VECTOR ANALYSIS OF A REIMFORCED CONCRETE CROSS-SECTION

1. General relationships

Le: us consider a cross-section of a reinforeed concrete member. The area 11 mited by the contour of the cross-section will be regarded as the area of the concrete cross-section and denoted by A_{c}. In the centre of gravity 0 of this arta we assume the beginning of the local ortho-Cartesian dextror olalory system of coordinates u. v, (Fig 1). The corresponding versors of the axiz Ou. Ov, Ow are denoted by 1, j, k. The eross-section considered belongs to the plane $v . w$

The nember is reinforced with flextble steel bars whose number is k. The area of the cross-section of the successive reinforcing bar 15 denoted by A and its distance from the axis Ow is determined by the mector vin ju. The eross-section of the concrete and reinforcement is symmetrical to ov.

The cross-section load is a conjugated couple of internal forces: axial force N. and bending moment M. An equivalent load is the longltudinal force
 have been assumed acc. to the convention used in mechanics: axdal force No refers to tension in the cross-section. MO causes tension in the bottom 2 ribres of the cross section. In accordance with this, the normal stresses $\theta=$ of and the tenstle ones are assumed to be positive, and the compressive stresses - negative. The helght of the cross-section h. width b_{v}. the area A_{e} and the area $A_{i l}$. as well as the design compression strength of concrete $f_{\text {ed }}$ and of the compression and tensile strength of steel r_{y} will be regarded as positive scalars. Thus, the situation when

[^0]Cin a definite area of the cross-section the stress in the concrete has beer reached the design compression strength, will be written as of o - i od

Fig. 1. Cross-section of a reinforced concrete member

Let an arbitrary. conjugated couple of external forces $\mathrm{CN}_{s} . M_{s}{ }_{s}$ caused by the load. operate on the cross-section. This will cause in the cross-section a certain state or normal stresses $\%$. If we make surficient and consistent analytical assumptions defining all the possible distributions and values of normal stresses in concrete or and steel ou" determining the carrying capacity of the eross-section in the state considered. then we thus create a set of conjugated couples of internal forces

$$
\begin{equation*}
\left\langle N_{R} \cdot M_{R}\right\rangle \tag{1}
\end{equation*}
$$

at which a realisation of the carrying capacity of the eross-section takes place. A graphic presergtation of the set (1) is the interaction diagram. We may easily find that

In the present paper wo shall create the vector products only from the vectors which are perpendicular to each other collinear with the assumed coordinate axes. The forces and stresses are collinear with the axds Ou; $N=\left[N^{4}, O, O\right], \sigma=\left[\sigma^{4}, O, O\right]$, the arms of the forces are collinear with the axds OV: $e=\left\{0, e^{v}, O\right], v=\left[0 . v^{v}, O\right]$, with the vector of the bending moment being paralles to Ow; $M=\left[0,0, M^{*}\right]$.

Thus, e. 9 .

$$
N x e=\left|\begin{array}{lll}
1 & j & k \tag{4}\\
N^{u} & 0 & 0 \\
0 & e^{v} & 0
\end{array}\right|=k N^{\omega} e^{v}=k M^{v}=M
$$

In view of this, the algebraic equation $N^{u} e^{v}=M^{\prime \prime}$ permits the determination of an arbitrary chosen coordinate provided that remaining two are known.

Analogically, the coordinate v_{c} of the vector v_{c} of ecceniricity of the resultant force $N_{\text {eu }}$ in the concrete may be calculated as the quotient

$$
v_{c}=\frac{\int_{v 1}^{v 2} o e_{u} v b_{v} d v}{\int_{v i}^{2} o_{c u} b_{v} d v}
$$

hence.

$$
v_{c}=j v_{e}
$$

C(8)
whereas.

