), . . . , x(n− (N − 1))]T is the vector of regressors of the
reference signal and wi(n) = [wi,0(n), wi,1(n), . . . , wi,N−1(n)]T is the vector of coeffi-
cients of the i-th adaptive Finite Impulse Response (FIR) control filter at sample n, and
N is the filter order. These coefficients are updated for each of the error signals ej(n)

according to the formula:

wi(n+ 1) = αwi(n)− µ(n)rij(n)ej(n) , (6.2)

where rij(n) = [rij(n), rij(n− 1), . . . , rij(n− (N − 1))]T is a vector of regressors of the
ij-th filtered-reference signal, µ(n) is a step-size, and 0 � α < 1 is the leakage coeffi-
cient. The filtered-reference signal is calculated as:

rij = ŝij(n)T xr(n) , (6.3)

where ŝij(n) = [ŝij,0(n), ŝij,1(n), . . . , ŝij,M−1(n)]T is the vector of coefficients of theM -th
order FIR model of the ij-th secondary path and xr(n) = [x(n), x(n− 1), . . . , x(n− (M − 1))]T

is a vector of regressors of the reference signal. For multichannel versions it is justified
to consider reduction of the computational burden, as discussed in (Pawelczyk, 2002)
and (Bismor et al., 2016). Under some circumstances, partial update algorithm can even
increase the convergence rate (Bismor, 2014; Kurczyk and Pawelczyk, 2015).
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6.2.1 Switched-error modification

For the light-weight casing, as shown in Subsection 2.3.3, the vibrational and acoustic
cross couplings are of significant magnitude. To respond to this feature, a switched-
error modification of the presented control algorithm is introduced (Mazur and Pawel-
czyk, 2015). The modification consist in adaptation of all control filters (correspond-
ing to all casing walls) according to only one error signal, and cyclically changing the
sensor which provides the signal. Such algorithm results in similar computation com-
plexity as the separated control algorithm for each casing wall, but it is less vulnerable
to cross couplings of the structure. However, as expected, the cost of it is the conver-
gence speed. It is due to the fact that at once, control filters are adapting to only one
of the error signals. It is approximately 10 times slower, but is still a matter of only
tens of seconds to converge, which is in accordance to predefined practical require-
ments. The modified control algorithms is referred to as ASAC-SE (Switched-Error)
algorithm. Further details are provided in (Mazur and Pawelczyk, 2015).

6.3 Active control of the rigid casing

In this Section, the rigid casing is evaluated by means of active control experiments. All
walls of the casing, except the basis, are controlled to reduce the emission of noise gen-
erated by a primary disturbance source enclosed in the casing. Due to the vibrational
and acoustical separation (see Subsection 2.2.2), each wall of the casing is controlled
separately.

6.3.1 Experiments description

The primary noise signal is generated as a tonal signal of frequency incremented by
1 Hz in the range from 20 to 500 Hz. To achieve the goal of noise reduction, instanta-
neous square values of error signals are minimized by feedforward adaptive control
systems, controlling together fifteen inertial actuators (three per wall). Depending on
the particular configuration, the error signals are obtained by the outer microphones,
the cavity microphones or by accelerometers (their arrangement is discussed in Sub-
section 2.2.1). The control performance is evaluated as noise reduction level observed
by the room microphones. Performance of both single- and double-panel structure are
evaluated and compared in this Section.

For each frequency of the primary disturbance, a 15 seconds experiment was per-
formed. In its initial 4 seconds the active control was off, and variance of the signal
acquired by different sensors was estimated as the reference point. Then, the active
control was turned on. When the adaptive control algorithm converged, final 4 sec-
onds of the experiment was used to estimate the variance of the signal acquired by
corresponding sensors.
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Figure 6.2: Time plots for the experiment performed for primary disturbance of 96 Hz and
double-panel casing with ASAC algorithm. Microphones placed in cavities of the side walls

and the outer top microphone were used as error sensors.

6.3.2 Experiments results and discussion

Results of an exemplary experiment for the frequency of the primary disturbance equal
96 Hz are shown in the time domain in Fig. 6.2. Initial three rows present control signals,
where the convergence rate can be observed. In the fourth row, signals measured by
microphones used in this experiment as error sensors are presented. In the fifth row
of the figure, signals measured by three room microphones are given. The reference
microphone measurement is also shown for completeness.

