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A NOTE ON INTERVAL FREDHOLM INTEGRAL EQUATIONS

Summary. In the paper basic concepts o f the analysis o f the solutions to the interval 
Fredholm integral equations are considered, where a free term is taken to be an interval 
square-integrable function and non-interval kernel is square-integrable in [a,b]x[a,b]. All 
arithmetic operations and integration are in interval sense. The existence and uniqueness of 
the interval-valued solution are investigated. For including a set o f solutions o f the interval 
integral equation we apply interval calculus. At the end the theory is illustrated by a simple 
analytical example.

UWAGI O PRZEDZIAŁOWYCH RÓWNANIACH CAŁKOWYCH 
FREDHOLMA

Streszczenie. W pracy badane jest istnienie i jednoznaczność zbioru rozwiązań 
przedziałowego równania całkowego Fredholma II rodzaju z niejednorodnością, która jest 
funkcją przedziałową, całkowalną z kwadratem, natomiast jądro równania całkowego jest 
całkowalne z kwadratem na zbiorze [a,b]x[a,b]. W pierwszej kolejności badane jest 
zagadnienie zbieżności ciągu aproksymującego do dokładnego zbioru rozwiązań, a następnie 
problem jednoznaczności zbioru przedziałowego, zawierającego zbiór rozwiązań. W celu 
wyznaczenia tej aproksymacji zastosowano analizę przedziałową. Teoria zilustrowana jest 
prostym przykładem analitycznym.

1. Introduction

The theory o f Fredholm integral equations is very well developed and has a great 

bibliography [11,12,18,19,26]. Such equations play a great role in investigation of many 

technical problems in which boundary problems are o f the greatest importance, cf. [4]. One of 

the most popular methods of investigation of existence and uniqueness of solutions of integral
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equations is the method o f successive approximations. In presented paper we apply this 

method to discuss interval solutions of non-homogeneous interval integral equations. In recent 

years the analysis for problems o f integral equations with random parameters has also been 

discussed intensively, cf. [9,22,25]. However, in many particular cases probabilistic analysis 

is very difficult from mathematical point o f view, as well as sometimes the necessary 

knowledge about probabilistic characteristic o f parameters is very poor. On the over hand, 

especially in engineering sciences, because o f manufacturing errors, values of structural 

parameters o f many materials are uncertain and the character o f that uncertainty is interval,

1.e., unknown and bounded.

If the structural parameters are interval the equations describing the system become of 

interval character. Following, the corresponding solutions are o f set character. Since detailed 

calculations of the shape of that set are very difficult, approximate methods are needed.

For engineers it is often sufficient to estimate the upper and lower bounds o f the solutions 

of system equations under considerations i.e. to find upper and inner interval approximations 

of solution sets respectively. We are interested in real solutions only, but the complex case is 

handled by the method used, since it is more appropriate from mathematical point o f view.

Interval integral equations were investigating earlier in some papers [7,8,10,13,21]. Similar 

method was applied for contracting integral fuzzy operators in paper [24].

Section 2 is devoted to notations and terminology and in Section 3 we discuss the existence 

of solutions of interval Fredholm integral equations of the second kind with interval free term 

and with contractive integral operator, as well as the uniqueness in some sense o f exact 

interval solutions. In section 4 we study the simple example which can be solved analytically. 

Presented methods give new results to study uncertain boundary problems with interval or 

fuzzy parameters, which are very important in an engineering practice, cf. [5,6,22,23]

2. Elementary Concepts and Results

In this report, the following concepts and notations will be used. R n (R n>,,”)w as reserved 

for the set o f n-dimensional vectors (nxm matrices), R the set o f reals.
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Let the symbols P (R n) ,  P (R nxm) denote the power sets of R n and R nxm respectively. 

Let I(R) denote the set o f all closed bounded intervals z = [ z \ z +j on the real line R, where 

z” and z* denote the end points o f z . We call further elements o f I(R) interval numbers. In 

the similar way we introduce I(R n) - the space of interval vectors, and l |R nxmj - the space 

of interval matrices.

The elementary operations on elements from I(R ") and I^Rnxmj are described in 

monographs [1,3, 15-17,20].

The symbols Pc(R n) ,  Pc(R nxm), Pc(C), Pc(C n),Pc(C nxm) denote the families of all non

empty compact convex subsets o f corresponding spaces.

