Serie: ELEKTRYKA z. 110

Nr kol. 957

Bronisław DRAK

GEOMETRIA I KSZTAŁTOWANIE CZĆŁ UZWOJEŃ STOJANÓW MASZYN INDUKCYJNYCH DUŻYCH MOCY

Streszczenie. Przedstawiono metodę analitycznego wyznaczania geometrii czół cewek dwuwarstwowych uzwojeń stojanów maszyn indukcyjnych dużych mocy oraz metodę obliczania wymiarów szablonów do kaztałtowania cewek. Przyjęta linia zarysu stożkowego segmentu czoła cewki jest przestrzennym kładem ewolwenty okręgu na pobocznicę stożka, na której leżą środki przekrojów poprzecznych czoła cewki. Ewolwentę okręgu umiejscowiono na płaszczyźnie przecinającej pobocznicę stożka w okręgu, pokrywającym się z okręgiem podstawowym ewolwenty. Tak przyjęta linia zarysu zapewnia wymaganą równą odległość między bokami czół cewek uzwojenia stojana na całej długości segmentów stożkowych. Algorytm obliczeń zarysu cewek uzwojenia stojana oraz szablonów do ich kształtowania został sprawdzony w pracach projektowych oraz przy wykonaniu cewek uzwojenia stojana silnika indukcyjnego o mocy 1600 kW.

1. Wstep

Czoła dwuwarstwowych uzwojeń stojanów maszyn indukcyjnych dużych mocy tworzą dwie powierzchnie stożkowe. Jedną z nich tworzą ozoła górnej, a drugą – czoła dolnej warstwy uzwojenia stojana.

Linia, według której kształtuje się czoła uzwojeń, powinna zapewniać stałą odległość między bokami cewek. W praktyce zdarza się, że po niedokładnym ukształtowaniu czół cewek cewki przylegają do siebie w pobliżu wykorbienia po wyjściu ze żłobka stojana, mimo dużej odległości między nimi przy główkach cewek. Nieuzasadnione zmniejszenie tej odległości jest przyczyną wzrostu sił elektrodynamicznych działających na cewki uzwojenia stojana, zmniejszenia wytrzymałości dielektrycznej izolacji uzwojenia oraz pogorszenia warunków chłodzenia czół uzwojenia stojana.

Dokładne ukształtowanie czół cewek, szczególnie ważne dla uzwojeń stojanów maszyn dwubiegunowych, ze względu na ich długość i duży poskok uzwojenia, jest możliwe jedynie przy analitycznym wyznaczeniu zarysu czół oraz zarysu szablonów, na których są kształtowane czoła cewek. Podane w pracach [1 i 2] metody analityczno-wykreślne umożliwiają wyznaczenie linii zarysu stożkowej części czoła cewki na płaskim rozwinięciu pobocznicy stożka, na której mają leżeć środki przekrojów poprzecznych czoła cewki uzwojenia stojana. Metody te nie uwzględniają jednak zmniejszenia założonej odległoś ci między czołami cewek, wynikającego z krzywizny pobocznicy stożka, oraz

1989

występują w nich trudności uwzględnienia rzeczywistego przekroju poprzecznego czoła cewki, które jest niezbędne do dokładnego wyznaczenia zarysu modelu, na którym są kształtowane czoła cewek uzwojenia stojana. Podana poniżej metoda analitycznego wyznaczania geometrii czół oraz geometrii szablonów do kształtowania cewek została sprawdzona w warunkach przemysłowych, przy wykonywaniu uzwojenia stojana silnika SYJd-132t o mocy 1600 kW, dając w pełni pozytywne wyniki.

2. Zasada geometrii czół uzwojenia stojana

Analityczny zapis geometrii czół uzwojenia stojana realizuje się w przestrzennym układzie współrzędnych prostokątnych x_1, x_2, x_3 , przyjętym w następujący sposób (rys. 1):

 początek układu współrzędnych przyjmuje się w punkcie przebicia płaszczyzny granicznej pakietu stojana osią podłużną silnika,

Rys. 1. Geometria czoła cewki uzwojenia stojana i podział na i-te segmenty Fig. 1. Geometry of the end coil of stator winding and division of the stator end coil into parts

- oś x przechodzi przez środek przekroju poprzecznego żłobkowej części górnej półcewki uzwojenie stojana i jest zwrócona na zewnątrz silnika,
- oś x pokrywa się z osią podłużną silnika i jest zwrócona na zewnątrz silnika,
- zwrot osi x₂ jest zgodny ze skrętnością stożkowego segmentu czoła górnej półcewki i dlatego układ współrzędnych może być prawo- lub lewoskrętny.

Przekrój zarysu czół uzwojenia stojana płaszczyzną x₁-x₂ jest określony: wysięgiem żłobkowych segmentów cewki w_{oj} (j=d dla dolnej oraz j=g dla górnej półcewki), wysięgiem promieniowym czół w_p, wysięgiem osiowym czół w_{os}, promieniami R_j i R_{gd} oraz wysokością przekroju poprzecznego czoła cewki h_c. Kąty nachylenia tworzących stożków dolnej i górnej warstwy uzwojenia stojana wyznacza zależność:

$$\dot{\tau}_{j} = \arcsin \frac{x_{031} R_{01} + x_{011} \sqrt{x_{011}^{2} + x_{031}^{2} - R_{01}^{2}}}{x_{01j}^{2} + x_{03j}^{2}}$$

w której

$$x_{o1j} = R_{ogd} - R_{osj}$$

$$x_{o3j} = w_{os} - R_{gd} - b_o - w_{oj}$$

$$R_{oj} = R_{sj} \pm R_{sgd}, \quad (- \text{ dla } j=g,$$

oraz

$$R_{sj} = R_{j} + 0.5 h_{c}$$

$$R_{sgd} = R_{gd} + 0.5 h_{c}$$

$$R_{ogd} = R_{\dot{z}d} + w_{p} - R_{gd} - h$$

$$R_{osj} = R_{\dot{z}j} + R_{sj} \cdot$$

Wielkości podane we wzorach (1) do (1b) zaznaczono na rys. 1.

