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ON THE MACRO- AND MICRO-VIBRATIONS OF ELASTIC PLATES SUBJECTED
TO PERIODICALLY DISTRIBUTED INERTIAL LOADINGS

Summary. The purpose of the work that follows is to present certain problems of dynamics
of the linear elastic composite plates considered in the framework of the 2D Hencky-Reissner
mod,el. The starting point is the non-asymptotic, refined macrodynamics of microperiodic
material structures proposed by prof. Cz. Wozniak. The paper presents the problem when
microdynamics of the plate is connected with the periodical mass distribution.

MAKRO | MIKRO-DRGANIA PLYT SPREZYSTYCH WYWOLANE PERIODYCZNYM
ROZKELADEM OBCIAZENIA INERCYINEGO

Streszczenie. Przedmiotem tego opracowania sg pewne zagadnienia ptyt kompozytowych
w ramach liniowej teorii sprezystosci wg dwuwymiarowego (2D) modelu Hencky-Reissnera.
Punktem wyjscia jest nieasymptotyczna, rafinowana makrodynamika mikroperiodycznych
struktur materiatowych zaproponowana przez prof. Cz Wozniaka. W artykule przedstawiono
rozwigzanie zagadnienia, kiedy mikroperiodycznos¢ ptyty kompozytowej jest zwigzana z
rozktadem obcigzajacych jg mas.

DIE MAKRO UND MIKRO-VIBRATION DER VERBUNDSTOFFPLATTEN
VERURSACHT DURCH DIE PERIODISCHE VERTEILUNG DER INNERZIALEN
BELASTUNG

Zusammenfassung. Die Bearbeitung hat gewisse Probleme der Dynamik der
Verbundstoffplatten im Rahmen der linearen Elastizitatstheorie zum Gegenstand nach Hencky-
Reissner Theorie. Den Ausgangspunkt gibt die von Professor Cz. Wozniak vorgeschlagene,
nichtasymptotische, raffinierte Makrodynamik der mikro-periodischen StofFgefiige ab. Im
Artikel wurde die Losung des Problems dargeste'H, wenn die Mikroperiodizitat der
Verbundstoffplatte mit der Einteilung der belastenden Massen verbunden ist.
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INTRODUCTION

A composite plate with a micro-periodic structure consists of many repeatable volumetric
elements (with length dimensions much smaller than every characteristic dimension of a mid-
plane of the plate) so called periodical cells. We assume simultaneously that each cell is a
cuboid with a height equal to a thickness of the plate. Solving problems for such composite
plates on the ground ofthe known equations of thin plates meets large analytical difficulties. It
results of a fact that material functions and a distribution of mass are strongly oscillating and
non-continuous. This makes it impossible to obtain solutions for many engineering problems.
Thus, in the framework of micromechanics of the composite materials, simplified models are
proposed in which features of the composite materials represent averaged (and constant)
material stiffnesses [1-7,10], These models, called homogenised, utilise an asymptotic
approach and lead to differential equations with constant coefficients which considerably
simplifies numerical procedures. However, such an approach neglects influence of a
microstructure scale of the plate (i. e. dimensions of a periodic cell) on its dynamics. It makes
research of vibrations impossible and waves of an order of the periodic dimensions cell length.
As an example, for plates shown in the Fig. 1 which have the same dimensions L, and L2, but
different periodic scale, homogenised models yield identical effective stiffness and therefore
identical effective results of dynamic problem solutions.