$$
M_{c u}=N_{c u}{ }^{x V_{c}}=k N_{c u} V_{e}
$$

(47

Let us define the reduced vectors with dimensionless coordinates:

$$
\begin{align*}
& n_{n}=\frac{1}{f_{c u} A_{c}} N_{n} \tag{8}\\
& m_{n}=\frac{1}{I_{c u} A_{c} h \psi} N_{n}
\end{align*}
$$

where w is normalizing coefficient.
From formulae (2) and (3). Laking into consideration lie identity equalities, we shall obtain respectively:

$$
\begin{align*}
& n_{k}=n_{c u}+n_{e u_{u}}=n_{c u}+\sum_{i}^{k} n_{i n} \tag{10}\\
& \mathrm{~m}_{\mathrm{R}}=\mathrm{m}_{\mathrm{ou}}+\mathrm{m}_{\mathrm{ou}} \equiv \mathrm{man}_{\mathrm{cu}}+\sum_{1}^{k} \mathrm{~m}_{\mathrm{oi}} \tag{11}
\end{align*}
$$

thanks to which set (1) may be presented in the form

$$
\begin{equation*}
\operatorname{cn}_{n} \cdot m_{n} \tag{12}
\end{equation*}
$$

Let us consider the axes On and Ow. Nultiplaying their measures N, M respectively by 1 Rf $A_{e}{ }^{\prime}$ and 1 Rf $\left.A_{e} A_{e} w\right)$ we shall obtain the transformed dimensionless system of coordinates which will be denoted on On. Om. In the plane On we may present graphically the reduced carrying capacity of the eross-sectin in the form of the relationships (10). (11). (12); (Fig. 2).

Fig. 2. Graphical representation of the reduced load carrying capacity of a reinforced concrete cross-section according to formulae (10). (11). (12)

Especially the vector

$$
\begin{equation*}
r_{c u}=n_{c u}+m_{c u} \tag{13}
\end{equation*}
$$

may be interpreted as the reduced carrying capacity of the concrete cross-section on normal stresses. The set (ncu.men of the coordinates of the end of this vector determines the line of interaction for the concrete cross-section, hence 5 is the radius-vector of this line. On the crosssection of a definite shape, the coordinates of the line or interaction depend on the analytical assumptions made, defining the stresses o

In similar way, the vector

$$
\begin{equation*}
r_{\text {es }}=n_{m}+n_{\text {out }} \tag{14}
\end{equation*}
$$

represent the reduced carrying capacity of the total reinforcement of the
cross-stetion. It is dependent on the quantity and position of this reinforcement and on the analitycal assumptions refrering to the stresses . The carrying capacities of the particuliar reinforcing bar are denoted
 vector 5

The total vector

$$
r_{I}=r_{e u}+r_{e u}
$$

(15)
wh th the end coordinates $\left\langle n_{n}, m_{p}\right.$? may be understood as radius-vector of the reduced line of interaction of whole reinforced concrete crosstsection <n. n_{m})

The procedure outlined above may be used to determine a set of coordinates of the reduced interaction diagram for the computational assumptions, provided the geometry and strength characteristies of the crosstsection are known.

Since the carrying capacity of deformable elemant is analyzed here, the resultant $N_{u i}$ of the normal stresses from the considered region of erosssection area must be regarded as attached vector. Inis may be, for example, the resultant of the stresses from the compressive zone of the concrete. orthe resultant of the stresses in the reinforcing bar or finally - thee resultant of the stresses from a group of reinforcing bars in closee proximity.

In the actual cross-section, the distance or the considered vector $\mathrm{N}_{\text {uin }}$ Irom the axds Ow is determined by means of v. On the basis of (4). (8). (9). we conclude that there exists a dimensionless collinear with ow, eccentrie vector y_{2} so that

$$
\begin{equation*}
n_{u t} \times y_{t}=m_{u t} \tag{16}
\end{equation*}
$$

Taking into account the orthogonality of the vectors $n u$ and me we are able to calculate the coordinate

$$
\begin{equation*}
\nu_{i}=\frac{m_{u i}}{n_{u i}} \tag{17}
\end{equation*}
$$

Since we have the relationships defined by formula (7), it may clearly be shown that:

$$
v_{i}=\frac{1}{h y} v_{i}
$$

and

$$
v_{i}=j v_{1}
$$

Fig. 3. Method of constructing of the vector inclination

The coordinate $\nu_{\text {, }}$ may be interpreted as the directorial coefficient of the straight $1 i n e(c)$, given by the equation $m=\nu_{i} n+m$, collinear with the
 ance with Fig. 3. we shall obtain

$$
\nu_{i}=\operatorname{tg} a_{i}
$$

(20)
hence, after substituting (18)

$$
a=\operatorname{arctg}(v,(h w))
$$

(21)