Prostoliniowe wysięgi żłobkowych segmentów cewki uzwojenia stojana przechodzą w segmenty stożkowe czoła cewki, poprzez przestrzenne wykorbienie (kolanko) dolnej i górnej półcewki. Wykorbienie średniej linii półcewki jest realizowane dwoma łukami (rys. 2). Pierwszy łuk o promieniu R_{sj} (j=d dla dolnej, j=g dla górnej półcewki) jest styczny do osi wysięgu żłobkowego półcewki oraz do tworzącej stożka, na pobocznicy którego leży średnia linia stożkowego segmentu półcewki. Drugi łuk o promieniu krzywiz-

. .

(1b)

- dla j=d) (1a)

(1)

ny R_{e1j} jest styczny do łuku o promieniu R_{sj} oraz do zarysu segmentu stożkowego średniej linii czoła półcewki. Kąt r_{1sj} (rys. 2), określający położenie punktu styczności tych łuków, zależy od rozwiązania konstrukcyjnego i jest przyjmowany w $\epsilon < 0, r_j > .$

Z punktu styczności S_{1j} (rys. 2) łuków, leżącego w płaszczyźnie określonej przez oś wysięgu żłobkowego i tworzącą stożka, prowadzi się prostą prostopadłą do tworzącej stożka. Punkt przecięcia tych prostych P_{1j} przyjmuje się za początek łuku na pobocznicy stożka. Pozostałe punkty tego łuku otrzymuje się przez kład na pobocznicę stożka punktów okręgu o promieniu R_{e1j}, którego średnicę otacza się stycznie po okręgu o promieniu R_{psj}, będącego wynikiem przecięcia pobocznicy stożka płaszczyzną przechodzącą przez punkt P_{1j}. Z zależności trygonometrycznych na rys. 1 promień:

$$R_{psj} = R_{osj} - R_{sj}(\cos\gamma_j + \sin\gamma_j \sin\gamma_{1sj})$$
 (2)

W wyniku otaczania średnicy okręgu o promieniu R_{elj} po okręgu o promieniu R_{psj} łuk P_{lj}P_{oj} jest równy odcinkowi P_{lj}P_{oj}. Wobec tego kąt:

$$\Psi_{P_{j}} = \frac{R_{e1j}}{R_{psj}} (1 - \cos\varphi_{Pj})$$
(3)

a odległość punktu P_j (mierzona po tworzącej stożka) od okręgu o promieniu R_{psj} wynosi:

$$f_{\rm Pj} = R_{\rm e1j} \sin \varphi_{\rm Pj} \tag{4}$$

gdzie $\varphi_{\rm Pi}$ - kąt wodzący promienia okręgu (rys. 2).

W zakresie kata występuje równoczesne gięcie średniej linii czoła cewki według łuków o promieniach R_{sj} i R_{e1j} . Dlatego w zakresie tego kata położenie punktów P. w płaszczyżnie x_1-x_2 układu wspołrzędnych jest określone przez kat Ψ_{Pj} , który jest funkcją kata $\gamma_j \epsilon < \langle \gamma_{1sj} \rangle$ oraz promień R_{Pj} , odpowiadający położeniu tego punktu na łuku o promieniu R_s . Od punktu P_j odpowiadającego kątowi γ_j punkty kładu okręgu leżą na pobocznicy stożka i ich położenie jest określane przez kąt Ψ_{Pj} .

Łuk na pobocznicy stożka, powstały z kładu okręgu, jest także styczny do linii średniej stożkowego segmentu półcewki uzwojenia stojana. Łuk segmentu stożkowego, który szczegółowo został opisany w pracy [3], jest przestrzennym kładem ewolwenty okręgu na pobocznicę stożka, na której leży linia średnia tego segmentu. Ewolwentę okręgu przyjmuje się na płaszczyźnie prostopadłej do osi podłużnej silnika i przecinającej pobocznicę stożka w okręgu pokrywającym się z okręgiem podstawowym ewolwenty.

Średnia linia segmentu stożkowego półcewki przechodzi poprzez Łuk przestrzenny o promieniu krzywizny R_{e2j} (rys. 2) w średnią linię główki cewki będącą Łukiem o promieniu R_{sgd}. Łuk o promieniu krzywizny R_{e2j} otrzymuje się przez kład okręgu o promieniu R_{e2j} na pobocznicę stożka. Średnica tego okręgu jest otaczana po okręgu o promieniu R_{ksj}, który wyznacza zależność trygonometryczna z rys. 2:

$$R_{ksj} = R_{ogd} + R_{sgd} (\cos \gamma_j + \sin \gamma_j \sin \gamma_{2sj})$$

w której znaki górne odpowiadają j=g, a dolne j=d.

Analogicznie do wykorbienia półcewki, kąt:

$$\Psi_{Kj} = \frac{R_{a2j}}{R_{kaj}} (1 - \cos\varphi_{Kj})$$
(6)

oraz

$$f_{K_i} = R_{e2i} \sin \varphi_{K_i}$$

a także w zakresie kąta γ_{2sj} następuje równoczesne gięcie według łuków o promieniach R_{sgd} i R_{e2j}.

