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Summary. In the paper basic concepts o f the structure of the solutions to the interval 
Fredholm integral equations are considered, where a free term is taken to be an interval 
square-integrable function and non-interval kernel is degenerate and square-integrable in 
[a,b]x[a,b]. At first, the existence of the exact set-valued solution is investigated. In addition 
the hull o f the solution set is obtained. For including a set o f solutions of the interval integral 
equation we apply interval calculus. At the end the theory is illustrated by a simple analytical 
example.

O ISTNIENIU ROZWIĄZAŃ LINIOWYCH PRZEDZIAŁOWYCH 
RÓWNAŃ CAŁKOWYCH FREDHOLMA O JĄDRACH SPECJALNYCH

Streszczenie. W pracy badane są istnienie i struktura zbioru rozwiązań przedziałowego 
równania całkowego Fredholma II rodzaju z niejednorodnością, która jest funkcją 
przedziałową, całkowalną z kwadratem, natomiast jądro równania całkowego jest jądrem 
specjalnym, całkowalnym z kwadratem na zbiorze [a,b]x[a,b]. W pierwszej kolejności badane 
jest zagadnienie dokładnego zbioru rozwiązań, a następnie problem wyznaczenia 
najmniejszego zbioru przedziałowego, zawierającego dokładny zbiór rozwiązań. W celu 
wyznaczenia tej aproksymacji zastosowano analizę przedziałową. Teoria zilustrowana jest 
prostym przykładem analitycznym.

1. Introduction

The theory of Fredholm integral equations is very well developed and has a great 

bibliography [11,12,18,19,25], Such equations play a great role in investigation o f many 

technical problems in which boundary problems are of the greatest importance, cf. [4], In 

recent years the analysis for problems o f integral equations with random parameters has also
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been discussed intensively, cf. [9,22,24]. However, in many particular cases probabilistic 

analysis is very difficult from mathematical point o f view, as well as sometimes the necessary 

knowledge about probabilistic characteristic o f parameters is very poor. On the over hand, 

especially in engineering sciences, because of manufacturing errors, values of structural 

parameters o f many materials are uncertain and the character of that uncertainty is interval,

1.e., unknown and bounded.

If  the structural parameters are interval the equations describing the system become of 

interval character. Following, the corresponding solutions are o f set character. Since detailed 

calculations o f the shape o f that set are very difficult, approximate methods are needed.

For engineers it is often sufficient to estimate the upper and lower bounds of the solutions 

of system equations under considerations i.e. to find upper and inner interval approximations 

of solution sets respectively. We are interested in real solutions only, but the complex case is 

handled by the method used, since it is more appropriate from mathematical point o f view.

Interval integral equations were investigating earlier in some papers [7,8,10,13,21].

Section 2 is devoted to notations and terminology and in Section 3 we discuss the existence 

o f solutions o f interval Fredholm integral equations o f the second kind with degenerate 

kernels, as well as the method o f investigating exact and approximate solutions. In section 4 

we study the simple example which can be solved analytically. Presented methods give new 

results to study uncertain boundary problems with interval or fuzzy parameters, which are 

very important in an engineering practice, cf. [5,6,22,23]

2. Elementary Concepts and Results

In this report, the following concepts and notations will be used. R n (R n*m) was reserved 

for the set o f n-dimensional vectors (nxm matrices), R the set o f reals.

Let the symbols P (R " ) , P (R nxm) denote the power sets o f R n and R nxm respectively. 

Let I(R) denote the set o f  all closed bounded intervals z = [z~,z+j on the real line R, where 

z~ and z+ denote the end points o f z . We call further elements o f I(R) interval numbers. In
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the similar way we introduce I(R n) - the space of interval vectors, and l( Rn*m j . the space 

of interval matrices.

The elementary operations on elements from I(R n) and I^Rnxm j are described in 

monographs [1,3, 15-17,20],

The complex plane will be denoted by C, complex vectors by Cn and complex matrices as 

Cnxm. Similarly the symbols P(C), P (C n),P (C nxm) denote the power sets o f C, C n and 

C n x  m respectively.

The symbols PC(R ”) ,  Pc(R nxm), Pc(C), Pc(C "),Pc(C n*m) denote the families of all non

empty compact convex subsets o f corresponding spaces.

If z , ,z 2 e C, Re(zt) < Re(z2) and ImCZ]) < Im(z2) then we call [ z , ,z 2] a rectangular 

complex interval. The set o f rectangular complex intervals, will be denoted by IR(C), 

similarly IR (C n) - rectangular complex vectors, IR (C nxm) - rectangular complex matrices.

The operations on elements from IR(C), IR (C n) and IR (C nxm) are described in [1,14].

Rectangular values are called further simply interval complex values and will be denoted as

1(C), I(C n) and I(C nxm) respectively.

Let T be one of the sets: R n, R nxm, Cn , Cnxm. The operations in the power set P(T) are 

as usually defined by

A*B:= {a*b|a € A ,b  eB }, A ,B eP(T), * e { + , (1) 

with well known restrictions for 7". Naturally for matrices the symbols denote corresponding 

matrix operations [1,3,16,17].