Making use of the above relationships we may solve an important problem consisting in the selection of the required reinforcement for the assigned couple of internal forces CN_{s}, M_{s}. Basing calculation on the ultimate state of carrying capacity, let us assume that

$$
\mathbf{C N}_{\mathbf{s}}=\mathbf{N}_{\mathbf{m}}, \mathbf{M}_{\mathbf{s}}=\mathbf{M}_{\mathbf{s}}
$$

(22)
and applying the previous transformations also to the internal forces, we
find the reduced vector of the internal forces

$$
r_{s}=n_{s}+m_{s}
$$

(23)
in view of which the condition of realization of the state being considered may be writtem in vector form:

$$
r_{s} \in\left(r_{\mathbf{s}}\right)
$$

(24)

To solve the problem are required the directional angles $a_{\text {at }}$ of the vectors $r_{\text {a }}$ which - as arises from formula (2i) - may be oblained by assuming the position of the reinforcing bars. The problem is very simple if reinforcement can be reduced to two areas A_{1} and A_{2} whose centres of gravity are distant respectively, by d_{1} and d_{2} from the upper 1 and lower [2] edge or cross-section.

In a general case of dimensioning of the cross-section, the number of the parameters necessary for the determination is greater than the number of the conditions of equilibrium. since apart from the required and most frequently given in the assumptions, design strengths of the eoncrete $f_{\text {ed }}$ and steel $F_{y d}$, the following parameters must be determined: dilmensions of the concrete crass-section (two for rectangular, and six for il-bar one), the areas of the reinforcement cross-sectios A_{s}, A_{22}, the distances d_{1}, d_{2} and the height of the compressed zone of the cross-section \mathbf{x} diependent on
 meters, compared witch two conditions of equilibrum (22).

In the search for the solution, two kinds of approach are used:
(1) Assuming the dimensions proportion or the concrete cross-section, the reinforcement ratios $\left(P_{1}=A_{1} / A_{c}, P_{2}=A_{2} / A_{c}\right.$). and the ratios $d_{2} / h, d_{2} / h$, it is possible to determine the dimensions of concrete cross-sections. as well as the area and position of reinforcing steel. Such procedure leads to the diagrams given, i.a. In [1], obtained in analytical way though they may be easily justified by means of vector relatioships
(2) Assuming the dimensions of the concrete cross-section and the distances d_{1}. d_{2}, we search for A_{11}, A_{52}, and x. For an explicit solution we need an ancillary condition; in some cases it may be defined by the code rules, and where it is missing, we may rely on the optimizing condition, e.

(25)

Approach $C 2$ is often used in engineering practice, and is well suited to vector analysis. It has been presented in paper [2] for the assumptions of the Palish Code [3].
2. Solution for the ultimate limit state acc. to CEP-FIP Model Coder 1 gTE

Let us consider a rectangular cross-section with denotations as in Fig. 4 and accept the assumptions of i4.1tem 10.4.1.11. including the plane sections principle. To the denotititons assumed we shall add the following

Fig. 4. Rectangular crosstsection of a reiforced concrete member
assignations: Strains $c \in$ of the particular fibres of the crass-section are regarded as the vectors taking positive values if they are elongations. and negative values - if they are contractions. The height x of the compressed zone of the section, distances d_{1}, d_{2} and the moduli of elasticity E_{c}. E_{s} are interpreted as positive scalars.

On the basis of $[4.1 t e m 10.4 .3 .1]$ we assume that the stress diagram in the compressed zone of concrete is parabolic-rectannular while ε cd $x-0.002$. $c_{a}=-0.0035$; for the purpose of calculating we shall determine $f_{c d}=0.85 r_{c k} / \gamma_{c}$ Similarly, on the basis or [4.1tem 6.43.3] we shall assume that steel behaves here like an ideally elasto-plastic material; $f_{y d}=f_{y} / \%$. $E_{s}=200000 \mathrm{MPa}$. In compliance with [4.1tem 6.4.2.3] it has been
assuned that $\gamma_{c}=1.50, \gamma_{e}=1.15$. For reinforcing steel we find $\epsilon_{e d}=y_{y} F_{e}$.
We shall introduce the ratios

$$
\delta_{1}=\frac{d_{1}}{h}, \delta_{2}=\frac{d_{2}}{h}, \eta=\frac{c}{c_{c d}}, \eta_{d}=\frac{-c_{e d}}{e_{e d}}
$$

(20)

Now shall write the assumed constitutive relationships between the stresses and strains for the carrying capacity of the cross-section.