3. Linia średnia czół uzwojenia stojana

Czoło cewki uzwojenia stojana dzieli się na czoło górnej półcewki (j=g) oraz czoło dolnej półcewki (j=d). Każdą półcewkę w przestrzeni czół uzwojenia stojana dzieli się na dziewięć i-tych segmentów (rys. 1), przy czym:

143

(7)

(5)

B. Drak

- i=1 odcinek od pakietu stojana do wysięgu żłobkowej części cewki z izolacją żłobkową - w_{zj}.
- i=2 odcinek równy różnicy odległości w_{oj} środka łuku o promieniu R_j od pakietu stojana i w_{żi},
- i=3 wycinek łuku o promieniu R_{sj} i kącie ($\gamma_j \gamma_{jsj}$),
- i=4 łuk przestrzenny w zakresie kąta Y_{1sj}, powstały z łuków o promieniach krzywizny R_{sj} i R_{e1j},
- i=5 łuk na pobocznicy stożka o promieniu krzywizny R_{elj} od punktu odpowiadającego kątowi do punktu styczności tego łuku ze stożkowym zarysem czoła półcewki,
- 1=6 stożkowy zarys czoła półcewki,
- i=7 łuk na pobocznicy stożka o promieniu krzywizny R_{92j} od punktu styczności ze stożkowym zarysem czoła półcewki do punktu odpowiadającego kątowi Y₁,
- i=8 łuk przestrzenny w zakreśle kąta Y_{2sj}, powstały z łuków o promieniach krzywizny R_{e2j} i R_{sgd},

W przyjętym układzie współrzędnych (rys. 1) punkty linii średniej zerysu czół cewki uzwojenia stojana wyznaczają współrzędne:

 $x_{1ij} = R_{ij} \cos \beta_{ij}$

 $x_{2ij} = R_{ij} \sin \beta_{ij}$

 $x_{3ij} = x_{3pij} + (x_{3kij} - x_{3pij})m_i$, dla i=1 i 2

x3ij = x3pij + x3qij, dla pozostałych i-tych segmentów, (8)

gdzie:

mi	- parametr zmienny w $\epsilon < 0, 1 >$,
R _{ij}	 rzut promienia wodzącego punktu linii średniej na płaszczyznę x₁-x₂ układu współrzędnych,
β _{ij}	- kat między osią x, i rzutem R _{ij} promienia wodzącego,
x _{3pij}	- współrzędna x _{3ij} początkowego punktu i-tego segmentu,
x _{3kij}	- współrzędna x _{31j} końcowego punktu i-tego segmentu,
x ₃ qij	- współrzędna x3ij punktu 1-tego segmentu, zależna od kąta Pij
W tabe	li 1 podano zależności wyznaczające kąty P ₁₁ dla poszczegól-

nych i-tych segmentów j-tych półcewek uzwojenia stojena, w których:

ż - ilość żłobków pakietu stojana,

y, - poskok uzwojenia stojana,

k1.1	-	współczynnik	określający	zależność	kata	21si	od	kąta	140
k2j	-	współczynnik	określający	zależność	kąta	Y2sj	od	kata	Tj.

Tabela 1

Seg-	Katy pomocnicze	TA TO MANAGE	A			
ment 1	۴ij	¥ij	Pij			
1	C. HICCLER BACKER	-	βwj			
2	164	E1 ⁴ -	βwj			
3	-	- 198	βwj			
4	$\operatorname{arcsin} \frac{R_{si}}{R_{e1j}} (\sin \gamma_{1sj} - \sin(1 - m_4) \gamma_{1sj})$	$\frac{R_{e1j}}{R_{psj}}(1-\cos\varphi_{4j})$	$\beta_{wj} \stackrel{\pm}{=} \Psi_{4j}$			
5	$\varphi_{p5j} + (\varphi_{k5j} - \varphi_{p5j})m_5$ $\varphi_{p5j} = \varphi_{4j}$ dla $m_4 = 1$	Relj(1-cosp _{5j})	β _{wj} ±Ψ _{5j}			
6	φ _{psj} + (φ _{ksj} - φ _{psj}) _{m6}	Ψ6j ^{-arct} 3 % 6j -¥ pj	βwj ±Ψ6j			
7	$\varphi_{p7j} + (\varphi_{k7j} - \varphi_{p7j})^m 7$ $\varphi_{k7j} = \varphi_{8j}$ dla $m_8 = 0$	$\frac{\frac{R_{e21}}{R_{ksj}}(1-\cos\varphi_{7j})}{R_{ksj}}$	β _{gd} ∓Ψ 7j			
8	arcsin R _{sgd} (sin72sj - sin m ₃ 72sj) R _{e2j}	R _{e2j} (1-cosφ _{8j}) R _{ksj}	β gd ∓¥ 8j			
9		a table had -	₿ _{gð}			
W powyższych zależnościach:						
1) $\beta_{wg} = 0$, $\beta_{wd} = \frac{2\pi}{2} y_2$, $\beta_{gd} = \delta_g$, $\tau_{1sj} = \tau_j k_{1j}$, $\tau_{2sj} = \tau_j k_{2j}$						
2) $\varphi_{k5j} = \varphi_{s5j}, \varphi_{p7j} = \varphi_{s7j}$ oraz $\varphi_{ksj}, \varphi_{psj}, \delta_g$ - oblicza się według wzorów podanych w pkt. 3.1.						

