The Chemical Agea Mreelap Tamed Theyned tu Tadustrial and Engineering Chemistry

DORR-OLIVER

 CO. LTD.Abford House, Wilton Road, London,
R@OUPMR AND

WET MATERIAL HANDLINGIN THE
CHEMICAL INDUSTRY
Pumps
Classifiers Thickeners

Agitators
Vacuum \& Pressure Filters
Turbo-Mixers

Sand Washers
A. R. Wilfley \& Sons Centrifugal Sand Pumps

Sealed by Experience

for which there is
no Substitute

AND COOLERS, FOR ALL CALCINING PROCESSES

Complete Plonts can be supplied

A trained mechanical and chemical Staff deals with problems.!

sumityons on EIDGAR ALLEN

EDGAR ALLEN \& COMPANY LTD., IMPERIAL STEEL WORKS, SHEFFIELD, 9.

EHT| $\pm+$

SODIUM ALUMINATE

HIGHEST QUALITY FOR WATER SOFTENING WRITE FOR PARTICULARS

PETER SPENCE \& SONS LTD.

MANCHESTER, 3
LONDON OFFICE: 778/780 SALISEUAY HDUSE ECZ

KEY ENGINEERING CO. LTD. 4 QUEEN VICTORIA STREET, LONDON AND MANCHESTER

M.\& W. GRAZEBROOK LTD 1750 ENGINEERS and IRONFOUNDERS

A MASTERPIECE OF DESIGN AND ENGINEERING
Hundreds of thousands of Brough's Drums were made for special purposes during the war. A tribute - if such a uribute is necessary - 10 their sound construction and efficient design.
Our vast experience is at your servirc.

BROMGMK DRUNS

Safety First

SAFETY FIRST

THE "OLDBURY" PATENT CARBOY DISCHARGER will empry and elevate up to 50 feet the contents of any carboy, botele or vessel, and complles with all the conditlons of the Factory Act of 1937.

KESTNER'S

5. Grosvenor Gardens, Westminster, Londan, S.W.

—POTTER'S Machinery Guards

- DESIGNED FOR SAFETY
- BU1I.T FOR SERVICE

Potter's guards are Installed in works throughout the country and are distinguishable bythelr sound construction, good Itting and many exclusive teatures.

F.W.POTTER \& SOAR LTD.
 PRIPD STREET, LONDON, E.C. 2

Teieqhanet: AShopirate 2177 (3 linen)

First Aid Outfts, etc., complying with Factory Regulations. Factory Thermometers, etc

FIRST AID SUPPLY CO. 1925 88, NEWINGTON BUTTS, LONDON, S.E.II

Telephone: RELiance 1823

PROTECT WORKERS HANDS AGAINST IRRITANT SUBSTANCES BOZALEX

Applied before work keeps hands healthy hozalex lid., io nohfulk st., manchester, 2

ACID \& ALKALI RESISTING CLOTHING. CARBOY SAFETY DEVICES, RUBBER, ASBESTOS, LEATHER \& COTTON GLOVES, SPLASHPROOF GOGGLES AND FACE SHIELDS, and everything for the protection of the industrial Worker.
Wilte to-day for a copy of our "Blae Book for Salety Appliances" - the result of ilty years' experionce In protecting Industry.

THE "TEANTEE" STANDARD PORTABLE CONVEYOR

' Gammexane' is the name given to the gamma isomer of Benzene Hexachloride (666).

It is effective against an extensive range of industrial and agricultural insect pests while being harmless to man and domestic animals under normal conditions of use.

It is constant in composition and activity and is unaffected by warmth or moisture.

Even at very low concentrations it is persistent in action.

A powder containing ' Gammexane ''GAMMEXANE' DUST D 034-is available in limited quantities in 56 lb . and 1 cwt . packages.
'Gammexane' is the trade mark name of the gamma isomer of benzene hexachlorid.

IMPERIAL CHEMICAL INDUSTRIES LTD.
Sales Offices: Belfast. Birmingham, Bradford, Bristol, Dublin, Glasgow, Lcicester, London, Manchester, Neweastle-on-Tyne, Shrewshury and York.

G.I

[^0]T HE Model 7 Universal AvoMeter is the world's most widely used combination electrical measuring instrument. It provides 50 ranges of readings and is guarantced accurate to B.S. first-grade limits on D.C. and A.C. from 25 to 100 cycles. It is self-contained, compact and portable, simple to operate and almost impossible to damage electrically. It is protected by an automatic cut-out against damage through severe overload, and is provided with automatic compensation for variations in ambient temperature.

The New B.T.L. UNIVERSAL ELECTRICSTIRRER

This latest product of the B.T.L. Instrument Works should find a place in every scientific laboratory.

SPECIAL FEATURES

- Portable and self-contained, with wide variation of speed-up to 5,000 r.p.m. approx.
- Adaptable to every stirring operation.
- Easily set up in any part of the laboratory.
- Usable at almost any angle.
- Economical-all parts are sold separately and outfits can be built up as required.

PRICE

Outfit as shown including motor with regulating rheostat mounted alongside, and 18 in . stainless steel stirrer.

$$
£ 8 \quad 8 \quad 0
$$

Pleose state voltage when ordering.

Write for illustrated pamphlet giving complete particulars, and showing methods of setting up the stirrer to varying requirements.

BAIRD \& TATLOCK (London) LTD.

Manufacturers of Scientific Instruments

14-17 St. CROSS STREET, LONDON, E.C.I

Drums For All Trades

 Consult

THE CYCLOPS ENG. CO. LTD. BURTON-ON-TRENT

PHONE 2085

A Monument to Quality

Brilliant filtrates from all types of chemical liquids produced through the Metafilter are a monument to the high-quality filtration which it ensures. In addition to chemical liquids, the Metafilter handles with equal facility and success synthetic drugs, biochemical products, gelatine, syrups, and extracts ; and it withstands the action of acids, alkalis, oils, and organic liquids.
(Metafiltration
THE METAFILTRATION CO. LTD., BELGRAVE ROAD, HOUNSLOW, MIDDLESEX.

Keep your eye on the

Expert advice for water users
Pumping and conveying water to where you want it take a lot of power (and much fuel and money). Water is even more precious if it has been heated or purified in your works.

How to make the best use possible of your water supply is told in these handy booklets :

fUEL ECONOMY BY WATER SAYING

 (Bulletin No. 31)This is a survey of the economies (many of them substantial) that are possible in water supply for boiler feed, drinking and washing, process and cooling. It tells you, too, how to clean water mains and plant, and how to keep them clean.

WATER TREATMENT (Bulletin No. 39)

The correct treatment of water, whether for boiler feed, cooling or process is a matter for the specialist. This Bulletin surveys the whole field and describes bricfly the methods available for overcoming your difficulties.

BLOW-DOWN (Bulletin No. 35)

Too often the blowing down of boilers is merely a matter of routine, bearing no relation 10 nced. Excessive or insufficient blow-down are both serious fiel wasters. This Bulletin tells you why, when and how much to blow down.

THE UNORTHODOX USE OF ECONOMISERS (Bulletin No. 30)

This Bulletin shows how to obtair. the maximum results from your feed-water economiser. Some of the suggestions may be new to you, e.g., the use of a condemned plant for process water heating or as an air heater.

[^1]

D.D.T./GEIGY
 THE LATEST AND MOST SCIENTIFIC INSECTICIDE

WATCH THIS SPACE FOR
FURTHER ANNOUNCEMENTS

Enquiries to-
PHARMACEUTICAL LABORATORIES GEIGY LTD.,
NATIONAL BUILDINGS, PARSONAGE, MANCHESTER, 3.

STAFFORD ALLEN \& SONS, LTD.,
20. WHARF ROAD, LONDON, N.I.

LABORATORY PRESS
 10 TON

 hand operated$9^{n} \times 9^{n}$ ELECTRIC HOT PLATES THERMOSTATIC CONTROL

INDISPENSABLE FOR TESTING IN THE UP-TODATE LABORATORY

WE MAKE ALSO:-
SMALL TABLETTING MACHINES. HYDRAULIC PRESSES

FROM 25-250 TONS.
INDUSTRIAL HOTPLATES FOR GAS, STEAM OR ELECTR CITY.
SPECIAL HYDRAULIC MACHINERY
FINNEY PRESSES LTD.
BIRMINGHAM I

The Basic Principle

 of the UNIVERSAL MIXERis capable of adaptation to innumerable industrial purposes.

"WILL THIS ONE

BE ON THE HOUSE?"

Says Mr Therm
A nation that has worn its war-paint with distinction for nearly six years has some excuse for wanting to brighten things up a bit after the "Cease Fire" has sounded.

More paint . . . better paint . . . brighter paint. New protective finishes for quick drying ... for " flexibility," resistance to heat, weather, chemicals and pests. Whatever the orders are they'll be big, and urgent . . . and gas will play its part in maintaining quantity and quality of output.

The speed, controllability and cleanliness of gas make it the ideal fuel for gum running. oil boiling, varnish making and testing.

As Industry changes over GAS is playing its part

BRITISH GAS COUNCIL

I GROSVENOR PLACE, LONDON, S.W.I

By specifyling "PYREX" Brand when orderling Graduated Glassware you are assured of obtalning strong serviceable gla ssware, with division lines and numerals otched clearly and precisely for easy reading.

For everyday laboratory work PYREX Brand Glassware is graduated to N. P. L. class B standard. but for more meticulous analysis or intricate research work. N.P.L. class A can be supplled at the appropriate extra costs.

S. K. KABBUR, LIMITED

 3, BASTION ROAD, FORT, BOMBAYwith over 40 distributing centres all over India, are interested in the following groups of Dyestuffs :

BASIC	VATS
ACID	NAPHTHOLS
DIRECT	BASES
DIAZO	FAST SALTS
SULPHUR	RAPID FAST COLOURS
COLOURS SOLUBLE IN OIL	

Samples and quotations should be sent to their correspondents MESSRS. KABBUR \& CO., LTD.
"RADHA HOUSE,"
HIGHER ARDWICK, MANCHESTER, 12.

In the event of business payment is made on delivery to their warehouse at Manchester

Bank References are-
The Eastern Bank, Ltd.
The National Bank of India, Ltd.
The Imperial Bank of India
The National City Bank of New York

FOUNDED 1830

Old-established yet up-to-date in every detail, this organisation provides a specialised service for the chemical industry that ensures rapid delivery and low prices all the time
MANUFACTURERS AND PROPRIETORS OF
"INV|CTA" DECOLOURISING
CARBON
PLUMBAGO CHARCOAL (Wood \& Animal) MANGANESE
"INVICTA" हituminous materials
FOR ROAD CONSTRUCTION
GRINDING With improced mills, of
every description of
chemlcal and other materials for the trade

THOMAS HILL-JONES, LTD.

 MANUFACTURING CHEMISTS, INVICTA WORKS, BOW COMMON LANE LONDON, E.3. and at MEESON'S WHARF, BOW BRIDGE, E.I5 :: CONTRACTORS TO H.M. GOVERNMENT Telephone: EAST 3285 (3 lines).Telegrams: Hill-Jones Bochurch, London

THE CHEMICAL ENGINEERING \& WILTON'S Patent furnace co., LTD., horsham, sussex

Northern Office and Fuel Engineer:
T. G. FEGAN, CANNONFIELD, HATHERSAGE, nr. SHEFFIELD

Phone: Horsham 965
'Grams : Evaporator

Rotary Pulp Washing Machine, with Pitch Pine Trough, Wash Gear and Seraper Krife.

Plant for the Chemical Industry

for ACID NEUTRALIZATION, CLARIFICATION OF LIOUIDS, DEWATERING OF SLUDGES, EFFLUENT PURIFICATION, FILTRATION AND FLOCCULATION, PICKLING LIQUOR TREATMENT, PURIFICATION OF TRADE WASTE, SEDIMENTATION AND THICKENING, SEPARATION OF SOLIDS FROM LIQUIDS, SODA RECOVERY. WET MATERIAL HANDLING

Including

AGITATORS CAUSTICIZERS, CLARIFIERS, CLASSIFIERS, CONVEYORS, dewatering machines ROTARY VACUUM FILTERS, SAND WASHERS, SLUDGEPUMPS . THICKENERS, etc.

Rolary Vacuum Filler, with Take-off Roller ard Repulper.

UNIFLOC REAGENTS LTD., SWANSEA

Phone: Swansea 5164 (3 lines) Grams: Unifloc, Swansea

BRITISH TAR PRODUCTS

LIMITED
Makers of
PYRIDINE
ANTHRACENE OIL CARBOLIC CRYSTALS CRESYLIC ACIDS META-CRESOL NAPHTHALENE TOLUOL SOLVENT NAPHTHA XYLOL

SALES OFFICE :
418 ${ }^{\text {A }}$ GLOSSOP ROAD, SHEFFIELD, 10
Telephone: 60078-9
Telegrams: CRESOL

The Chemical Age

A Wheekly Journal Devoted to Industrial and Engineering Chemistry BOUVERIE HOUSE, 154 FLEET STREET. LONDON, E.C. 4

Telegrams: ALLANGAS FLEET LONDON
GLASGOW: 116 Hope Street (Central 3970)
Telephone: CENTRAL 3212 (so lines)
BIRMINGHAM: Daimler House, Paradise Street (Midland $0784-5$)

THE CHEMICAL AGE offces are closed on Saturdays in accordance with the adoption of finf fiyedayweek by Benn Brothers Limited

VOL. LIII
No. 136 S .
September I5, I945
Any ynh subserintion 21 s .

