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Zdzistaw SULIMOWSKI 13

VECTOR ANALYSIS OF A REINFORCED CONCRETE CROSS-SECTION
1. General relationships

Let us consider a cross-section of a reinforced concrete member. The
area limited by the contour of the cross-section will be regarded as the
area of the concrete cross-section and denoted by A In the centre of
gravity O of this area we assume the beginning of the local ortho-Cartesian
dextrorotatory system of coordinates u* v, w CFig 1}. The corresponding
versors of the axis Ou. Ov, Ow are denoted by 1» J. k. The cross-section
considered belongs to the plane v,w. *

The member 1is reinforced with flexible steel bars whose number is k. The
area of the cross-section of the successive reinforcing bar is denoted by

A©,.and its distance from the axis Ow is determined by the vector v J.

mt Vo1
The cross-section of the concrete and reinforcement is symmetrical to Ov.

The cross-section load is a conjugated couple of internal forces: axial
force N, and bending moment M. An equivalent load is the longitudinal force
N on the arm e * eJ. such that Nxe « M Cvector product}. The denotations
have been assumed acc. to the convention used in mechanics: axial force N>0
refers to tension in the cross-section, M>0 causes tension in the bottom
IT! fibres of the cross section. In accordance with this, the normal
stresses * al and the tensile ones are assumed to be positive, and the
compressive stresses - negative. The height of the cross-section h, width
bv, the area AC and the area A*.i, as well as the design compression

strength of concrete ¥ , and of the compression and tensile strength of

steel £ will be regarded as positive scalars. Thus, the situation when
yo
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Cin a definite area of the cross-section0 the stress in the concrete has

beer, reached the design compression strength.will be written as o m- -f
c cd"

fig. 1. Cross-section of & reinforced concrete member

Let an arbitrary, conjugated couple of external forces CN .M } caused

s s
by the load, operate on the cross-section. This will cause in the
cross-section a certain state of normal stresses o . If we- make sufficient

and consistent analytical assumptions defining all the possible distri-

butions and values ofnormal stresses in concretear and steel Lig
cu su*
determining the carryingcapacity of thecross-section an the state

considered, then we thus create a set of conjugated couples of internal

forces

<N _, NR> rid

R
at which a realisation of the carrying capacity of the cross-section takes
place. A graphic presentation of the set CIO is the interaction diagram.

We may easily find that

vZ k
N =N +NzFfrbdvir» A ==
» cu BU "y v SuUi sSv*
\'74 k
Mcu+ Ncu: Jj<tuXvadv + -I}—e‘—nui Xv.i A» (t;‘éjs
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In the present paper we shall create the vector products only from the
vectors which are perpendicular to each other, collinear with the assumed
coordinate axes. The forces and stresses are collinear with the axis Ou;
N = [Nu,0,03, * - to“.0,01, the arms of the forces are collinear with the
axis Ov; e = t0,e",,03, v = [0,vv,03, with the vector of the bending moment
being parallel to Ow; M - CO,0,Mw3.

Thus, e.g-

H xe Nu O 0 | = kNuev = kMv * M C4D
0 e 0 1
In view of this, the algebraic equation Nuev=Mw permits the determination
of an arbitrary chosen coordinate provided that remaining two are known.
Analogically, the coordinate of the vector of eccentricity of the

resultant force N in the concrete may be calculated as the quotient

v2
JO vb dv
Ccu A
v1

CC55
V2
far b dv
J CuU v
hence,
v, = v, C C6}
whereas,
M =N xv = kN v CC75
cu cu (o} Cu c
Let us define the reduced vectors with dimensionless coordinates:
<
£ A N, €85
cu c
C9}

r fcuAChy»
where V' is normalizing coefficient.
From formulae C2D and C33>. taking into consideration he identity

equalities, we shall obtain respectively:

k
n=n+n =n + £n CI10}
R cu au cu “ at
[
m, =m +re _*m E re. C112>
R cu au cu ai

thanks to which set CI} maybe presented inthe form

C12
<nR* ¥
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Lei us consider the axes Ou and Ow. Multiplaying their measures N, M
respectively by 1/Cf0uAC) and 1/CfeuAehyO. we shall obtain the transformed
dimensionless system of coordinates which will be denoted on On, Om. In the
plane Onm we may present graphically the reduced carrying capacity of the

cross-sectin in the form of the relatloships CI0)» CIl), C12); CFig. 2).