At the strains c in any fibre of the concrete

$$
\theta_{c}=\left\{\begin{array}{cl}
0 & \text { for } n \leq 0 \\
-r_{c d} n(2-n) & \text { for } 0<n \leqslant 1 \\
-s_{e d} & \text { for } 1<n \leq 1.75
\end{array}\right.
$$

(27)
and respectively in steel
(28)

Cfor Polish steels with the successive values $f_{y d}=100,310,350 \mathrm{MPa}$ we shall obtain respectively $\eta_{\text {od }}=0.475,0.775,0.8752$.

By means of the reduced strain coordinates of the edge fibres η_{1} and $\eta_{a^{\prime}}$. w can express the reduced stralns of the reinforeing steel $A_{\text {min }}$ and $A_{2^{\prime}}$

$$
\begin{align*}
& n_{1}=n_{1}\left(1-\delta_{2}\right)+n_{2} \delta_{2} \tag{20}\\
& n_{12}=n_{2} \delta_{2}+n_{2}\left(1-\delta_{2}\right) \tag{30}
\end{align*}
$$

the height of the compressed zone of the section

$$
x=n_{1} h \sim\left(n_{1}-n_{2}\right) ; \quad 0 \leq x<n
$$

(31)
and of this part of the height of the compressed zone in which of : $=-f$ ed

$$
\begin{equation*}
y=\left(n_{1}-1\right) h /\left(n_{1}-n_{2}\right) ; \quad 0 \leq y \leq 3 h / 7 \tag{32}
\end{equation*}
$$

In Fig. 5 are shown six (1)....(8) configurations of the cross-section strains which make possible the defining of the corresponding intervals of strain variations in concrete and steel. The limits of these intervals expressed by means of η_{1} and η_{2} are $g i v e n$ in Table 1 , whereas in Fig. 6 is shown distribution of the stresses 0_{0} in the concrete which corresponds to them.

On the basis of relationships (2) and (3) in the terms reffering to concrete, and with due consideration to the reduction acc. to (8) and (9), for relation (27) the formulae for the coordinates $n_{\text {eu }}$ and $m_{\text {eu }}$ of the
vector $r_{\text {eu }}$ in relation to On and Om have been determined. Leaving out simple transfomations, the results are complled in Table 1 . Within the interval (5) - (6) the relationship between n_{eu} and m_{cu} is a linear one.

Fig. 5. The configurations of the cross-section strains

For the same intervals, $\eta_{B 1}$ and $n_{s 2}$ may be calculated by means of formulas (29) and (30), and on the basis of (28) may be found the respective values of strsses $o_{g i}$ in the upper reinforcement and $o_{\text {e2 }}$ in the bottom one.

Toble ?

Scope	21	η_{2}	x	y	n_{cu}	m_{cu}
1	2	3	4	5	6	7
(1) - (2)	$-5<7_{1}<0$		0	0	0	0
(2) -(3)	$0<7 \times 1$	$\frac{5+\eta_{1} \delta_{2}}{1-\delta_{2}}$	$0<x \leqslant \frac{1}{6} d$	0	$\frac{\left(\eta_{1}-3\right) \gamma_{1}^{2}}{3\left(z_{4}-\eta_{2}\right)}$	$\frac{\left(\eta_{1}\left(2-z_{1}+2 z_{2}\right)-6 z_{2}\right] z_{4}^{2}}{12\left(r_{1}-\eta_{2}\right)^{2} \psi}$
(3)-(4)	$1<\eta, 161,75$		$\frac{1}{5} d<x \leqslant \frac{7}{2} d$	$0<y \leqslant \frac{3}{27} d$	1-324	$\underline{2\left(\eta_{1}+\eta_{2}\right)-1-6 \eta_{1} \eta_{2}}$
(4)-(5)	$1,75-\frac{5+7}{1-6}$	$\delta_{2} \delta_{2}<\tau_{2} \leqslant 0$	$\frac{7}{27} d<x \leqslant h$	$\frac{3}{27} d<y<\frac{3}{7} n$	$\overline{3\left(\eta_{1}-\eta_{2}\right)}$	12\| $\eta_{4}-\left.\eta_{8}\right\|^{1} \psi$
(5)-(5)	$\frac{1}{4}\left(7 \cdot 3 \eta_{2}\right)$	$0<71 \leq 1$	h	$\frac{3}{7} n$	$\frac{4\left(9-2_{2}\right)^{2}}{29}-1$	$\frac{5(1+7 \times 4)}{14 \psi}$