Zależności wyznaczające kąty Pił

B. Drak

Tabela 2

et bars fig-

iii		Katy graniczne				
	7 pij	i kij				
R _{żj}		-				
Rżj		- 2				
R _{osj} - R _{sj} cost _{jj}	0	r _j (1 - k _{1j})				
R _{osj} - R _{sj} cos [*] 4j	$f_{j}(1 - k_{1j})$	n v kést				
R _{pej} - R _{elj} sin % j sin% _{5j}	-	Y = 1214				
$R_{ej}(\cos^2 t_j + \sin^2 t_j) \sqrt{\sin^2 t_j + \varphi_{ej}^2}$	1410 T- 111	1 + colt				
R _{ksj} - R _{e2j} sinj _j sing _{7j}	the contract of the	a arosta a				
R _{ogd} - R _{sgd} cos j sj	π+ Y _d dla j=d, oraz Y _E dla j=g	$\pi + \gamma_d (1 - k_{2d})$ dla j=d, oraz $\gamma_g (1 + k_{2g})$ dla j=g				
R _{ogd} - R _{sgd} cos ¹ 9j	N+7d(1-k _{2d}) dla j=d, oraz 7g(1 + k _{2g}) dla j=g	0,5(7 7+7_d+7_g) dla j=d 1 j=g				
	$\frac{R_{zj}}{R_{zj}}$ $R_{osj} - R_{sj} \cos t_{3j}$ $R_{osj} - R_{sj} \cos t_{4j}$ $R_{psj} - R_{e1j} \sin t_{j} \sin t_{5j}$ $R_{ej} (\cos^{2}t_{j} + \sin t_{j}) \sqrt{\sin^{2}t_{j} + \varphi_{6j}^{2}}$ $R_{ksj} - R_{e2j} \sin t_{j} \sin t_{7j}$ $R_{ogd} - R_{sgd} \cos t_{8j}$ $R_{ogd} - R_{sgd} \cos t_{8j}$	R_{2j} - R_{2j} - R_{2j} - $R_{0sj} = R_{sj} \cos t_{3j}$ 0 $R_{osj} = R_{sj} \cos t_{4j}$ $t_j(1 - k_{1j})$ $R_{psj} = R_{e1j} \sin t_j \sin t_{5j}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(\cos^2 t_j + \sin t_j \sqrt{\sin^2 t_j + \varphi_{6j}^2}$ - $R_{ej}(1 + k_{2g})$ - $R_{ogd} - R_{egd} \cos^2 t_{2j}$ $\pi t_j t_j (1 - k_{2g})$ $R_{ogd} - R_{egd} \cos^2 t_{2j}$ $\pi t_j t_j (1 - k_{2g})$ $R_{ogd} - R_{egd} \cos^2 t_{2j}$ $\pi t_j t_j (1 - k_{2g})$ $R_{ogd} - R_{egd} \cos^2 t_{2j}$ $R_{ogd} t_j t_j t_j t_j t_j t_j t_j t_j t_j t_j$				

Zależności wyznaczające promienia R_{ij} oraz graniczne wartości kątów Y₁₄

146

Graniczne wartości współrzędnej x_{3ij} oraz zależności wyznaczające współrzędne x_{3%ij} linii średniej zarysu czół uzwojenia stojana

Seg- ment	Wartości grani Współrzędnej y	iczne 3ij	Współrzędna ×371j			
i	x _{3pij}	x _{3kij}	the partitude of the lar			
1	0	[₩] żj	a final strategies a ball and a second			
2	₩żj	^w oj				
3	^w oj	-	R _{sj} sin ï 3j			
4	^{vi} oj	- Stanly	R _{sj} sinf _{4j}			
5	×3psj		R _{elj} cos j sin¢ _{5j}			
6	^x 3psj ^{+x} 3\$5j przy m ₅ = 1	acta a	$R_{ej} \cos \gamma_j (\sqrt{\sin^2 \gamma_j + \varphi_{6j}^2} - \sqrt{\sin^2 \gamma_j + \varphi_{psj}^2})$			
7	x _{3ksj}	-	-R _{e2j} cos j sin¢7j			
8	w _{os} - R _{zgd}	-	R _{sgd} sin % j			
9 w _{os} - R _{zgd} - R _{sgd} sint _{9j}						
W powyższych zależnościach:						
1) $x_{3psj} = w_{oj} + R_{sj}(sint_j - cost_j sint_{1sj})$ 2) $x_{oi} = w - R_{sj} + R_{sj}(sint_j + cost_j sint_{0sj})$						
3) $R_{zgd} = R_{gd} + h_c$						
4) znaki górne dla j = g, znaki dolne dla j = d						

147

Tabela 3

(10)

(10a)

Promienie R punktów i-tych segmentów linii średniej zarysu czoła cewki uzwojenia stojana wyznacza się według zależności podanych w tabeli 2. W tabeli tej podano także początkowe i końcowe wartości katów 1. Graniczne wartości współrzędnych z punktów i-tych segmentów oraz zależności wyznaczające współrzędne z god j podano w tabeli 3.

3.1. <u>Styczność stożkowego zarysu linii średniej z łukami przejścia</u> miedzy segmentami czoła cewki

Zachowanie ciągłości na całej długości linii średniej zarysu czoła cewki uzwojenia stojana wymaga zachowania styczności stożkowych segmentów cewki (i=6) dolnej i górnej półcewki z łukami wykorbienia (segmenty i=5) oraz łukami przejścia (segmenty i=7) stożkowych zarysów czoła cewki w główkę cewki (rys. 1).

Z warunku styczności dwóch łuków przestrzennych, a mianowicie, że w punkcie wspólnym tych łuków styczne do nich pokrywają się, otrzymuje się równanie styczności dwóch łuków w postaci:

$$\cos\varphi_{\text{sij}} \frac{\varphi_{\text{6sij}}}{1 + \varphi_{\text{6sij}}^2} - \sin\varphi_{\text{sij}} \frac{R_{\text{si}}}{R_{\text{6sij}}\sqrt{\sin^2 y} + \varphi_{\text{6sij}}^2} = 0$$
(9)

w którym z geometrii stożkowego segmentu czoła cewki [3] kąt położenia promienia wodzącego punktów segmentu i=6 linii średniej wyznacza zależność:

$$\varphi_{6sij} = \frac{1}{R_{ej} \sin \gamma_j} \sqrt{(R_{sij} - R_{ej} \cos 2\gamma_j)(R_{sij} - R_{ej})}$$

gdzie:

$$R_{s5j} = R_{psj} + R_{e1j} \sin \gamma_j \sin \varphi_{s5j}$$
$$R_{s7j} = R_{ksj} - R_{e2j} \sin \gamma_j \sin \varphi_{s7j}$$
$$R_{ej} = \frac{\dot{z}(b_c + d_j)}{2\pi}$$

przy czym:

ż - ilość żłobków pakietu stojana,

b. - szerokość przekroju poprzecznego czoła cewki,

d, - odległość między bokami czół sąsiednich cewek.