Fig. 1, Plates with different microstructure length parameters and identical values of the
effective stiffnesses

Rys. 1Piyty o rdznej wartoSci parametru mikrostruktury i identycznych modufach
efektywnych

Since in many engineering problems an influence of the periodic scale can not be neglected,
then in [8, 9] there is proposed a non asymptotic, refined macrodynamics of microperiodical
material structures. Bibliography of papers in this field can be found in [13] In equations of
this theory an influence of parameters describing dimensions of microstructure on
macrodynamics behaviour ofthe body is taken into consideration. Moreover, the theory can be
found a generalisation . of the asymptotic (effective stiffness) theory. In the case ofthe
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Hencky-Reissner plate the refined theory was presented in [12] and for the Kirchhoff plate in
[11]

The presented research utilises results of [12] and concerns the 2-D refined theory of the
linear elastic thin composite plates with the micro-periodic structure. The aim of the work is to
evaluate an influence of the plate microstructure length dimension on frequencies of proper
vibrations under periodically distributed inertial loadings. There was proved that this influence
plays a significant role in a research ofthe plates under periodical loadings of high frequencies.

Throughout the contribution summation convention holds. Subscripts a,p,y...(i,j,k) run
over 1,2 (1,2,3), indexes a,b,c and A,B,C takes the values 1,2 n and respectively 1,2 N.

I. THEORETICAL FOUNDATIONS

Equations of the 2D refined theory of liner elastic composite plates with periodic structure
were derived in [12]. For a sake of simplifying lecture of this contribution we quote main ideas
ofthe above mentioned contribution.

Let Ox,x3 be the orthogonal Cartesian co-ordinate system in the physical space. Let the

considered plate occupies in a non-deformed configuration a region Q = IT x , where

d is a thickness of the plate and n is a regular region in plane Ox,x2. For orthogonal plates
n =(0,L,) x(0,L2). By A =(i01) x(0,12) we describe periodic cell in the plane region 77,

where '= * r *(‘y is called a microstructure parameter. We assume that

I« min {LulL2} For an arbitrary A-periodic integrable function f(x 1,x2), i.e. such that for
each x,,x2 occurs f(x i, x2) =f(x,+1,,x2 =f(x,,x2+12) we define an averaging operator

(f)s TT \f(xMx" dxdx2
n‘2

\
a
where <£> is constant.

Coordinates of an arbitrary plate point before its deformation were described by xI,x2,z,

where z is a distance of the point from the plane Oxjx2. Points of the mid-plane of the plate we
denote by x =(x,,x2).x elJ, by Mime coordinate t=0. By p*,p are denoted loadings

(along the axis x3) on the top and bottom planes of the plate, respectively, by |, loading on the
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surface oil x " Is a constant body force (along the axis x3) and p is a mass

density. Further there was assumed that every plane z = const, z " 's a materla*

symmetry plane and the material is linear elastic defined by a tensor of elasticity Cja; hence
C =C3j=0. According to the plane stress assumption we introduce modulae

Aw =QpB- Q PRCrS3(CHP) 1mFields Cit =Cidl(x,z) a d p=p(x,z) are the A-periodic

functions ofan argument x =(x],x2), and even functions of a variable z.

Displacements u/x.z.t), x eF, i = 1,2,3 at an arbitrary point of the microperiodic plate in
the framework of [12] are defined by :

ua(x,z,t) =z[9a(x, 1) +h°(x)9a(x, 0],
Y3(1,Z1) =w(x, 1) +gAX)WA(x, /),

where new unknown functions m>3a were called macrodeflections and macrorotations,
respectively , wA, 3a were called correctors for displacements and rotations, respectively.
These unknown fields are so-called macrofunctions i. e. together with their derivatives are
approximately constant in every element with dimension I,x12. Functions h*“(x),gA(x),
a=l,2,..n, A=12 N, are assumed to be A-periodic microshape functions, defining
qualitatively disturbances of a displacement state evoked by a microperiodic structure or
a loading of the plate. They satisfy the following conditions: (i)(gA) =0, (ii) gA(x) e0(l),
(iii)gAx) £0(1), i. e. maximum values of g\ are independent of /. The same condition must
satisfy functions ha. Microshape functions take values of an order of the microstructure
parameter /, i.e. their values are very small as compared to dimensions oftheplateL,,L2, and
their influence reveals in stresses and strains: maximalvalues of ha,aandgA,a arenot small.
As it was mentioned the microshape functions are assumed a priori, and their selection depends
on a kind ofthe analysed problem, for example on the character of expected microvibrations of
the microperiodic plate.