In compliance with relationships (8) and (9) we shall now write the formula for the coordinates of the vectors of reduced carrying capacity of reinforcement $r_{\text {, }}$ and $r_{\text {azu }}$ to the axer O and $O m$.

$$
\begin{aligned}
& \left.n_{22 u}=o_{22_{2}}{ }_{A_{2 u}} \mathrm{bh}\right) \\
& m_{2 u}=o_{2 z_{2}} A_{-2}\left(0.5 h-d_{2}\right) \mu\left(f_{e_{u}} b h^{2} w\right)=n_{2 u}(0.5-\delta) / \psi \\
& \text { (35) } \\
& \left.m_{2 u}=0_{2} A_{2}\left(0.5 h-d_{2}\right) / C_{e_{u}} b^{2} \psi\right) \quad \text { (30) }
\end{aligned}
$$

In result from the above that for $\psi=0.5-\delta$ we obtain m in $=-n$ and for $y=0.5-\delta_{2}$ we have $m_{2 u^{2}}=n_{e 2 u}$

Fig. 6. The distributions of the stresses in the concrete cross-section
3. Interaction diagram

The set $\left[n_{u}, m_{u}\right.$) of the coordinates of the end of the radius-vector r_{u} forms, In the plane Onm, a closed ilne called interaction diagram. We shall bbtain the right branch of this diagram when the compressed zone of the section adheres to the upper fibre [1], and the left one - when it adheres to the bottom fibre Z (Fig. 4). As it is known, the interaction diagram is a complete representation of the carrying capacity of the cross-section

$$
\begin{aligned}
& \psi=0,40 \\
& \delta_{1}=0,05 \\
& \rho_{1}=0,0055 \\
& \delta_{2}=0,10 \\
& \rho_{2}=0,0110
\end{aligned}
$$

Fig. 7. A construction of the interaction diagram. (a) - the interaction diagram; 2 - a band of inefficiency of the reinforcement $A,\langle 2\rangle-a$ band of inefficiency of the reinforcement A_{02}. (b) - the values of the stresses in the reinforcement. (C) - the directions of the vectors $r_{\text {es }}$ and $r_{0,2}$
subject to the bending moment and axial rorce.
We shall construct an interaction diagram (Fig.7a) of a rectangular cross-section for the assumptions defined in item 2. It has been assumad that $\psi=0.4$ which means that for $\delta_{2}=0.1$, the vector $r_{\text {azu }}$ is 1 nclined towards On at an angle $a=\pi / 4$. The directions of the vectors r and r and at arbitrary values of δ_{1} and δ_{2} may easily be plotted by means of the construction given in Fig. 7c. The effective values of the stresses of in the reinforcement, depending on $\delta_{1,2} \in(0.05,0.10,0.15,0.20)$ and on $f_{x 4}$ (vertical lines) are presented in Fig 7 b . The reduced diagram of interaction of concrete $\left\langle n_{c u}, m_{c u}\right.$) is of universal character. Independent of the dimensions of the cross-section; it has been calculated acc. to the formulae of Table 1. It reaches the maximum value meu $=0.304$ for $n c u=-0.487$ at $n_{1}=1.75$ and $n_{2}=-1.162$ and so within the interval (4) - (5). To 111 ustrate the effect of reinforcement it has been assumed that $f_{y d}=31$ io $\mathrm{MPa}, f_{c k}=30 \mathrm{MPa}, f_{e d}=0.85 \pi 30 / 1.5=17 \mathrm{MPa}, \delta_{i}=0.05, \rho_{i}=A_{i} / b / h=0.0055, i$, $\delta_{2}=0.10, \rho_{2}=A, \quad b / h=0.011$.