Wyzyskując zależności (10) i (10a) w równaniu (9), wyznacza się kąt φ_{sii} dla:

 i=5 kąt φ_{s5j}, który jest kątem wodzącym promienia R_{e1j} żuku segmentu i=5 w punkcie styczności tego żuku z segmentem i=6.

- i=7 kąt φ_{s7j} , który jest kątem wodzącym promienia R_{e2j} łuku segmentu i=7 w punkcie styczności tego łuku z segmentem i=6. Kąty φ_{sij} przyjmują wartości z $\epsilon < 0, \pi/2 >$. W równaniu (9) promień R_{6sij} = R_{psj} dla i=5 oraz R_{6sij} = R_{ksi} dla i=7.

Po wyznaczeniu kątów φ_{sij} z równania (9) oblicza się według (10) z wyzyskaniem (10a) kąt $\varphi_{psj} = \varphi_{6s5j}$, który jest początkową wartością kąta promienia wodzącego określającego położenie punktów linii średniej zarysu stożkowego segmentu czoła cewki (i=6) oraz oblicza się kąt $\varphi_{ksj} = \varphi_{6s7j}$, który jest końcową wartością kąta wodzącego tego promienia. W zakresie różnicy wartości tych kątów jest kształtowany zarys stożkowy czoła cewki uzwojenia stojana.

Kąt początkowy Ψ_{pj} , przy którym linia zarysu segmentu stożkowego przecina tworzącą stożka, leżącą w płaszczyźnie określonej przez linię średnią wysięgu żłobkowego cewki i oś x_3 (rys. 1) wyznacza zależność:

$$\Psi_{pj} = \varphi_{psj} - \arctan \varphi_{psj} - \frac{R_{e1j}}{R_{psj}} (1 - \cos \varphi_{s5j})$$
(11a)

a kąt końcowy, Ψ_{kj} , przy którym linia zarysu segmentu stożkowego przecina tworzącą stożka, leżącą w płaszczyźnie przechodzącej przez linię średnią główki cewki i oś x₃, wyznacza zależność:

$$\Psi_{kj} = \varphi_{ksj} - \arctan_{\varphi_{ksj}} + \frac{R_{e2j}}{R_{ksj}} (1 - \cos\varphi_{s7j}) .$$
(11b)

Kąt rozpiętości dolnej półcewki (rys. 2):

$$\delta_{d} = \Psi_{kd} - \Psi_{pd} \tag{12a}$$

a kat rozpiętości górnej półcewki:

$$\delta_g = \Psi_{kg} - \Psi_{pg}$$
(12b)

Ciągłość linii średniej zarysu czoła cewki między dolną i górną półcewką będzie zachowana; gdy:

$$\delta_d + \delta_g = \frac{2\Gamma}{2} y_2 , \qquad (13)$$

Sposób spełnienia tego warunku zależy od przyjętych założeń konstrukcyjnych cewki uzwojenia stojana, w których może wystąpić:

1) wariant A - gdy cewka jest symetryczna, wówczas $\delta_{a} = \delta_{a} = \frac{\pi}{2} y_{a}$

110.

2) wariant B - gdy cewka jest niesymetryczna i długość linii średniej dolnej półcewki s_d musi być równa długości linii średniej górnej półcewki s_g,

 3) wariant C - gdy cewka jest niesymetryczna i długości linii średnich półcewek są różne.

Każdy z tych wariantów może być spełniony przez uznanie za parametr zmienny jednej z trzech wielkości wejściowych do obliczeń, a mianowicie d_j, w_{os} i w_p.

3.2. <u>Odlesłość między liniami średnimi stożkowych segmentów czół</u> uzwojeń stojana

Założona we wzorze (10a) odległość $b_c + d_j$ dwóch sąsiednich ewolwent obróconych o kąt $\varphi_0 = 2M/\dot{z}$ jest rzeczywista odległością między nimi tylko na płaszczyźnie. Z uwagi na krzywiznę pobocznicy stożka odległość między liniami kładu tych ewolwent na pobocznicę stożka ulegnie zmniejszeniu. Ewolwentowy charakter linii kładu ewolwenty na pobocznicę stożka sprawia, że za odległość między liniami 1 i 2 (rys. 3) można w pełni uznać odległość punktu P_j na linii 1 od punktu o przecięcia linii 2 płaszczyzną przechodzącą przez punkt P_i i prostopadłą do linii 1 w tym punkcie.

Rys. 3. Odległość między dwome segmentami stożkowymi czoła cewki uzwojenia stojana Fig. 3. Distance between two conic parts of the end coil of stator winding

Współrzędne punktu P, linii 1 wyznaczają równania (8), a współrzędne punktu Q, na linii 2 wyznaczają jej równania parametryczne:

 $x_{1Qj} = R\varphi_{Qj} \cos\beta_{Qj}$ $\mathbf{x}_{2Qj} = R\varphi_{Qj} \sin\beta_{Qj}$ x3Qj = x3p6j + x39Qj

gdzie:

$$\begin{aligned} & \mathbb{R}\varphi_{Qj} = \mathbb{R}_{ej}(\cos^2 \gamma_j + \sin\gamma_j \sqrt{\sin^2 \gamma_j + \varphi_Q^2}) \\ & \mathbb{K}_3 \varphi_{Qj} = \mathbb{R}_{ej} \cos\gamma_j (\sqrt{\sin^2 \gamma_j + \varphi_Q^2} - \sqrt{\sin^2 \gamma_j + \varphi_{psj}^2}) \end{aligned}$$

$$\beta_{Qj} = \beta_{wj} \pm (\frac{2U}{2} + \Psi_Q - \Psi_{p6j}), + dla \quad j=g, - dla \quad j=d,$$

oraz

$$\Psi_Q = \varphi_Q$$
 - $\operatorname{arctg} \varphi_Q$
 $\Psi_{psj} = \varphi_{psj}$ - $\operatorname{arctg} \varphi_{psj}$

