Peter KJKJCA

Departament of Meesurement Slovak Technical Univeaity Sratislava

MEASUREMENT OF REACTIVE POWER OF HONSINUSOIDAL VOITAGE AND CURREAT

> Summary. The paper describes the measurement method of reactive power of nonginusoidal voltage and current. Possibilities of construction of varmeter phase shifting oircuita with noninductive ladder networke are given. Brros smaler than 1% in frequency range 50 Hz 2 kHz have been achieved.

1. Introduction

Reactive powar Q of nonsinasoidal voltage and current is most often defined as followe

$$
\begin{equation*}
Q=\sum_{k=1}^{\infty} v_{k} I_{k} \text { sin } \varphi_{k} \tag{1}
\end{equation*}
$$

Where U_{k}, I_{k} are the RMS values of the k-th hammonic of the voltage and the current and P_{k} is the phase shift between the voltage and the current of the k-th harmonic.

Measurement of this reactive power is very difficult, because there is no instrument directly measuring this quantity. The methods used under sinusoidal conditione are not suitable because of their frequency dependance and other limitations.

The equation (1) an be rewritton

$$
\begin{equation*}
Q=\sum_{k=1}^{\infty} v_{k} I_{k} \cos \left(\varphi_{k}-90^{\circ}\right) \tag{2}
\end{equation*}
$$

This equation shows that the measurement of reactive power can be completed with an active wattmeter with a phase shifting circuity in one input.

Realisation of this circuit called a Hibert transformar was reported -. g, in [1]. The eqution with frequency dopendent negative resistors (FDNR) is not very convenient, | because many electronic parts have to be used only a gall frequency range can be obtained. The Hilbert tranforner with 15 operational amplifiery, 23 preaise resiatore and 11 preciec capaoitore of differont velues and with some common paesive componente has
an amplitude and phase shift arror $1-5 \%$ in the frequency range 50 ifio -- 450 표.

The eqnation (2) can be modified as follows

$$
\begin{equation*}
Q=\sum_{k=1}^{\infty} P_{k} U_{k} \frac{1}{P_{k}} I_{k} \cos \left[\varphi_{k}-\alpha_{k}-\left(90^{\circ}-\alpha_{k}\right)\right] \tag{3}
\end{equation*}
$$

what eabbles another approach to the measurement of reactive power (See Pig.1). Circuite influencing phase shift and amplitude of the signals are placed in both inputs of the wattseter [2]. If the trensfer functions of these circuits for the k-th harmonio are

$$
\begin{align*}
& P_{v}(k)=p_{k} e^{j\left(90^{\circ}-\alpha_{k}\right)} \tag{4}\\
& P_{c}(k)=\frac{1}{P_{k}} e^{-j \alpha_{k}} \tag{5}
\end{align*}
$$

where P_{k} and $1 / P_{k}$ are Irequency dependent amplifiaations and $90^{\circ}-o_{k}$ and - α_{k} are frequency dependent phase ehifte, then the whole blook diagram in the Pig. 1 presents a vameter. The discuesed reactive power

Rye. 1 Schemat blokows waromiorza Pig. 1 Block diagran of the varmater measurement methods based on the Budeana ${ }^{\text {s }}$ definition oan be in many respects criticised - what is mare preoisely described in paper [5]. Hevarthe leas these methods are analysed ilterature, for example, $[6,7]$, where appriopriate oireuite are indicated with their tested application. The present paper introduces other, oheoked by the author, solution, which is eimilar to of the method given in paper [6].
2. Poseibilities of ohse shifting circuite construction

