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THE FUZZY BOUNDARY ELEMENT METHOD: A NEW METHODOLOGY

Summary. In the paper basic concepts of a new methodology of the fuzzy
boundary element method are presented. This paper deals with fuzzy-set-
-valued mappings which are solutions of the fuzzy boundary integral
equations. Exact fuzzy solutions of fuzzy boundary integral equations are 
introduced as well as aproximated ones. Computational fuzzy problems and 
applications are considered in details for boundary potential problems with 
fuzzy Dirichlet and Neumann type boundary conditions and fuzzy density
source functions.

METODA ROZMYTYCH ELEMENTÓW BRZEGOWYCH: NOWE SFORMUiOWANIE PROBLEMU

Streszczenie. W pracy przedstawione zostały podstawowe założenia nowej 
koncepcji w metodzie elementów brzegowych, nazwanej metodą rozmytych ele
mentów brzegowych. Zdefiniowane zostały pojęcia funkcji rozmytych, które 
odgrywają rolę analogiczną do dokładnych i przybliżonych rozwiązań rozmytych 
brzegowych równań całkowych. Szczegółowe rozważania dotyczące problemów 
obliczeniowych i zastosowań przedstawiono na przykładzie rozmytego brzego
wego równania całkowego wynikającego z zagadnienia brzegowego dla równania 
Poissona z niejednorodnymi, rozmytymi warunkami brzegowymi typu Dirichleta i 
Neumanna oraz z niezerową, rozmytą funkcją gęstości źródeł określoną w całym 
rozpatrywanym obszarze.

METOH PA3MbITbIX KPAEBbIX 3J1EMEHT0B: HOBblti nOHXOfl

Pe3K>Me. B paöoTe npeacTaBJieHbi ocHOBaHHH h o b o t o  no,nxoAa k Melony pa3MbiTbix 
KpaeBbix ojieMeHTOB Ha3BaHHoro MeTOflOM pa3MbiTbix KpaeBbix 3JieneHT0B. Onpe^ejieHO 
pa3Mb!Tbie peuieHHH pa3MbiTbix KpaeBbix HHTerpajibHbix ypaBHeHnü. BBeaeHbi HOBbie 
noHHTHH TOMHoro h npM6jin*eHHoro pa3MbiToro pemeHKH pa3MbiToro KpaeBoro 
HHTerpajibHoro ypaBHeHM. Bbi4HCJinTejibHbie pa3MbiTbie npoÖJieMbi u ripHMeHewm 
paccMOTpeHbi Ha npHMepax CBS3aHHbix c noTeHUHaJibHofl KpaeBofi 3a,ąa4e0 c 
pa3 MbiTbiMH KpaeBbiMM ycjioBHBMM m n ą  ÄKpnxjieTa h HeüMaHa BMecTe c 
npeflnoJioiKeHMeM, n o  iJiyHKUHH ruioTHOCTH pacnojio*eHHa hctohhhkob sBJiaeTca 
pa3MbiTO0 (JiyHKueK onpeflejieHHoti b uejioB ofijiacTM.
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1. INTRODUCTION

Because a very high safety level is required in civil engineering 
structures the uncertainty associated with the application of scientific 
calculations is very crudely and conservatively estimated using traditional 
methods. Current reliability theory enables a discussion of random parameter 
uncertainty but in civil engineering, system uncertainty and the possibility 
of human error is extremely important and must be included in any 
reliability calculations.

In civil engineering particularly the available theory never quite fits 
the actual problem and there is rarely the chance to test prototype as in 
other engineering industries. This is because civil engineering projects 
tend to be one of jobs whereas in the manufacturing industries production 
line techniques may be used to manufacture large quantities of the same 
product. Thus the uncertainty in applying theoretical solutions to practical 
civil engineering problems is large. The designer has obviously to take this 
into account because the standard of safety required by the general public 
concerning bridges, buildings and other structures is extremely high.