Współrzędne punktu q_j przecięcia linii 2 płaszczyzną prostopadłą do linii 1 w punkcie P_j oblicza się po wyznaczeniu kąta φ_{qj} z równania:

$$(x_{1Qj} - x_{16j}) \frac{dx_{16j}}{dm_6} + (x_{2Qj} - x_{26j}) \frac{dx_{26j}}{dm_6} + (x_{3Qj} - x_{36j}) \frac{dx_{36j}}{dm_6} = 0$$
(15)

w którym pochodne linii 1 w punkcie P_j wyznacza się według wzoru (19). Kąt φ_{Qj} przyjmuje wartości w $\epsilon < (\varphi_{6j} - 2N/2), \varphi_{6j} > \cdot$ Po wyznaczeniu kąta φ_{Qj} oblicza się współrzędne punktu Q_j, a następ-

nie odległość punktu P, od punktu Q, z zależności:

$$d_{PQj} = \sqrt{(x_{1Qj} - x_{16j})^2 + (x_{2Qj} - x_{26j})^2 + (x_{3Qj} - x_{36j})^2}$$
(16)

3.3. Długość linii średniej cewki uzwojenia stojana Długość linii średniej cewki uzwojenia stojana wyznacza zależność:

$$\mathbf{L}_{\acute{s}r} = 2(\mathbf{s}_{\acute{d}} + \mathbf{s}_{\acute{g}} + \mathbf{l}_{\acute{z}})$$

151

(14)

(14b)

(17)

(14a)

	Zależn	Tabela 4 ości wyznaczające wielkości A ₁₄ oraz B ₄₄
gment	Åıj	B13
_	×3ktj - ×3ptj	0
01	^x 3k2j ^{- x} 3p2j	0
-	$R_{a3}(r_{k33} - r_{p33})$	0
	$\mathbb{R}_{g_{3}}(t_{k43}^{*} - t_{p43}^{*})$	$\pm \frac{R_{B31}^2}{R_{PB3}^2} \cdot \frac{t_{181}}{\sqrt{R_{B13}^2 - R_{B1}^2 - R_{B3}^2 (\sin t_{183} - \sin(1 - m_4) t_{183})}} \cdot \frac{R_{43}}{R_{43}}$
	$R_{e1j}(\varphi_{k5j} - \varphi_{p5j}) \cos \varphi_{5j}$	$\pm \frac{R_{e11}}{R_{psj}} R_{5j} (\Psi_{K5j} - \Psi_{p5j}) sin\Psi_{5j}$
(g1 + 3	$R_{ej} \frac{(r_{ke1} - r_{ne1})r_{6,1}}{\sqrt{sin^2}t_j + r_{6,j}^2}$	$\pm R_{63} \frac{(\varphi_{ke1} - \varphi_{pe1}) \varphi_{63}^2}{1 + \varphi_{63}^2}$
7 10	$= R_{e23}(\varphi_{k73} - \varphi_{p73})\cos\varphi_{73}$	$\mp \frac{R_{e21}}{R_{E31}} R_{7,3} (q_{k7,3} - q_{p7,3}) sinq_{7,3}$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$R_{\mathrm{sgd}}(t_{\mathrm{kgj}} - t_{\mathrm{pgj}})$	$\mp R_{B3} \frac{R_{BSG}^2}{R_{K83}} \frac{1}{\sqrt{R_{e23}^2} - \alpha s m_3 t_{283} (sin t_{283} - sin m_8 t_{283})}}{\sqrt{R_{e23}^2 - R_{SG}^2} (sin t_{283}^2 - sin m_8 t_{283})^2}$
	Rsgd (Yx91 - Yp91)	0
Uwa	ıga: znaki górne dla j=g, zn	nki dolne dla j=d

gdzie:

- s_d długość linii średniej czoła dolnej półcewki, łącznie z wysięgiem żłobkowym,
- s długość linii średniej czoła górnej półcewki, łącznie z wysięgiem żłobkowym,
- 1. długość pakietu stojana.

Długość poszczególnych i-tych segmentów czoła półcewki wyznacza zależność:

$$s_{ij} = \int_{0}^{1} \sqrt{\left(\frac{dx_{1ij}}{dm_{1}}\right)^{2} + \left(\frac{dx_{2ij}}{dm_{1}}\right)^{2} + \left(\frac{dx_{3ij}}{dm_{1}}\right)^{2}} dm_{i}$$

gdzie:

$$\frac{dA_{111}}{dm} = A_{1} \sin \delta_{ij} \cos \beta_{ij} - B_{j} \sin \beta_{ij}$$

$$\frac{dx_{211}}{du_1} = A_i \sin \delta_{ij} \sin \beta_{ij} + B_i \cos \beta_{ij}$$

$$\frac{dx_{3ij}}{dm_i} = A_i \cos \delta_{ij}$$

przy czym – δ_{ij} = 1, dla 3,4,8,9 – δ_{ij} = 1, dla i=5,6,7 oraz δ_{ij} = 0 dla i = 1,2. Zależności na A_i oraz B_i występujące we wzorze (19) podano w tabeli 4. Całkowita długość linii średniej czoła półcewki jest sumą długości jej segmentów składowych, czyli:

$$s_{j} = \sum_{i=1}^{i=9} s_{ij}$$
 (20)