Since, (on the basis of (27) the concrete does not cooperate in thee bearing of tensile stresses. for range (1) - (2) the interaction diagram off concrete is degenerated to point (2c). Beginning with $\eta_{\text {as }}=-r_{y d} 0.002$ E. thene stresses of in reinforcement A decrease and reach the value of of roror
 is created a band of inefficiency (1) of reinforcement $A_{\text {s }}$. This is thene wider. the greater the value of $f_{y d}$ and δ_{1}. The line of the equation $o_{i, 1}=(=0$ separates the senses of the vector rap below it. the component for iss directed in compliance with the axis O, and abowe it - in the opposite.

FCr the range (2) - (4), the interaction diagram of concrete depends on δ_{2}. The diagram in Fig. 7 a has been calculated at $\delta_{z}=0.1$, and next the percentage relative error Δ has been determined for $\delta_{2}=0$. 05 and $\delta_{2}=0.2 C$. Since it has been found that $|\Delta|<2 \%$. It may be accepted that the error is comprised witin the $1 i \mathrm{mits}$ of tolerance of the diagram.

In the ranges (4) - (5) - (8) there occurs a decrease of the elongations of the botiom reinforcement A_{22}. and beginning with the value $n_{02}=-f_{y d} 0.002 / E$ this is accompanied by a drop of the stresses; in position (4) wo obtain o $=0$ to reach , for $n_{e z}=f_{y d} 0.002 / E_{\text {. }}$, the value
O. : $=-f_{\text {yd }}$ In this way a band of inefficiency $\langle\hat{Z}$ of reinforcement A is created. This is the wder. the greater is the value r yd and the greater is δ_{2}. The 1 ine of equation $0_{12}=0$ separates the senses of vector r below 1t. the component n is directed in compliace with the axis On, abowe - it Is opposite.

A consequence of the separation of the plane Onm with half-ilnes o, $=0$ and $\sigma_{2}=0$ is that the begirning of the vector r must rest on the in of Interaction of the concrete section in the same subdomain to which belongs the assigned coordinate (n, m) determining its end.

The left branch of the interaction diagram may be obtained when the system of the possible strains of the section, analyzed acc.to Fig. 5 . is reversed in relation to edge fibres. For the section wilh a horizontal axis of symmetry, the diagram <neu. $\mathrm{meu}_{\mathrm{cu}}{ }^{\prime}$ will be symmetrical to On.

All the remarks on the intervals will remain valid provided the upper

4. Final remarks

The analysis of the interaction diagram presented. makes it possible to explain in a graphic way, the role played by the particuar elements of the cross-section (concrete, upper and bottom reinforcements) in shaping of the carrying capacity of the cross-section. It may be useful for the verification and comparison of the anaytical assumptions. For example. the comparative calculations made for $\varepsilon_{\text {a }}=0.005$ with unchanged remaining values assumed in the present paper) show that the interaction diagram of concrete A differ insignificantly; somewhat greater differences occur in the estimation of of the upper reinforcement A, but only in a relatively narrow interval (2) - (4). In viev of this. a discussion on the subiect of the value of $\varepsilon_{\text {eu }}$ assumed for the calculation of the cross-section carrying capacity seems to be insignificant.

Since for all the assumptions made it is always possible to construct one, generally valid reduced interaction diagram of the concrete crosssection $\mathrm{m}_{\mathrm{cu}} \cdot \mathrm{m}_{\mathrm{cu}}{ }^{\prime}$. it is wortwile to carry out a comparative analysis while

Abstract

assuming various relationships o-e for the concrete. e. g. rectangular. triangular-rectangular, parabolically-rectangular one, acc. to the curves CEB - FIP [4.formula (7.1)], or the later suggestions [5. formala (2.4.4)]. This may have a practical aspect, as with a developed interaction diagran of conerete cross-section. the selection of reinforcement takes place in the same way, independently of the assumed relationships $\sigma_{e}-\varepsilon_{e}$. There is no doubt that desirable here would be a compliance of the o-c relationships assumed for the determination of the internal forces as the result of the loads, with those o-s dependences which are used for the estimation of the carrying capacity of the eross-sections.