It is apparent from the previous discussion that there is a large amount 
of uncertainty surrounding the execution of any engineering project. The 
nature of this uncertainty can be disscused under three headings: human
based uncertainty, system uncertainty and random uncertainty. The prediction 
of these three types of uncertainty is difficult and present methods, 
embodied in reliability theory, tend to concentrate on random uncertainty. 
There is, however, a fundamental difference between the nature of random 
uncertainty and that of human and system uncertainty. To analyse this type 
of uncertainty a mathematics which is directed at "vagueness" as distinct 
from randomness is required and this is the potential role of fuzzy sets.

The actual likelihood of a structure failing is a function of one or more 
of some factors. However, current reliability theory can only satisfactorily 
deal with that category where uncertainty is due mainly to random 
parameters. However, a more detailed analysis using fuzzy approximate 
reasoning may well be possible.

Finite element methods as well as boundary element methods (BEM) play a 
very important role in civil engineering since they are widely used in 
analysing structures. Stochastic boundary element method is an alternative
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numerical technique relative to the first type uncertainties i.e. random 
problems [11]. In presented paper some preliminaries are given of 
calculations appropriate rather to the second category which involve the use 
of fuzzy sets to estimate system uncertainty in BEM, called further fuzzy 
boundary element method (FBEM).

Notice that when a physical problem is transformed into the deterministic 
boundary problem, we usually cannot be sure that this modelling is perfect. 
The boundary problem may not be known exactly and some functions i.e. 
boundary conditions, external or internal excitations, solutions etc. may 
contain unknown parameters. Especially, if they are known through some 
measurements they necessarily are subjected to errors. The analysis of the 
efect of these errors leads to the study of the qualitative and quantitive 
behavior of the solution uncertainty.

If the nature of errors is random, then instead of a deterministic problem 
we can get a random boundary integral equation with stochastic functions 
and/or random coefficients, comp. [11]. But if the underlying structure is 
not probabilistic, e.g. because of subjective choices, then it may be 
appropriate to use fuzzy numbers instead of real random variables. A fuzzy 
number a is called a fuzzy set of real numbers, i.e. there exists a function 
p(-|a): IR— > [0,1] whose value p(x|a), xeR is the grade of membership of x 
in a. This leads to a fuzzy boundary value problems and in consequence to 
fuzzy boundary integral equations (FBIE), comp. [12],

2. ELEMENTARY CONCEPTS AND RESULTS

In this paper, the following concepts and notations will be used. IRn was 
reserved for the set of n-dimensional reals, (Rn, | • | )-denotes the Euclidean 
space with metric | • |, r is an arbitrary fixed n-dimensional manifold in 
Euclidean space, si is a cr-algebra formed by the subsets of r, (r,sl,dr) is a 
classical complete and finite measure space (nonfuzzy), v ,a will stand for 
"supremum" and "infimum" respectively.
Let I(R) denote the set of all closed bounded intervals z=[z , z+] on the

real line R, where z" and z denote the end points of z. We call further
elements of I(R) interval numbers.For further information we refer to [2,21].

By a fuzzy real vector we understand a fuzzy set aeRn i.e. a mapping
p(-|a):Rn — > [0,1] associating with each real vector x its grade of member-
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ship p(x|a). The A-cut set of a fuzzy real number a, Ae]0,l], denoted a^ is 
defined as â :=-|x: p(x|a)£A^ and is a closed interval,denoted by a^=[a^,a*].

Let 9 (IRn) denote a set of all fuzzy vectors. Elements of ?*(R) are called 
fuzzy numbers.

Two fuzzy numbers a and b are called equal, a=b, if p(x|a) = p(x|b) V xeR. 
It follows that

a = b o a^ = b^ V Ae]0,1], (1)
For the arithmetic operations on fuzzy numbers and further informations we 
refer to [2,13,14,16,21,22,25], Notice that I(R)c?*(R).

If f:RnxRn— » IRn is a function then according to Zadeh’s extension 
principle we can extend f to l?*(Rn)x?*(Rn) — > ^(R") by the equation

f(S,v)(z) = supz=f(x_y)p(x|i;)AM (y|v). (2)
It is well known that

fA (u,v) = f(SA.v ), V u,ve^*(Rn),OsA£l (3)
and f continuous. A fuzzy-valued function is a mapping f:T— > (R).