Further informations on interval analysis the reader can be found in papers [1,3, 15-17,20]. 

Interval numbers are naturally a special kind o f fuzzy numbers.

For interval numbers a ,b  e l ( R ) , we obtain from eq. (1):

(A l) a < b iff a" < b~ and a* < b +;

(A2) a* b : = {a* b: a e a, b e  b, ” *" = "+ ,-,•/ '} ;

where (A2) follows from (**) and gives a general method to determine obvious algebraic 

operations on interval numbers which results in the following formulas:



88 J. Skrzypczyk

(B l) a + b = c i f f c ~ = a  + b~ and c* = a* + b + ;

(B2) a - b  = c iffc~ = a '  + b* and c* = a* - b ~ ;

(B3)

a b = c i f f c '  = m in (a~ b ~ ,a"b * ,a* b ',a* b * )an d  c* = m a x (a "b * ,a 'b +,a  + b ‘ ,a * b +);

(B4) 1 /a  = c iffc* = 1/a* and c* = l/a *  whenever 0 g ja~ ,a*  j;

(B5) a / b  = c iffc  = a - ( l /b )  whenever 0 g [b ',b * j.

Recall that the value

(B6) d ( a ,b ) := |a - - b - |v |  a * - b * | is called the distance between interval numbers

a and b . It is easy to see that, if  a = a and b = b are real numbers, then d( a ,b j = |a -  b| . For

further information see refs. [1,13,14,16,17,20], It is the Hausdorff metric specified for I(R). 

Recall that the Hausdorff metric is defined as

H (A ,B):= inf{s: A c  N (B ,s), B c  N(A,e)}, (2)

where

A ,B  eP ^ T Ia n d  N (A ,e) = {x eT :|jx -y || < e for some y e a ] (3)

We have: H( A + C, B + C) = H( A, B), V A ,B ,C  eP c(T), >,N(A,e) = N(X.A,|X.|e) V J ie C 1.

Denote by C(J;I(T)) the set o f all continuous mappings from J to I(T), where JcR . We 

metricize C(J,I(T)) by setting

D ,(x(t),y(t)):=  supleJ d(x(t),y(t)), (4)

where x (t),y (t) eC (j;I(T )) and d is the Hausdorff metric defined in I(T ) . Since (I(T),d) is a 

complete metric space, a standard procedure is applied to show that C(J;I(T)) is complete too, 

cf- [13].

Further we denote by L2(J;I(T)) the set o f all measurable interval-valued mappings x( ) 

from J to I(T), where Jc R  and x'(.),x*(.)eL2(J;T). We metricize L2(J;I(T)) by setting

D2 (x(t), y(t)} = ( | d 2(x(t), y(t))dtj , (5)

where x (t),y (t) e  L2(j;I(T )) . Similar arguments as above apply to show that also L2(J;I(T)) is 

complete.
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An interval-valued real (complex) function is a special closed-valued set valued function 

f:R  -> I(T) .It is usually written as f(x) = |f "  (x ) ,f+ ( x ) |, where

f '  (x) = inf f(x), f + (x) = sup f(x). (6)

Then f  is measurable iff f~ and f + are measurable [2,7,13].

3. Interval Fredholm Integral Equations with Degenerate Kernels

A linear interval Fredholm integral equation of the second kind with the kernel K(-, ) and 

the interval-type free term g(-) is defined as the family of linear non-homogeneous Fredholm 

integral equations

f(x) = g(x) + x | >K (x,y)f(y)dy, g(x) e g (x ) ,X  e C \  a < x < b  (7)

Thus we consider a system o f eqs. (7) in which the functions take unknown values ranging 

in certain intervals. Consider the non-homogeneous interval Fredholm integral equation of the 

second kind with degenerate non-interval kernel

K (x,y) = X jr=1uj(x)w j(y), a < x < b , a < y < b  (8)

We are interested in investigating o f the exact solution set o f eq. (7), given by

Z (K ,g)(x ):= {f(x ):f(x ) = g(x) + ̂ X > 1f u j(x)w j(y)f(y)dy, 

f (■) e  L2 (a, b; I( C)), g( ) € g(-)}, a < x < b 

We show that the solution set Z(K ,g)(x), a < x < b is not an interval complex function,

and need not even be convex; in general, Z(K,g)(-) has a very complicated structure.