Let T be one of the sets: R " , R nxm. The operations in the power set P(T) are as usually 

defined by

A*B:= {a*b|a e  A ,b  sB }, A ,B eP (T ), * e { + , (1) 

with well known restrictions for Naturally for matrices the symbols denote corresponding 

matrix operations [1,3,16,17],

Further informations on interval analysis the reader can be found in papers [1,3, 15-17,20], 

Details o f operations over interval numbers are described in the second paper o f the same 

author ,see this journal.

Recall that the value d(a,b):=  |a~ -  b " |v |a + - b * | is called the distance between interval 

numbers â and b . It is easy to see that, i f  à = a and b = b are real numbers, then 

d(a,b) = |a - b | . For further information see refs. [1,13,14,16,17,20]. It is the Hausdorff 

metric specified for I(R).

Recall that the Hausdorff metric is defined as

H( A, B): = inf { e : A ç  N(B, e), B ç  N( A, e)}, (2)

where

A ,B e  PC(T) and N (A ,e) = {x € T:||x -  y|| < e  for some y e a}  (3)

We have: H( A + C, B + C) = H(A, B), V A ,B ,C  eP c(T), XN(A,e) = N(A.A,|X.|e) V X e C 1. 

where x(t), y(t) eC (j;I(T )) and d is the Hausdorff metric defined in I(T ).
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Further we denote by L2(J;I(T)) the set o f all measurable interval-valued mappings x( ) 

from J to I(T), where J c R  and x'(.),x+(.)eL 2(J;T). We metricize L2(J;I(T)) by setting

D2{ x (t) ,y (t)) := (jd 2(x(t),y(t))dt) , (4)

where x (t),y (t)  e  L2(j;I (T )) . Similar arguments as in [13] apply to show that also L2(J;I(T)) 

is complete.

An interval-valued real (complex) function is a special closed-valued set valued function 

f:R  —> I(T ).It is usually written as f(x) = |f ~ (x ) ,f +(x ) j , where

f " (x) = inf f(x), f + (x) = sup f(x). (5)

Then f  is measurable iff f~ and f + are measurable [2,7,13].

3. Method of Successive Approximations for Interval Fredholm Integral Equations

A linear interval Fredholm integral equation o f the second kind with the kernel K(y) and

the interval-type free term g(-) is defined as the family o f linear nonhomogeneous Fredholm 

integral equations

f(x ) = g (x )+  jK (x ,y)f(y)dy , g (x )£ g (x ), a < x < b  (6)

Thus we consider a system o f equations in which the functions take unknown values 

ranging in certain intervals.

Further a linear interval Fredholm integral equation of the second kind is written in the 

form

f ( x ) = g ( x ) + |’K (x,y)f(y)dy, a < x < b  (7)

Define an interval integral Fredholm - type operator as follows

(A f)(x) = g(x) + k £  K(x, y)f(y)dy, a < x < b  (8)

where the integration is in the interval sense, cf. [2,7].
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We formulate an approximation procedure, namely

f,(x) = g(x) 

f2(x) = (Af,)(x)

f3(x) = (Af2)(x) (9)

fn(x) = (Afn_,)(x)

Further we have

|( A f )(x)| < |g(x)| + { |K (x , y)||f(y)|dy <

< |g(x)| + ( | ’|K(x,y)|2dy) ( f |f (y ) |2dyj < (10)

< |g(x)| + K(x)D2(f(-),0) V a < x < b

where k ( x ) = | | ’|K(x,y)|2dyJ and following the known properties of Hausdorff metric 

function cf. [1,7,13,14,16,17]. Thus

D2(Af,o) < D2(g,0) + |k||D2(f,0) (11)

and from eq. (10) follows that the operator A: L2(a,b;I(R)) -> L2(a ,b ;I(R )). Similarly

d(A f,g) < d |g (x ) + £  K(x, y)f(y)dy,g(x)j <

¿ d l l ’K (x ,y )f(y )dy ,o j< £ d(K(x,y)f(y),Ci)dy

< | ’|K (x ,y ) ||f(y ) |d y < ||>|K(x,y)|2dyj | | ’|f(y)|2dyj <

<K(x)D2(f(y),0)

and in consequence

D2(f2,g) = D 2(Ag,g)<||K ||D2(g,0) (13)

Following this procedure we obtain

f3(x) = (A2l ) ( x) = g(x) + £ K(x>y)(Ag)(y)dy< a < x < b  (i4)

From eqs. (12) and (13) we conclude

d(f3,g) = d(A2g ,g )< d (g (x )+  pK (x,y)(A gX y)dy,g(x))<

-  (15)
-  d( I  K x̂ ’ y)(A g)(y)dy.°J 5  K(x)D2(A g> g)  ̂x (x)lk|D2(g,o)

