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STRONG SEQUENCES AND THEIR

CONSEQUENCES IN SOCIAL CHOICE

Abstract. One of the most famous theorems in social choice theory –
Arrow impossibility theorem – was published in 1951. Since Arrowian paper
most researchers tried to find different versions of this theorem not only for
finite but also for infinite sets of alternative and individuals, where one can
treat this situation as anticipation for future social behaviour. The aim of
this paper is to find some results concerning social voting for infinite sets
using one of the combinatorial methods of set theory – strong sequences
method. This method was introduced by Efimov in 1965 for proving well-
known theorems in dyadic spaces, (i.e. continuous images of the Cantor
cube).

1. Introduction

Since 1951 when K. Arrow published his impossibility theorem in social choice

theory [1] a lot of researchers tried to find different versions of this theorem because

Arrow’s result does not hold for the case of infinite number of voters. The infinite

case of Arrow’s theorem has been mentioned for the first time by Fishburn in

[4]. He proved the existence of introduced by Arrow “social welfare function”

using a special kind of probability measure. Later in 70’s of the last century
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Kirman and Sondermann [7] and Hansson [5] cast a new light on a structure of

an Arrowian social welfare function with an infinite population only for the set of

natural numbers, revealing the structure of decisive coalitions for this function as

ultrafiltres. A related result was proved by Mas-Colell and Sonnenschein in [10]

by using the additional condition of “positive responsiveness” which permits the

reinstatement. Ferejohn and Page in [3] formulated the problem of intertemporal

choice from an axiomatic perspective. The authors considered the problem of

aggregating the preference orderings Ri, (preference relation of i-individual of an

infinite sequence of future generations into an intertemporal social preference R).

The aim of this paper is to show some results concerning infinite number of voters

and alternatives. For this purpose one of the combinatorial methods – strong

sequences method – was used.

2. Social choice results

We start with presenting selected results concerning Arrowian theorem and its

versions. In the whole paper we will consider two sets: X – a set of alternatives,

N – a set of individuals. Both such sets can be finite (but have at least two

elements) or infinite. If they are finite we can identify them with finite subsets

of a set of natural numbers, if they are infinite we can identify them with well-

ordered sets of cardinality λ or 2λ, for λ – infinite cardinal. On a set X we

consider a relation Rn which denotes the relation of preference of n−individual,

where n ∈ N . Using Rn we define the relation of indifference In and the relation of

strictly preference Pn as follows: for all x, y ∈ X and n ∈ N (x, y) ∈ In ⇔ (x, y) ∈

Rn ∧ (y, x) ∈ Rn and (x, y) ∈ Pn ⇔ (x, y) ∈ Rn ∧ ¬(x, y) ∈ In. A relation Rn

is quasi-transitive if Pn is transitive. A relation Rn is acyclic if there is no finite

sequence x1, x2, . . . , xk ∈ X such that (x1, x2) ∈ Pn∧(x2, x3) ∈ Pn∧. . .∧(xk, x1) ∈

Pn. Rn is triple acyclic if k = 3. Acyclity is weaker than quasi-transitivity, which

is weaker than transitivity. See example below.

Example 1. Let X = {x, y, z} and let n ∈ N . If (x, y) ∈ Pn, (y, z) ∈ Pn and

(x, z) ∈ In, then Rn is acyclic but not quasi-transitive. If (x, y) ∈ In, (y, z) ∈ In

and (x, z) ∈ Pn, then In is acyclic but not transitive.

Let RN = {(Rn)n∈N : Rn is a preference relation of n-individual}. Let f be

a function defined on RN by the rule f((Rn)n∈N ) = R, where R ⊂ X × X

is a social preference relation for a profile (Rn)n∈N . We say that f generates
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a relation R. This function is called a collective choice rule, (CCR). Let A ⊂ X

be a non-empty set and x ∈ A. Consider C(x,R) = {y ∈ A : (y, x) ∈ R} and

C(A,R) =
⋂
x∈AC(x,R). A CCR is a social decision function (SDF) if R is

a complete relation such that the set C(A,R) is non-empty for all non-empty sets

A ⊂ X . If R is quasi-transitive then SDF is called SDF-Q. A SDF is a social

welfare function (SWF) if R is transitive. Arrow restricted his considerations to

SWF. Accept the following conditions. Let (Rn)n∈N ∈ RN :

Condition U (Unrestricted Domain). The domain of a function f is RN .