Fig- 2. Graphical representation of the reduced load carrying capacity of a

reinforced concrete cross-section according to formulae CIO), CIl), C12)

Especially the vector

r _*n m Cl3)

cu cu cu
may be interpreted as the reduced carrying capacity of the concrete
cross-section on normal stresses. The set <ncu,mcu> of the coordinates of
the end of this vector determines the line of interaction for the concrete
cross-section, hence r. is the radius-vector of this line. On the cross-
section of a definite shape, the coordinates of the line of interaction

depend on the analytical assumptions made, defining the stresses 0" .

In a similar way. the vector
r— n-..*m Cl«

represent the reduced carrying capacity of the total reinforcement of the



cross-section. It is dependent on the quantity and position of this
reinforcement and on the analitycal assumptions reffering to the stresses
<. The carrying capacities of the particuliar reinforcing bars are denoted
by the successive vectors reuv* it M whose superposition makes the

vector r.u -

The total vector

r *r_er Cl15)

a cu *u
with the end coordinates may be understood as radius-vector of the
reduced line of interaction of whole reinforced concrete cross-section
g -mg>-

The procedure outlined above may be used to determine a set of coordi-
nates of the reduced interaction diagram for the computational assumptions,
provided the geometry and strength characteristics of the cross-section
are known.

Since the carrying capacity of deformable element is analyzed here, the
resultant Nui of the normal stresses from the considered region of cross-
section area must be regarded as attached vector. This may be. for example,
the resultant of the stresses from the compressive zone of the concrete, or-
the resultant of the stresses in the reinforcing bar. or finally - theo
resultant of the stresses from a group of reinforcing bars in closes
proximity.

In the actual cross-section, the distance of the considered vector
from the axis Ow is determinedby means of v.. On the basis of C43.C83.C93»

we conclude that there exists a dimensionless collinear with Ow, eccentric

vector . so that
n xXP *m cl6}
Ut \2 ul
Taking into account the orthogonality of the vectors and m™, we are

able to calculate the coordinate

"y -
Since we have the relationships defined by formula C7} , it may clearly

be shown that:
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and
VX « JVt CI0}
Fig. 3. Method of constructing of the vector inclination
The coordinate may be interpreted as the directorial coefficient of

the straight line CcD, given by the equation m:i—v\n+mo, collinear with the

vector rUI_z*hU + q}v. Determining *SISCOn,rUVD:av with aV’\C -nX2,&/2>. in compli-

\%

ance with Fig. 3. we shall obtain
bty o C20D
hence, after substituting C18>

a* arc tg Cv~/ChyOD C21}

Making use of the aboverelationships we may solve an important problem
consisting inthe selection of the required reinforcement for the assigned
couple of internal forces CNS ’MsD' Basing calculation on the ultimatex
state of carrying capacity, let us assume that

CNS =N ,M = MR} C223

and applying the previous transformations also to the internal forces, we



- 101
find the reduced vector of the intermail forces
r_=n_+m C23>

in view of which the condition of realization of the state being consi-

dered may be writtem in vector form:

r 6 <r > C24D

S R
To solve the problem are required the directional angles of the
vectors "o which - as arises from formula C213 - may be obtained by

assuming the position of the reinforcing bars. The problem is very simple
if reinforcement can be reduced to two areas Aal and ASZ whose centres of
gravity are distant respectively, by d* and d* from the upper and lower
21 edge of cross-section.