In Figs. 6.3-6.7, frequency characteristics of experiments for single- or double-panel
structure with different error sensors configurations are presented. In the last rows of
these figures, the mean reduction obtained at the room microphones is shown. It is
considered as the main point for evaluation of active control performance. Remaining
plots present variances in dB scale of signals acquired by error sensors and individual
room microphones, without (blue) and with (green) control. Additionally, bellow each
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individual frequency characteristic, a reduction characteristic is also presented, calcu-
lated as a difference between noise level without and with control (reduction is marked
with red colour).

Finally, a comparison of mean reduction levels obtained for the single-panel casing
with different error sensors configurations is presented in Fig. 6.8. In Fig. 6.9, corre-
sponding reduction levels for double-panel structure are presented.

The employment of outer microphones to obtain error signals offered better per-
formance for single-panel structure than in case of double panels. This is the result
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Figure 6.3: Frequency characteristics for the experiment performed for single-panel casing
with ASAC algorithm. The outer microphones were used as error sensors.
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of actuators mounting on the incident panels. Nevertheless, the double-panel struc-
ture introduced higher passive attenuation than single panels, therefore the noise was
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Figure 6.4: Frequency characteristics for the experiment performed for single-panel casing
with AVC algorithm. Accelerometers were used as error sensors.
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reduced similarly or more, in total. Moreover, the strategy of independent control sys-
tem for each wall performed well for low frequencies up to 250 Hz, where an impact
of vibrations of one wall due to actuators mounted on another wall is significantly
weaker, than the impact of actuators mounted directly on the wall. However, above
this frequency the cross paths between different walls become significant (see Subsec-
tion 2.2.2). Thus, the independent control provides weaker performance than for lower
frequencies (even the entire system may become unstable due to the cross couplings).
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Figure 6.5: Frequency characteristics for the experiment performed for double-panel casing
with ASAC algorithm. Microphones placed in cavities of the side walls and the outer top

microphone were used as error sensors.
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This issue can be mitigated by using more sophisticated strategies, e.g. the switched-
error FxLMS algorithm, what is considered in the following Section for the light-weight
casing. However, it is noteworthy that generally these strategies require more compu-
tational power.

For double-panel casing, the configuration employing cavity microphones as er-
ror sensors performed better, than with outer microphones. The control performance
was more stable and convergence problems or noise enhancement never occurred un-
til the frequency of 400 Hz (analogous independent control strategy was employed).
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Figure 6.6: Frequency characteristics for the experiment performed for double-panel casing
with ASAC algorithm. The outer microphones were used as error sensors.
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Moreover, such configuration is more feasible for practical implementation. Usually,
users cannot agree to keep error microphones around the casing. Additionally, cavity
microphones can operate with lesser gain, than outer microphones. Hence, they are

 0

 10

 20

 30

 40

 0  250  500

Ac
ce

le
ro

m
et

er
 1

V
ar

 (
dB

)

Frequency (Hz)

Front

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

Right

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

Back

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

Left

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

Top

 0

 10

 20

 30

 40

 0  250  500

Ac
ce

le
ro

m
et

er
 2

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

Ac
ce

le
ro

m
et

er
 3

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  250  500

Ro
om

 m
ic

.
V

ar
 (

dB
)

Frequency (Hz)

Mic 6

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

Mic 7

 0

 10

 20

 30

 40

 0  250  500

V
ar

 (
dB

)

Frequency (Hz)

Control off

Control on

Mic 8

-10

 0

 10

 20

 30

 0  250  500

Ro
om

 m
ic

.
R

ed
uc

tio
n 

(d
B

)

Frequency (Hz)

-10

 0

 10

 20

 30

 0  250  500

R
ed

uc
tio

n 
(d

B
)

Frequency (Hz)

-10

 0

 10

 20

 30

 0  250  500

R
ed

uc
tio

n 
(d

B
)

Frequency (Hz)

 0

 10

 20

 30

 40

 0  50  100  150  200  250  300  350  400  450  500

Ro
om

 m
ic

.
M

ea
n 

va
r 

(d
B

)

Frequency (Hz)

-10

 0

 10

 20

 30

 0  50  100  150  200  250  300  350  400  450  500

Ro
om

 m
ic

.
M

ea
n 

re
du

ct
io

n 
(d

B
)

Frequency (Hz)

Figure 6.7: Frequency characteristics for the experiment performed for double-panel casing
with AVC algorithm. Accelerometers were used as error sensors.
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Figure 6.8: Comparison of mean reduction measured by room microphones. Frequency char-
acteristics for experiments performed for single-panel casing.