Condition P (Pareto Principle). (x, y) ∈ Pn ⇒ (x, y) ∈ P for all x, y ∈ X and

n ∈ N .

Condition WP (Weak Pareto principle). (x, y) ∈ Rn ⇒ (x, y) ∈ R for all x, y ∈ X

and n ∈ N .

Condition D (Non-Dictatorship). There is no n ∈ N such that for all x, y ∈ X

(x, y) ∈ Pn ⇒ (x, y) ∈ P .

Condition WD (Weak Non-Dictatorship). There is no n ∈ N such that for all

x, y ∈ X (x, y) ∈ Pn ⇒ (x, y) ∈ R.

Condition IIA (Independence of Irrelevant Alternatives). For all x, y ∈ X if

(Rn)n∈N , (R
′
n)n∈N ∈ RN and (x, y) ∈ Rn ⇔ (x, y) ∈ R′

n then (x, y) ∈ R ⇔

(x, y) ∈ R′.

A well-known Arrow’s theorem says that

Theorem 2 (Arrow’s theorem). There is no SWF satysfying conditions U, P,

IIA and D.

The authors in [10] proved the similar results to Arrow’s but for SDF-Q.

Fact 1. There is no a SDF-Q satysfying U, P, IIA and WD.

Moreover they introduced the following condition

Condition PRK (Positive Responsivenes). Let (Rn)n∈N , (R
′
n)n∈N ∈ RN , M ⊂ N

of cardinality at least K and x, y ∈ X . If (x, y) ∈ Rn ⇔ (x, y) ∈ R′
n for all

n ∈ N \M and (y, x) ∈ Pn ∧ (x, y) ∈ I ′n or (x, y) ∈ In ∧ (x, y) ∈ P ′
n for all n ∈M ,

then (x, y) ∈ R⇒ (x, y) ∈ P ′.

If |K| = 1 then we will write PR instead of PRK .
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Fact 2. There is no a SDF-Q satysfying U, P, IIA, D and PR.

Fact 3. If |N | > 3 then there is no SDF satisfying conditions U, P, IIA, PR

and WD.

Fact 4. Any SDF-Q satisfying conditions U, P, IIA, and PR must be dictatorial

if there are at least three alternatives.

We show that PRK is not independent from IIA if condition WP holds.

Lemma 3. Assume that conditions WP and PRK for |K| > 1 holds. Then the

condition IIA holds.

Proof. Let (Rn)n∈N , (R
′
n)n∈N ∈ RN . We have (x, y) ∈ Rn ⇔ (x, y) ∈ R′

n for

all x, y ∈ X . By condition PRK we have (x, y) ∈ R ⇒ (x, y) ∈ P ′. Obviously if

(x, y) ∈ P ′ then (x, y) ∈ R′ for all x, y ∈ X . Thus (x, y) ∈ R ⇒ (x, y) ∈ R′.

Suppose now that ¬((x, y) ∈ R′ ⇒ (x, y) ∈ R). It means that there exist x0, y0 ∈

X such that (x0, y0) ∈ R′ ∧ ¬(x0, y0) ∈ R (i.e. (x0, y0) ∈ R′ ∧ (y0, x0) ∈ P ). By

condition WP there exists m ∈ N such that (y0, x0) ∈ P ⇒ (y0, x0) ∈ Pm and

(y0, x0) ∈ R′ ⇒ (y0, x0) ∈ R′
m. Thus (x0, y0) ∈ R′

m ∧ (y0, x0) ∈ Pm. Consider two

cases

1) m ∈ N \M . Then the previous statement is equivalent to (x0, y0) ∈ R′
m ⇒

(x0, y0) ∈ Rm which contradicts to our assumption.

2) m ∈M . It also makes contradiction because (x0, y0) ∈ R′
m 6⇒ (x0, y0) ∈ I ′m.

�

Another results related to the topic of Arrow’s theorem concerns the existence

of “a veto” situation.

We say that an individual n ∈ N has a veto for a pair (x, y) ∈ X × X if

(x, y) ∈ Pn ⇒ (x, y) ∈ R.

We have the following facts (see [11]):

Fact 5. For any SDF satisfying conditions U, P, IIA and PR if there are at least

three alternatives and at least four individuals then someone has a veto.