In a general case of dimensioning of the Cross-section, the number of
the parameters necessary for the determination is greater than the number
of the conditions of equilibrium, since apart from the required and most
frequently given in the assumptions, design strengths of the concrete f~»
and steel fyd, the following parameters must be determined: dimensions of
the concrete cross-section Ctwo for rectangular, and six for Jl-bar one) ,

the areas of the reinforcement cross-sectios A91 LA

o »the distaances d1 d

3
and the height of the compressed zone of the cross-section x diependent on
the actual values CNS ,MS thus, in the simplest case - 7 unktnown para-
meters, compared witch two conditions of equilibrum C22D.

In the search for the solution, two kinds of approach are us<ed:
C13 Assuming the dimensions proportion of the concrete cross-section, the
reinforcement ratios Cplesi/Ac, pZ:ASZ/AC}, and the ratios di/h, d2/h,
it is possible to determine the dimensions of concrete cross-sections, as
well as the area and position of reinforcing steel. Such procedureleads
thediagrams given, i. a. in Cl13, obtained in analytical way though they may
be easily justified by means of vector relatioships.
C2D Assuming the dimensions of the concrete cross-section and the distances
d1 ,2d , we search for Aal ,A&2 ,and x. For an explicit solution we need an

ancillary condition; in some cases it may be defined by the code rules, and

where it is missing, we may rely on the optimizing condition, e.g.

* mirCA_+ A D C25D
L] | »2
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Approach C2D 1* ofton used iIn engineering practice, and is well suited
to vector analysis. It has been presented in paper [23 for the assumptions

of the Polish Code [33.

2. Solution for the ultimate limit state acc. to CEB-FIP Model Code 1978
Let us consider a rectangular cross-section with denotations as in Fig. 4

and accept the assumptions of 14,item 10.4.1.13, including the plane

sections principle. To the denotations assumed we shall add the following

Fig. 4. Rectangular cross-section of a reiforced concrete member

assignations: Strains e 5 ii of the particular fibres of the cross-section

are regarded as the vectors taking positive values if they are elongations,

and negative values - if they are contractions. The height x of the
compressed zone of the sectiom, distances d&,dz, and the moduli of
elasticity E™, are interpreted as positive scalars.

On the basis of [4,item 10.4.3.13 we assume that the stress diagram in
the compressed zone of concrete is parabolic-rectangular while ecd:—0.00Z,
£cu=_°-0035; for the purpose of calculating we shall determine
fcd-°- 85fckyYc- Similary, on the basis of C4,item 6.4 2.33 we shall
assume that steel behaves here like an 1ideally elasto-plastic material;

fyd=Fyk/y*~ =200000 MPa. In compliance with C4,item 6.4.2.33 it has been
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assumed that S0, y™=1.13. For reinforcing steel we find

We shall introduce the ratios
d4 d2 . “S g

= - - = —=-Fr— * —_— ———
6._= »> 6, |!|- . r oy , |’>ad« €0d C283

Now we shall write the assumed constitutive relationships between the
stresses and strains for the carrying capacity of the cross-section.

At the strains e in any fibre of the concrete

0 for n<0
- fecdr>C2- tfi for O<»<1 C273
- F for 1<r)S1.75
and respectively in steel
fy o for-5<r)£-T) ad
- 0.002 aE 4 for 1) ad <l’)£r)ad C285
- fyd, for z&;r)<1.75

Cfor Polish steels with the successive values fyd* 190, 310, 350 MPa we
shall obtain respectively *7"® 0.475, 0.775, 0.875D.
By means of the reduced strain coordinates of the edge fibres Nt and

we can express the reduced strains of the reinforcing steel A" and A",

D#1" rACI-61™MN)t6I C293

rmam PISGIHTICI - 67 €303
the height of the compressed zone of the section
X = hah/Cr4 5 OixEh C315
and of this part of the height of the compressed zone in which at *-fdd
y = Ci>1-1"b/CT7i_ 12" » 0<yS3h/7 €323

In Fig. 5 are shown six c(T)....(5)> configurations of the cross-section
strains which make possible the defining of the corresponding intervals of
strain variations in concrete and steel. The limits of these intervals
expressed by means of r» and 172 are given in Table 1, whereas in Fig. 6 is
shown distribution of the stresses a in the concrete which corresponds to
them.