Social Relations of Sciencesk

PROFESSOR J. D. BERNAL, who is professor of physics at Birkbeck College, is a well-known exponent of the application of science to social problems. As we understand it, his view is that science must no longer shut itself up in the laboratory but, in the persons of scientific men, must come forward to help in the social affairs of the world in the interests of humanity. It was accordingly with considerable interest that we listened to the Truman Wood lecture which was delivered by him in the early summer and which is now published in the fournal of the Royal Society of Arts (xcmi, 45S). The essential point which Professor Bernal endeavoured to bring out was that science must adjust itself to knowledge in order to secure progressive development. In order that that might be brought about scientists must themselves take a hand in the application of their knowledge and discoveries and must submit to being organised in order that they may the better carry out this work.

There is inevitably a good deal in what Professor Bernal says with which we disagree and equally there must be a good deal with which we agree. Perhaps the gieatest argument

On Other Pages

Notes and Comments 235
Fuel Efficiency Discussions--II (Part 1I) 237
Industrial Safety Gleanings 241
Non-Ferrous Metal Prices 241
Planned Stagnation 242
. 1 mual Report of RoSPA 243
Rapid Moisture Testing 244
The Mineral Wealth of Bihar 245
Relgian Chemical Notes 246
Rare Earth Fluorescence Spectra 247
Silica Sand in Scotland 248
Pemicillin Research Fund -.. 248
Verr Control Orders 249
Letter to the Editor 249
Personal Notes 250
General Veus from Week to Week 251
Commercial Intelligence 253
Company News 253
Stocks and Shares 253
British Chemical Prices... 254
will take place among Professor Bernal's collcagues on the academic side about his thesis that science must be organised. He has pointed out that "we are passing out of a period during which progress was largely due to a fortuitous combination of individual activities. In the economic field there was free competition between small, independent firms; in the field of science individual investigators followed their private choice. That situation has already vanished in the economic field. Only the more backward parts of production are carried out in small, independent factories. One can hardly expect the great changes made in industry towards large-scale organisation to leave the individualist structure of science unaltered, and the drive towards organisation is already under way."

There are many arguments against organisation, some of which appear to be not very well founded. It has been suggested that organisation must tend to fix the forms of investigation and would thus destroy science integrally. It has been argued that science would be perverted, since gorernments would use it for destruction rather than human welfare. It has been
objected, moreover, that since organised science would be part of the State every scientist would have to do what he was told and thus lose his freedom in investigation. We should agree with Professor Bernal that these objections are misapplied because of a misunderstanding of what is meant by "organisation." But before science is organised, even on the lines which Professor Bernal contemplates, must there not be a fairly exact definition of terms so that any value which is secured by organisation will not be losti through regimentation?

As we look back on the history of science in this country we find that the great discoveries have for the most part been made by individualists working alone or with a small team of their own choosing. Subject to two restrictions only, they have pursued whatever paths seemed good to them, and the world has been greatly the gainer. The two restrictions are, however, fundamental and could be removed by suitable organisation. One of these restrictions is time. Most of the great experimenters in the past have been teachers at our universities and they have been able to conduct their researches only as a spare-time hobby, or alternatively they must have neglected their primary work of teaching. The second limitation has been even more crippling. It has been that of finance. The research grants made by the D.S.I.R. can largely be used to overcome that limitation, but it is still present.

What, therefore, is meant by organisation is not the regimentation of scientists, but the organisation of funds to finance promising research workers in whatever line they may have chosen. It also involves the voluntary organisation of research workers into teams for investigating some particular problem. It is to-day open to a man to join a research team working for an industrial concern or for a research association, or he may stay outside and work by himself. The war has shown us that, when scientists are organised to a particular end, striking results may be obtained rapidly. We confess that we see a great deal of advantage to this country in an arganisation of that character. Too often small research organisations have not the scientific advice and direction which enables them to give of
their best, and it should be possible to evolve some organisation which would assist in the more rapid development of industrial processes. In discussing this problem we are in a sense thinking aloud and we have always in mind the reservation that some clear definition of terms and of the manner in which science may be organised should be agreed, between scientists and the Government, before organisation is put into effect. We do not forget that the Government and the medical profession do not by any means see eye to eyc on the organisation of medicine for human needs. While organisation of the right kind directed by the right people may be fruitful indeed in its results, organisation of the wrong kind, conducted by the wrong people, may act as a severe brake upon progress, and, as has been seen in Germany, may destroy the scientific work of a nation within a decade.

We cannot altogether agrec with Professor Bernal's statement that "the modern picture of an industrial process is that of a cycle which begins with the discovery of a need and ends with the satisfaction of that need." That is true sometimes, but very often the converse is true, as Lord Leverhulme pointed out in an address to the Society of Chemical Industry. When a need can be foreseen Professor Bernal's scientific organisation would clearly be the best method of satisfying it. During the war, for example, it was necessary (a) to find an answer to the new devices of the enemy and (b) to find a means of satisfying certain needs expressed by men of vision among the Allied statesmen and commanders. Under those conditions the best method of achieving rapid success was found to be to engage temporarily a team of men with the expert knowledge required. Thus we found a quick answer to the magnetic mine, and the developments known as Mulberry, Fido, Pluto, and the atomic bomb were all rendered possible. We are less sure whether Professor Bernal's suggestion of organisation would be the right way of dealing with the development of a new need resulting from a scientific discovery. We should, however, agree that once the fundamental discovery had been made and some of its possibilities had been visualised an organised team might well be the quickest means
of developing it to the industrial stage. Professor Bernal believes that there is far too little science in British industry and he trots out the socialist complaint that the cause lies with the employer. He demands, for example, " the abolition of the anti-scientific practices which have brought British industry to its present pass." He mentions "widespread obstruction," and believes that while part of this is traditional conservatism the more scrious part of it is " the conscious obstruction due to vested interest and monopoly."

We just cannot agree. If there are firms-and we have no doubt that there are such companies-that deliberately refuse to admit science to their councils, those firms will quickly go to the wall. There is in British industry a mass of first-class concerns willing and able to use the resources of science fully, but prevented from doing so by taxation and by Government interference. What is
really needed is the employment in industry of a much larger number of scientific men who are also trained to understand the finance of their proposals. This must be coupled with Government encouragement, which largely implies a new spirit animating the Treasury.

The plain fact is that the scientific men, the teachers and the leaders of scientific thought have failed in their duty of persuading either the Government or the public that an adequate supply of trained scientists should be made available. Professor Bernal himself says: "We have had an annual output from the universities of 3000 scientifically trained students, but the greater number of these do not go into science. They go into education. We shall need to step up that output to something of the order of 20,000 if we are going to get anything like the number of scientists we need."

NOTES AND COMMENTS

The Future of I.G. Farben

THE murky past of I.G. Farben is fairly well known to most chemists, and many of them are wondering about its future. This would appear to be, at the moment, in the hands of the American Control Commission, personified by Colonel Edwin Pillsbury, the officer in charge of I.G. affairs, as the headquarters of the combine, at Frankfort-on-Main, are in the U.S. area of occupation. Actually, reckoned on book values (according to a special correspondent of the Manchester Guardian), only about 9 per cent. of the I.G.'s plant is in the American zone, whereas in per cent. is in the British zone, 20 per cent. in the French, and 60 per cent. in the Russian. The last-mentioned proportion includes the Leuna works, the nitrogen and buna factory at Schkorau, and the Agfa works at Wolfen, all near Leipzig. Colonel Pillsbury has stated that he has found plenty of readiness to co-operate among the Russians, who have agreed to provide a complete survey of I.G. works in their area. One thing is certain about the future of I.G., and that is that such a combine will not be permitted to exist again. The present Allied policy is that plants which are essentially a part
of German war industry shall be destroyed, and that after the demands of reparations have been met, what remains shall be split up and the combine dissolved. The doubt remains whether such a dissolution will secure the world against future danger from the German chemical industry. Should, e.g., so large a concern as Bayer be allowed to remain intact, or should it be further subdivided? Questions of this nature are still under consideration, but it will be remembered that American public. opinion is strongly against trusts and combines, and severe dismemberment would undoubtedly "go down well" in the States.

Federal Research

66 PHE development of atomic energy," President Truman has said, " is a clear-cut indication of what can be accomplished by the universities, industry, and Government working together." Vast scientific fields remain to be conquered in the same way. He has therefore urged upon Congress the early adoption of a Federal Research Agency, which might be regarded as a step towards the organisation of scientists, without regimentation. The
functions which it should discharge have been outlined as follows: (i) Promotion and support of fundamental research and development projects in matters relating to national security; (ii) Promotion of research in the basic sciences and social sciences; (iii) Support of research in medicine and public health; (iv) Scholarships and grants for young persons of proved scientific ability; (v) Co-ordination and control of diverse scientific activities now conducted by several Government departments: (vi) Making available to commerce, industry, agriculture, and academic institutions the fruits of research financed by Federal funds. It will be seen that these functions place few, if any, restrictions on the activities of the individual. It may be a quibble to draw a distinction between a " directive" and a "Statutory Rule and Order ": but there is a difference, even if only a psychological one; and who shall say that psychology is of no importance when individuals are concerned? If President Truman's plans are implemented, it will certainly be worth our while to keep an eye on their development, even if we go no further, which would be a pity.

Demobilising Chemical Workers

IA order to restore employment in civilian and export manufacture and in non-manufacturing services to the 1939 level, the Prime Minister has said that an increase of about $5,000,000$ workers will be needed. Of these an estimate of 028,000 workers for the manufacture of metals and chemicals has been made. These figures have been extracted from the "interim statement '' made by the Minister of Labour and National Service, Mr. George Isaacs, last week. He said that if the nation is to survive, our exports and civilian industries must be built up and reestablished with speed, and, further, that export trade must be expanded to a level well above that of 1930 . To meet these requirements to some extent, a million munition workers are to be demobilised by October, leaving $3,000,000$ still en-gaged-a figure that will obviously soon be further reduced. A good number of these releases will not be available for civilian industry, however, as men aged is to 30 are being called up to the

Forces unless they can be shown to be absolutely essential for reconstruction work (chemical and metal workers may well be included here), while many others will be older men and married women who will wish to retire. As Mr. Isaacs says with truth: "The needs of industry are very great, and we want everyone back that we can get." Before the end of the year, the numbers released from the Forces will be about 950,000 men and 145,000 women, the weekly rate of release being about 45,000 . The problem is difficult enough, and Mr. Isaacs admitted that the sudden end of the Japanese perhaps took the Government a little by surprise. On the whole, Mr. Isaacs's statement does very well as an interim affair, but there were some rather loose reservations about " military requirements" and nothing at all about Class B releases. We shall expect something much more definite in a month's time, if not sooner.

An Empire Science Link

SCIENTIFIC liaison within the Empire, more desirable to-day than ever, is strengthened by a new bond which has just been formed, the informal "alliance" between the Imperial College of Science and Technology in London and the Indian Institute of Science at Bangalore. Professor Southwell, Rector of the Imperial College, in a letter to The Times, explains how this happy union has been consummated. The first proposal was made to Sir J. C. Ghosh, Direclor of the Institute, during his visit to this country last autumnthat fruitful excursion of a group of the most distinguished Indian scientists-but formal acceptance had to await his return to headquarters, postponed by a sojourn in America. Now the alliance has been sealed, and it will mean that students and staff who are able to "exchange" between South Kensington and Bangalore will find themselves received not merely as honoured visitors, but as actual colleagues. Readers of The Chemical Age will not have forgotten that the two institutions were already linked by the personality of the late Sir Martin Forster, who was on the South Kensington staff in $1895-1913$ and served as Director at Bangalore from 1922 to 1933.