An interval-valued function is a special closed-valued set valued function
f:I~— > I(R). It is usually written as f(x)=[f~(x), f+(x)], where

f (x)=inf fix), f+(x)=sup f(x).
In the ordinary way (pointwise), we can define the operations, orders, con

vergences of interval-valued functions and fuzzy-valued functions [13,22]. 
For special problems of the fuzzy analysis we refer to [1,3-8,15-19,22,25].

3. FUZZY POTENTIAL BOUNDARY PROBLEMS

Many practical applications are governed by the Poisson equation. Consider 
that we are seeking to find the solution of a Poisson equation in a n (two 
or three dimensional) domain,

V2u(x) = £(x), (4)
where £ is a known source density function of position and with the
following conditions on the T boundary of 12:
(i) Dirichlet (essential) conditions of the type u(x)=uo(x), for xeT^,

(ii) Neumann (natural) conditions such as q(x)=du(x)/5n=qo(x), for 
where n is the normal to the boundary, r=riurz is the boundary decomposition, 
and functions uq, qQ are known. More complex boundary conditions such as 
combination of the above two, i.e.
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au(x) + pq(x) = y, xeT , T=r uT uT ,
3 1 2  3

where a,|3 and y are known parameters, can be easily included but they will 
not be considered now for simplicity’s sake.

After substituting fundamental solutions U and Q=3U/3n of the Laplace 
equation and grouping all boundary terms together (i.e. in r=T ur2), one 
obtains a boundary integral equation of the form [9,10,23,24]

c(x)u(x) + f Q(x,y)u(y)dr(y) + f U(x,y)£(y)dfi(y) = f U(x, y)q(y)dr(y),
JT 12 Jr

xer. (5)
For simplicity we now assume that equation (5) has a unique solution given 

in the form
u(x) = F(x, u q, qQ, £), xer, (6)

where F is a continuous operator of their arguments.
We now assume that the values of some of the boundary quantities and the

source density function are uncertain and we shall model this uncertainty 
using fuzzy variables. First let ar>d £ are fuzzy functions i.e.

uo,qo: r — -> [0,1] and £: fi— > [0,1].

We substitute u ,q and £ for u ,q and £ into eq. (5) and then we wish to 
2  0 o o

solve (5) for u and q which will now be fuzzy solutions of the boundary
integral equation written as

c(x)u(x) + f Q(x,y)u(y)dr(y) + [ U(x,y)£(y)dQ(y) = f U(x,y)q(y)dr(y) (7)
Jr Jn Jr

In this equation all operations are in the fuzzy sense and the fuzzy 
integral is understood in the sense of fuzzy principal value, as defined in 
[27],
Practically, fuzzy solutions of those equations are not sought, but their 

approximations are.

4. FUZZY BOUNDARY INTEGRAL EQUATIONS - FUZZY SOLUTIONS

We now substitute fuzzy functions uo(x),qo(x), xer and £(x), xeQ for the 
uQ(x),qo(x) and £(x) into eq. (5) and look for the solution.
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Def ine

LL^(x): =-|u: c(x)u(x)+J Q(x, y)u(y)dr(y)+J U(x, y)£(y)dn(y)=J U(x, y)q(y)dr(y),

uo(x )eV (x ) lxer  ■ qo(x)6qoA(x )U r  • £<x>eV x> xe4- (8)1 2 '

where xef, OsAsl and c is a known non-fuzzy function.
Our first type fuzzy solution u^tx), xer is defined as follows

^(ylu^tx)) := sup-{A: yel/^(x) }■, xer, yelR.

Thus ui(x),xer is a fuzzy function which solve the boundary integral eq.(5). 
We may also base a fuzzy solution of eq. (5) on eq. (6). Let

j If (x) := {F(x,Uo(x),qo(x),?(x)): u(x)eS (x)| , q^x i e ^ C x )  ̂  ,
v 1 2

3}.Ç(x)eÇ^(x) xeny, for xef, OsAsl. (9)

Then specify second type fuzzy solution u^ix), xef as

p(y|u (x)) := sup-jA: yeV (x) xef, yelR.