( 12)



80 J. Skrzypczyk

and

D2(f3,g) = D2(A 2g,g) < |k||2D 2(g,0) (16)

Following the above procedure we obtain

d(f„,g) = d(A"-'g,g) < K(x)||K|r2D2(g,0) (17)

and

D2(f„.g) = D2(A"-|g;g ) < | |K r ID2(g,0) (18)

Now we prove that the sequence {fn} is the Cauchy sequence

= d(Af,_„AU  = d(g(x)+  {  K (x,y)fn. ,(y )d y l(x )+  £  K (x,y)fm_1(y)dyj =

= d ({ K (x ,y )fn_,(y)dy, £ K (x,y)fm_,(y)dy)< { d(K(x,y)f„.1(y),K (x ,y)fm_1(y))dy < (19)

< { |K (x,y)|d(f„ .1(y ),fnl.,(y ))dy<K (x)D 2(fI1. 1,f ln_1)

Assume for simplicity that m>n

D 2 (f»»fm ) -  IIkID 2 (f„-,. fm-!) ̂
< |k ||2D 2(fn_2,fm_2)<  ........  (20)

.... < w ^ D 2(fIffM tI ) = iiK r, D 2( i )fm. n+1) < iiK ir-d 2( i,o )

If  ||k || < 1 then {fn} is the Cauchy-type sequence. Let further f(-):= lim n_>«,f11(-). It is easy to 

prove that f(.) is the solution o f eq. (7). Denote h(x):=  g(x) + (A f)(x ) . We have

d(f„,h) = d(Afn_,,h) = d |g (x ) + £  K(x,y)f„..l(y)dy,g(x) + £  K (x,y)f(y)dyj =

= d ^ |>K (x,y)fI1. l(y)dy, £  K (x ,y )f(y )dy j^  | >d(K (x,y)fn. 1(y),K (x,y)f(y))dy < (21)

< £ |K(x,y)|d(f„_,(y),f(y))dy < K(x)D2(f„_,, f)

and

D2(f„,h) s W D 2(4 -„  f) (22)

Since D 2(fn. , , f ) — >0 we have h(-) = f ( )  almost everywhere in [a,b].Thus f( ) is the 

solution of interval integral equation (7).

We can prove the uniqueness o f that solution. Assume we have two different interval

solutions f,(-) and f2(-) o f eq. (7). Then
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d(f„f2) = d(g(x) + £  K (x,y)f,(y)dyg(x) + £  K (x,y)f2(y)dyj =

= d ^  K(x,y)f,(y)dy, £  K (x,y)f2(y)dyj < £ d(K (x,y)f,(y),K (x,y)f2(y))dy < (23)

< | ’|K (x,y)|d(f,(y),f2(y))dy < K (x)D 2(f„ f2)

From eq. (23) we have D2(f,,f2) < ¡K||D2(f,,f2) . Since for different f ,( )a n d  f2( )  

D2(f,,f2) *■ 0 , thus 1 < ||k||, which result leads to contradiction . So we get D2(f,,f2) = 0 i.e. 

? i() = ^ ( 0  almost everywhere in [a,b].D

4. Example

Solve the interval Fredholm integral equation of the second kind 

f(x )=  | x , | x  + |^ x y f ( y )d y ,  0 < x < l  

We calculate terms o f approximating interval sequence as follows

fl(x) =
' 2  5

I X’6 X
»

f2(x) =
' 2  5 

3 X’ 6 X * 1 1 -
' 2 5 

3 * 6 y

II ' 7  35 

_9X’ 3 6 X.

f3(x) =
2 5
5 X’Ï X

7 35
9 y’3 6 y dy =

43 215
54 X’ 216 X

(24)

(25)

It can be proved that fn ■ 5 X,X
, which is the interval solution of eq.(24).
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A bstract

In the paper basic concepts o f the structure of the solutions to the interval Fredholm 

integral equations

f(x ) = g (x )+ ^ K (x ,y )f(y )d y , a < x < b

are considered, where g( ) is taken as an interval square-integrable function and non-interval 

kernel k(.,.) is square-integrable in [a,b]x[a,b]. All operations are in the interval sense. At first, 

the existence o f the exact interval-set-valued solution is investigated. In addition the 

uniqueness of the solution set is obtained. For including a set o f solutions of the interval 

integral equation we apply interval calculus. Finally the theory is illustrated by a simple 

analytical example.