On the basis of relationships C23 and C33 in the terms reffering to
concrete, and with due consideration to the reduction acc. to C83 and C93,

for relation C273 the Tformulae for the coordinates n” and of the
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simple transformations,

interval f5j - Fﬂ , the relationship between n..
£
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Fig.5.
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the results are compiled

intervals, rfat ancl ~s2

and on the

Bl

X y
4 5
0 0
o<xs Id 0
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~Nd< xth

~d<y<]h

h fh

basis

in relation to On and Om have been determined.

-0,02 -0PO35

in Table 1.

and m
cu

Leaving out
Within the
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The configurations of the cross-section strains

Le calculated by means of
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In compliance with relationships C85 and C9D we shall now write the
formulae for the coordinates of the vectors of reduced carrying capacity of

reinforcement r, and r to the axes On and Om.

1u 2u
- -or__A__/Cf _bhO C33D
ilu aft ai cu
= a A [-CO.5h-d 33/CF bh*y/D « -n CO0.5-6 =>> C343
ity tl 81 ft cu H U 1
- 0o__A __/CF_bh) c35)
s2u 82 s2 cu
m * o _A_CO.5h-d_}/Cf Dbh*yD * n CO. 5-6. C36D
b2u s2 e2 2 cu s2u 2

In result from the above that for y>-0.5-6" we obtain m-lu*"n#lu ane* "°r

Scope Scope Scope
2-3
£ fed- |

Fig.6. The distributions of the stresses in the concrete cross-section

3. Interaction diagram

The set inu,mu> of the coordinates of the end of the radius-vector
forms, in the plane Onm, a closed line called Interaction diagram. We shall
obtain the right branch of this diagram when the compressed zone of the
section adheres to the upper fibre [T] , and the left one - when it adheres
to the bottom fibre [I] CFig-43. As it is known, the interaction diagram is

a complete representation of the carrying capacity of the cross-section
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N\ 6t=0.20,0,15,0.10,0.05

V =040
0,06
G,=0,00%5
6i=0,10
9i=0.0110
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subject to the bending moment and axial force.

We shall construct an interaction diagram CFig.7a) ofa rectangular
cross-section for the assumptions defined in item 2. It has been assumed
that y/=0. 4 which means that for 62:0.1, the vector rSZLI is inclined towards
On at an angle a=n/4. The directions of the vectors 914 and roou at
arbitrary values of 6~ and 6~ may easily be plotted by means of the
construction given in Fig. 7c. The effective values of the stresses a” in
the reinforcement, depending on 6~”~€ C0.05, 0.10, 0.15, 0.20} and on f
Cvertical lines) are presented in Fig 7b. The reduced diagram of
interaction of concrete <ncIJ ,mcu> is of universal character, independent of
the dimensions of the cross-section; it has been calculated acc. to the
formulae of Table 1. It reaches the maximum value mcu:0_304 for ncu:—0.487
at t”=1.75 and y2=-1.162 and so within the interval @ - G) - To
illustrate the effect of reinforcement it hasbeen assumed that fyd =31(0
MPa, fck:30 MPa, fCd =0.85*30/1.5= 17 MPa. 61:0.05, p :A»i/b/h:0.0055;,
6,=0.10, p_=A 8éb/h:O.Oll.