RETERENCES

1. E. Grasser. Bemessung fur Biegung und Biegung mit Langgskraft. Beton-Kalender 1980, Teil I. 701-819, Verlag w. Ernst und Sohn. Berlin 1980
2. 2. Sulimowski, Wektorowe ujecie nosnosci przekroju zelbetowego;z ckond carrying capacity of a reinforced concrete cross-section in 1 vector approach) . Archiwum Inzynieri1 Ladowej, 30, 2-3, 1984, 515-533
1. PN-84/B-03264 Konstrukcje betonowe, zelbetowe 1 sprezone. Oblilczenia statyczne 1 projektowanie; Concrete, reinforeed concrete and porestressed concrete. Design rules. Wyd. ALFA. Warszawa 1984
2. CEB-FIP Model Code for Concrete structures, London 1978
3. CEB-FIP Model Code 1990. First Predraft 1988. CEB Bulletin No. 190, Luasanne 1988

VECTOR ANALYSIS OF A REIMFORCED CONCRETE CROSS-SECTION

Summary

The resultant of the normal stresses in reiforced concrefe cross-section has been interpreted as a conjugated couple of vectors $\operatorname{CN}_{\mathrm{k}}, \mathrm{M}_{\mathrm{m}}$) reduced to the centre of gravity of the section, composed of the vectors assigned to the particular areas of concrete and reinforcing bars. Transforming these vectors to dimensionless values it is possible to obtain their sum $r_{k}=n_{k}{ }^{+N} h_{h}$ which is the radius-vector of the interaction diagram. or practical importance is the opposite problem: at the assigned ioad CN $\mathrm{S}_{\mathrm{s}} . \mathrm{M}_{\mathrm{s}}$) through the decomposition of r into components pertinent to concrete and steel, it is possible to determine the reinforcement area needed.

The general solution has been developed for the assumptions of the carrying capacity acc. to CEB-FIP Model Code 1978, assuming parabolicallyrectangular diagram of the stresses in concrete. With the assumptions made. it has been found that the limit strains in steel sou do not show a significant efect on the carrying capacity of the whole section.

KEY WORDS

reinforced concrete.
ultimate limit state.
carrying capacity.
vector analysis.
interaction diagram.

WEKTOROWA ANALIZA PRZEKROIU Z ZLBETOWEGO

Streszczenie
wypadkowa naprezen normalnych w przekroju żelbetowyrn zinterpretowano jako sprowadzona do srodka ciezkosci przekroju sprzezona pare wektorow (N N_{R}, M_{R}, ziozonych z wektor ow przyporzadkowanych okreslonym powierzchniom betonu 1 wkladek zbrojenia. Przeksztalcajac te wektory do wartosci bezwymiarowych, można utworzyt lch sume $r_{k}=n_{n} m_{R}$, ktora jest promieniem wodzacyra wykresu interakeji. Praktycznie watne jest zadanie odwrotne: przy znanym
obciazeniu C $_{s}$. Ms ${ }_{s}$, poprzez dekompozycjer na skiajowe przynalezne do betonu 1 stall mozna wyznaczye potrzebne pole zbrojenia.

Rozwiazanze ogolne rozwini eto dia zazozen stanu granicznego nosnosci wedlug CEB-FIP Model Code 197日. przyjmujac paraboliczno-prostokatny wykres naprezer w betonie. Przy tych zalozeniach okazalo sim, ze odksztalcenia graniczne w stali $\varepsilon_{\text {su }}$ nie wykazuja istotnego wpiywu na nosnosé calego przekroju.

ВЕКТОРНЫ凶 АНАПИЗ ЖEПEЗОБETOHHOT' CEЧEHKS

Резиоме

Равнолемствушая нормалъньх натряхенй в зелезобетонном сечении интерпретируется как привеленная к чентру тящести сечения связанная пара векторов (N $_{8}, M_{R}$. состояших из векторов приуроченньо k опрелеленннм поверхностям бетона и отдельньм стердоям арматуры. Преобразовывая векторы в безразмерные величины можо составити их сумлу $r_{R}=n_{R}+m_{n}$, которая sвляется ралиусом графяка интеракшии. Практически вахной является обратная задача: при известной нагрузке $\left(N_{s}, M_{s}\right)$, тутем леконтозишии r на соствляопие, приналлелдмия к бетону и стали моно отрелелить необхолимое поле арматуры.

Обшее решение разработано для предельного состояния несушей способности то CEB-FIP Model Code 1978, учмтивая параболическо-тряпугопзнй график напряхении в бетоне. При зтих принцитах оказалось, уто прелельная деформания
 сечемия.

[^0]: 1) Assoc. Professor, Silesian Technical University.
 ul. Patrowskiogo 5. 4-100 Glime. Pol and