THEOREM 4.1. u (x) = u (x), V xer.1 2  ^
Proof. It is easy to show that = 1/̂ (x) = (i(-|u^(x)) = p(-|u2̂ (x)),

V OsAsl, xer.■

Now we discuss how to solve eq.(7) for fuzzy function
the fuzzy analogue of eq.(5). Let

“ oA(x) = K a ( x ) ’ V (x)] ' xer ,l

qoA(x) = [ % A (X ) ’ % A (X )]> xer , 2

?A (x) ■= [ i - ( x ) . i * ( x ) ] . xefi.
Let

V X) ■= [u - fx J . u ^ x ) ] . xef,

where OsAsl. Taking A-cuts of eq.(7) we obtain

c(x) [u~(x),u* (x )] = J  Q(x,y)[u^(y),u*(y)]dr(y) +
J  U(x,y) [Ç^(y),Ç*(y)]dfi(y) = J  U(x,y ) [q~(y),q* (y)]dr(y), xer. (10)
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Following th.3.1 of [27] one can write

c ( x) [u-^(x), u* ( x )] =  |J Q(x,y ) u ^ ( y ) d r ( y ), J  Q(x, y ) u* (y)dr(y)j +
+ |J U(x, y)£~ (y)dil(y), J  U(x, y (y )dfi(y )J =

= |J U(x,y)q^(y)dr(y), J  U(x, y)q* (y).dr(y)j , xer, (11)

for all OiAsl.
We solve eq. (11) for the u (x) and u*(x) producing the fuzzy function

A A
u ^(x) which we call the fuzzy solution u (x), xeT, defined by the relation 

3A 3

p(y|u3(x)) = sup-jX: yeu^tx)^, yelR.

Naturally we are now interested in the relationship between u^ix), u^ix)
and u (x ).

3

THEOREM 4.2. u ^(x) = u .(x) S  2 (x), V xer, Xe]0,l].IX 2X 3X
Proof. Since interval operators in eq. (11) are inclusion monotonic we have

immediately for all X-cuts, 03X51
u ,(x) = u ,(x) £ u .(x), V xeT 

l X  2X 3X
and the conclusion follows.«

Notice that X-cuts of u3(x ) are rectangles in IR (intervals), V xer.

5. FUZZY BOUNDARY ELEMENT METHOD - COMPUTATIONAL METHODOLOGY

Let us now consider how expressions (10-11) can be discretized to find the 
system of fuzzy algebraic equations from which the fuzzy boundary values can 
be found. Assume for simplicity that the body is two dimensional and its 
boundary is divided into N elements.

5.1. Constant fuzzy elements

The points where the unknown fuzzy values are considered are called as 
usual "nodes" and taken to be in the middle of the element for the so-called 
"constant fuzzy elements". Later on we will also discuss the case of "linear 
fuzzy elements", i.e. those elements for which the nodes are at the extremes 
or ends.
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For the constant fuzzy elements considered here the boundary is assumed to
N

be divided into N elements, let T= [J T , where T is the boundary of the
J = 1 j Jj-th element. The fuzzy (interval) values of u. and q are assumed to be

A A
constant over each element and equal to the fuzzy value at the mid-element
node. Equation (11) can be discretized for a given point "i" before applying
any fuzzy boundary conditions, as follows 

n .
- = £ J Qix^,y)u^(y)dr(y) + J  iKx^,y)|A (y)dfi(y) =

j—1 r q
N . N

= y U(x ,y)q (y)dr(y), x € (J T (12)
1 A 1 j = i J

or with respect to interval ends of A-cuts 

1 N r .  ri [uA (xi),u;(Xi)]= £ J Q(x(,y) [u"(y),u*(y)]dr(y)+j Uix^y) [£~(y),£*(y)]dfi(y)= 
j=i r q
N N

= 1 1  u(>v y) [qA (y5,qI(y)]dr(yi’ xie u ^  d3)j-l Tj j = l
The point i-th is one of the boundary nodes.Note that for this type of fuzzy
element (i.e. fuzzy constant) the boundary must be always "smooth" as the
node is at the centre of the element, hence the multiplier of u (x ) is 0.5.