Since, Con the basis of C27)) the concrete does not cooperate in thee
bearing of tensile stresses, for range (T) - (2) the interaction diagram of>f
concrete is degenerated to point () .Beginningwith "t="fy;/0- 002/E" ,thex»e
stresses o, in reinfolrcement A decrease and reach the 8vtalue o =0 forsr
position € in-order to reach ag, ::—fyd for q'“:f ya/O. 002/E < In this wa>ay
is created a band of inefficiency of reinforcement A This is thee
wider, the greater the value of fyd and 6. The line of the equation ""~=0
separates the senses of the vector ral» below it, the component iis
directed in compliance with the axis On, and abowe it - in the opposite.

Fcr the range () - (?) , the interaction diagram of concrete depends on
6 . The diagram in Fig. 7a has been calculated at 67=0.1, and next the
percentage relative error A has been determined for 67-0.05 and ¢2=0. 2C.
Since it has been found that |A]<2”, it may be accepted that the error is
comprised witin the limits of tolerance of the diagram.

In the ranges (@) - 6)‘@ there occurs a decrease of the elongations
of the bottomreinforcement Aa2» and beginning with the value
7792:—fyd /O.OOZ/BEthis is accompanied by a drop of the stresses; in
position (?) we obtain <uZ~Q reach t for 002/EN * value



- 108 -

&BIt: In this way a band of inefficiency <f£)> of reinforcement A#2 is
created. This is the wider, the greater is the value f~d and the greater is

6 The line of equation a»2:0 separates the senses of vector rg,: below

>-
it, the component n#2 is directed in compliace with the axis On, abowe - it
is opposite.

A consequence of the separation of the plane Onm with half-lines ®

and o,,»0 is that the beginning of the vector Bu must rest on the line of

02
interaction of the concrete section in the same subdomain to which belongs
the assigned coordinate Cn,nD determining its end.

The left branch of the interaction diagram may be obtained when the
system of the possible strains of the section, analyzed acc.to Fig.5, is
reversed in relation to edge fibres. For the section with a horizontal axis

of symmetry, the diagram <N, oMoy will be symmetrical to On.

(o}
All the remarks on the intervals will remain valid provided the upper

reinforcement CA8 1,@1 4<_5 5 is exchanged for the bottom one CA8 >% 2,555.

4. Final remarks »

The analysis of the interaction diagram presented, makes it possible to
explain in a graphic way, the role played by the particuag elements of the
cross-section Cconcrete, upper and bottom reinforcements) in shaping of the
carrying capacity of the cross-section. It may be useful for the verifica-
tion and comparison of the anaytical assumptions. For example, the compa-
rative calculations made for ”au=0-005 Cwith unchanged remaining values

assumed in the present paper5 show that the interaction diagram of concrete

Ag2 differ insignificantly; somewhat greater differences occur iIn the

estimation ©f the upper reinforcement A”, but only in a relatively
narrow interval (@) - (X). In viev of this, a discussion on the subiect of
the value of assumed for the calculation of the cross-section carrying

capacity seems to be insignificant.
Since for all the assumptions made it is always possible to construct
one, generally valid reduced interaction diagram of the concrete cross-

section -Ocu»icu™» At is wortwile to carry out a comparative analysis while
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assuming various relationships o-c for the concrete, e. g. rectangular,
triangular-rectangular, parabolically-rectangular one, acc. to the curves
CEB ~ FIP C4, formula C7.153, or the later suggestions C5, formula C2.4.453.
This may have a practical aspect, as with a developed interaction diagram
of concrete cross-section, the selection of reinforcement takes place in
the same way, independently of the assumed relationships There is no
doubt that desirable here would be a compliance of the o-e relationships
assumed for the determination of the internal forces as the result of the
loads, with those cr-c dependences which are used for the estimation of the

carrying capacity of the cross-sections.
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VECTOR ANALYSIS OF A REINFORCED CONCRETE CROSS-SECTION

Summary

The resultant of the normal stresses in reiforced concrete cross-section
has been interpreted as a conjugated couple of vectors CNr ,Mr5 reduced to
the centre of gravity of the section, composed of the vectors assigned to
the particular areas of concrete and reinforcing bars. Transforming these
vectors to dimensionless values it is possible to obtain their sum rR5IR %Ml
which is the radius-vector of the interaction diagram. Of practical impor-
tance is the opposite problem: at the assigned load CNs ,Ms5, through the
decomposition of r into components pertinent to concrete and steel, it is
possible to determine the reinforcement area needed.