Fuel Economy Discussions

VI.-Inhibition of Corrosion of Metal in Contact with Water and/or Steam (Part II)

by W. MURRAY, A.M.C.T., F.R.I.C., F.C.S.
(Continued from The Chemical Age, September 8, 1945, p. 219)

DISCUSSION

Q. - Are there not two factors in connection with corrosion-the external factor and the metal:' The homogeneity of the metal has a considerable influence on the corrosion, and certain chemical plant has a liability to pit very much. Is Mr. Murray likely to expand his work to the protection of ordinary iron surfaces expersed to the atmosphere? It may sound fantastic, but conld the labour of the men who are continually travelling backwards and forwards painting the Forth Bridge be ent out by arranging for this preformation of oxide film and then painting on to a good surface?
A.--The best example of lack of homogeneity of metal being responsible for corrosion is graphitic wastage. Carbon present in C.I, as graphite is quite distinct from the iron carbide in the rest of the metal. The oxygen and CO_{2}, but largely the oxygen, took the iron of the iron cartide into solution and left the graphite alone. There was a sclective attack on the iron carbide. The protection of metal from atmospheric corrosion on a very large scale might seem to be a iittle fantastic. The significant thing was that if a piece of metal which had been plancl and cleaned' in a workshop was then put in a room which was fairly free from dust, at the end of about six weeks it would grow a sub-microscopic lifm of oxide. It was a protective film acting in a similar manner to the oxide film on stainless steels. It would not be as strong a film but it was present, and would be even. There should not be any diflienlty experienced in building up phosphate or chromate paints on to a really good oxide film.
Q.-Has Mr. Murray any experience of the formation of phosphate films by secondary pickling of steel work after the removal of the mill scale? Has he any experience of the phosphoric film as a corrosion resistant?
A.-Plosphate films are gond and serve as a very good base for prutection.
Q.- What is the Hemmerdising method of treating an aluminium casting?
A.-Possibly the anodising method is referred to. If so, it has been demonstrated that anodising, a form of electrolytic oxidation, bestows marked corrosion-resistant properties because of this formation of a heavier aluminium oxide film on the parent metal.
Q.-It scems a little diffeult at first sight
to sec how we can form the film, suggested by the author, on a large scale. Gasluclder plates, for instance, are pickled to remove the oxide seale completely and then painted at once.
A.-Mill senle is not the type of oxide film required on a metal surface because it has been caused by high temperaturcs. and different oxides are formed at different temperatures. The typa, adherence, and thickness of the oxide film are all of great importance, and the present practice of removing mill scale before painting is the right and proper way. In fact, it depends on the efticacy of removing the mill scale and cleaning the surface as to whether protection after prainting is good or not.
Q.- We are thinking of pelishing a small area of a gasholder and putting a temporary roof over to kcep the rain ofï and leave it for, suy, six weeks to see what happens.
A. - I do not think that will do. because yon will have clean sheets of metal adjacent to dirty sheets. You could, however, use a bitnmastic paint or some insulating material between the clean and the dirty sheets of metal, but there would be a potential difference between the two.
Q.-I would like to carry this question of muslin a little further. Air borne dust goes down to about 1 micron in size at least. Is there some limiting minimum size of dust particles above which they must be kept from the surface or must all dust particles be kept out whatever the size?
A.-Vernon and I both use butter-minslin. At no point was the muslin nearer than $\frac{1}{2}$ in., and never more than 2 in . away from the metal surfaces, and there was no visual evidence that any particles got through to the surface of the metal. It wonld seem that the size of the particle is material and there must be some critical size which starts the cofrosion.
Q.-Might not the oxide film be unstable inside the muslin in a rany atmosplare?
A.-If the specimen is cumpletely surrounded by muslin, it is possible that there would be a difference in pressure inside and outside. An air current night he kept going throngh so that the temperature would be much lower inside than outside. It would be a very good idea to try that in a rains atmosphere.
Q.-In an ordinary jet-condenser water-
cooling system using cooling towers, I have been exercised as to what is going to happen with water in constant circulation. Where the tower and the pipes are of concrete, is any deleterious action to be anticipated with a water which is kept at a higb $p \mathrm{H}$, using chromate?
A.-In the series of tests described, phosphates werc used, which are the next best to chromate. Unfortunately, in laboratory experiments ouc of the great difficultios is to suspend the specimen in such a way that it is not in contact with any other material. In the experiments using phasphates, corrosion centres were set up where the specimen was in contact with glass; otherwise, the phosphate results would have been far beiter. I do not think we need worry about the eifect of elevation of the $p \mathrm{H}$ value, be cause in many softening plants constructed in concrete the $p \mathrm{H}$ value of the water is 9.610.6, and after 20 years there is no evidence of the deterioration of the concrete.
Q.-What is the effect of chromate on nonferrous alloys, e.g., copper alloys? loees it protect them?
A.- I have tried the effect of chromate on copper and steel couples. In the platen press there were non-ferrous metals which became brittlc before there was any treatment. but that has now been prevented by the use of chromate. With copper-steel ccuples, I have found protection in laboratory experiments. Chromate can be used with quite a number of non-ferrous metals, but I would not like to say, without reference, the precise cifect. Dr. C. I. Evans read a paper before the Iron and Steel Iustitute abont owo years ago on the use of chromate and other inhibitors, and he dealt with the use of sodium chromate.
Q.-Is not normal chromate very slable?

A:- Vis, but when an electric current is passed through its solution, it is very different.

Metal Spraying

Q.-What is Mr. Murray's view with regard to metal spraying? Ten years ago 1 had all the wheels taken off iny car and the metal was sprayed with zinc. Each wheel is now in just as good condition at the end of ten years.
A.--Similar considerations apply to that type of metal spraying as to protective paint. If the start is made with clean metal, and the protective metal is sprayed on evenly, the probability is that the jois would be very good. Another consideration is to ensure that the coating itself is imperrions to water. If there is one spot where the junction is not made right there would be the possibility of extreme local corrosion occurring.
Q.-Is it customary to get heavy corrnsion in strong CO_{2} concentration?
A.-A firm making machinery for bottling
soda water gets over a greal deal of trouble by using non-ferrous metal plant.
Q.-In 1933 or thereabouts very severe corrosion occurred in machinery handing wet CO_{2}. The gas was well scrubbed to remove the CO_{2} and was then passed, supersaturated, through the compressing machinery.

Vernon has emphasised the rôle of the rela. tive humidity of the gas or armosphere surrounding the metal. With low concentrations of CO_{2} and very much lower concentrations of SO_{2}, the action is very slow up to about 50 per cent. relative humidity, and from 50 to 80 per cent. the action is very much greater and at 100 per cent. relative humidity the curve rises almost vertically. The action is determined by the increased formation of the oxide film, and at 80 per cent. relative humidity the formation of the film is very rapid; so rapid that it becomes a discontinuous film, and once that forms corrosion can take place and all protection is gonc.

We had a severe case of corrosion of wellwater in condensers bandling rectified spirit. There was the merest trace of SO_{2} present and the corrosion again toole the form of the very rapid formation of a discontinuous film. I put forward the theory that this was duc to the fact that the whole system was completely frec from any grease which, had there been a grease film, would have afforded protection against corrosion.

Importance of Relative Humidity

A.-I agree with everything that has been said. Relative humidity plays a large part under practical conditions, but under the conditions of the test in my laboratory, which were normal for this country, the six weeks' test was sufficiently long for the formation of an oxide film at normal temperatures. I agree that the greater the humidity the faster the formation of the oxide film and the less adherent and more discontinuous is the oxide film. I agree also that the vil in the wellwater may have given rise to a partial cleaning of the surface of the metals.
Q.-I had well-water used for conling which was very corrosive. After enemy action, some oil tauks containing refined petrol some distance away were discharged on to the ground and the oil sceped through the earth and, after a time. appeared in the well-water. Just after this occurred. the corrosion due to the well-water was very much increased, and althongh other factors are by no means ruled out, it was rather striking.
A.-I thiuk that in some way or other parts of the pipe in the cooling system were boing protected through having spirit on the metal surface, while other parts were not. Therefore, in some parts more oxygen was getting to the metal surface and creating differential aeration. A paper was recently published by the Iron and Stecl Institute
on the effect of the oil in water (" Emulsions of Oil in Water as Corrosion Inhibitors " by P. Hamer,, L. Powell and E. W. Colbeck: February 1945).
Q.-If a cooler is designed to give maximum heat efficiency on a turbulent flow, is it possilule to form a phosphate or a silicate film on the metal in order to stop corrosion, and is the film unaffected by the turbulence?
A.-The platen press is an illustrative example. There are here two circulating systems alongside one another working under similay conditions. Where rater is going through to waste there is no corrosion, but when the cooled water is recirculated corrosion is rife, because the water supply has become thoroughly acrated and acidic through recirculation and air cooling. When this condition was corrected corrosion ceased.
This example refers more especially to pitling corrosion, particularly on the bends. This honeycombing process is obviated by clevating the $p H$ value and by the presence of sodium chromate. The point may be put in the following manner: if the netal could first of all be allowed to slay in an atmosphere free of dust and soot so that the submicroscopic film formed, and then for the period of six montlhs the film be fed wilh phosphate or chromale or something on those lines. it might be practicable to build up it film and to make it strong enougb to with. stand the turbulence and the crosive effects of impingement by water.
Q.-Would the sub-microscopic film form on the metal with a natural scale or is it necessary to machine it before the film can be formed?
A.-The original mill scale would probably have to be removed.
Q.-If the scale became injured would it not give rise to worse corrosion? It would be very important to have it mechanically stable.
A.-Yes. If the film were damaged and nothing was dono about it, the corrosion would be worse in the sense that there would be, possibly, less general corrosion but mort severe local corrosion. What would have to be done would be to feed the water in such a way as to repair any damage.

Austenitic Steels

Q.-Can the resistance of austenitic steels to corrosion be explained?
A.- These are protected by the develop. ment of the oxide film. If that is damaged in any way the film is repaired by the air itself and austenitic stecls are more resistant to corrosion than plain carbon steels because of this self-healing effect. While austenitic steels score heavily in corrosion resistance, the dramback up to now has been fabrication and the cost of austenitic steel.
Q.-We have had mains carrring Manches. ter Corporation town water which have been attacked by corrosion at the end of two
years. It is just possible that they may be subject to heat under static conditions; that is, when the water is static in the pipessay, over the week-end.

"Aggressive" Carbon Dioxide

A.-The trouble is frequently experienced in Manchester and Liverpool and outher towns which have soft water. There is a little carbon dioxide which. in a sense, is free. and which is referred to as "aggressive." CO_{2} will attack the galvanised surface, which when ruptured will corrode very swiftly. One method of dealing with this problem is to pass water through lime so that there will remain in it a very small amount of lime which reacts with the CO_{2} and produces a little chalk.
Q.-Could Mr. Murray give us some information regarding covering inside pipes, such as with graphite paint, or Dr. Watson Smith's method?
A.-The first thing to be careful about when applying a coating of any kind is to make sure that the metal itself is really clean. Next apply the graphite paint evenly. If the metal is not properly cleaned its subsequent condition will be much worse than if it had been untouched from the start because of the diference in potential.
Q.-In connection with the use of chromate and maintaining a fully acrated stream of water, if the current of water is very rapid so that there is a venturi effect in the pipe. a reduction of pressure will, consequent on the loss of oxygen from the solution, result in a differential oxygen concentration. Will there not be corrosion in the pipe just beyond the reduction in the diameter of the pipe? The oxygen concentration is due to release of air.
A. -1 found quite definitely in the platen system I have mentioned, where heating and cooling takes place, that there were differences in oxygen solubility at points along the system, and particularly at the bends. There secmed to be some tendency for the oxygen concentration to rise at some parts and dccrease again. Yon want to prevent the evolution of gas from one hot spot to a cooler spot. Therefore, you should try so get the most uniform rate of flow and keep the water reasonably well aerated. Then all you need to do is to determine the quantity of chromate required as a reserve to cover small differences in oxygen from point to point.
Q. - In the treatment of boiler feed, since the pressure of air is detrimental to heat transmission, the air should be blown out of the system. But will not the metal still be corroded because some air remains and it may vary in quantity throughout the pipe line?
A.-The difference in oxygen content from point to point must be remembered. If the whole system is completely aerated so that
there is no difference in oxygen content from point to point, corrosion will not proceed. If the surface of metal is protected from dust and soot particles, it will not tarnish. Vernon has shown that very elearly. Here is another argument in favour of smokeless fuels.
Q.-In atmospheric corrosion does the presence of SO_{2} in the atmosphere matter in the concentrations in which it exists, if there is present no smoke to absorb it and keep it in contact with the metal, etc., of buildings?

Sulphur Oxides and Dust

A.-Vernon has shown that if SO_{2} or SO_{3} are present alone, there is formed, at certain temperatures, a continuous protective tarnish film on certain metals provided that the dust particles are kept from settling on the surface. I think that dust and soot particles are largely responsible because they set up centres of corrosion. The general wastage of metal starts with localised corrosion and then spreads.
Q.-Can you quote an actual case where corrosion by the condensate in the return mains has been reduced by de-acrating the boiler feed? If the feed-water is thoronghly de-oxygenated, the whole of the condensatic system should be reasonably free from oxygen unless it is a vacumm system. Have you any cases in which you have really cut down corrosion in that way?
A.-No, I cannot mention any completed cases. At the moment there are two in. stances being experimented with by ourselves. We must for the monent accept the hypothesis that if we do oxygenate the water there will be no corrosion.
Q.-We have been able to prevent pitting round steam bonds, but pitting still occurs at the entry of the steam and/or water into our platens.
A.-It is possible you have released the oxygen in the steam at the point of entry. I would suspect the oxygen in the steam and/or water if the pitting cannot be put down to erosion due to the force of the steam and/or water.
Q.- Would the author agree that, below 400 lb .jsq. in. pressure, de-acration of boiler feed-water is not necessary.
A. -The best quantity of oxygen to have in a boiler is none at all, but in some installations working at $350 \mathrm{lb} . / \mathrm{sq}$. in., where no precautions were taken to remove oxygen, there has been little corrosion in the boiler. Sometimes I wonder whether we are not going too far in trying to inhibit corrosion by complicated methods when perhaps much more simple measures would give grood results.
Q.-Would it be good to coast the boiler with an enamel?
A.-Of course, if you could get a 100 per
cent. clean surface of metal and apply a graphite paint which was 100 per cent. continuous, 100 per cent. adherent and 100 per cent. impermeable to water, everything would be all right. But it is difficult to prepare a surface for graphite paint so that it is really continuous and even in thickness, and if the coating gets broken at any onc point, most severe local corrosion is set up At one time it used to be the practice to lime-wash inside boilers. I believe that seagoing engineers always insisted upon doing that. In land practice it would be usefol to apply a protective film which has 100 per cent. impermeability. However, unless the film were really continuous, I should be very chary of trying to paint the inside.
Q.-Are there not two problems in the industrial field of corrosion prevention? One is to try and get clean metal sheets such as you have mentioned protected against atmospheric corrosion; that problem has been solved by pickling and painting. The other problem is protection at higher pressures and temperatures.