A i

5.2. Linear fuzzy elements

Up to now we have only considered the case of fuzzy constant elements,i.e. 
those with the values of the fuzzy variables assumed to be the same all over 
the element. Let us now consider a linear variation of fuzzy u and q for 
which case the nodes are considered to be at the ends of the element.

The governing fuzzy integral statement can now be written as (7). After 
discretizing the boundary into a series of N elements equation (10) can be 
written as

c u (x ) = f f Q(x , y)u (y)dT(y) + f U(x ,y)| (j )d£2(y) =
1 A 1 1 A Jn 1 A

n . n
= Y  U(x ,y)q (y)dr(y), x € (J r . (14)
J = iJ Tj 1 A 1 j = i J

Notice that the 0.5 coefficient of u (x ) in eq. (12) has been replaced by an
A 1

coefficient c^ This is because 0^=0.5 applies only for a smooth boundary. 
Since the boundary is non-fuzzy the value of c; for any other boundary can
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be calculated as in any deterministic case i.e. c^=B/2n, where 6 is the 
internal angle of the corner in radians [9,10].
The values of u^ and q^ at any point on the element can be defined in 

terms of their nodal fuzzy values and two linear interpolating functions 0 
and <p ■ , which are given in terms of the homogeneous coordinate £, i.e.

V ?) = V i A  + V a A ’

= * A a + * A a>
where £ is the dimensionless coordinate varying from -1 to +1 and the two 
interpolation functions are

* x  = 2 ( 1 + ? ) '
The integrals in eq. (14) are more difficult to calculate than those for

the fuzzy constant element as the u ’s and q.’s vary fuzzy linearly over
A A

each and hence it is not possible to take them out of the integrals.
Approximations based on higher order fuzzy elements i.e. quadratic, cubic 

etc. can be calculated in a similar way.

5.3. Methodology of fuzzy computations

If we now assume that the position of i-th point can vary from 1 to N one 
obtains a system of N fuzzy algebraic equations resulting from (13) or (14). 
This set of fuzzy equations can be expressed in matrix form as

h aCa = g a«a + SA' _______ (15)
where and are two NxN nonfuzzy matrices and are fuzzy vectors
of length N, V Ae]0,1], Notice that N fuzzy values of u and N fuzzy

1 A 2
values of q. are known on T and T respectively, hence there are only N 

A 1 2
fuzzy unknowns in the system of equations (15). One has to rearrange the 
system to obtain a standard system of fuzzy algebraic equations

A X = F., Ae]0,1], (16)A A A
where X^ is a fuzzy vector of unknowns u^’s and q^’ s fuzzy boundary values. 

Eq.(16) can now be solved and all the boundary values are then known. Let

X^ := ix: A%X = F., ear , f̂  eft , i, .1=1,2.... n1, 0£\s \,A  ̂ A A Aij Alj Ai Al ’ f (17)

where A^=[a^], F=[f^J. Define X̂ , a fuzzy subset of Rn, by its member
ship function

p(x|Xi) = sup-jA: xeX̂ }-, xeRn. (18)
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We call X̂  an exact fuzzy solution of FBEM.
Consider the set of interval eqs. (16). Assume from now that no AeA^ is

singular V O^A^l. We wish to know the set of solutions X and its relation
to the equation (16) where the interval multiplication and addition is used
to evaluate the left-hand side of eq.(16). We now try to solve eq.(16) for
the x~ and x \ , 1=1,2, ...,N. OsAsl, and hope they produce the A-cuts ofl A lA
fuzzy numbers x(, 1=1,2,. . . ,N.