By the principle of virtual work, utilising presented in [ 12] hypotheses and defining constant
coefficients:
1 izi

i
2 2 2
p= jpdz, J=jz pdz, Gagrs—jz DgrSdz, Cg =JCa3pSdz, f =p +p +(p)b.
d d d d
2 2 2 2
J"s(Ih“l Ja=(Jhahb) r\

YANpgA I\ BN-<UgV>A.
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There were obtained the following 2-D motion equations of the refined theory of a thin
linear elastic composite plate with microperiodic structure:
Alw-Qa-(J)\-U a'kK=0,
Qaa-(M)W-IMAMA» A+ f =0,
Klg+12Jab3a+U“9a- 0,
QA+I-iiABvB+ljuAw =0
as well as the constitutive equations:
K P= <GaPi5>&(rii)+<GoPrSh»t)d*“,
Qa =(C.p)("p + Mp)+ <QPgAWA,
K =<gdP5h%>8 (rs) + <GHS /B>85,
QA= <Gap + Mp) + (GapgAg \ >nB

Egs. (2) and (3) have to be satisfied for every x e 77 and t >0. The natural boundary
conditions have the form: Mapnfi=ma, Qana=q for x e (77 , 1> 0 ,where naare is the
unit normal outward to ¢3/7, and maand q are defined by

d d

2 2
ma=\ztadz, q=jt3dz .
d

d
2

Egs. (2) and (3) lead to the system of differential equations for unknown macrofunctions
w(x,t), &(x,t), w'(\,t), Ba(x,l). A discussion ofthe above equations can be found in [12].

I HOMOGENOUS PLATES SUBJECTED TO MICRO-PERIODIC INERTIAL
LOADINGS

Let us consider the problem, where the micro-periodic structure of the composite plate is
due exclusively to a periodic distribution of masses. Under this assumption for every
microshape function we obtain

{GaPK ) = Ga,ys(K) =0,
(Cdig A) = Cdfi(gA) =0.

Then the constitutive equations (3) take the form
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MiP —("aPr6)&¢,6) > Mi —(MpMM.NAS >

a = (caPXsP+v'.p), e'= {CASU|y

and the equations of motion (2) are

Q*.*-{n)w-iS*A+f=o,

M afifi-Q a- (J)ta-LJ'K=0, (5)
Ma+I12)°b'fa+Ua9a =0,

QA+?/jabwb +InAw =0.

By neglecting in Egs. (4) and (5) terms depending on rotational inertia terms i.e. under

formal assumption that J=0, Ja- J‘h=0, correctors of rotations are equal to zero,
9'a =0,and the equations of motion take the form:

Qa.a-(M)*-I»A* A+ f =0,
M ~fi-Q a=0. (6)
QA+ 1XiABnvB+IfiAw =0.

It is obvious that such a simplification involves exclusively microshape functions g*
describing qualitatively an expected form of the disturbances in deflection of the plate caused
by the microperiodicity of the microstructure or loadings. The example ofsuch disturbances for

one span plate band was shown on Fig. 2 where on the macrodeflections w the
microdisturbances g AvA are superimposed.

Fig. 2. Macro- and micro- vibrations of a simply supported /-periodic thin plate

Rys.2.Makro- i mikro-drgania swobodnie podpartej, 1-periodycznej ptyty cienkiej
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I1l. EXAMPLE OF APPLICATIONS: VIBRATIONS ON THE BRIDGE TYPE PLATES
3.1. General equations

Let us consider a composite plate band of the thickness d and simply supported on
edges x, = 0 and x=L. Along the axis x, thereare distributed periodically concentrated masses
with a period | {l«L). The cell of periodicity isnow one dimensional and bounded by the

coordinates x, = 0, x= | For the analysis of microdynamics of the plate there were assumed
two microshape functions h =h'[x* and g =g'(xl), where each of them has a form