-10

 0

 10

 20

 30

 0  50  100  150  200  250  300  350  400  450  500

Ro
om

 m
ic

.
M

ea
n 

re
du

ct
io

n 
(d

B
)

Frequency (Hz)

AVC - acc.
ASAC - outer mic.
ASAC - cavity mic.

Figure 6.9: Comparison of mean reduction measured by room microphones. Frequency char-
acteristics for experiments performed for double-panel casing.

less vulnerable to external disturbances. Therefore, for double-panel structures cav-
ity microphones are more recommended as error sensors than the outer microphones.
Additionally, the switched-error FxLMS algorithm can also be employed with cavity
microphones to extend further the operating frequency range.

The performance of configurations using accelerometers to obtain error signals was
generally inferior to those using microphones (if the signals are used directly, without
any modification). Such approach is efficient in reducing vibrations, but it does not
necessarily imply that the noise is reduced most efficiently. However, the Virtual Mi-
crophone Control (VMC) approach can be used to appropriately pre-process the error
signals obtained by accelerometers to improve noise reduction (Mazur and Pawelczyk,
2016b). Alternatively, other piezoelectric sensors can be applied.

6.4 Active control of the light-weight casing

In this Section, the light-weight is evaluated with active control experiments. All walls
of the casing are controlled to reduce the noise emission. Due to the strong vibrational
and acoustical couplings (see Subsection 2.3.3), two control approaches are evaluated.
Firstly, each wall of the casing is controlled separately (analogously as for the rigid cas-
ing). Secondly, the switched-error modification is introduced to mitigate the negative
influence of cross couplings.
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6.4.1 Experiments description

The control system uses twenty one inertial actuators (four per front, right, back and
left wall, and five for the top wall). The error signal is obtained by the outer mi-
crophones. The primary disturbance is generated by a loudspeaker enclosed in the
casing. It is a tonal signal of frequency incremented by 4 Hz in the range from 1 Hz

to 500 Hz. The considered frequency range includes the low frequencies where the
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Figure 6.10: Time plots for the experiment performed for primary disturbance of 129 Hz and
light-weight casing with ASAC-SE algorithm. The outer microphones were used as error sen-

sors.
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speaker starts to transmit sound, up to higher frequencies (above 250 Hz) where the
cross-paths between different walls become significant, thus the independent control
provides weaker performance than for lower frequencies (even the entire system may
become unstable). However, this issue is again mitigated using the switched-error
FxLMS algorithm.

The control performance is evaluated by noise reduction level observed by the room
microphones. For each frequency of the primary disturbance, a 25 seconds or 60 sec-
onds experiment was performed, for the ASAC and ASAC-SE algorithms, respectively.
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Figure 6.11: Frequency characteristics for the experiment performed for light-weight casing
with ASAC algorithm. The outer microphones were used as error sensors.
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During its initial 5 seconds the active control was off, and variance of the signal ac-
quired by different sensors was estimated. Then, active control was turned on. When
the control algorithm converged, final 5 seconds of the experiment were used to esti-
mate the variance of the signal acquired by corresponding sensors.
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Figure 6.12: Frequency characteristics for the experiment performed for light-weight casing
with ASAC-SE algorithm. The outer microphones were used as error sensors.
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6.4.2 Experiments results and discussion

Results in the time domain of an exemplary experiment for the ASAC-SE algorithm
and the frequency of primary disturbance equal 129 Hz are presented in Fig. 6.10 (time-
domain results for ASAC algorithm are ommited as they are analogous to those pre-
sented in Fig. 6.2). First five rows present control signals, where the convergence rate
can be observed. In the sixth row, signals measured by outer microphones used in
this experiment as error sensors are shown. In the seventh row of the Figure, signals
measured by three room microphones are presented. The reference microphone mea-
surement is also shown for completeness.