Fact 6. For any CCR generating only reflexive, complete and triple acyclic R

satisfying conditions U, P, IIA and PR if there are at least four alternatives, then

someone has a veto.
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Other results related to Arrow’s theorem concern so called decisive sets.

A set S ⊂ N is a decisive set (a D-set) for a pair (x, y) ∈ X ×X if and only

if (x, y) ∈ Pn ⇒ (x, y) ∈ P for all n ∈ S. A set S ⊂ N is D-set if and only if

it is a D-set for each pair (x, y) ∈ X × X . A set S ⊂ N is a weak decisive set

(WD-set) for a pair (x, y) ∈ X × X if and only if (x, y) ∈ Pn ⇒ (x, y) ∈ R for

all n ∈ S. A set S ⊂ N is a WD-set if and only if it is a WD-set for each pair

(x, y) ∈ X ×X .

It is obvious that if condition D holds then condition WD holds. The inverse

theorem holds only under some assumptions.

Lemma 4. Let a CCR satisfies conditions U, WP, PRK . If S ⊂ N with |S| 6 |K|

is a WD-set then S is D-set.

Proof. Suppose that S has property WD and does not have property D for some

x, y ∈ X . We have (x, y) ∈ Pn ∧ (y, x) ∈ R for some n ∈ N . By condition WP

(y, x) ∈ P ⇒ (y, x) ∈ Pm for some m ∈ N . But if (y, x) ∈ I we have (y, x) ∈ Im0

for some m0 ∈ S. Thus (y, x) ∈ R ⇒ (y, x) ∈ Rm for some m ∈ N . Divide the

set N as follows: N0 = {n ∈ N : (x, y) ∈ Pn} and M0 = {n ∈ N : (y, x) ∈ Rn}.

Both sets are non-empty. Indeed. N0 6= ∅ because N0 = S. If M0 = ∅ then

N0 = N = S. Thus by condition WP we would obtain (x, y) ∈ P . Contradiction

to our assumption. Divide the set M0 as follows: MP
0 = {n ∈ M0 : (y, x) ∈ Pn}

and M I
0 = {n ∈ M0 : (y, x) ∈ In}. If M I

0 = ∅ then (x, y) ∈ Pn ∧ (y, x) ∈ Pm for

all n ∈ S and m 6∈ S. By condition WP for the set N \ S we have (y, x) ∈ P .

It contradicts to the assumption that S has property WD. Let M I
0 6= ∅. Let

(Rn)n∈N , (R
′
n)n∈N ∈ RN be such that Rn = R′

n for n ∈ MP
0 = M0 \M I

0 and

(y, x) ∈ P ′
n for n ∈ M I

0 . By condition PRK we have (y, x) ∈ R ⇒ (y, x) ∈ P ′.

Since (y, x) ∈ Rn ⇔ (y, x) ∈ R′
n for all n ∈ MP

0 and (y, x) ∈ In ⇔ (y, x) ∈ P ′
n

for all n ∈ M I
0 we have (y, x) ∈ Rn ⇔ (y, x) ∈ R′

n for all n ∈ M0. By condition

PRK and the result above we obtain (y, x) ∈ P ⇔ (y, x) ∈ P ′. Finally we obtain

(x, y) ∈ Pn ∧ (y, x) ∈ Pm ⇒ (y, x) ∈ P for all n ∈ S and m 6∈ S which contradicts

to the assumption that S has property WD. If we were not able to define such

(R′
n)n∈N we would have to divide the set M I

0 for sets MP
1 = {n ∈ M I

0 : (y, x) ∈

P ′′
n } andM I

1 =M I
0 \M

P
1 for some (R′′

n)n∈N such that Rn = R′′
n for n ∈MP

0 ∪MP
1

and repeat our consideration for MP
1 . The construction we can repeat as long as

we obtain our claim. �
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By previous lemma we immediately obtain the following

Corollary 5. Let CCR fulfills conditions U, WP and IIA. If S ⊂ N is a WD-set

then S is a D-set.

A set S ⊂ N is an almost decisive set (AD-set) for a pair (x, y) ∈ X × X if

and only if (x, y) ∈ Pn ∧ (y, x) ∈ Pm ⇒ (x, y) ∈ P for all n ∈ S and m 6∈ S. A set

S ⊂ N is an AD-set iff it is AD for each pair (x, y) ∈ X ×X .