In any case, let us assume that this method does produce fuzzy numbers x , 
1=1,2 N. Define X2> a fuzzy subset of RN, by its membership function

m (x |X2) = miniSiiN {p(Xi|Xi)}, xeRn. (19)

THEOREM 5.1 [2,21]. X.eX.., VAelO.l].1A 2A
Proof. Since algebraic operations are inclusion monotonic it is easy to

obtain that X =X cfx~, X*1, V OsAsl.» lA A L A A-*

Many authors [2,3-8,21] discussed methods for computing an interval vector
Sc containing X . The exact calculation of X is for multidimensional 

A A ^  A _  ^
problems very difficult. An interval vector X^=[X^, X.J, V O^A^l defines a
region in an N-dimensional space bounded by the planes x ^ x ^  and x^x*^,
1=1,2 N. Nevertheless, the smallest X is of interest. Notice thatA
A-cuts of X are rectangles in R . Since X ,=X. will usually not be a2 1A AN ~  ~rectangle in R we would expect X to be a proper subset of X . Hence, we

1A 2A ^
would usually expect Xt to be not equal X2> We shall use X2 as an 
approximate fuzzy solution of eq.(16).

6. EXAMPLE

The following example illustrates how the presented methods work. Analyse 
a simple potential problem. Consider the case of a square close domain of 
the type shown in fig.6.1, where the boundary has been discretized into 12 
constant elements with 5 internal points, comp, deterministic case [9,p.67].
We assume that boundary conditions uq and qQ in the considered potential 

problem are interval functions
Go(x) = [u'(x),u^(x)], xerit

qQ(x) = [<£(x).«£(x)]. xer2
and ^(x)=0, V xeQ. Numerous values are given in table 6.1.
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q-[0,0]

Fig.5.1. Fuzzy potential problem 
Rys. 6.1. Rozmyty problem potencjału

Table 6.1
Boundary values

NODE TYPE PRESCRIBEE VALUE
low value high value

1 qo .00000E+00 .00000E+00
2 qo .00000E+00 . 00000E+00
3 % . 00000E+00 .OOOOOE+OO
4 u0 . 00000E+00 .OOOOOE+OO
5 u0 .00000E+00 .00000E+00
6 u0 . 00000E+00 .OOOOOE+OO
7 % . 00000E+00 .00000E+00
8 % .ooaooE+oo .00000E+00
9 qo .00000E+00 .OOOOOE+OO
10 u0 .29700E+03 .30300E+03
11 u0 .29700E+03 .303U0E+03
12 u0 .29700E+03 .30300E+03
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Let the interval solution be denoted as u(x) = [u~(x), u+(x)] , xer. Since all 
boundary values are interval functions it is enough to solve the problem
(16) in the interval formulation only.

Table 6.2
Results of 1-st method

BOUNDARY NODES

X Y POTENTIAL +u u 0 0
POTENTIAL DERIVATIVE - +

.10000E+01 

. 30000E+01 

. 50000E+01 

.60000E+01 

. 60000E+01 

.60000E+01 

.50000E+01 

.30000E+01 

. 10000E+01 

.00000E+00 

. OOOOOE+OO 

.00000E+00

.OOOOOE+OO 

.00000E+00 

.OOOOOE+OO 

. 10000E+01 

.30000E+01 

.50000E+01 

.60000E+01 

.60000E+01 

.60000E+01 

.50000E+01 

. 30000E+01 

.10000E+01

.23689E+03 .26Y61E+03 

.13289E+03 .16715E+03 

.36520E+02 .58981E+02 

.00000E+00 .00000E+00 

.00000E+00 .00000E+00 

.00000E+00 .00000E+00 

.30527E+02 .64974E+02 

. 13065E+03 .16939E+03 

.23926E+03 .26524E+03 

. 29700E+03 .30300E+03 

. 29700E+03 .30300E+03 

. 29700E+03 . 30300E+03

.00000E+00 . 00000E+00 

.00000E+00 . 00000E+00 

.00000E+00 . 00000E+00 
-.14933E+03 . 43404E+02 
-.59269E+02 -.38273E+02 
-.68243E+02 -.37681E+02 
.OOOOOE+OO . 00000E+00 
.00000E+00 . 00000E+00 
.00000E+00 . 00000E+00 
.21410E+02 . 84529E+02 
.37275E+02 .60198E+02 