In Fig. 6.11 and Fig. 6.12 frequency characteristics of experiments performed with
the ASAC and ASAC-SE algorithms are presented. In the last rows of these figures,
the mean reduction obtained at the room microphones is shown. It is considered as
the main point for evaluation of active control performance. Remaining plots present
variances in dB scale of signals acquired by error sensors and individual room micro-
phones, without (blue) and with (green) control. Additionally, bellow each individual
frequency characteristic, a reduction characteristic is also presented, calculated as a
difference between noise level without and with control (reduction is marked with red
colour). Finally, a comparison of mean reduction levels obtained for the ASAC and
ASAC-SE algorithms is presented in Fig. 6.13.

The ASAC algorithm performed well for low frequencies (up to 250 Hz), where the
impact of vibrations of one wall due to actuators mounted on another wall is signif-
icantly weaker than the impact of actuators mounted directly on the wall. Its perfor-
mance was reliable and noise enhancement or convergence problems never occurred.
Hence, given control strategy achieve significant global noise reduction, with relatively
low complexity of the system and high convergence speed, where each wall is con-
trolled separately. However, for frequencies above 250 Hz, the cross-paths between dif-
ferent walls become significant, and hence the independent control provides weaker
performance (even the entire system may become unstable). This issue, however, is
mitigated by using the ASAC-SE algorithm.
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Figure 6.13: Comparison of mean reduction measured by room microphones. Frequency
characteristics for experiments performed for light-weight casing.
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The ASAC-SE algorithm performed very well for frequencies up to approximately
400 Hz. Beside lowest frequencies, where the inertial actuators were lacking power, the
noise at error microphones was reduce to the noise floor level. Above the frequency
of 400 Hz the noise reduction was weaker, however, noise enhancement at error micro-
phones practically never occurred. It is also noteworthy to assess noise reduction ob-
served by the room microphones. Although the noise reduction levels were generally
better for the ASAC-SE algorithm than for control algorithm without the SE modifi-
cation, the frequency band of highest global noise reduction was practically the same.
One of the plausible reasons is that the arrangement of outer microphones with rela-
tion to the wave lengths of the primary disturbance limited the frequency band of the
global effect of noise reduction. Hence, more sensors or distributed sensors should be
evaluated in the future to extend the frequency band.

6.5 Summary

In this Chapter, the active control experimental results have been presented for the
developed structures. Initially, the rigid casing has been evaluated for single- and
double-panel configurations. Different sensors have been employed to provide the
error signals. Then, the light-weight casing has been examined, utilizing the previous
experiences to properly configure the control system.

High levels of reduction are obtained, exceeding even 20 dB of mean noise reduc-
tion, what confirms high practical potential of the developed active control approach.
What is noteworthy, the global noise reduction is obtained (in a whole room). The re-
duction levels vary in different locations, but usually in a range of several decibels, and
zones of noise enhancement never occurr.

Examining different active control techniques, a set of recommendations has been
formulated for efficient implementation of the active casing approach.



Chapter 7

Summary

7.1 Conclusions

This dissertation describes the development of an active casing method, as an efficient
technique to reduce excessive noise generated by devices and machinery. The research
is focused on achieving global noise reduction instead of local zones of quiet. The top-
ics cover a wide range of aspects, varying from the mathematical modelling of the de-
vice casing to the practical implementation of an adaptive multi-channel active control
system.

Firstly, the laboratory setup for active control experiments consisting of several dif-
ferent device casings has been discussed. To graduate the complexity, initially a rigid
casing has been examined, which limits the cross couplings between walls. Then, a
light-weight casing has been considered, characterized with strong vibrational cou-
pling between the casing walls. The discussion includes practical application-related
aspects of the laboratory stand assembly, vibroacoustic analysis of the introduced struc-
tures and selection of sensors and actuators for the active control systems.

The mathematical model of the device casing walls has been developed and exper-
imentally validated for a wide range of cases. The model, although based on available
theories, unifies the mathematical formulation of various aspects that were dealt with
separately in earlier works available in the literature. These include thin and thick plate
theory, elastically restrained boundary conditions, structural thermoelastic damping
model, and additional elements mounted to the casing surface—masses, ribs, actuators
and sensors. They are integrated in a feasible state space model form, which facilitates
further analysis and numerical simulation. In addition, a method of identification of
model boundary conditions has been proposed and practically evaluated.