Oxide Film

A.-I would rather like to think of it in another way, viz., in a state of full aeration and a state of full de-acration. There is full aetation in the case of gasholders and a stale of de-aeration in many pressure plants. A great deal can be done by piekling, and the use of protective paints at low temperatures, but I slill think that if, after pickling, you could protect that active surface-becanse it is very active-after you have cleaned it, and allow a normal oxide film to grow on it before the protection paint is put on. it would be much better as an anchorage for paint and the paint would last longer. At normal temperatures the film would grow in six weeks.
Q.-From the work of the Iron and Steel Advisory Committee in pickling and painting plates, it scems to me that that is all the commercially feasible protection we can hope for for a long time. Gasholder sheets are subject to both internal and external corrosion and at present the very best method appears to be the use of puddled iron.
A.-At the moment, yes. But I would recommend the formation of a film, in addition, as a very good idea.
Q.-I believe that sodium metaphosphate has been suggested for preventing corrosion. Also, sodium chromate has been sug gested as usefnl in connection with river waters containing a fair amount of suspended mud. Some of us have to use these waters in our works and ther are quite corrosive. Does mud interfere, with the action of these reagents?

When we speak of feed-water corrosion, I think it is worth while mentioning the ralue of simple galranising. I lave a case in
mind in which this has been very successful. Zinc plates have also been used.
A.-I think mud would hanper the effect of metaphosphates and I would filter the water supply. Galvanising is no doubt very e:cellent, but trouble arises there if the coating is not continuous. Zine plates have been found very useful but too much oxide must not be allowed to grow on the surface of the plates or there will be a reversal of polarity. Thercfore, renew the zinc plates regularly.
Q.-It appears to be, bluntly, that we are getting no more forward. There are various compounds and compositions on the market which will keep down corrosion'if the surface is treated. I lave tried an innomerable number of these, including paint and boiler compositions, but I have not yet found one that will do the job perfectly. The great weakness is in being able to get a continuous film or protective surface. You can put skilled men on to brush and spray, but it seems to me that the dice are heavily loaded against a continuous protective surface. Therefore, I an inclined to feel that we must get back to protective metals.

I have three jet condensers working with a cooling tower at Liverpool. The water dropping to the bottom of the cooling tower took up sulphur from the atmosphere and the cast-iron bodies of the pumps corroded. We then went to stainless-stecl shafts and phosphor bronze propellers and then the castiron bodies of the condensers went. We tried eight or nine different kinds of protective paint. We tried metal spraying, but the longest life was six months. Finally, we had to adopt acid-resisting metal right through, and until we can have some certainty of obtaining a continuous film throughout, it is a waste of time to use these things. Therefore, I think the solution of these troubles is non-corrodible metals. T'here may be instances where the trouble can be overcome by the methods we have been discussing, but non-corrodible metals, in my opinion, offer the only solution.
A.-Undoubtedly, you must find the best metal or alloy for the job, but I dispute the possibility of finding, a priori, a noncorrodible metal. The point is that as things are water will cause corrosion. I admit that alloys or metals can be found for particular jobs, regardless of .cost, but you must find the best way of treating the water cven when employing so-called corrosion-resistant alloys. The presence of SO_{2}, and SO_{3} will lower the $p \mathrm{H}$ value, create acid conditions and promote corrosion.
Q.-We went into the question of water treatment for jet condensers I mentioned, and it was absolutely prohibitive in comparison with the cost of the acid-resisting metal which definitely cured the tronble.
$\mathrm{A}-\mathrm{It}$ is all a matter of economics, of course.
Q.-In the case of a certain London power
station working at a pressure of $2000 \mathrm{lb} . / \mathrm{sq}$. in. there was considerable difficulty with tubes going as the result of corrosion. Lventually, we had special fittings made for the high-pressure boilers and the trouble was overcome. This serms a strong point in favour of non-corrodible metals.
Q.-I do not think the average plant in this country should be made to last for 25 years, as is more or less the case now. Let us have austenitic steels or some good metal protection and do not let us be silly by using ordinary cheap metals and asking for something that will last 25 years. Let us have rusting away in six months and then replace. In the past we have made things ton times too heavy with the result that plant is out of date long before it is worn out. Let us get the economic view and not put up plants irrespective of plant cost.
A.-Economics undoubtedly enter into this, whether you treat the source of corrosion or eliminate corrosion, but you must provide something which will withstand the conditions without incurring mn. bearable expendilure on replacements.

Industrial Safety Gleanings

Escape Hatches

AT the new "Firestone" rescarch laboralory building, al Akron, Ohio, which cost $\$ 2,000,000$ and is sound-pronf and air-conditioned, special safety devices have been installed. In every individual laboratnry, iII case fire or other accident should block the doorways, escape hatches have been provided so that workers can pass from rine laboratory to the next.

Eye Protection

A new research programme has been inangurated at the Thattelle Memorial Institute, Columbus, Ohio, covering eye protection of indnstrial workers. It is sponsored by the American Society of Safety Eugineers and the National Safety Council.

NON-FERROUS METAL PRICES

The Minister of Supply has issued a further list of selling prices of non-ferrous scrap metals for the period September 11 . December 31 on the same terms as the previous list (see The Chemical Age, June 16, p. 525). There are few changes in price, but the following additions should be rinted: brass process scrap coutaining from uver 58 to 62 per cent. copper, $£ 3810 \mathrm{~s}$. per ton; over 12 to 68 per cent., £ $43 \mathrm{10s}$. per ton; scrap cupro-nickel bullet envelopes (max. 0.08 per cent. antimonial lead), £67 per ton; serap gilding metal bullet envelopes (max. 4 per cent. antimonial lead), £42 per ton.

Planned Stagnation

by SIR ERNEST BENN

EVERYTHNG in life is now firmly fixed within what the pundits call an economic framework; nothing remains unplanned. Work is prohibited unless approved by a Labour Exchange; it is an offence to seck to employ or to be employed without the interrention of authority; slopkeeping is illegal except under licence; materials are unobtainable until bureaucratic "experts" have satisfied themselves that no more pressing priority can be invented; the chaotic freedom of the distributing trades-the most efficient service ever offered to man-has been abolished to make room for plans and pools; imports and exports have been reduced to what little can trickle through the closely woven mesh of licence and permission; millions of our people are forbidden to move out of their organised inactivity until innumerable overlapping authorities have co-ordinated policy. The energy released by the scientists from the atomic bomb is almost paltry when compared with the human energy nullified and rendered nseless by the order of the planners.

The Rebuilding Muddle

The prospect of somewhere to live recedes daily into the dimmer future. Six or eight Ministers have presided over unnumbered inter-departmental conferences and struggled to shift the onus of another plan on to the shoulders of another authority. All private building has been stopped and the decay in the fabric of unbombed houses already exceeds the temporary patching and botching which is all that the experimental encleavours of unsuitable ability has been able to mobilise. The demoralisation of building labour is complete and the new recruits are to be trained by persons whose qualification to train may cousist of no more than the receipt of an official salary.

The outside world is no less favoured. Dumbarton Oaks, Hot Springs, Bretton Woods, and San Francisco have elaborated and implemented the innocent unworldliness of the Atlantic Charter. Psychologists, experts, technicians, and "organised" scientists have joined the swollen ranks of international bureaucracy, and, with official privilege and priority, fly round the globe to confer and quarrel over the fate of masses of human beings, none of whom are pre sumed to have any brains of their own and all of whom are prohibited from acting otherwise than as decided by the rules of theory or the rgulations of the impossible. AMGOT, UNRRA and their opposite numbers in almost every country in the world parade themselves in uniforms, which notwithstanding the famine in
clothes, are changed as rapidly as one stupid scheme or political trick succeeds another. From these overcrowded ranks thousands of self-respecting thwarted individuals, having discovered that U Never Really Receive dnything, are chafing to find a way of escape.

And all this and much more has been done, if you please, under the nose of a British Parliament which for ten years has been dominated by a substantial Conservative majority. That majority has deliberately sat back, maintained silence and allowed the planners to clo their worst, rather than put the slightest hindrance in the way of the destructive work of war. Crass stupidity was never better backed by good intentions.
A very different situntion has now arisen, for we have a much more substantial learliamentary majority and the most powerful Govermment of recent times, who really be. lieve in the theories and methods that have brought us to this pass. Fuur hundred M.P.'s and a hundred Ministers are pledged by all their gods to make a perfect world this way. Every obstacle to the achievement of that high purpose has disappeared. Profit-the very basis of the whole philosophy of Karl Marx-is repudiated with enthusiasm by the stupidest generation in our long history. Mr. Attlee's Government need not even pause to consider the lifeblood of all the progress of the past-the main spring, according to them, of all the ills they have so successfuly exploited. Com-petition-perhaps the first of Nature's laws-need give them no worry, for as Sir William Harcourt might say, "We are all trade unionists now." The practical processes of Supply and Demand have long ago been replaced by the statistical sophistries of Demand and Supply. For a full couple of generations, from thousands of platforms, Socialists have proclaimed that the economics of destruction, so successful in war, can be applied with equally satisfactory results to the piping times of pace. Nothing now stands between us and the complete realisation of these Utopian dreams-except that they are mad.

Paper for Pools

When, in my die-hard way, I have from time to time advocated the total abolition of control, I have been derided as an anarchist, but could only anarchy be as had as organised suicide-for nothing less is in question. Witness the grave significance attaching to one of the first practical steps taken by the new Government. Whole shiploads of paper have been released for
football pools, in the hope, no doubt, that nationalised education lias left the populace in well plamed ignorance of the history of bread and circuses.
I do not myself believe it possible that forty-six million can all be good judges of practical economies, but I do protest against the iniquity of those who, knowing better, devote theinselves to the deliberate encouragement of ignorance. When America a short while ago took the very exceptional course of acting in strict accordance with the terms of an intermational agreement, the public was alarmed, and rightly so. Thereupon, setting a new low standard of conduct on the part of British Premiers, Mr. Attlee professed a surprise, the less said about which the better.

It cannot be long before a hungry perple will turn again to the business tatan as their only hope, and it is imperative that the business men should themselves understand, and make it clear to the people, that they cant only function to the best adrantage of society in freedom from bureaucratic interference. lior the meantime our sense of humour is the only refuge left to us, and perhaps not left for long, for one of these New World M.P.'s has already demanded the international control of research!
The Miracle of Britain-six hundred and eighty-four souls, and mouths, to the square mile-is the work of Capitalisn with all its inequalities and even hardships. We now have a Govermment pledged to find amother and a letter way. We shall see.

Annual Report of RoSPA

Lord McGowan on the Prevention of Accidents

AT the ammal meeting of the Reval Society for the Prevention of Accidenits. Lord McGowan, who presided, said that the anmual report, like its immediate predecessors, revoaled how the organisation had adapted itself to the conditions of war. They must now face the new conditions created by a return to peace, when accident !roblems were likely to be intensified rather than made less serious. The outstanding issue was how far they could adapt their orgamisation, and the lessons they hati learued in the hard school of war, to the new needs.

From the begiming, the Society had put the utmost faith in local organisation. It believed now, as alwass, that local ingenuity and resource were essential supplements to any eampaign, no matter how ably and enthusiastically it might be developed centrally.

Industry's Interest

The best proof of the growing praciical interest which industry was taking in the subject was shown by three examples: the steadily incrensing number of Area Industrial Groups formed all over the countryalready there were 23 actively functioning, with a membership covering 1350 works, and others would shortly be formed; the interest taken in the special section for Industrial Safety Officers, formed temporarily within the Society, but which later might have its own separate entity on the lines originally evolved by the Birmingham committee; and the success attending the trailling courses for Industrial Safety Officers. fiad suitable accommodation been available, these could have been multiplied almost in-
definitely. They were also experiencing a growing demand fur technical information of all kinds bearing upon industrial aceidents.

I.C.I. and Safety in Works

"I am much interested in industrial accident prevention," Lord MeGowan continued, and take pride in the fact that my company is among the leaders in its attitude to organised accident prevention in its factories. It will be readily realised that manufacturers of chemicals and explosives lave some rather special problems to face in time of war, particularly in the carly stages of making new products of which no large-scale experience-and sometimes no experience, at all---is available. You will understand, therefore, the special pleasure of my colleagues and myself in knowing that the pre-war work of our safety organisations has borne good fruit in these last difficult years.
" You will all be aware of the tremendous landicaps-losses of young skilled men to the Forces, reduced supervisory staffs, very great expansion of production, the employment of large numbers of workers new to industrial conditions, long hours of labour, the dangers of the black-out, the fatigue of travelling under adverse conditions, and all the other inconveniences of war. In spite of all that, our average frequency rate. counting every single accident which caused a worker to lose time, was 2.3 accidents per 100,000 man-hours for the whole period of the war."
\therefore Sou will agree that that is a fairly good rate for heavy industry, especially when I emphasise that the statistics are
serupulously maintained on the approved international standurd and include muny more than the reportable accidents for which frefuency rates are often quoted.