The general solution has been developed for the assumptions of the
carrying capacity acc. to CEB-FIP Model Code 1978, assuming parabolically-
rectangular diagram of the stresses in concrete. With the assumptions made,
it has been found that the limit strains in steel c,, do not show a

significant efect on the carrying capacity of the whole section.

KEY WORDS
reinforced concrete,
ultimate limit state,
carrying capacity,
vector analysis,

interaction diagram.

VEKTOROWA ANALIZA PRZEKROJU ZELBETOWEGO
Streszczeni e

Wypadkowa naprezen normalnych w przekroju zelbetowym, zinterpretowano
jako sprowadzona do $rodka ciezkosci przekroju sprzezona pare wektoroéw
CNr ,Mr5, z%ozonych z wektoréw przyporzadkowanych okreslonym; powierzchniom
betonu i wktadek zbrojenia. Przeksztatcajgc te wektory do wartosci bezwy-
miarowych, mozna utworzy¢ ich sumg rn=nR+mR »ktéra jest promieniem wodzacym
wykresu interakcji. Praktycznie wazne jest zadanie odwrotne: przy znanym
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obcigzeniu CHg ,Ms3 ,poprzez dekompozycja r na sktadowe przynalezne do betonu
i stali mozna wyznaczy¢ potrzebne pole zbrojenia.

Rozwiazanie og¢lne rozwinieto dla zalozert stanu granicznego nosnosci
weddfug CEB-FIP Model Code 1978, przyjmujac parabol iczno-prcstokatny wykres
naprazen w betonie. Przy tych zatozeniach okazato sie, ze odksztakcenia
graniczne w stali ¢ nie wykazuja istotnego wpkywu na nos$nos¢ catego prze-
Kkroju.

BEtCTOPHHft AHAIJIK3 *EnE30EETOHHO0r0 CEHEHH}

Pe3K>r*e

PaBHO/ieHCTByinas HopnajTEHbtx HanpsuKHH®* b xelie306eTOHHOM cesenim HHTepnpe-
THpyeTes KaK anBezieHHas k ueHTpy TSucecTH ceMeHHS cBS3aHHas napa BeKTOpoB

CK m COCTOSUUMX H3 BeKTOpOB TTpwypOMeHHbDC K OnpelielieHHMM
R

TIOBepXHOCTSIM
R

6eTOHa h oT/xejitHbiM cTepawaM apMaTypw. llpeo6pa30Bb®as bgktopw b 6e3pa3MepHbie
Be JIMVMHbI MOXHO COCT3BHTEL> KX CyMMy FR=nR+mR »KOTOpaS HBJISeTCIJI pa”~HyCOM Tpa-
4>HKa MHTepaKiiMM. IlpaKTHMecKM Baraon sBlineTcsi o6paTHas 3a/xa’ia npH H3BecTHon
Harpy3Ke CN<,Ms), nyTeM aeKOKtroimuhm r Ha cocTBjisnomHe, ttphhauajiexaiane k
6eroHy m cTajiH moxho OTTpeflejiHTB Heo6xoiiHMoe nonge apMaTypw.

o iaee peuieHMe pa3pa6oTaHo asm npeziejitHoro coctosihhs Hecymeft cnocooHOCTH
no CEB-FIP Model Code 1978, yMHTHBaa napa6oJiHMecKO-npsiMoyrojftHWFt rpa<t\K wa-
rrpsaceHHH b 6eTone. npn 3thx npHHunnax O Ka3alioch, mto npeaejibH as ,eoopMauiH Si
b CTajiH € He OKa3biBaeT cymecTBeHHoro bjihjihhh Ha Hecyigyio cnocoOHocTt

ceMeHMS .
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