-.76468E+01 . 11359E+03

INTERNAL POINTS

X Y POTENTIAL +u u

. 20000E+01 

. 20000E+01 

. 30000E+01 

. 40000E+01 

.40000E+01

.20000E+01 

. 40000E+01 

. 30000E+01 

. 20000E+01 

. 40000E+01

.10339E+03 .29717E+03 

.94401F+02 .30616E+03 

.49987E+02 .25003E+03 

.82790E+01 .19120E+03 
-.55476E+01 .20503E+03

To illustrate a specific character of interval calculations the algebraic 
system of fuzzy algebraic equations (16) was solved in two ways. The first 
method uses the fuzzy Gauss eliminating methodology with pivoting. The 
second method is based on the calculation of fuzzy inverse matrix A to solve 
eq. (16). Notice the great divergence between related methods which follows
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well known facts from the theory of linear algebraic systems of interval 
equations. Corresponding results are presented in tables 6.2 and 6.3.

Table 6.3
Results of 2-nd method

BOUNDARY NODES

POTENTIAL POTENTIAL DERIVATIVE

.10000E+01 

. 30000E+01 

.50000E+01 

.60000E+01 

. 60000E+01 

.60000E+01 

.50000E+01 

.30000E+01 

. 10000E+01 

. OOOOOE+OO 

.00000E+00 

. 00000E+00

. 00000E+00  

. 00000E+00  

. 00000E+00  

. 10000E+01 

. 30000E+01  

. 50000E+01  

. 60000E+01  

. 60000E+01 

. 60000E+01  

. 50000E+01 

. 30000E+01 

. 10000E+01

.24903E+03 

.14711E+03 

. 45815E+02 

.00000E+00 

.00000E+00 

.OOOOOE+OO 

. 45815E+02 

. 14711E+03 

.24903E+03 

.29700E+03 

.29700E+03 

.29700E+03

.25547E+03 

.15293E+03 

. 49686E+02 

. OOOOOE+OO 

.00000E+00 

.OOOOOE+OO 

. 49686E+02 

.15293E+03 

.25547E+03 

. 30300E+03 

.30300E+03 

. 30300E+03

. 00000E+00 

.00000E+00 

.OOOOOE+OO 

.54732E+02 

. 50565E+02 

.54732E+02 

. OOOOOE+OO 

.OOOOOE+OO 

.00000E+00 

.49614E+02 

.44174E+02 

.49614E+02

.00000E+00 

.00000E+00 

.OOOOOE+OO 
-.51191E+02 
-.46977E+02 
-.51191E+02 
.OOOOOE+OO 
. OOOOOE+OO 
. 00000E+00 
.56324E+02 
.53300E+02 
.56324E+02

INTERNAL POINTS

POTENTIAL
u"

.20000E+01 

.20000E+01 

.30000E+01 

.40000E+01 

.40000E+01

.20000E+01 

.40000E+01 

. 30000E+01 

.20000E+01 

.40000E+01

.19199E+03 

.19199E+03 

.14144E+03 

.90882E+02 

.90882E+02

. 20857E+03 

.20857E+03 

.15858E+03 

.10860E+03 

. 10860E+03
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Table 6.4
Results for mid-point boundary conditions