A Notable Achievement

- One of our largest divisions, whose products were of vital importance to the war, and in which the numbers of employees rose sipproximntely from 15,000 to 45,000 , achieved successive diminutions in its accicient rate throughout the war years to a total of 35 per cent. In a heary chemical factory, an entirely accident-free record of more tha? $2,000,000$ man-hours was achieved, and in a light munitions components factory, alnost wholly staffed by women and girls, \mathfrak{a} period of more than $1,600,000$ hours without an accident of any kind. I say this in no boasting spirit, but to show what can be done."
"Our total accident rate to day, with our greatly increased numbers and the difficul. ties which we share with all manufacturers, is approximately 40 per cent, of what it was when we first started to organise on the Society's principles."

Continuing, the president said that even so, I.C.I. still had deplorable accidents which might have been prevented if care and forethought had been exercised. They realised that attention to safety must be unremitting and intensified, and they were now formylating proposals to strengthen their safety department. He had no dimbt that many progressive industrial concerus were giviug equally close altention to this aspect of factory management. They would, he hoped, share their experience through the Society and lend their influence to the establishment of the highest possible standards of safety in British industry.

Reverting to the Socicty's report, he made reference to the fact that on both incustrial and public safety sides, they had been required to carry out programmes approved by the Goverument departments. The latter had provided the necessary extria funds to permit of these programmes being carried out. Negotiations were in progress as to the transition from war to peace. The Society hoper to continue to receive Government support, but not such as would unduly tie its hands, or make it into a Government machine.

In moving the re-election of lors McGowan as president, Mr. WV. B. Yhillips said that for some years Lord McGowan had been asking $t!$ retire from the position, but on this occasion he had insisted and would not consent to re-election for longer than three months. They all regretted this decision and were grateful to him for the services which he had rendered during his tenure of office.

Rapid Moisture Testing

New Apparatus Described

AQUICK simple method for moisture test has always been needed which can be used by unskilled attendants, but yet guaranteeing accurate results. The best principle is obviously the elimination of the water ly heat. The illustrated moisture fester, made by Voss Instruments, Lid., London,

N.W.10, consists essentially of a circular dectrically-lumated drying chamber, a circulating fan, temperature control, and a precision halance.

A maximum of 10 samples can be dried in the nven. The samples rest on a rotating dise which is operated by a hand wheel outside the oven. A smali fan circulates the air in the oven and removes the moisture through some air-ducts. The temperature is controlled by a Voss Patent Contact Thermometer which can be adjusted to operate at any temperature on a given rauge. When the sample has been dried for a certain time, it is weighed in the oren by pressing tho balance lever down. The balance then indicates the loss of weight as a percentage on nu illuminated scale. Each sample is weighed successively by rotating the handwheel.

So analytical weighings and no calculations are required, and the result is a real one; this overcomes the disadvantages and discrepancies of electrical testing methods. In addition, many differemt materials can be iested without recalibration.

The Mineral Wealth of Bihar Vast Future Possibilities

BIHAR is one of the poorest pruvinces of India, from the point of view of individua) wealth, but as far as her mineral wealth is concerned, she is the richest. The pre sent industrial civilisation is fundamentally based upon mineral products, and this poor province is at present playing, and should continue to play, an important part in the industrialisation of India. Just as the Punjab is regarded as the "Wheat Granary " of India, so may Bilar be termed the "Mineral Storehouse" of the country. Bihar has been able to establish some important mineral industries like jron and steel, copper, ceramies, and cement, and to utilise some of her minerals, but considering her mineral wenlth, there is ample scope for the development of many other industries.

There are about 60 important minerals which are. found in India. Some of them, however, occur in negligible guantities. With the exception of about half a dozen minerals like petroleum, strontium, cobalt and gypsimm, which have not been found in Bihar, all the other Indian minerals occur here. There is a remarkable diversity in the mineral wealth of the Province, and this wealth is mostly limited to the southern half.
separation of some of the States from Bihar and their inclusion under the Eastern States Agency las decreased the number and the guantities of the minerals worked in this l'rovince. In 1938, Bihav was producing only a dozen minerals, but the province could easily produce an equal number of other minerals which occur locally in workable quantities.
Bihar is the only copper-producing province of India, though copper ore occurs in many other regions. She is the chief producer of micn, coal, and iron-ore. About. 80 per eent. of the world's supply of highgraile mica comes from Bihar. Nica being a strategic mineral, this province has contributed a major share towards the winningr of this war.

More than 50 per cent. of Intia's coal comes from Bihar, which is thus responsible for the growth of innumerable industries, especially in Northern India. The proper utilisation of coal and coal-tar should lead to the development of a by-products industry, and the establishment of the National Fuel Research Laboratory in the Jheria coalfield under the guidance of the Council of Scientific and Industrial Researelı is likely to help greatly in this direction. As

\dagger Compiled from Records, Geolopical Strrey of Infia, 1039, 74, 1't. 3.

The Province produces minerals worth about 40 per cent. of the total value of minerals produced in India. In the appended table appear figures of production of the minetals which were worked in Bihar in the vear 1938 , as compared with the corresponding figures for the whole of India. The

[^2]pointed out in The Chemical Age of September $8, \mathrm{p} .213$, the coal resources of Bihar will have an important part to play in the development of the Damodar River Valley.

Bilar contains one of the richest iron deposits of the world and through the fannous Tata iron and steel works situated at Jamshedpur, she is helping in the rapid industrialisation of India. The iron and stecl
industry is likely to expand further with the manufacture of machinery required for Indian industries and also with the manufacture of different types of steels. The Province contains excellent deposits of limestone, which are being used for the manufacture of lime and cement. The cement industry is likely to expand enormously in the post-war perind.
Though Bilar is not rich in clays, the quality of those that oceur is excellent as
will be evident from the abnomal differences in the two percentages-six in quarutity and 42 in value-of the Bihar and Indian productions. There is no dearth of suitable glass sand and quartz in Bihar. The ceramic and the glass industries of the Province can thus be easily expanded. There are very good deposits of bauxite, but the works for its utilisation have been estab)lished outsite the boundaries of the Prorince.

Belgian Chemical Notes

Financial Results for 1944 - National Chemical Exhibition

THE Ministry of Economic Affatirs has publighed statisties showing the results of Belgian firms in 1944. (Figures in iranes.) In the chemical industry, out of 276 companies with an aggregate erpital of $2,485,508,000$ and reserves of $380,707,000$, 203 firms reported aggregate profits of 112,199,000, and 75 aggregate losses of $35,232,0100$, giving a net profit for the industry of $76,947 \pi, 000$, or 3.1 per cent. on the paid-up capital, from which $61,298,000$ was distributed in dividends. The amount of fixed-interest capital rose during the year fromi $437,688,000$ to $464,593,000$, and $17,948,000$ were paid in the form of interest.

In the varions sections of the industre, w out of 36 firms in the mineral chemical industry reported profits amounting to $8,552,000$, while 10 reported losses of $6,935,000$, giving a net profit of 0.3 per cent.; seven out of nine firms in the nitrogen and allied industries reported profits iotalling : 56,000 , While two reported losses of 3,84, 4,000 , giving a net loss of 0.3 per cent.; 23 out of 29 firms in the distillation and organic chemicals industry reported profits of $11,973,000$, while six reported losses of $1,343,000$, giving a uet profit of 0.7 per eent.; 28 out of 30 firms in the fats and oils industry reported profits of $6.551,000$, while (wo reported losses oî 17.000 . giving a net profit
of $4,763,000$, and six losses of 253,000 , thus leaving a net profit of 13.6 per cent.; and two ont of three firms in the match industry reported profits of $5,224,000$, and one a loss of 86,0010 , giving a net profit of 2.7 per cent.

The appended table gives the picture of the present financial state of the Belgian chemical industry:

A National Chemical Exhibition is being held at Charleror from September 121022 , under the agis of a patronage committee headed by the Prime Minister, M. Achille ran Acker, and containing M. de Smaele, Minister of Economic Affairs, and Semator Tirou, burgomaster of Charleroi. M. Albert Debecg, managing director of the S.A. des Produits d'Auvelais, is chairman of the management committee. A strong commit. tee of honour, under the chairmanship of M. Solvay, and a scientific committee, under the chairmanship of Professor Mathis, director of the A.C.E.C. central laboratory, has been set up. Each day of the exhibition will be dedicated to a specific brauch of chemistry. Among the firms participating are, intor alia, Solsay et Cie, the Union Chimique Belge, the Société Belge d'Azote et des Produits Chimiques, the Carbochimique et Carbonisation Centrale, the Produits Gevaert, the l'roduits Chimiques d'Auve-

of 9.4 per cent.; 23 out of 40 firms in the paints and varnishes industry reported profits of $\overline{5}, 383,000$, and 17 losses of $2,715,000$, making a net profit of 2.8 per cent: ; 30 out of 36 firms in the pharmacentical chemical industries reported pronts
lais, the Produits Chimiques de Tessenderloo, the Produits Chimiques de Limbourg, the Produits Chimiques de Fontaine1'Evèque, la Floridieune, Promial, Bougies de la Cour. Lever Frères, the Soc. Belge d'Electrochimie, and "Stif."

Rare Earth Fluorescence Spectra

Development of Russian Investigations

THE metals of the rare earth group are so alike in their chemical behaviour that analytical determinations by chemical methods are exceedingly difficult and tedions, and, as a consequence, physical methods are being faroured; these include the examination of emission spectra in the visible. ultra-violet, and X-ray ranges, and also of absorption spectra. The possibility of using cathode luminescence and fluorescence has also been considered.

The results of studies of these methods by Zaidel and co-workers, which have extended over a number of years, have recently been summarised in a paper published in the Transactions of the 1943 All-Union Confercuce on Analytical Chemistry. They show that the visible and ultra-violet emission spectra are difficult to use even for qualitative analysis, on account of their complexity, and almost impossible for quantitative analysis, since the lines of one element are in general superimposed upon those of another. On the other hand, X-ray spectra may be used for quantitative analysis of all the rare earth metals with an accuracy of $3-5$ per cent., but they are not suitable for amounts of less than 0.01 per cent., and the cost and complexity of the apparatus required renders the method less useful. Absorption spectra are very widely used, since most salts of the rare earths give narrow lands which occur in the near iufra-red, visible, and near ultra-violet. Nevertheless, considerable interference can take place when mixtures are present in solution and Zaidel states that, at present, it is impossible to carry out accurate quantitative amalysis by means of the ordinary absorption spectra unless one has a standard solution which is of the stme composition in respect of all the rare earth metals and other impurities as the solution which is to be anaIysed, a requirement which obviously invalitates the method.

Attention has therefore been paid to the possibility of using fluorescence spectra, and Zaidel's investigations have shown that Eolutions of a number of the rare earth salts have very characteristic spectra of this kind. and that they are suitable for analytical determinations, particularly in the case of very small concentrations, which are difficult, if not impossible to detect by any other method. The principle of the method employed is illustrated in the diagram.

A condensed spark, F, serves for exciting the fluorescence of the solution to be tested, which is placed in the quartz finsk, K. Light from the spark is focussed inside the flask by the quartz condensing lens, L_{1}, and the flumescent light is focussed by the lens,
L_{2}, on the slit, S, of the spectrograph. For qualitative tests a small direct-vision spectroscope may be used in most cases instead of the spectrograph. The spark is fed from a $1-0.5 \mathrm{~kW}$ transformer with 10.12 kV in the secondary. A condenser, 0.01 mF ., is connected in parallel with the spark gap.

Terbium salts show the most characteris. tic and bright fluorescence in the visible spectrum (yellow-green), with four narrow bands of high sensitivity at wavelengths $488,544,589$, and $621 m_{\mu}$. The optimum excitation conditions ($2100-2300$ A.U.), occur with a spark between nickel electrodes. Quantitative determinations are possible. Regarding seusitivity, no pure preparations of terbium were available, but by working on the upper limit for terbium guoteci for Hilger's S.P. $\mathrm{Dy}_{2} \mathrm{O}_{3}$, it was established that. the lower limit of visibility was less than 100^{-6} per cent., an anount not detectable by ather means.

Cerium salts give one wide but very inrense band between 315 and $407 \mathrm{~m} \mu$ (violet), ontained best by means of iron electrodes. The intensity does not depend upon the presence of relatively large guantities of other rare earths. Cerium in a concentration of 10-: per cent. can be determined easily to an accuracy of $30-40$ per cent. of its content. The accuracy can be raised by more careful standardisation of the sparking conditions, and by increasing the number of determinations. Cerium must be present as Ce.s. and as Cew... The time of exposure is $5-10$ minutes, and a complete determination may be made in two hours.