L. 2k , 2k
['sin— X, or’lcos—-X. .
[ I 1
Denoting:

G =(Gun), G” «(G un(A)2),

c=), c"s(c(9)2

m = (p), p' = (ng)/"y, p" =(p(g.)r2-

J- (w), =@\ I~((hd)r\

and defining in Egs.(4) and (5)W =w’, 3= 3', <9= 3\ we obtain a system of equations for

macrodeflections w, macrorotations 3 and correctors Ifand &

C(fi,+w -mw- Ni'W+/ =0,
G9, - +Wj)-j* -uU'Q =0,
G"0 +Jn/D +y7S =0,
CuW-+vnl 2V/+WXiw=0Q

Assuming that the plate is subjected to the time-dependent loading
f =fasin(kx,)cos{a>t), fo*0, k =2k/ L, a solution of Eqgs.(7) can be presented in the

form: w =wO0sin(kx, )cos(cat), W =W, cos{kx,)cos(cot), 3 =3acos{kxl)cos(tai),
<d=®0sin(kx"cos(a>t), where wo, Wb, 3Q0 Oare constant vibrations amplitude. Substituting
this solution to Eq.(7), linear system of algebraic equations for amplitudes wo, Wa, 3Q0 Owas

obtained:
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k2G-ma2 kC 0 -p7co2
kC k2G +C - -firn2 0
0 -77(02 Gn-J"IW 0
-lu7co2 0 0 ('3>]"L—n]1/2(02

Eliminating 1%, and 63,

° Cu-/jul2c2 ni °
and denoting:

(h")2/ i (/ym2 Vv
C"-n’7V J+G"-J"IW

we arrive at result the system of equations for  and 3o.

k2C -m da2 kC A 7/
kC KG+C -jd02 A 0

Determinant D(co) of Eq.(9) has a form:

D(g>) = to4wiiym-co £ 2Cyfi + (*2G + C)w(( + k*GC.

Eugeniusz BARON

71

)

From D(A) = 0 resonance frequencies A of the plate can be calculated. If the scale effect on
the plate dynamics is neglected, i.e. ifwe put 1*0, then we obtain m”*-m, j.

Denoting

A=[,X] + (k2 + C)m]2- 4k'GCmj,

it can be proved that the macro-resonance frequencies Al,A” are equal to:

(»7T A [* "ct+(i'6 +¢c)”

(A™2 = + (KIQ + C)m+ VA] + 0(12,

where A > 0.

(10)
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It can be also proved, [12], that the micro-resonance frequencies Am,A'v, are:

(X-)- ! M L x 0(c).
m\i" -(p Y’
(11
(n - ! S A+ (t=o+c)ifi o(la
where

miu -{y.% >0 and jj" ~(j') >0.

Neglecting the rotational inertia i.e. assuming that j =J*=J"'1=0 we obtain from (6) the

following system of equations forw, Wand 9 :

C(S,+»,,)-mw- \CW+f =0,
GS,,-C(S+w =0, (12)
CnW +\iul2W +\i'lw =0.

Assuming that | =fasm(kxj)cos(a=i), w =wDsin(kx,)cos((ut),
W= Wacos(kx,)cos(mt), 9 =9,, cos{kx,)cos{ojt), solution ofthe system (12) can be written

down in the presented above form, obtaining system of the linear algebraic equations for the
amplitudes wa, 90,WO0 :

k2C-mco2 kC -n'lco2 L
kC k2G +C 0 = 0 (13)
-pi‘lco2 0 C"-junlzz2 y, O

Eliminating Wofrom this system of equations we get:

_ tilv
3 Cn-fiul2c2w

and preserving presented above definition ofthe quantity mm a system ofequations for w”and
9 takes the form:

k2C -maa 2 kC \V/

(14)
kC k2G +C A . 0
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Determinant D(co) of Eq (14) is equal to:
(&) =kdGC-ma(kxG +C y2