The developed model has been widely used for a series of optimization problems.
The memetic algorithm has been employed as an effective optimization algorithm for
problems with complex search spaces and multiple optima. It has been used starting
with finding efficient locations for actuators and sensors based on controllability and
observability measures. Then, a frequency response shaping method of casing walls
has been proposed. It has been validated for a set of passive and active control scenar-
ios, including both simulation and a laboratory experiment.

111
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Finally, utilizing the previous analysis and considerations, the developed structures
have been used to perform active control experiments. Initially, the rigid casing has
been evaluated for single- and double-panel configurations. Different sensors have
been employed to provide the error signals. Then, the light-weight casing has been
examined, utilizing the previous experiences to properly configure the control system.
High levels of reduction have been obtained, exceeding even 20 dB of global noise
reduction, what confirms high practical potential of the developed active control ap-
proach. Examining different active control techniques, a set of recommendations has
been formulated for efficient implementation of the active casing approach.

7.2 Author’s contribution

The author believes that his contributions are the following:

• Formulation of the mathematical model of the device casing wall, integrating
thin and thick plate theory, elastically restrained boundary conditions, structural
thermoelastic damping model, and additional elements mounted to the casing
surface—masses, ribs, actuators and sensors.

• Development of optimization method for an arrangement of inertial exciters and
accelerometers on the device casing surface, utilizing the developed model.

• Development of optimization method for a vibrating structure—development of
a frequency response shaping method of a casing wall, according to precisely
defined demands.

• Development of identification method of developed model parameters, based on
experimental measurements and optimization algorithm.

• Application, real-time implementation, tuning and analysis of adaptive multi-
channel active control systems for various device casings, involving simultane-
ous active control of multiple walls of a casing.

7.3 Active casing project and motivation for future research

The presented research is a part of a project entitled "Active reduction of device acoustic
noise by controlling vibration of the device casing", supported by the National Science
Centre, Poland, decision no. DEC-2012/07/B/ST7/01408. Besides the topics presented
in this dissertation, other problem have been also undertaken in the project:

• mathematical modelling of whole device casings, including acoustic field in the
enclosure and vibrational couplings between walls;

• analysis of controllability and observability of the obtained active casing models;
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• synthesis and analysis of adaptive control algorithms, including stability and
convergence analysis;

• synthesis and analysis of control algorithms based on soft computing methods,
including artificial neural networks and fuzzy inference system;

• development of passive and semi-active control methods utilizing shunt circuits.

The conclusions following from the presented research motivate to continue the
work and develop further the active casing method. A natural continuation is to apply
this approach to a real device. Considering the complexity of the vibrating structure,
it would be referred to as the third stage of the research (after the rigid casing and the
light-weight casing). An example of a real device casing is already under preparation—
a common washing machine. There is a number of problems to undertake, among
others:

• mathematical modelling of real casing walls with its irregularities (e.g. emboss-
ing, internal supports, etc.);

• optimization of the structure, including passive control by frequency response
shaping method, and sensors/actuators arrangement optimization for active con-
trol purpose;

• synthesis of control algorithms for a real device, e.g. with adaptation to different
phases of the device operations.

Each of them constitutes a serious challenge. But they also motivate for further research
in the field of active methods to achieve global noise reduction.





Appendix A

Stiffness matrix elements

The elements of submatrices of Kp, Kb and Kr defined in (3.34) are given in this Ap-
pendix.

The elements of Kp can be derived as:
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Kpee,ij =

1∫
0

1∫
0

{
a

b
Dy

(
∂ψy,i
∂η

∂ψy,j
∂η

)
+
b

a
Dxy

(
∂ψy,i
∂ξ

∂ψy,j
∂ξ

)
+ abκyhGyz (ψy,iψy,j)

}
dξdη ,

(A.1f)

i = 1, 2, ..., N , j = 1, 2, ..., N .