Gatolinium salts give one extraordinarily bright and very narrow band at $310 \mathrm{~m}_{\mathrm{s}}$. Iron electrodes and a quartz spectrograph.
are used. A content of 10^{-1} per cent. gadolinium in solution can be detected, and the method is suitable for quantitative purposes, but as other rare earths (sulphates) increase the intensity of the band, comparisons cannot lormally be made with pure solutions of gadohinium sulphate.

Europium salts give a series of bands in the visible spectrum, the two brightest being at 593 and $616 m_{\mu}$. A spark between iron electrodes is used. 'The sensitivity is not very high-about 0.01 per cent. in solution. The chloride does not fluoresce at all (iron spark), but the addition of a trace of sulphate brings it out. The fluorescence is affected also by the presence of other rare earths.

Balts of neodymium, praseodymium, sama rium, and dysprosium also cause fluorescence, but a lower order of brightness, and the use of this method would show no advantages over the nomal absorption method. Salts of thulium, erbium, holmium, and! ytterbium hare not yet been studied.

Zaidel mentions the contemporary work of Tomaschek and Gobrecht ${ }^{2}$, who used an are instead of a spark. With the are the sensitivity is mucl lower. Not less than 3.111^{-}per cent. terbium, and 2.10^{-2} per cent. europium are detectable and the spectrum cerium is unsuitable for analytical work.

REFERENCES

1 Zaldel and larionor, Trans. of All-Union Conference ou Anul. Chent., $1043,2,615$ (h1 Russian).
2 'Tomaschek and Gobrecht, Amh. Phys., 1937, 29, 324.

Silica Sand in Scotland

The Deposits at Loch Aline

THl: valuable deposits of silica sand at Loch Aline, Morven, Argyllshire, have been worked since August, 1940, and have not only materially assisted the British optical equipment and allied glass industries in that period but also have laid the foundation for a permanent activity. 'The commercial value of the deposits was brought to the notice of the authorities by Sir Edward Bailey in 1925, but, they were not worked until war stopped the import of foreign sands. Previously, the bulk of British requirments were supplied by Holland, Belgium, and Germany:

The primary value of these sands lies in their extremely low iron content, the selected grade used for high quality optical glass containing an average, before washing, of $.015 / .018$ per cent. iron. Silica content is, on an arerage, 99.65 per cent. and there is no trace of chromite. Already the sand is being used for a great many purposes in the glass industry-for optical glass, domes. tic and decorative glass, erystal and instrument glass. It has also been used in scientific laboratory ware, in the mauafacture of
food containers, and for many other purposes, some of which are still on the secret list. The volume of inquiries received by C. Tennant, Sons \& Co., Ltd. (who contro! the workings through Charles Tennant \& Co., Ltd., of Glasgow, who work the deposits), shows that the demand will fully take up an increased output above that already available.

At present some $30,000 / 40,000$ tons per ammum are being extracted by a small labour force of some 40 workers. When it is possible to improve the present housing, catering, and entertainment difliculties, which limit the attractiveness of the site, it is hoped to increase this labour force. Over the period of working some 150,000 tons of sand have been moverl by sea to the consuming centres, and undoubtedly the sand has been a material factor in encouraging the development of the British glass indus. tries.

The sand is white sandstone of the greensand bed of the Cretaceous system, which is farly widespread in this area of Scotland. It is mined, as the upper roof of basalt makes open-cut quarrying impossible. The sundstone, when blasted, disintegrates easily, but it forms a strong enough rock, in the solid, to permit mining to bo carried out withont propping or pillaring. Nor is there any serions seepage of water or gas to combat the process.

Scrape loaders lift the sand and it is then hand-trammed to assembly points where small Diesel locomotives pull the trucks to a processing plant at the pier head. Sand is tipped into a 40 -ton hopper and then fed by conveyor over a series of screenings and washings before being delivered into a storage bunker taking about 1500 tons. Under the bunker is a trough with a sluttlegirder at the discharge end which can be extended over the holds of ships.

PENICILLIN RESEARCH FUND

Fifteen U.S. penicillin producers have completed the research fund pledged to Sir Alexander Fleming on the occasion of the dimmer in his honour in New York on June 25. Thle fund, which is to be known as the Alexander Fleming Fund, amounting to more han $£ 20,000$, will be placed in a trust, and the income and principal will be devoted to scientific research under the direction of Sir Alexander Fleming at St. Mary's Mospital Medical School, Uuiversity of Louton. Sir Alexander is being given the widest latitude in the use of the furd for scientific purposes, and the results of the research will be free for use by antone with no restrictions whatsoever. The University of Penasylvania is to administer the [und.

New Control Orders

Relaxations in Import Licensing

WITH effect from September 8, the importation of the following further goods from all countries is now authorised : bauxite, [elspar, fireclay, fluorspar, gypsum (unburnt, including alabnster), kelp, kyanite, monazite sand, nickel ores, concentrates, residues and matie, seaweed fraw, unground, dried, or bleached, but not further prepared or treated), sillimanite, slag (other than basic).

Trade with Italy

Whree Orders made under the Trading with the Enemy Act were signed on September 5, authorising persons in the United Kingdom to resume trade in goods with Itaty (S. R. \& O., 1945, Nos. 10y8-1100) Italian property in the United Kingdom at the date of the Order, and income arising therefom, continue to be under Board of 'Trade or Custodian control.

From now on U.K. traders will be free to negotiate contracts with the appropriate agencies of the Italian Government. Traders who wish to import goods from Italy should first ascertain from Italian suppliers whethe: there are goods available for export from that country, and their price and terms of sale, and should then approach the lmpori Licensing Department, 1-6 Tavistock Square, London, W.C.1, to find out whether an import licence will be issued. limport licences will not, in general, be granted for goonds not, for the time being, licensed from other countries. If and when the impor: licence has been granted, the recijpient should write to the Instituto Nazionale per il Commercio Estero, 107 Via Torino, Rome, with whom coutracts will be completed. The Instituto will be responsible for the payment in lire to the Italian supplier and for arraubing necessary shipping and supervising packing. Parment by the U.K. trader in accordance with the contract terms should be made to an Italian sterling account.
Traders who wish to export goods io Jtaly may correspond with intending Italian clients, for the purpose of providing information about types and prices of goods. I: will then be for the Italian importer to make arrangements with the Italian Government for the inclusion of his requirements in the programme of goods which the Jtalian Government wish to purchase in the United Kingdom. Contracts will be made on behalf of the Italian Government by the Italian purclasing agent established in London at 14 Three Kings Yard, Davies Street, W. 1 (MAXfair 9791), who will also be resjonsible for payment in cash and for shipping facilities. He or the trader acting on his behall will also be responsible for obtaining an export licence where neces-
sary. Traders are advised that so far as practicable they should accept order's only against irrevocable credits opened by the banks against cash transfers by the Italian Governmeut.

LETTER TO THE EDITOR

Suggested Design for Winchesters

Sin,-Although I have had many years ${ }^{\prime}$ experience in chemical laboratories i find it almost impossible to pour liquids out of a Winchester bottle (4 -pint size) and avoid splashing of the contents, until the Winchester is about one-quarter empty. 'This is mainly due to air not being able io enter freely to replace the outgoing liquid. I suggest that if Vinchesters were made according to the design illustrated this diffi-

culty would be entirely obviated. I realise that an inlet and outlet tube could be fitted, but this would necessitate a cork, or rubber bung, and with acids the life of these would be very short.

1 approached a well-known manufacturer with the suggestion and the reply was, "The suggestion will not commend itself to the trade generally. The Winchester pattern bottie has been adopted by the British Standards Institution as its standard in the present patterin, and we feel confident they would not favour the alteration. To mbviate spilling, when pouring out, it is only necessary to have a lip or spout on the bot:le neck, as in the latest types of iuk botules."
I do not see how a lip would overcome the splashing, as I feel this is entirely due, as I state, to air not being able to enter freely. I realise that new moulds would be necessary to manufacture this type, but users would, I feel certain, not object to paying a little more for a Winchester if this diffi. culty could be obviated.

I wonder whether the suggestion com. mends itself to the laboratory workers, who must be continually meeting this difficulty. - Yours faithfully,
C. G. Durder.

Personal Notes

Mr. J. STEWART COOK has been appointed as organising secretary of the British Association of Chemists.
Mr. L. P. B. Merriam, M.C., has been released by the Minister of Supply from his post as Coutroller of Plastics.
Mh. hoy lness, B.Sc., has received the appointment of generul secretary to the Association of Scientific Workers, and takes over his duties this month.
Mr. Norman Neville, director of the British Chemical Plant Manufacturers' Association and of the Food Machinery Industrial and Export Group, is leaving for India 10 discuss with Government Departments and Industrialists their long-term requirements for chemical plant and food machinery.

Dr. G. H. Whiting, the foundation chairman of the St. Helen's section of the B.A.C., has resigned after almost three years' service, on account of his transfer to a Govermment factory in South Wales. He is being succeeded by Mr. G. H. Rulis. Mr. J. T. Abrams is also resigning from the secretaryship on taking up an appointment elsewhere; he will be replaced by Mr. J. lembletos.

Mr. R. W. Reynolds-Dayies, B.Sc., M.I.Chem.E., has been appointed to the position of deputy secretary of the Institute of Fuel, and will take up his duties in a few weeks' time. He received his technical education at University College, Cardiff, and at the South Wales School of Mines. He has had a wide experience as a chemical engineer and fuel technologist, obtained, first of all, as chemist on the cokeoven plant of the Cambrian Combine, now merged with the Powell Duffryn Associated Collieries. Later on, he was engaged as assistant with the late Dr. Ormandy on power alcohol and petroleum products. This work was followed by nine years as one of the chemical plant managers with the British Industrial Solvents. For the past three years he has held the position of manager of the development department of the Royal Ordnance Factory, Bridgend.

Obituary

Mr. David N. R. McEwan, who dicd in an Edinburgh nursing home on September 4, was chief chemist of Patons \& Baldwins, Ltd., Alloa, Clackmannanshire.
Dr. David Prentice, Pli.D. (Heidelberg), technical chemist, formerly of Lymm, Cheshire, died at Uddingston, near Glasgow, on September 5, aged 72 .
Mr. Ernest lancaster-Jones, B.A., who died at Maideuhead, Berks., on September 9. aged 53, after a short illness, was wel!
known to chemists of all grades as Kecper of the Lilurary at the Science Museum. He served in the Royal Engineers in 1916-19, and became assistant-keeper at the Museum in 1920 .
Professor Walter Helnhich Fraenkel, who died on July 14 at Perth Amboy, N.J., at the age of 66, was an internationally known metallurgist. Born in Silesia, ho was educated at Leipzig and Heidelberg. He erentually became associate professor of metallurgy at Frankfurt University. Au exile from Germany, he spent a year at Cambridge, and left for the U.S. in 1940, where he worked for the American Smelting and Refining Co. His special subjects were precipitation hardening alloys.

Dr. H. K. Sex, M.A., D.Sc., who died at Calcutta on June 3, uged 56, had been director of the Lac Research Institute, Ranchi, Bihar, since 1936. By his death, India loses one of her most brilliant chemists, a man who had achieved equal fane in: the laboratory, in the lecture-room, and in iudustry, and whose work revolutionised the technique of organic and physical chemistry in India. A native of Eastern Bengal, he went to London in 1912 after obtaining the M.A. degree at Calcutta University, and, working as a research student at the Imperial college, he received the D.Sc. degree in 1915, the degree being awarded for the first time to an Indian candidate working as an intermal student of the University of London. At the end of 1914 he was chosen as leader of a team of research workers from the Organic Chemistry Department :o evolve a process for the preparation of β eucaine, an anasthetic until then obtained only from Germany and urgently needed for war purposes. His successful production of the drug was received with acclamation by the Chemical Society. A year later he returned to India, and after an attempt to start a chemical industry in Calcuita, he found employment as an industrial chemist.

In 1920, however, he was appointed to the new Chair of Applied Chemistry in Calcutta University, a post which he held with great distinction, and greatly to the benefit of the chemical industry in India, until his transfer In the Lac Research Institute in 1936. During his leave periods from the University he carried out researches on biochemistry with Neuberg and others at the Kaiser Wihelm Research Institute, Dahlem, and on the technique of high-pressure reaction experiments with Bone and others at Imperial College. Sen was twice married, first: in a compatriot, and later to the daughter of Professor Emich, of Graz, Austria.

In 1927, Dr. Sen was elected president of the Indian Science Congress at Lahore; in 1930 and 1935 he was president of the Indian Institute of Chemistry, and in 1940 of the Indian Chemical Society.

General News

The public telegraph service between Britain and Poland has now been restored.
Falestine, Canada and Newfoundland are countries that have recently been added to the "Hints to Business Men" scries (H.M.S.O., 6d.).

Limited supplies of nylon yarn, hitherto used in this country for parachute fabrio and cords exclusively, are to be released shortly for the manufacture of civilian goods.
Fuel Efficiency Bulletin No. 42, issued by the Ministry of Fuel and lower, is entitled "The Recovery of Waste Heat from Tlue Gases." A particularly interesting section covers the application of waste heat boilers to specific industries.
A committee, on which Mr. F. L. Barrett, F.R.J.C., represents the interests of chemistry, is now engaged in arranging a programme of meetings for the new Bolton Section of the 'Iextile Institute, the formation of which was resolved upon in July. It is expected that monthly meetings will start in October.
I.C.I. are reported to be coutemplating the purchase of the M.A.P. factory on the outskirts of Swansea. Besides continuing the industry now established there, I.C.I. may develop the site for industrial purposes. It is hoped to find employment for 1400 people in the next twelve months.