Further a linear interval Fredholm integral equation of the second kind is written in the 

form

f(x ) = g(x) + A.|>K(x,y)f(y)dy, a < x < b  (10)

Denote s* = £ f(y)w j(y)dy = ( f w ,) ,  i=l,2,...,r. Thus

Z (K ,g )(x ):= |f(x ):f(x ) = g(x) + ̂ ' =1sju j(x), 

f O e L 2(a,b ;I(R )),g ()6g(-)} , a < x < b
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If we multiply both sides o f the integral equation f(x ) = g(x) + X]T'_,sJuJ(x), by w, and

integrate from a to b, we obtain Sj on the left side. If  we define integrals t, = (g Q .w ,) then 

the solution set (11) becomes

Z (K ,g )(x ):= |f(x ):f(x )  = g(x) + ^ jr=1sJu J(x),sj e I (C ,t) ,g (-)  e g ( ) J ,  a < x < b  (12)

where

S(C, t):= |s: s = t + A.Cs, t e  t ,tj = (g(-), W; ),cÿ = (u j,w f ) |  (13)

is the solution set o f linear interval complex-valued equation with coefficient matrix C and 

interval free term t.

So the solution to interval Fredholm equation o f the second kind (7) with degenerate kernel 

reduces to solving for s, from the system o f the r linear interval equations (13), since s, will 

then be used in the series (12) to obtain E(K ,g)(-), the solution set o f (7).

Denote QE(C,t):= [inf(Z(C ,t)),sup(S(C ,t))] the hull o f 2 (C ,t)  i.e. the tightest interval 

set enclosing £ (C ,t) .  Then

□ l(K ,g )(x ):=  {f(x):f(x) = g(x) + 3 ,V  s ^ / x ) ^  es* , s* = G l(C ,t),g(-) eg (-) | =
. ’ (14)

= g(x) + ^ X H sj u j(x)>. a < x < b

Naturally Z (K ,g )(x )g D l(K ,g )(x ), V a < x < b .

4. Example

Solve the interval Fredholm integral equation of the second kind

f(x ) = [0,l]x + A .|(xy2 + x2y)f(y)dy, 0 < x < l  (15)

This interval Fredholm integral equation has a degenerate kernel o f the form (8),

K (x,y) = ] T , | uJ(x)w j(y )= xy2 + x2y, o < x , y < l ,  (16)

where u,(x) = x ,u 2(x) = x2, w ,(y) = y2,w 2(y) = y. In order to obtain values o f 2  and □ !  we

must calculate t„ ctJ for i j= l ,2  from eqs. (13). We obtain

f ,(x ) = o,- , f 2(x) =
X  X  \  X

> c l l  -  ,  > c l l  -  ,  > c l l  -  ,  > c l l  - 4 ’
(17)
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Hence the system o f interval equations s = t + Cs becomes

0,
_1_
4

4 + X

1 1

We can transfer this equation to more compact form

X X
~ 4 5

X X
~ 3 ~ 4.

3 4.

4
0-3

(18)

(19)

S,

0 60

Fig. 1. Exact solution set and its approximation interval hull
Rys. 1. Dokładny zbiór rozwiązań i aproksymujące rozwiązanie przedziałowe

As we have only two equations

we can solve them immediately to obtain the exact shape o f the solution set E (C ,t), see 

F ig.l. Since the inverse matrix o f the system (13) is easy to calculate we can obtain the hull of 

solution set in the analytical form. The eigenvalues o f the system (13) take values

Xt = - 6 0 -  16VT5 =-121.9677335, X2 = -6 0  + 16v/l5 = 1.967733539 (21)
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If X A, and A *■ X2 then for X = 4 we obtain E(C, t)  = 0Z(C, t)

r  i i 5

i

11
i . SjH = _~16,0_

(22)

and for X *  4 we have respectively

4(60 -15A)

s? = -
+ 48 A.

80A

i -

0,

240-120A -A 2 

1 + 6 0 ( 4 - A)
(23)

2 4 0 -1 2 0 A -A

Naturally QZ(C,t) = [s,H,^H]T. The corresponding domains we can compare on Fig. 1.

Once we know (s,,s2) e I (C ,t)a n d (s ,H,s2H) eO S(C ,t) we can obtain the exact shape of 

the solution set

I(K ,g )(x ):=  |f (x ) :f (x )  = [0,l]x + a ( x s , + x 2s 2) , ( s , , s 2) eZ (C ,t)} , 0 < x < l  (24)

and similarly

DZ(K,g)(x) = {f(x):f(x) = [0,l]x + A(xs,H + x 2s2H) | =

=  [0 ,1]x  +  a ( x s ,h + x 2s 2h ), 0 < x < 1  

which is the interval function. We remember naturally that Z (K ,g )(x )c  DSiK.gXx) for 

V 0 < x < l .

(25)
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Abstract

In the paper basic concepts o f the structure of the solutions to the interval Fredholm 

integral equations

f(x ) = g(x) + x | >K (x,y)f(y)dy, g(x) e g (x ),X  e C 1, a < x < b

are considered, where g(.) is taken as an interval square-integrable function and non-interval 

kernel k(.,.) is degenerate and square-integrable in [a,b]x[a,b]. At first, the existence of the 

exact set-valued solution is investigated. In addition the hull o f the solution set is obtained. 

For including a set o f solutions of the interval integral equation we apply interval calculus. At 

the end the theory is illustrated by a simple analytical example.