The elements of Kb can be derived as:

Kbcc,ij = b

1∫
0

{
ktx0 (φiφj)

∣∣∣∣
ξ=0

+ ktx1 (φiφj)

∣∣∣∣
ξ=1

}
dη

+ a

1∫
0

{
kty0 (φiφj)

∣∣∣∣
η=0

+ kty1 (φiφj)

∣∣∣∣
η=1

}
dξ , (A.2a)
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Kbdd,ij = b

1∫
0

{
krx0 (ψx,iψx,j)

∣∣∣∣
ξ=0

+ krx1 (ψx,iψx,j)

∣∣∣∣
ξ=1

}
dη (A.2b)

Kbee,ij = a

1∫
0

{
kry0 (ψy,iψy,j)

∣∣∣∣
η=0

+ kry1 (ψy,iψy,j)

∣∣∣∣
η=1

}
dξ (A.2c)

i = 1, 2, ..., N , j = 1, 2, ..., N .

The elements of Kr can be derived as:

Krcc,ij =

Nr∑
r=0

Gr,iAr,iβr,i

ξr1,i∫
ξr0,i

[
cosαi
a

(
∂φi
∂ξ

∂φj
∂ξ

)
+
a sin2 αi
b2 cosαi

(
∂φi
∂η

∂φj
∂η

)

+
sinαi
b

(
∂φi
∂ξ

∂φj
∂η

+
∂φi
∂η

∂φj
∂ξ

)] ∣∣∣∣
η=gr,i(ξ)

dξ

}
(A.3a)

Krcd,ij =

Nr∑
r=0

Gr,iAr,iβr,i

ξr1,i∫
ξr0,i

[
cosαi

(
∂φi
∂ξ

ψx,j

)
+
a sinαi

b

(
∂φi
∂η

ψx,j

)] ∣∣∣∣
η=gr,i(ξ)

dξ


(A.3b)

Krce,ij =

Nr∑
r=0

Gr,iAr,iβr,i

ξr1,i∫
ξr0,i

[
sinαi

(
∂φi
∂ξ

ψy,j

)
+
a sin2 αi
b cosαi

(
∂φi
∂η

ψy,j

)] ∣∣∣∣
η=gr,i(ξ)

dξ


(A.3c)

Krdd,ij =

Nr∑
r=0

Gr,iAr,iβr,i

ξr1,i∫
ξr0,i

[a cosαi (ψx,iψx,j)]

∣∣∣∣
η=gr,i(ξ)

dξ

+ Er,iIr,i

ξr1,i∫
ξr0,i

[
cos3 αi
a

(
∂ψx,i
∂ξ

∂ψx,j
∂ξ

)
+
a sin2 αi cosαi

b2

(
∂ψx,i
∂η

∂ψx,j
∂η

)

+
cos2 αi sinαi

b

(
∂ψx,i
∂ξ

∂ψx,j
∂η

+
∂ψx,i
∂η

∂ψx,j
∂ξ

)] ∣∣∣∣
η=gr,i(ξ)

dξ

+ Gr,iJr,i

ξr1,i∫
ξr0,i

[
sin2 αi cosαi

a

(
∂ψx,i
∂ξ

∂ψx,j
∂ξ

)
+
a sin4 αi
b2 cosαi

(
∂ψx,i
∂η

∂ψx,j
∂η

)

+
sin3 αi
b

(
∂ψx,i
∂ξ

∂ψx,j
∂η

+
∂ψx,i
∂η

∂ψx,j
∂ξ

)] ∣∣∣∣
η=gr,i(ξ)

dξ

}
(A.3d)
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Krde,ij =

Nr∑
r=0

Gr,iAr,iβr,i

ξr1,i∫
ξr0,i

[a sinαi (ψx,iψy,j)]

∣∣∣∣
η=gr,i(ξ)

dξ

+ (Er,iIr,i −Gr,iJr,i)
ξr1,i∫
ξr0,i

[
cos2 αi sinαi

a

(
∂ψx,i
∂ξ

∂ψy,j
∂ξ

)
+
a sin3 αi

b2

(
∂ψx,i
∂η

∂ψy,j
∂η

)

+
sin2 αi cosαi

b

(
∂ψx,i
∂ξ

∂ψy,j
∂η

+
∂ψx,i
∂η

∂ψy,j
∂ξ

)] ∣∣∣∣
η=gr,i(ξ)

dξ

}
(A.3e)

Kree,ij =

Nr∑
r=0

Gr,iAr,iβr,i

ξr1,i∫
ξr0,i

[
a sin2 αi
cosαi

(ψy,iψy,j)