Lemma 6. Let SWF satisfies condition WP. If the set S ⊂ N is a AD-set then

is a WD-set.

Proof. Let (x, y) ∈ X × X be an element such that (x, y) ∈ Pn for all n ∈ S.

By our assumptions (y, x) ∈ Pm for any m ∈ N \ S. Hence (x, y) ∈ Rm for any

m ∈ N \ S. By condition WP we have that (x, y) ∈ R for any n ∈ N . �

In the previous lemma if we assume that a function is CCR only we have the

following counterexample.

Example 7. Suppose N = {1, 2}. Consider the CCR defined as follows xPy if

[(xP1y∧xP2y)∨ (xP1y∧yP2z)]; yPx if (xP1y∧xI2y); xIy otherwise. Notice that

{1} is almost decisive but not weakly decisive. WP is satisfied.

Lemma 8. Assume that a SWF satisfies conditions U, WP and PRK for |K| > 1.

Then there can be only one D-set.

Proof. By previous lemma it is enough to show that there is unique AD-set.

Suppose that there are two sets, i.e. S1, S2 ⊂ N such that S1 6= S2 which are AD.

It means that for a pair (x, y) ∈ X ×X (x, y) ∈ Pn ∧ (y, x) ∈ Pm for all n ∈ S1

and m ∈ S2 \ S1. Since S1 is an AD-set, thus the previous statement follows

that (x, y) ∈ P but S2 is also an AD-set, thus the previous statement follows that

(y, x) ∈ P . Contradiction. �

According to previous lemma and Lemma 3 we have

Lemma 9. For any SWF satisfying conditions U, WP and IIA there can be only

one D-set.
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3. Strong sequences in social choices

We start with presenting some historical notes on the strong sequences method.

This method was introduced by B.A. Efimov in [2] as a useful method for proving

well-known theorems in dyadic spaces. Let us remind Efimov’s main result. Let

T be an infinite set. Let DT = {p : p : T → {0, 1}} denotes the Cantor cube. For

s ⊂ T , i : s→ {0, 1} let Hi
s = {p ∈ DT : p|s = i}. Efimov defined strong sequences

in the subbase of the Cantor cube {Hi
{α} : α ∈ T, i : {α} → {0, 1}} as follows.

A pair (Hi
s, H

i
v) where |s| < ω is called a connected pair if Hi

s ∩ Hi
v 6= ∅.

A sequence (Hiα
sα
, Hiα

vα
) consisting of connected pairs is called a strong sequence if

Hiα
sα

∩H
iβ
vβ = ∅ whenever α > β.

Theorem 10 (Efimov’s theorem). Let κ be a regular, uncountable cardinal

number. In the space DT a strong sequence (Hiα
sα
, Hiα

vα
), α < κ such that |sα| < ω

and |vα| < κ for each α < κ does not exists.

In the paper [13] the method of strong sequences was introduced as follows:

Let X be a set, and let B ⊂ P (X) be a family of non-empty subsets of X

closed under finite intersections. We say that a family C ⊂ B is a centered family

if and only if
⋂
F 6= ∅ for each finite subfamily F ⊂ C. Let S,H ⊂ B with |S| < ω.

A pair (S,H) is called connected if S∪H is centered. A sequence (Sφ, Hφ); φ < α

consisting of connected pairs is called a strong sequence if for all λ, in the range

φ < λ < α, a family Sλ ∪Hφ is not centered.

Fact 7 ([13]). If for B ⊂ P (X) there exists a strong sequence (Sφ, Hφ)φ<(κλ)+

such that |Hφ| 6 κ for each φ < (κλ)+, then the family B contains a subfamily of

cardinality λ+ consisting of pairwise disjoint sets.

This method was used for proving the following theorems: Kurepa theorem [8],

Marczewski theorem [9] on cellurality of dyadic spaces, Shanin theorem [12] on

a calibre of dyadic spaces, Erdös-Rado theorem (see [13]).

For the purpose of this paper the method of strong sequences will be introduced

on a set with relation r ⊂ Y × Y . We do not assume anything about this relation

as far as possible.