Latest reprints issued by the London Shellac Research Bureau include "Lac Derivatives as Resin Plasticisers for Cellulose Lacquers." by Dr. B. S. Gidvani and Mr. N. R. Kamath (from Paint Manufac. (ure), and "The Hot-Spray Method oi Coating Paper with Plastic Material," by Mr. N. N. Murty (from Plastics).

The Imperial Institute is starting a series of lectures on recent progress and developments in Colonial geology and mineral production to make up some of the leway which has been occasioned by wartime restrictions on publicity. Each lecture will be devotrd to a particular territory and will be given by a recognised authority, such as the director or a senior officer of the Geological Survey or Mines Department of the country concerned.

Eire's Emergency Sciuntific Research Purean. now closed down, cost $£ 19,250$ during the financial year 1944-1945, according to statistics just issued in Dublin. The cost of the State Laboratory was a further $£ 10,652$. It is expected that the Government will take steps to introduce legislation for a Research Bureau to replace the Emergency Bureau, which was set up directly nider the Department of the Prime Minister for the war years.

From Week to Week

In connection with our note on the production of o-phenantholines in the U.S. (see The Chemical Age, August 18 : f. 144), L. Light \& Co., Ltd., Wraysbury, Bucks, inform us that they are the sole manufacturers in Great Britain of this substance which is being distributed by Hoplin \& Williams.

An authoritative statement has been issued by Mr. Robert Crichton, of Scottish Oils, Ltd., indicating that the company does not intend at present to increase the facilities at their Westwood Works, Broxburn, in order to provide additional fuel. This intimation follows earlicr reporta that a considerable development was being planned.

The wholesale prices of industrial materials and manufactures showed only one change in Angust as compared with July, according to the Board of Trade index figures. The index for chemicals and oils dropped 0.5 per cent., frem 150.7 to 150.0 , the reduction being entiruly due to the fall (as from August 21) in the prices of petroleum products, most of which had remained unchanged since February, 1942.

Foreign News

A new sulphuric acid plant is under construction in the Caicona region of Bolivia.

Substantial developments occurred in Brazil's plastic-moulding industry last year, and plans have been under consideration for the production of cellulose acetate moulding powder.

The chlorine-caustic soda plant, which is part of Basic Magnesium, Inc., at Las Vegas, Nevada, has been taken over by the Staufier Chemical Co. The plant, which has been supplying the magnesium unit with chlorine, will continue chlorine production for industry now that magnesium metal manufacturing has ceased.

By agreement between London and Wash ington, the British-American Co-ordinating Committee in Ankara las ceased to operate in its present form on September 8. The committee set up in 1941 has been responsille for making recommendations to H.M. Government and the United States Government as to the quantities of cssential civil supplies required to maintain the Turkish economy. It played a valuable part in assisting Turkey to resist German penetration. The end of the war and changes in the supply and shipping position have now rendered the committee's work unnecessary, and in future control over the export of scarce commodities will be exerciserl directly by London and Washington, says an announce:ment by the Board of Trade.

The Celanese Corporation of America has established at Princeton Universty the Celanese Corporation Fellowship in Chemical Enginecring, tenable for a term of five vear: from the time of the appointment of the first recipient.
Fiunish superphosphate plants will use apatite, the first consignment of which has now arrived in the country. Several ten thousand tons are to be supplied this year, and the superphosphates produced from it is to be distributed for the spring campaign.
Belgian rock-phosphate imports since the liberation have amounted to 52,000 tons, and another 150,000 tons are expected before the end of this year. The bulk of the superphosphate output will be needed for the corrent requirements of Belgian agriculture.
To increase production of sulphuric acid in Brazil, a new plant is being established in Pernambuco, with a daily capacity of 20 metric tons; part of the output will be used in making superphosphates for sugar plantations.
An agreement between the Lebanese Goverment and United States oil companies for the building and working of two oil refineries at Tripoli, in Northern Lebanon. will shortly be sulbmitted to the Lebanese Chamber for ratification.
A shaft more than $14,000 \mathrm{ft}$. deep has been drilled in search of oil off the coast of Prince Edward Island, constituting a record for the British. Empire. So far, no oil laas been struck, hut the drilling will be continued, says Reuter from Montreal.

To arrive at a decision regarding a research programme for an arrowroot industry in. St. Vincent, Mr. A. R. Williamson, a starch technologist selected on the advice of the Ministry of Food, has carried out a special investigation.
Under a trade agreement with Denmark, Norway is selling to that comntry fertilisers, wood pulp, calcined sodium, rare ores, pig iron, zinc, alnminium and whale oil. Denmark will sell Norway butter, pork, barler: sugar, molasses, seeds, pharmaceutical products and machine tools.
The Dominion Magnesium Co., Ltd.. reports that it las been operating at capacity and, in addition to new Canadian business for peace-time purposes, the company has just received a vers substantial order from Russia which assures capacity operations for some time.
A new process for strengthening aluminium by heat treatment, devised by several Pacific North-West firms, has been put to work for the first time by the Oregon Brass Works at Portland. The process generally involves heating the aluminium by gas. frequently almost to its melting point, and cooling it by water or blats of air.

To make a study of the chennical possibilities of Peru, Mr. C. C. Concamon, chief of the chemical division of the U.S. Department of Commerce, has left Washington. In the first half of last year he carried out a similar investigation in Chile. It is reported that his next destination is to be Clina.
The vanadium content of the Frickthaler iron ores might, according to the New: Zïreher Zeitung, form the basis of a new Swiss industry. However, the Jura Bergwerke A.G. (Frick) maintains that the smelting possibilities of the lrickthaler ores depend on whether or not the price of electric power can be lowered.
Ceria has been developed, as an abrasive for polishing optical glass, ly Research Enterprises, Ltd., Toronto, and has proved higfily satisfactory, especially on account of its extreme insolubility and cleanlintss. At present its cost is considerably greater than that of rouge, but a little goes a very long way.
The Swedish Advertising League has isswed the first number of a quarterly revicw, The Swedish Market (Den Svenstia Marknaden), intended to inform customers of significant developments and special tendencies on the Swedish market. Counsellor Bertil Ohlin, author of "Propaganda for Freedom in Earning a Living,', is one of the contributors.
Owing to the acute shortage of imported cement in Kenya, it is likely that a sul)stitute will be made from local materials. According to the secretary of the East African Industrial Research Board, this substitute can be made from local lime, and the volcanic tuffs and pumices widely occurring in the country. The manufacture of
lozzolime" is said to be simple and economical.
Flat window glass was manufactured for the first time in Brazil when a new company, located in the State of Rio de Janciro. began operations during 1944. The plant. with a production capacity of 9000 metric tolls, produced 4200 metric tons. Another glass factory, also having a production capacity of 9000 metric tons, is beingro constracted in the rity of S. Paulo and is expected to begin operations this year.
The Director of the Biological Institute of Pertugal, Dr. Cándido Anca, has succeeded, according to Afinidad, the journal of the (Chemical Institute of Sarriá (Barcelona), in obtaining a yield of penicillin, from f'enicillium notatum, ten times greater than that obtained in Britain or the U.S.. by emploving a special catalrst. He also claims to have produced an artificial serum, with remarkable therapeutic properties, by means of a filtrate of ascomycetes. without haviag recourse to the infection of animals in the laboratory.

Forthcoming Events

September 19. British Association of Chemists (London Section). Assembly Hall. Royal Dmpire Society, Northumberland Avenue, London. W.C. 2 (entrance in Craven Street), $6.30 \mathrm{p} . \mathrm{m}$. Open meeting: " Social Sccurity for Chemists.
September 21 British Association of Chemists (St. Helens Section). I.M.C.A. Ruildings, 7.30 p.m. Dr. H. Moore: " Researeh in the Post-War World.
September 21. International Society of Leather Trades' Chemists. Lecture Theatre, New Chemistry Building, Leeds University, 2 p.m. Professor A. C. Chibnall: "The Contribution of the Analytical Chemist to the Problem of Protein Structure.'

September 27. Association for Scientific Photography. Alliance Hall. 12 Caxton Street, Westminster, London, S.W.1. 6.30 p.m. Mr. R. Peel: " Recording Engineering and other Work by Sterenscopic Photography."

Commercial Intelligence

The following are taken from printed reports, but we cannot be responalble for errors that may occur.

Mortgages and Charges

(Note.-The Companjes Consolldation Act of 1908 provides that every Mortgage or Charge, an described thereln, shall be reglstered within 21 days after its creation, otherwies it ahall be vold agalnat the liquidator and any creditor. The Act also provides that every company shall, in making Ita Annual Summary, bpecify the total amount of debt due from the company In respect of all Mortgages or Charges. The following Mortgages and Charges hsve been so reglatered. In eacb case the total debt, as spectied in the last avallable Annual-Summary, is also given-marked with an -followed by the date of the 8ummary, but such total may have been reduced.)

ALTFRISD BISHOP, LTD.. London, E.C.. manufacturing chemists. (M., 15/9/45.) August 11, charge, to Westminster Bank, Lid., securing all moneys due or to become due to the bank; charged on land and factory at Garden Walk. Chesterton, with fixlures. *Nii. August 14, 1944.
f. PAlicham green. LTU.. Maidstone, paper manufacturers. (MI. $15 / 9 / 45$. Angust 21 mortgage, to National Provincial Bank. Ld., securing all moners due or to become due to the bank; charged on Hayle Mill and adjoining land at Loose, with plant, utensils, etc. *Nil. July $29,1944$.
rrimity fertilizers. IID.. Grays. (M., 15i9/45.) August 20, $£ 500$ debenture, 10 R. B. Asplin, Grays. and another: general charge.

Satisfactions

SLLENINE PAINTS. LTD. (formerly SILEXINE. LTD.. SILENINE DECORA.

TORS LTD.. \& RESTOR, LTD.), Loadon, IF. (M.S., 15/9/45.) Satisfaction August 24, of debenture registered September 15, 1941,

LANDLLMES, LI'D., Bridlington, fertiliser manufacturers. (M.S., 15;0/45.) Satisfaction August 23. of debenture registered Norember 2, 1942.

Company News

The Leeds Fireclay Co., Led., for the year 10. June 30, after crediting $£ 12,201$ prolit on realisation of an investment, reports a loss of $£ 10.830$ (profit $£ 16,893$). Ordinary dividend is a arain nil.

New Companies Registered

Classic Chemicals, Ltd. $(398,083$.)-Private company. Capital, $£ 3000$ in sl shares. Manufacturers of and dealers in chemicals and chemical products. Dircetors: A. If. Stoney, J. G. Stoney, partners in Stoney Bros., and W. S. McBay. Solicitor: Alan Asheroft.

Parke, Davis \& Company, Ltd. (1R.3708.) -Particulars filed August 9, 1945, pursuant to Section 344 of the Companies Act, 1929. Capital, $\$ 50,000$ in $\$ 1$ shares. Incorporated in Colorado, U.S.A., on May 14, 1945. Manufacturers of and dealers in drugs. medicines, clemicals, etc. The British address is $50-0.4$ Beak Street, Regent Street, W.1. Directors: E. Brier (president) N. H. F. McLeod, C. Thurber, N. T. Viger. A. W. Lescohier. All U.S.A. citizens, but The two first named are of British origint. Irincipal office: Deaver, Colorado.

Chemical and Allied Stocks and Shares

STOCK markets have continued guiet, attention loeing centred on the important Washington talks, and movements in misst sections were small and indefinite. British Funds eased, but later responded to the suggestion that interest rates may be further reduced. Following their recent advanceforeign honds reacted on profit-taking, including Greek and other European stocks which came in for attention at the end of last week.
Imperial Chemical remained firm at 38s. 73d., with Turner \& Newall 78s. 9d., Distillers 114s., and Dunlop Rubber 51s. Gd. Elsewhere, Lever \& Unilever continued to attract attention on market hopes of an improved dividend, and strengthened further to $\overline{3} 1 \mathrm{~s}$. 9 d ., with Lever N.V. also higher at 52 s .6 d . U'nited Molasses eased to 415. 6d., and Radiation to 56 s . 6d. Selective buying of iron and coal shares raised prices moderately, Dorman Long being 26s. 3d., Hadfields 30s. :3d., South Durham Steel 28s. 9d.,

Thomas \& Baldwins 12s. 48, Steel 24s. 3d. Yields in many cases are attractive, and the prevailing market view is that there scem reasomable prospects of dividends being maintained. In many instances war-time dividends have been conservative, a good proportion of profits having been used in building up reserves. Staveley were tós. 9d. xd, and Tube Investments £5 $11 / 32$, while on the company's important contract in connection with the new Iraq oil pipeline, Stewarts Lloyds deferred muved up to 52s. 6d. Babcock \& Wilcox were 57 s ., and elsewhere Projectile \& Engineering rallied to 28 s ., while on further consideration of the results and chairman's annual statement, Davy Eigineering moved up to 34 s . Guest Kcen, however, eased to 39 s . 3 d ., and Whitehead Irou to 80 s .