] ∣∣∣∣
η=gr,i(ξ)

dξ

+ Er,iIr,i

ξr1,i∫
ξr0,i

[
sin2 αi cosαi

a

(
∂ψy,i
∂ξ

∂ψy,j
∂ξ

)
+
a sin4 αi
b2 cosαi

(
∂ψy,i
∂η

∂ψy,j
∂η

)

+
sin3 αi
b

(
∂ψy,i
∂ξ

∂ψy,j
∂η

+
∂ψy,i
∂η

∂ψy,j
∂ξ

)] ∣∣∣∣
η=gr,i(ξ)

dξ

+ Gr,iJr,i

ξr1,i∫
ξr0,i

[
cos3 αi
a

(
∂ψy,i
∂ξ

∂ψy,j
∂ξ

)
+
a sin2 αi cosαi

b2

(
∂ψy,i
∂η

∂ψy,j
∂η

)

+
cos2 αi sinαi

b

(
∂ψy,i
∂ξ

∂ψy,j
∂η

+
∂ψy,i
∂η

∂ψy,j
∂ξ

)] ∣∣∣∣
η=gr,i(ξ)

dξ

}
(A.3f)

i = 1, 2, ..., N , j = 1, 2, ..., N .





Appendix B

Mass matrix elements

The elements of submatrices of Mp, Mm and Mr defined in (3.36) are given in this
Appendix.

The elements of Mp can be derived as:

Mpcc,ij =

1∫
0

1∫
0

{abρph (φiφj)} dξdη , (B.1a)

Mpdd,ij =

1∫
0

1∫
0

{
1

12
abρph

3 (ψx,iψx,j)

}
dξdη , (B.1b)

Mpee,ij =

1∫
0

1∫
0

{
1

12
abρph

3 (ψy,iψy,j)

}
dξdη , (B.1c)

i = 1, 2, ..., N , j = 1, 2, ..., N .

The elements of Mm can be derived as:

Mmcc,ij =

Na∑
k=0

{ma,k (φiφj)}
∣∣∣∣ξ=ξa,k
η=ηa,k

+

Ns∑
k=0

{ms,k (φiφj)}
∣∣∣∣ξ=ξs,k
η=ηs,k

+

Nm∑
k=0

{mm,k (φiφj)}
∣∣∣∣ξ=ξm,k
η=ηm,k

,

(B.2a)

Mmdd,ij =

Na∑
k=0

{Iax,k (ψx,iψx,j)}
∣∣∣∣ξ=ξa,k
η=ηa,k

+

Ns∑
k=0

{Isx,k (ψx,iψx,j)}
∣∣∣∣ξ=ξs,k
η=ηs,k

+

Nm∑
k=0

{Imx,k (ψx,iψx,j)}
∣∣∣∣ξ=ξm,k
η=ηm,k

,

(B.2b)

Mmee,ij =

Na∑
k=0

{Iay,k (ψy,iψy,j)}
∣∣∣∣ξ=ξa,k
η=ηa,k

+

Ns∑
k=0

{Isy,k (ψy,iψy,j)}
∣∣∣∣ξ=ξs,k
η=ηs,k

+

Nm∑
k=0

{Imy,k (ψy,iψy,j)}
∣∣∣∣ξ=ξm,k
η=ηm,k

,

(B.2c)

i = 1, 2, ..., N , j = 1, 2, ..., N .
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The elements of Mr can be derived as:

Mrcc,ij =

Nr∑
r=0

Ar,iρr,iacosαi

ξr1,i∫
ξr0,i

(φiφj)

∣∣∣∣
η=gr,i(ξ)

dξ

 (B.3a)

Mrdd,ij =

Nr∑
r=0

Ar,iρr,ikr,iacosαi

ξr1,i∫
ξr0,i

(ψx,iψx,j)

∣∣∣∣
η=gr,i(ξ)

dξ

 (B.3b)

Mree,ij =

Nr∑
r=0

Ar,iρr,ikr,iacosαi

ξr1,i∫
ξr0,i

(ψy,iψy,j)

∣∣∣∣
η=gr,i(ξ)

dξ

 (B.3c)

i = 1, 2, ..., N , j = 1, 2, ..., N .
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