4. Rzuty przekrojów poprzecznych czoła cewki uzwojenia stojana

Celem wyznaczenia współrzędnych punktów charakterystycznych konturu przekroju poprzecznego czoła cewki przyjmuje się lokalny układ współrzędnych s₁, s₂ (rys. 4a), którego osie pokrywają się z głównymi osiami przekroju poprzecznego czoła cewki. Układ ten, zgodny ze skrętnością stożkowego segmentu półcewki, przesuwa się wzdłuż zarysu linii średniej czoła półcewki w płaszczyźnie prostopadłej do stycznej do linii średniej. Oś s₁ jest prostopadła do powierzchni walcowych o promieniach R_{1j} dla segmentów

(19)

(18)

Rys. 4. Rzuty przekrojów poprzecznych czoła cewki uzwojenia stojana
a) położenie układu osi s₁, s₂ w układzie współrzędnych x₁,x₂,x₃,
b) rzuty czoła cewki na płaszczyznę x₁-x₂, c) rzut punktu P₁ na płaszczyznę, d) wymiary przekroju poprzecznego czoła cewki

Fig. 4. Projections of the cross - sections of the stator end coil a) position of axes system s₁,s₂ in coordinate system x₁,x₂,x₃, b) projection of the end coil on plane x₁-x₂, c) projection of point P₁ on plane, d) dimensions of the cross - section of the end coil

i=1,2,3,4,8,9 oraz prostopadła do powierzchni stożkowej, na której leżą segmenty czoła cewki i=5,6,7.

Wykorzystując zależności obowiązujące przy przesuwaniu i obrocie układu współrzędnych s₁,s₂ względem układu x_1,x_2,x_3 - współrzędne punktu $P_k(s_1,s_2)$ przyjmują wartości w układzie współrzędnych x_1,x_2,x_3 :

 $x_{1ik} = a_{11} s_{1k} + a_{21} s_{2k} + x_{1ij}$ $x_{2ik} = a_{12} s_{1k} + a_{22} s_{2k} + x_{2ij}$ $x_{3ik} = a_{13} s_{1k} + a_{23} s_{2k} + x_{3ij}$

(21)

w których a₁₁,...,a₂₃ są wartościami cosinusów kierunkowych osi układów współrzędnych, obliczane według wzorów:

oraz:

$$a_{21} = {}^{\pm} C_{ij} (-A_{ij} \sin \beta_{ij} - B_{ij} \cos \beta_{ij} \sin \delta_{in})$$
$$a_{22} = {}^{\pm} C_{ij} (A_{ij} \cos \beta_{ij} - B_{ij} \sin \beta_{ij} \sin \delta_{ij})$$
$$a_{23} = {}^{\pm} C_{ij} B_{ij} \cos \delta_{ij}$$

gdzie:

$$C_{ij} = \frac{1}{\sqrt{A_{ij}^2 + B_{ij}^2}}$$
 (21c)

przy czym znaki górne obowiązują dla j=g, a znaki dolne dla j=d. We wzorach (21a) i (21b) kat $d_1 = 0$ dla i=1,2; $d_{1j} = 1$ dla i=3,4,8,9; oraz $d_{1i} = \gamma_1^i$ dla i=5,6,7.

Współrzędne punktów $P_k(s_{1k},s_{2k})$ konturu przekroju poprzecznego czoła cewki, których położenie wyznacza się w układzie współrzędnych x_1, x_2, x_3 , podaje tabela 5.

Odległość punktów P₁₂ od osi x₃ wyznacza promień:

$$R_{ik} = \sqrt{x_{1ik}^2 + x_{2ik}^2} .$$
 (22)

Tabela 5

k =	1	2	3	4	5	Uwagi
^s 1k	1 b _i	$-\frac{1}{2}h_i$	$-\frac{1}{2}$ h ₁	12 h1	0	$h_i = h_{\dot{z}}, b_i = b_{\dot{z}}$ dla i=1, oraz
^s 2k	1 b _i	1 b _i	- 1 b _i	1 b _i	0	$h_i = h_c, b_i = b_c$ dla pozostałych i

Współrzędne s_{1k} i s_{2k} punktów P_k

and the D

któw P_k

10.55

A-Bren Mar 2, 0 + 17 +

(21a)

(21b)

5. Kształtowanie czół uzwojeń stojanów maszyn indukcyjnych dużych mocy

Czoła cewek uzwojeń stojanów maszyn indukcyjnych dużych mocy najczęściej kształtuje się na specjalnie do tego celu wykonanych szablonach (modelach). Wprowadzane ostatnio w kraju specjalne rozciągarki do kształtowania czół cewek uzwojenia stojana wymagają także wykonania i nastawienia segmentów szablonów kształtujących czoło cewki. Dla czół uzwojeń stojanów maszyn dwubiegunowych z uwagi na ich długość stosuje się często wstępne kształtowanie na rozciągarkach, a dokładne na szablonach.

Wyniki analitycznego wyznaczania zarysu czoła cewki uzwojenia stojana można wyzyskać bezpośrednio przy wykonywaniu na obrabiarkach kopiujących szablonu do kształtowania czół cewki stojana lub przy ustawianiu segmentów szablonu na rozciągarkach kształtujących.

Często zachodzi konieczność wykonania szablonu (wspólnego dla dolnej i górnej półcewki) do kształtowania czół cewek z bryły prostopadłościanu. W tym celu wykonuje się rzuty prostopadłe punktów charakterystycznych przekroju poprzecznego czoła cewki na płaszczyznę α , przechodzącą przez punkty P i P₂ (rys. 4b) równolegle do osi x₃. Płaszczyzna α odpowiada górnej płaszczyźnie prostopadłościanu, w którym ma być wykonany szablon do kształtowania czoła cewki uzwojenia stojana.