The input iapedance $Z_{1}(k)$ of noninduotive line, which is long enongh, 1. equal to the wave inpedanoe

$$
\begin{equation*}
\varepsilon_{2}(k) \cdot \sqrt{\frac{R}{2+4 f_{0} c}} \tag{6}
\end{equation*}
$$

where k is the order of the harmonic and f_{0} is the frequency of the fundanental harmonic. The phase of this impedance is -45° independent of the frequenoy and its magnitude deareases with the slope of $10 \mathrm{~dB} / \mathrm{decade}$. This enables us to realize the cirouits with the tranfer functions

$$
\begin{align*}
& P_{\nabla}(k)= \pm \sqrt{k}^{j 45^{\circ}} \tag{7}\\
& P_{0}(k)= \pm \frac{1}{\sqrt{k}} e^{-j 45^{\circ}} \tag{8}
\end{align*}
$$

Rye. 2 Prsesumaik fasowy 8 wykorsyatemion linil drabinkowej RC Pig. 2 Phase shifting cireuits with RC - ladder network

For low-frequency applications the RC ladder notworke are to be used (Pig.2). The velues of R and C and the number of cells depend on the frequency range and the required accuracy.

Because it is not possible to use on infinite number of cells, the problem of the first order is the termination of the network. The length of the line is critical for the lower linit of the frequency range. Because of that the best termatnation of the ladder network is the wave inpedance for the lowest frequency 1.e. for $k=1$. For the terminal impedance

$$
\begin{align*}
& R_{t}=\sqrt{R / 4 \pi I_{0} C} \tag{9}\\
& C_{t}=\sqrt{C / \pi I_{0} R} \tag{10}
\end{align*}
$$

Some caloulated dependences of amplitude and phase ahlft exrors of 50-cel 1s ladder networics are shown in Pige. 3 and 4.

Fumber of cells can be reduced by dividing the network, into two parts with the seme wave inpedances, but different time constants of the cel10 (Fig.5). Following egaetion appliee here

$$
\begin{equation*}
R_{1} / C_{1}=B_{2} / C_{2} \tag{12}
\end{equation*}
$$

Caloulated dependeree of anplitude and phase ohift errors of two auch
Iadder metworics are ahoun in IIs. 6 and 7.

Rye.3. Wykree obliczonyoh bieqdón amplitudy 1 fazy da 50-elementowej linil drabinkowed RC Fig. 3. Plot of the oaloulated amplitude and ohift errors of 50-cella ladder network

Rye. 4. Wykree obliczonyck bzedóm amplitudy 1 fazy da 50-elementowej linil drabinkowej RC Fig.4. Plot of the calculated amplitude and ehift errors of 50-celle ladder network

RyE. 5 Fodsiaz linil drabinkowej na dwie ozéci o tych gamych impedancjaoh falowych
Pig. 5 Dividing the network into two parte with the eame wave impedeces

3. Vermeter connection and itg influence on the measuring error

One circuit with the transfer function $P_{v}(k)$ and one ciruit with the transfer function $P_{c}(k)$ are needed for the realization of varmeter, according to Fig. 1 Schemes of circuits with function $P_{v}(k)$ are in Pige. 8 and 9, with function $P_{c}(k)$ in Figs. 10 and 11. Following equations have to be valid

$$
\begin{equation*}
B_{1}=\left|z_{i}(1)\right| \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
R_{1}=1 /\left(2 \pi_{f_{0}} C_{1}\right) \tag{13}
\end{equation*}
$$

Remarkz These schemes are correct under the assumption, that the measured curreat was converted into a corresponding voltage.

The accuracy and some other properties of varmeter depend upon the choice of schematics mentioned above (Fig. 8 or 9 and Fig. 10 or 11). Let's aseume that both ladder networks needed are identical and derivator, integrator and wattmeter are ideal.