From /)(>.)=0 the resonance frequencies A were calculated. The macro-resonance
frequency Al neglecting of the scale effect (terms containing | drop out), leads to ma)=m, is

equal to:
k‘GC
(4 tak:+C) A 1) (13)
The micro-resonance frequency A™ is:
1 C*m k4GC
(r) (16)

2 12 m(k2G +C)

3.2. Homogenous and isotropic plate band

A homogenous and isotropic plate band with a thickness d, a mass density p, Young
modulus E and Poisson coefficient v, is loaded periodically along the x,-axis by system of the
concentrated masses of the value M, having the inertial moment / related to x,-axis per unit
length of this band (cf. Fig 3). For the purpose of calculation reduced loading mass densities
are defined:

M_ 121
u

PM . Pi-U, =

For the isotropic material described by Young modulus E and Poisson coefficient v we
obtain:
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Fig. 3. A scheme of the periodic mass distribution and diagrams of the microshape functions
inside a periodicity cell

Rys. 3. Schemat periodycznego obcigzenia inercyjnego i wykresy funkcji mikroksztattu
wewnatrz komorki periodycznosci
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Calculations of the resonance frequencies A were carried out for two cases of the

. . . . . 2k .
microshape function h and g. In the first variant h =g =Isin— xI , and in the second one

g =lsinyx,,h=lcos x, .

Calculations concern only the micro-resonance frequencies X" and X v because the macro-

frequencies X , X1 do not depend on the microshape function selection.

1. Casel, h=g =lsin~~x,

The constants in formula (11) can be assumed in the form:

G=-

12(1-v) ’
c. Fd cu=2« Ed

1+v ' 1+v
m=d(p +pM) , p'=pMd , Vu =ct[*"P+Pm)
: y i 31l
j=— (P+Pr) . J’ - 'EZPl . J 12\2.P+P,

Therefore the micro-resonance frequencies can be calculated from the following formulas:

(X“f 2A  p+Pm Pm
H(1+v) 13 P+3p, * < ST {P+PU\P+1PM) 7
(«r¥  E  if2k\2(1+vXp+pi) i
S P+PI {p+Pi\p+3p,)

2. Case Il g =Isin— xj,h=Icos-j-x,
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Inthiscase J' -0, ./" =~pd3, and the remaining constants calculated for the first case

undergo no change. So for the different microshape function h the resonance frequency A1l is
identical as for the case I, in the contrary resonance frequency Xv is equal to:

\2 n
(ryllzy (18)
1) p{l-v)
Solving the same problem with negligence the rotational inertia terms we obtain two values
ofthe resonance frequencies:

(/") macro -
() — H
[p +Pm) 0+Vv)+7 (1-v)
(i) micro - (19)

E 2/r) p+pM
p(l+v) 1] p+2pK

+2 Pm o [i2

o T2xY 12 1—v (P+Pm){p +3Pm)
IL) d21+v

The diagrams representing interrelation between A and k (i.e. the dispersion lines), given in
a general form by Eqgs. (10), (11), are shown in Fig. 4. It can be seen that the values of free
micro-vibration frequencies are of an order of high macro-vibration frequencies, provided that
1/d=1.

IV. ASYMPTOTIC HOMOGENISATION

Equations of the asymptotic theory (effective stiffness) which do not take into consideration
influence of the microstructure size on dynamics of the plate, can be obtained from Egs. (7)
neglecting terms of an order of microstructure parameter rate /. In that case:
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M.
m
-
f
0 5 D 5 D 0 5 D 5 D
>5
L 025 | __10 k. 025  en-.U0-.i a5
105
025  em=2i | =2

Fig. 4. Diagrams of the dispersion lines for different values of I:d, related to the macro-
(continuos lines) and micro- (broken lines) resonance vibrations frequencies.