Let (Y, r) be a set with relation r on Y . A set A ⊂ Y has a bound if there

exists b ∈ A such that for all a ∈ A we have (a, b) ∈ r. Elements a, b ∈ Y are

compatible if they have a bound. A set A ⊂ Y is ω−directed if every subset of A

of cardinality less than ω has a bound.
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Definition 11. Let (Y, r) be a set with a relation r. A sequence (Hφ)φ<α, where

Hφ ⊂ Y , is called a κ-strong sequence if:

1o Hφ is ω-directed for all φ < α;

2o Hψ ∪Hφ is not ω-directed for all φ < ψ < α.

Using arguments like in [6], Theorem 3.5 we conclude that the following theo-

rem is true

Theorem 12. Let λ be a regular cardinal number such that 2λ is also regular. If

for (Y, r) there exists a strong sequence (Hφ)φ<2λ such that |Hφ| < 2λ for each

φ < 2λ then there exists a strong sequence (Tφ)φ<λ such that Tφ ⊂ Hφ and |Tφ| < ω

for each φ < λ.

The main result of this paper is the following theorem.

Theorem 13. Let λ be a regular cardinal number such that 2λ is also regular. Let

N,X be sets such that |N | > 2λ and |X | > 2λ. If a SWF satisfies conditions U,

WP and PRK for |K| > 1, then either there exists a unique D-set S ⊂ N with

|S| = 2λ or there exists T ⊂ N with |T | = λ such that each t ∈ T has a veto.

Proof. If there exists a D-set of cardinality 2λ we have our claim. The uniqueness

of such a D-set follows from Lemma 8. Suppose that for eaxh X ′ ⊂ X with

|X ′| < 2λ a D-set has cardinality less than 2λ. Let (x0, y0) ∈ X × X . Let

S0 ⊂ N be a maximal D-set for the pair (x0, y0). Let X0 ×X0 be a maximal set

for which S0 is a D-set. Let S0 be the first element of a strong sequence. Let

(x1, y1) ∈ (X × X) \ (X0 × X0). Let S1 ⊂ N be a maximal D-set for the pair

(x1, y1). Let X1 × X1 be a maximal set for which S1 is a D-set. Let S1 be the

second element of a strong sequence.

Assume that the following sequences have been defined for β < α < 2λ:

1) {(xβ , yβ) ∈ (X ×X) \
⋃
γ<β(Xγ ×Xβ) : β < α};

2) {Sβ : β < α}, where Sβ is a maximal D-set for (xβ , yβ);

3) Xβ ×Xβ ⊂ (X ×X) \
⋃
γ<β(Xγ ×Xγ), where Xβ ×Xβ is a maximal set for

which Sβ is a D-set.
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Since |Xβ| < 2λ for β < α there exists (xα, yα) ∈ X ×X \
⋃
β<α(Xβ ×Xβ). Let

Sα ⊂ N be a maximal D-set for the pair (xα, yα). Let Xα × Xα ⊂ (X × X) \
⋃
β<α(Xβ×Xβ) be a maximal set for which Sα is a D-set. The claim Sβ∪Sα is not

ω- directed for
⋃
α<2λ(Xα ×Xα) follows from the above construction because on

each step we choose maximal sets of required property. Thus {Sα : α < 2λ} forms

the strong sequence. By Theorem 12 there exists a strong sequence {Tα : α < λ}

such that Tα ⊂ Sα and |Tα| < ω for any α < λ. For each α < λ let tα ∈ Tα

be a bound. By our construction {tα : α < λ} is not a D-set for any (x, y) ∈
⋃
α<λ(Xα ×Xα). �

By Theorem 13 and Lemma 3 we have

Corollary 14. Let λ be a regular cardinal number such 2λ is also regular. Let

N,X be sets such that |N | > 2λ and |X | > 2λ. If a SWF satisfies conditions U,

WP and IIA, then either there exists a unique D-set S ⊂ N with |S| = 2λ or there

exists T ⊂ N with |T | = λ such that each t ∈ T has a veto.

4. Interpretation of the main result

In this section we present the social consequences of Theorem 13 (Corollary 14,

respectively). If in the theorem we assume that λ = ℵ0 then we have |N | = |X | = c,

i.e. N is equinumerous with each interval of the real line. Thus we can partition

all individuals into sets number by reals with respect to for example height or

weight or other condition. Then under given assumptions in the Theorem 13

(Corollary 14, respectively) we have two possibilities: we have that individuals

from each set of the partition which form a D-set which is unique or we have

countable number of individuals belonging to different sets of such a partition

such that each such an individual has a veto.
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