If circilte shown in Piga. 8 and 10 are used, the amplitude orror of varmeter $1 e$ given by the difference of amplitude errors of both ladder networks $Z_{1}(k)$ 1.e. it equale zero. The phase shift error of varmeter in this case is given by the eum of phase shift errors of both ladder networks, 1.r. it 18 doubled as shown in the Fige. 4 and 7. If circuite shown in Figs. 8 and 11 (in Figs. 9 and 10 respectively) are used, the phese ehift error of varemeter is given by the difference of phase shift errors of both ladder networks $Z_{i}(k) i . e$. it equals zero. The amplitude error of varmeter in thic case is given by the sum of amplitude errors of both ladder networks, 1.e. It is doubled as ahown in the Fige. 3 and 6.

a) $680 \Omega, 68 \mathrm{nF}-13 \mathrm{x}, \quad 470 \Omega, 47 \mathrm{nF}-12 \mathrm{x}$
b) $1200 \Omega, 120 \mathrm{nF}-7 \mathrm{x}, 560 \Omega, 56 \mathrm{nF}-8 \mathrm{x}$

Rys. 6 Wyleres obliczonych błedów amplitudy ifazy dla dwóch czę́ci linii drabinkowed ($R_{1}: C_{1}=R_{2}: C_{2}$)
Pig. 6 Plot of the calucated amplitude and shift orrors of two parts of
the a network ($\left.R_{1}: C_{1}=R_{2}: C_{2}\right)$
The phase shift error of varneter is more difficult to calculate the amplitude arror because it is an additive orror. If φ is the phase shift between sinusoidal voltage with RMS value U and sinusoidal current with RMS value I and $\Delta \varphi$ is the phase shift error of varmeter, then the varmetor reading Q_{m} would be

$$
\begin{equation*}
Q_{\mathrm{m}}=\operatorname{UIzin}(\varphi+\Delta \varphi)=Q \operatorname{Cos}(\Delta \varphi)+\operatorname{Pain}(\Delta \varphi) \tag{14}
\end{equation*}
$$

If the reactive powor Q is small, the influence of the term $P s i n(\Delta \varphi)$ is eignificant and if Q is zero then the varmeter reading is not.

The amplitude error of varmetar is a multiplication error i.e. it causes the same relative error of reading independently from the reactive power value.

Rys. 7 Wylores obliczonjch bzedow amplitudy 1 fazy dla dwoh cepfoi linil drabinkowoj $\left(R_{1}: C_{1}=R_{2}: C_{2}\right.$)
Fig. 7 Plot of the caloulated amplitude and shift arrore of two parte of network $\left(\mathrm{H}_{1}: \mathrm{C}_{1}=\mathrm{R}_{2}, \mathrm{C}_{2}\right.$)

Therefore it is more convenient to uee

Rye. 8 Schematyozna reprezentacja realizowanoj przez ukzad funkej1 Pr (k)
Fig. 8 Schomatic representation of a oircuit realised function $P_{V}(k)$ unch phase shifting oircuit thet phase shift error of the used ladder networks.

Complete scheas of electronic vasmeter is more complicated because the output voltages should have no DC component. A proper mothod of oparational emplifier offeet voltege oompensation was reported e.8. in [4].

The described mothod of reactive power mesiuramont has a disadvantage that should be kept in mind. The phase shifting oirouit With the transfor function $P_{V}(k)$ has the gain proportinal to the aquare root of the order of harmonic k and the phase shifting cirouit with the tranefor function $P_{0}(k)$ hat the gain invarsely proportional to the equare root of the order of harmonios k. Signale with eherp edges cane is circuite wh the tranafor fanotion $P_{V}(k)$ high voltace peake. The out put voltace of oircuite with the tranefer function $P_{c}(k)$ 1s mall for hister Irequcesics.

The phase shifting ofrouite and the wattmeter used should therefore have a wide dynamical range.

Rye. 9 Schematyczna reprezentacja realizewanes przez lukzad funircj1 $P_{\nabla}(k)$
Mg. 9 Schematic representation of a circuit realized function $P_{V}(k)$

Results

From the frequency deependences in Pigs. 3 and 4 one realizes that a homogeneous 50-cells ladder can have an amplitude error smaller than 0,15 \% ar a phase shift error smaller than $0,5^{\circ}$ in the frequency range from 50 Hz to 2 kHz . If thee ladder networks were used in circults according to Figs. 8 and 10 , the varmeter would have the phase shift error smaller than 1°. This corresponds to an error of $1,75 \%$ of active power. The amplitude error should equal zero. Using the same ladder networks in circuits saccoring to Pigs. 8 and 11 or Figs. 9 and 10 would cause an amplitude error smaller than 0,3 \% of measured reactive power and a zero phase shift error. This if significantly better than in the previous case.