Rys. 4. Wykresy krzywych dyspersyjnych w zaleznosci od I:d, odpowiednio, makro- (linie
ciggte) i mikro- (linie przerywane) czestosci drgan rezonansowych
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which according to the presented in section |11 way of proceeding and assumed notations leads
to the following equations for the amplitudes woand 30:

k2C -m gr02 kC W 71 (20)
kC k&G +C- jdéf(02 5, 0

Egs. (20) ofthe theory of effective stiffness are identical with Egs. (9) of the refined theory
for the macro resonance frequencies for the dynamic coefficients and j mmodulo terms
0 ( | Determinant of Egs (20) has the form:

D > ) = g 4ngrj eff - ta\k 2CJdf +[k2G + C)mcff] + k 4GC.

From DO(kQ) -0 we obtain the resonance frequencies. Denoting:
A= [kXjef +[k2G + C)nefA - 4k4GCmeirj gr
these frequencies are equal to:

W =-~— VXjg™ G +C)mejr- "\,
effJeft
(21)

WV =7AT “[~+ (* aG +cK +V3].

effleff
It can be proved that A > 0. Neglecting the rotational inertia terms we obtain, using a
procedure similar to that of Sec. 3.1., the resonance frequency:
k*GC
M- vifig+c)

V. CONCLUSIONS

The example given in Section 4 illustrates possibilities of a 2-D theory of plates for an

analysis of the composite plates microdynamics problems. It can be noted that refined theory
equations have a relatively simply form. New unknown functions, correctors wA and &aA, are

determined by the ordinary differential equations involving only time derivatives of wA and
3A. The same phenomena described by correctors are independent of the plate boundary

conditions.
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The asymptotic equations (effective stiffness formulations) are obtained from the equations
of the refined theory by a formal negligence of the scale parameter /. Results from an

asymptotic theory are certain approximations of the refined theory results, when we confine
ourselves to macrodynamics problems.

Comparing the results obtained in the framework of the effective stiffness method with
those of a refined theory it should be stated that:
(i) macro-resonance frequencies A0 and AD obtained from the effective stiffness theory are

comparable with frequencies A' and A", respectively, calculated from the refined theory with
an accuracy of0 {12} :

(A'y=(A'oy +0(i2), (A«y=(A0y +o(i").

(if) micro-resonance frequencies A"1, A, cf. Egs. (11), can not be calculated on the basis of
the effective stiffness theory,
(iii) the effect of the composite plates’ microstructure (i. e. the influence of a parameter 1) on

dynamics of the plate should be considered for the high frequencies of loadings when they are

close to the resonance frequencies Am, A,v.

SILESIAN TECHNICAL UNIVERSITY OF GLIWICE. DEPARTMENT OF CIVIL
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Streszczenie

Przedmiotem tego opracowania sg pewne zagadnienia dynamiki ptyt kompozytowych
w ramach liniowej teorii sprezystosci.

Struktura analizowanej ptyty nie jest dowolna lecz okresowa i mozna ja podzieli¢ na
powtarzajace sie tzw. komorki periodycznosci. Punktem wyjscia jest nieasymptotyczna,
rafinowana makrodynamika mikroperiodycznych struktur materiatowych, zaproponowana
przez Cz. Wozniaka.

W artykule przedstawiono rozwigzanie zagadnienia, kiedy mikroperiodycznos'c ptyty

kompozytowej jest zwigzana z rozktadem obcigzajacych ja mas. Przykiad dotyczy
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zastosowania rafinowanej teorii ptyt kompozytowych do obliczania czestosci drgan wiasnych
pasma ptytowego. Rozwigzanie uzalezniono od doboru funkcji mikroksztattu, a takze podano
wzory na czestosci wiasne przy pominieciu cztonéw obrotowych. Poréwnano otrzymane
wyniki z metodg homogenizacji asymptotycznej (modutow efektywnych). Na wykresach
zamieszczono krzywe dyspersyjne w zaleznosci od skali mikrostruktury.