Przez punkt $P_i(x_{1i}, x_{2i}, x_{3i})$ przekroju czoła cewki prowadzi się prostą prostopadłą do płaszczyzny d. Punkt przebicia płaszczyzny przez tę prostą jest rzutem P_{ai} punktu P na płaszczyznę d. W układzie współrzęd-nych x_1, x_2, x_3 współrzędne punktu P_{ai} wynoszą:

$$x_{1ai} = \frac{x_{11}(x_{102}-x_{101})^2 + x_{101}(x_{202}-x_{201})^2 - (x_{201}-x_{21})(x_{102}-x_{101})(x_{202}-x_{201})}{(x_{102}-x_{101})^2 + (x_{202}-x_{201})^2}$$

$$(x_{1ai} - x_{101})(x_{202} - x_{201}) + x_{201}(x_{102} - x_{101})$$

(23)

gdzie współrzędne punktów P1 i P2 (rys. 4c) odpowiednio wynoszą:

x102 - x101

$$x_{101} = R_{gg}$$

$$x_{201} = 0.5 b_{c}$$

$$x_{102} = \sqrt{R_{dg}^{2} + (0.5 b_{c})^{2} \cos(\delta - \beta_{d})}$$

$$x_{202} = \sqrt{R_{dg}^{2} + (0.5 b_{c})^{2} \sin(\delta - \beta_{d})}$$
(23a)

w których:

$$R_{gg} = R_{w} + H - \frac{3h_{\dot{z}} + h_{g}}{2} - \varepsilon_{p}$$

$$R_{dg} = R_{w} + H - \frac{h_{\dot{z}} + h_{g}}{2}$$

$$\delta = \frac{2\pi}{2} y_{\dot{z}}$$

$$\beta_{d} = \arctan \frac{h_{g}}{2R_{dg}} \cdot \qquad (23b)$$

Wielkości występujące we wzorach (23) zaznaczono na rys. 4b, c, d. Odległość punktu P, od punktu P_{ai} wynosi:

$$s_{ai} = \pm \sqrt{(x_{1ai} - x_{101})^2 + (x_{2ai} - x_{201})^2}$$
 (24)

Odległość s_{ai} przyjmuje się za dodatnią i obowiązuje znak +, gdy $x_{201} < x_{2ai}$ i za ujemną (znak -), gdy $x_{201} > x_{2ai}$.

Odległość punktu P_i od płaszczyzny wyznacza się drogą pośrednią. W tym celu prowadzi się płaszczyznę T (rys. 4b) równoległą do płaszczyzny i przechodząca przez początek układu współrzędnych x₁,x₂,x₃. Odległość między płaszczyznami **c**i T wynosi:

$$a_1 = \frac{|c|}{\sqrt{a^2 + B^2}}$$
(25)

gdzie:

٤

$$A = x_{202} - x_{201}$$

$$B = -(x_{102} - x_{101})$$

$$C = x_{201}(x_{102} - x_{101}) - x_{101}(x_{202} - x_{201})$$

a odległość punktu P, od płaszczyzny T wynosi:

$$I_{2} = \frac{|A \times_{11} + B \times_{21}|}{\sqrt{A^{2} + B^{2}}}$$
(26)

(25a)

wobec tego odległość punktu P. od płaszczyzny & wynosi: .

$$d_{a1} = d_2 - d_1$$
 (27)

Zależności (23) do (26), umożliwiają wyznaczenie wymiarów szablonu do formowania czóż cewek uzwojenia stojana.

LITERATURA

 Aleksiejew A.E.: Konstrukcja maszyn elektrycznych. PWT, Warszawa 1953.
 Dąbrowski M.: Konstrukcja maszyn elektrycznych. WNT, Warszawa 1977.
 Drak B.: Kaztałtowanie czół uzwojeń stojanów maszyn indukcyjnych dużej mocy. Energetyka nr 3-1986.

Recenzent: prof. dr hab. inż. Zbigniew Stein

Wpłynęło do redakcji dnia 15 czerwca 1987 r.

ГЕСМЕТРИЯ И ФОРМИРОВАНИЕ ЛОБОВЫХ ЧАОТЕЙ ОБМОТОК СТАТОРОВ ИНДУКЦИОННЫХ МАШИН БОЛЬШОЙ МОЩНОСТИ

Резюме

Представлен аналитический метод определения геометрий лобовых частей катушок двухслойных обмоток статоров индукционных машин большой мощности, а также метод определения геометрии шаблонов формирования катушок. Принятая линия контура конусного сегмента лобовой части катушки, это пространственная проекция звольвенты круиа на конус, на котором лежат центры поперечных сечений катушки. Эвольвента круга локализована на плоскости пересекающей конус в кругу, которая покрыватся с базовым круґом эвольвенты. Так принятая линия контура обезпечивает разное расстояние межлу боками лобовых частей катушек обмоток статора на всей длиние конусных сегментов. Алгоритм определения контура катушек обмотки статора, а также шаблонов для формирования катушок, проверены при проектировании и изготовлении катушок обмотки статора индукционного двигателя с мощностью 1600 кВ.

GEOMETRY AND FORMING OF STATOR END WINDINGS OF LARGE - POWER INDUCTION MACHINES

Summary

The analytical method of determination of the profile of two - layer stator end windings of large - power induction machines as well as the method of calculating dimensions of coil formers are presented. The assumed profile of a conic part of the end winding is a spatial section of the circle involute on a side surface of the cone, on which centres on the end windings cross sections are situated. The circle involute has been placed on the plane intersecting the side surface of the cone in the circle which coincides with the basic circle of the involute. So - assumed contour line provides equal distance between the sides of the stator end windings along the whole conic part. The algorithm of calculation of the profile of the stator soils and coil formers have been tested during design work and when producing the stator coils of the 1600 kW induction motor.