The error of varmeter that could thearetically be reached with heterogeneous ladder networks (see Pigs.6 and 7) are

- for 25-cells ladder networks amplitude error $<0,4$ \% of rig. phase shift error $<0,8^{\circ}$
- for 15-celle ladder networks amplitude error $<0,5$ \% of rig. phase shift error $<1,0^{\circ}$
A varmetor with input circuits show in Figs. 8 and 11 with 50-celle homogeneous ladder networks has been built. Resistors and capacitors have not been chosen. The terminal resietdy R_{t} was set for the beat low frequency behaviour. The varmeter had the amplitude error mailer then $\pm 0,75$ of reading and the phase shift error smaller then 16\%. This corresponds to the total error seller than $\pm 0,75 \%$ of reactive power $\pm 0,5 \%$ of active power.

Iater the orginal ladder networks were replaced by 25-cella heterogeneonus ones with chosen parts. The total arror was smaller than $\pm 0,25$ \% of reactive power $\pm 0,25 \%$ of active power.

The described varmeter is a part of the instrument VAFWAFT, that measures both active and reaetive power of nonsinusoidal voltage and current. VARWATY has been using the modules of the system UEIWATT developad at the Deperthent of Meaeurement of the Electrical Engidearing Paculty of the Slovak Tecmical Univeraity.

REPERENTES

[1] Filipski P. 8 The Measurement of Distortion Garrent and Dietartion Power. IBEE Trade. on Instrumentation and Measurement, IT-33, Mr 1, pp. 36-40, 1984
 сдघдегелъагбо СССР Но. 665 274, 1985.
[3] Kukuce P. - Kukuca R.: Bezindukene vedenie pre merace jaloveho vykonu a onergie. Caechoslovak patent application Ir 6979-1986
[4] Bliklen H.s Schaltungen zur Offetapamunge-Kompensation. Elektronik 34, Ir 17, pp.95-96, 1987
[5] Czarnecki L.S.s What is Wrong with the Budeann Concept of Reactive and Dietortion Power and Why It Should be Abandoned, IREE Trans. Trans. Instr. Meas. vol.36, po. 834-837, 1987
[6] Csarnecki I.S. z Measurement Principle of a Reactive power Meter for Foneinusoidal Systems, IEEE Trans. Instr. Meas. vol. 30, pp. 209-212, 1981
[7] Sawioki J.z Mesemethoden zu Bestimung dar Blindleistung nach Budaana bei Terzerrten Strom - und Spannungakuren, Archiv f. Elektrotechnit. 69, pp. 227-238. 1986

Reoonsents doc. dr hab. 1nt. Branon Ssadrowski
Wpzyezo do Redakej1 daie 16 otjesnia 1989 .

POMIAR MOCY BIERNEJ KIESINUSOIDALNYCH PRZEBIEGOW NAPIĘCIA I PRADO

St•rezczenio
W pracy opisano metode pomiaru mocy biernej aiesinusoidalnych przebiegón napięcia 1 prądu. Podano móliwó́ci konstrukcji waromierza bazujacego ne układach preesuwaików fazy z bezindukcyjnymi liniami drabinicowymi. Osiagnieto dzieki temu bzędy przetwarzania mniejeze niz 1\% dla zakresu czętotliwości $50 \mathrm{~Hz}-2 \mathrm{kHz}$.

ИВМЕРЕНИI PFAKTUBHOЙ MOMHOOTU НЕСИНУ СОИДАЛБНОГО НАПРЯझЕНИЯ घI ТОКА

P-s 10 ㄹ

 папрлхеня ㅍ това, Представленя возмодности ковотрукция вариетра освован-

 диапазона пастот 5 Огц - 2 кгम.