BOUNDARY NODES

X Y POTENTIAL POTENTIAL DERIVATIVE

. 10000E+01 .00000E+00 .25225E+03 .00000E+00

. 30000E+01 .00000E+00 .15002E+03 .00000E+00

. 50000E+01 .OOOOOE+OO .47750E+02 .00000E+00

. 60000E+01 .10000E+01 .OOOOOE+OO -.52962E+02

. 60000E+01 .30000E+01 . OOOOOE+OO -.48771E+02

. 60000E+01 .50000E+01 .00000E+00 -.52962E+02

. 50000E+01 . 60000E+01 .47750E+02 .00000E+00

. 30000E+01 .60000E+01 .15002E+03 .00000E+00

. 10000E+01 .60000E+01 .25225E+03 .00000E+00

. 00000E+00 .50000E+01 .30000E+03 .52969E+02

. 00000E+00 .30000E+01 .30000E+03 .48737E+02

. 00000E+00 . 10000E+01 .30000E+03 .52969E+02

INTERNAL POINTS

X Y POTENTIAL

.20000E+01 . 20000E+01 .20028E+03

.20000E+01 .40000E+01 .20028E+03

. 30000E+01 . 30000E+01 .15001E+03

.40000E+01 .20000E+01 .99740E+02

.40000E+01 .40000E+01 .99740E+02

To compare fuzzy results with deterministic ones [9-10] the potential 
problem under consideration was solved for mid-point boundary values i.e.

u0(x) = i(u0(x) + u0(x))’ xeri-

q0(x) * i K (x) + % (x) ) ’ x6lV
Numerical results are given in table 6.4.

To illustrate qualitative character of result fuzziness all values of 
potential and potential derivative are presented graphically as interval 
functions of domain circumference. Compare figs.6.2 and 6.3.
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c  -50.00
so

0.Ó0 s!ÓÓ "  10.00 15.00 20.&0
D istance from  begin of 1—st elem ent

O.ÓO "  "  S.ÓÓ 10.00 ' H ' 15.00 "  ’ 20.00 "  "  25.00
Distance from  begin of 1 - s t  elem ent

Fig. 6.2. Fuzzy 1-st method solution (dotted line - mid-point solution, cont. 
line - interval solution)

Rys.6.2. Rozwiązanie rozmyte otrzymane 1. metodą (linia przerywana - 
rozwiązanie "centralne", linia ciągła - rozwiązanie rozmyte)

Q
o.óo s.ia "  ’ fd.bo l5.bo 20. 

D istance from  begin of 1 - s t
00 25.00
elem ent

o.óo "  "  i!A0........1 o.'bo "  "  Ys.'oo "  ’ ' i'ri.'ob' "  ’ 25.00
Distance from  begin of 1 —st elem ent

Fig.6. 3. Fuzzy 2-nd method solution (dotted line - mid-point solution, 
cont. line - interval solution)

Rys.6.3. Rozwiązanie rozmyte otrzymane 2. metodą (linia przerywana 
rozwiązanie "centralne", linia ciągła - rozwiązanie rozmyte)
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7. CONCLUSIONS

This paper has a rather introductory character and was concerned with the 
new theoretical and computational methodology of the fuzzy analysis to 
boundary element method. An application was presented to a potential problem 
with boundary conditions which are not sharply given.

A major conclusion is that fuzzy sets can be used to estimate system 
uncertainty in boundary problems and random uncertainty can be calculated 
with a new technique called FBEM.

Future research will be concerned with extending these results to: (1)
other types of fuzzy boundary integral equations, especially problems in 
elastostatics; (2) systems of fuzzy integro-differential equations descri
bing problems of visco-elastic and elastodynamics; (3) detailed problems in 
higher order approximations and treatment of boundary corners.
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Streszczenie

W pracy zaproponowane zostały podstawowe założenia nowej koncepcji w meto
dzie elementów brzegowych, nazwanej metodą rozmytych elementów brzegowych. W 
pracy opisano funkcje rozmyte, które rozpatrywane są jako rozwiązania rozmy
tych brzegowych równań całkowych. Zdefiniowane zostały pojęcia funkcji 
rozmytych, które odgrywają rolę analogiczną do dokładnych i przybliżonych 
rozwiązań rozmytych brzegowych równań całkowych. Szczegółowe rozważania 
dotyczące metodyki formułowania zagadnień charakterystycznych dla nowej 
metody rozmytych elementów brzegowych oraz problemy obliczeniowe i zastoso
wania przedstawiono na przykładzie rozmytego brzegowego równania całkowego 
wynikającego z zadania brzegowego dla równania Poissona. Rozpatrzono zadanie 
z niejednorodnymi, rozmytymi warunkami brzegowymi typu Dirichleta i Neumanna 
oraz z niezerową funkcją gęstości źródeł, która jest rozmytą funkcją 
położenia określoną w całym rozpatrywanym obszarze.