Triplex Glass rallíed further to 41 s . 10 dl ., a waiting the full results. Wall Paper Manufacturers deferred firmed up to 41 s . yield on the last-named is small, but the market assumption is that there are reasonable prospects that, as time proceeds, the dividend will regain pre-war levels. International Paint shares were higher at 118s. 9d., and paint shares generally were firm, with Pinchin Johnson 38s., and Goodlass Wall 10s. ordinary 24s. Nairn iE Greenwich moved higher at 78s. 9d. This is another case where it is being assumed there are good possibilities of the restoration of dividends to pre-war levels in due course. Amalgamated Metal shares firmed up to 18s, 3d. nud, in other directions, Fisher \& Ludtow rose strongly to 42 s . 3 d . on the results. British Aluminium, however, fell 2 s .6 d . to 41 s .3 d . on the reduction of the interim dividend from 3 to 2 per cent. This follows the cut in the metal price and the chairman's warning, at the last meeting, of the difficult transition period ahead.

Quiet buying of textile shares was reported, sentiment being aided by hopes that goud progress will be made in rebuilding and expanding export trade. Calico Printers were 20s. 6d., Tine Spinners 25s. 9d., Bradford Dyers 26 s . 101d., and Bleachers 14s. 6d. Elsewhere, Borax Consolidated eased slightly to 44s. Gd. General Refrac tories 10 s . shares were 16 s . $4 \frac{1}{2} \mathrm{~d}$., Imperial Simelting 15s. 9d., and Metal Box 84s. $4 \frac{1}{2}$ त. B. Laporte were again around 8is., and firmly held, W. J. Bush 73s. 9d., Burt Boulton 2fs., British Drug 39s. 6d., and Cellou 5s. ordinary 26s. Greeff-Chemicals 5 s . shares have been maintained at 9 s ., and Monsanto Chemicals $5 \frac{1}{3}$ per cent. preference at 233 s. Murex held their recent rise to 102s., and $D \in L a$ Rue were £103. Barry \& Staines were favoured and moved higher at 54 s . 3d., while Ruston \& Hornsby rose to ins. Gd. Qualcast were firm at 40 s . xd on the results and the company's latest achuisition. Boots Drug have been steady around 34s. 3d., with Timothy Whites 41s. 10łd.,

Sangers 31 s , and Beechams deferred 19s. 3d.

Oil shares recorded small movements, the tendency being to awnit the impending Anglo-Iranian results. Mexican Eagle Oil rallied to 12 s . $4 \frac{1}{2} d$. on a revival of hopeful rumours.

British Chemical Prices

Market Reports

TRADE in general chemicals on the London market is reported to be steady and a fair weight of new business has been transacted, while contracts are being steadily drawn against by consumers. There are no price changes to record and the tendency throughout the market remains firm. In the soda products market such items as industrial refined nitrate of soda remain steady, with quotations on a firm basis, while a good demand is reported for bicarbonate of sodn, soda ash, and caustic soda. Salt cake and Glauber salt are strong items. There is a fair pressure for supplies of hyposulphite of soda which are well maintained so far as values are concerned. Short supplies and strong market conditions are the dominant fentures of the potash section, with the pharmaceutical and commercial grades of permanganate of potash finding a steady outlet. Interest is well maintained in both bichromate of potasli and caustic potash, while a steady business continues to be reported in acid phosphate of potash. There is little to report from the coal-tar products market this week. Trade in pitch lias been on a moderate scale and a fair movement of both crude and refined tar has been reported. All descriptions of light distillates are in good request, especially the benzols and toluols, with no fresh, movement in quotations to report.
Manchfister.-Values of heavy chemicals on the Manchester market during the past week have displayed few movements of consequence and the general undertone is steady, with traders disposed to look for a stiffening in some directions before long. Contract deliveries to textile and other industrial users are going forward steadily and the position in this respect has shown some improvement during the week now that the holiday season is near its end. Shipping inquiries have figured among the moderate number that have been dealt with since our last report. Home trade users of the alkalis are taking up fair supplies and the demand for the potash chemicals in most cases exceeds the quantities available. The lead compounds, including the white and red leads, are an active section.
Glasgow.-In the Scottish heavy chemical trade activity has been moderate during the past week for home business. Export inquiries are quite numerous but shipping space is still rather limited.

REASONS FOR USING 'Analar' CHEMICALS

- They are of British Manufacture
- They conform to published standards of purity
- They are supplied under labels showing maximum limits of all likely impurities
- They are bottled under conditions which ensure freedom from contamination
- They are so pure that 'reagent errors' are eliminated
-AnalaR' laboratory chemicals are essentially intended for use as the standard analytical materials in laboratories where important and responsible work is undertaken.
The ' ANALAR' specifications are set out in the publication "ANALAR STANDARDS FOR LABORATORY CHEMICALS."

Third Edition
Price: 5s. Od. Postage extra
THE BRITISH DRUG HOUSES LTD,

Valor FYDRANT

 FIRE EXTINGUISHERS FOR ORDINARY FIRE RISKS

Install in your premises this efficient and sturdy Valor Fydrant New type Fire Extinguisher.

Made to the latest official British standards. 2 Gallon capacity. Ref. No. Ei22. Specification for ordinary fire risks. Other types and replacement facilities are available.
Further details on application.

THE VALOR CO. LTD., BROMFORD, ERDINGTON, BIRMINGHAM, ENGLAND.

Balfour of Leven
 for ACID RESISTING STORAGE TANKS

and other specialised plant for the Chemical Industry

ESTABLISHED 1810
HENRY BALFOUR \& Co Ltd DURIE FOUNDRY LEVEN FIFE

THE
 BRITISH ASSOCIATION OF CHEMISTS
 protects the ECONOMIC INTERESTS of the Chemical Profession.
 - Its members, when seeking employment, are consistently advised to ask for salaries appropriate to their status and responsibillties.
 A comprehensive survey of the prospects of POSTWAR EMPLOYMENT for Chemists is being carried out.
 - By protecting its members against Unemployment, the Associatlon upholds the economic interests of all chemists.
 For particulars of Membership, write to :-
 C. B. WOODLEY, 175, Piccadilly, C.R.A., F.C.I.S.',
 Londan, WI
 General Secretary, B.A.C.

EDUCATIONAL

Great Possibilities for

QUALIFIED CHEMICAL ENGINEERS

VAS'T and iar-reaching developments fin the range of peacetime productions and markets of the chenical Industry mean that the profession of Chemical EngincerIng will be of great importance in the future and one which will offer the ambitious man a career of outstanding interest and high status. The T.I.G.B. offers a first-clusis training to candidates for the Chemical Engineering profession.
Entol with the T.I.G.B. for the A.M.I.Chem.E. Examinat lions in which home-xtudy students of the T.I.G.B. hure gained a recond totul of pisses includin?-

THREE "MACNAB" PASSES
 and

THREE FIRST PLACES

Write to-day for the "Engineers" Guide to Sucess "-ree-containing the world's widest choice of Engincering courses-Dver sou-the Departnient of Chemical Technology; includiut Chemical Engineering Processes, Plant Construction, Works Design and Operation, and Organsation and Mangement-ath which alone gives the Regulatlons for A.M.I.Chem.E., A.M.I.Mech.E., A.M.I.E.E., C. de (i., B.Sc., etc.

THE TECHNOLOGICAL INSTITUTE
OF GREAT BIRITAIN
219, Temple Bar House, London, E.C. 4

THE INSTITUTION OF CHEMICAL ENGINEERS EXAMINATIONS, 1946
phaCATION forms (returnable 1st December, 1945) and particulars of the AssociateMembership Examination for 1940 may be obtained from the Hon. Hegistrar, Instifution of Chemical Engineers, $\mathbf{5 6}$, Victoria Street, Westminster, Tondon, S.W.1.

FOR SALE

CHARCOAL, ANTMAL, and VEGETABLE, bortlcultural, burning, filteifng, disinfecting, medicinal, Insulating; also lumps ground and granulated ; eatabUrhed 1830 : contractorg to H.M. Government-THOS. Hilid-Jones, Ltd., "Invicta " Millis, Bow Common Lane, London, E. Telegrams," Hll-Jones, Bochurch, London." Telephone: 3285 East.
'Phone 98 Staines.

FT Press or Extruder (Belt Driven). Small Vertical Tincture or Toygle press; GardnervMixer 6' long x $18^{\prime \prime} \times 20^{\circ}: 20 \mathrm{ft}$. Worn Conveyor also several other sizes : 26^{*} F.E.K. Mill: Miracle Mill : 21 Disidegrator. HARRY H. GARDAM \& CO., LTD.,

STAINES.

Misgellaneous chemical plant For sale.

 If ft . overall height by 2 ft .8 in . in diameter in two sections; one section being 7 ft .6 im . deep with detachable bottom jacketed portlon 1 lt .6 im . deep secured by phosphor bronze locking ring and swing bolts.COPPER STEAM JACKETED STILL by John Dore; 5 ft . deep by 3 ft . 3 in . diameter: k lin. copper construction; domes tup and bottom jacketed; 10 in . side manhole. Horizontal agitating getir, and copper swan neck
SPHERICAL NICKEL STILL, 2 ft deep 1,y 2 it . dlameter, in two sections with bolted joint. :1 fa. danged top swan meek eonnections ; sight and light glasses; sundry vacumm connections.
COPPER STILL by JBrown is Son, 2 st. deep by 1 ft .8 II . diameter: with dome shaped cover (1) In. deep and swan neck comnections: two inspection ports; sucum zauge 0/30 in- mercury; mafety valve, 1 fn . bottom ontlet. All mounted on three angle steel legs.
COPPER STILL by Brown \& Son, jacketed, 1 it. is in deep by 1 it .8 in . diameter ; with clomed cover 6 fin. deep having two phosphor bronze mounted inspection ports, sacuum gange 0/30 in. mercurs : sundry connections, safety valve: cover secured by twelve phosphor bronze locking swing bolts; siltahle for $5 / 10 \mathrm{lhs}$, working pressure. All monnted on three cast tron legs.
COPPER BOILING PAN, hasing famer copper pan 30 in . diameter by 24 lin. decp, with cast fron bolted jacket ; suitahle for 80 lbs. workine pressure; arranged for thlting with hand lever and locking device : monnted our cast iron stamb.
VERTICAL ALUMINIUM UNJACKETED MIXER; 4 ft . diameter by 5 it .6 in . deep, having $\geq \mathrm{in}$. flanged hottom outlet and 2 in . side inlet; with set of four single mixing bindes mounted on $1 \frac{1}{2}$ in. steel shaft; overdriven through bevel ant pinion from fast and loose pullers.

GEORGE COHEN, SONS \& CO., LTD. STANNINGLEY, near LEEDS and WOOD LANE, LONDON, W. 12

3COPPER STEAM PANS, with Copper Jackets (Tipplng), 21 in . dia. by 23 in . deep. Price $£ 25$ ench. Randalls, Engineers, 13 armes (Tel. : Riv. 2430 \& 2437).
50 Welded alr receivers concave dished pads 22 in . dia by 4 ft . 6 in . long for 100 lbs . pressuce. Price £5 Os. Od. (five pounds) each ex warks. Tuompson d Son (Minlwall), LTD., Stores, 60 Hatcham Road, Nr. Old Kent Road, S.E. 15 .

100 HYDRO EXTRACTORS by leading makers

 Jacketted Steam Copper and Iron Pans. CalorffersWashlng Machines-Gilled Pipes, etc. List sent on request. Randalls, Englneers, Barnes. Tel. : Riv. 2430. 1000 STRONG NEW WATERPROOF APRONS. dozen. Also large quantlty Filter Cloths, cheap. Wil sons, Springfld Mmlis Preston, Lancs. Pboda 2198.
SITUATIONS VACANT

None of the situations advertised in these columns relates to a man between the ages of 18 and 50 irchusive or a weoman betweins the ages of 18 and 40 inciusive, unless he or she is excepted from the provisions of the Control of Engagement O der, 1945, or the zacancy is for employment excepted from the provisions of that Order.
A SSOCIATION OF CHEMICAL AND ALLIED A EMHLOYERS requires an ASSISTANT SEC RETARY. Good education and some ladustrial experfence essential. Knowledge of law, economics or statistics an advantage. Age not more than 40 . Commencing salary $\mathrm{s}^{5}(0)$ p.a. Applications with three testimonals not later than September 24 th to the Secretary, 31 , Spring Gardens, Manchester, 2.
CHEMIST required, Veretable Oil Refining and Paint, Carnish and Enamel Mediuns. Write stating age, experience and splary reguired. Hox No. 22:34, THE ('hemical Age, 15t, fleet strept, lemdon, E.C.4.

PATENTS \& TRADE MARKS

KING'S PATENT AGENCY, LTD. (B. T. King, A.I.Mech.E., l'atent Agent), 148a, Queen Victorin Btreet, London, E.C.4. ADVICE Handbook, and Consultation free. Phone: City 6181.
NOTICE IS HEREBX GIVEX that F. Hoffuam-Ia Toche ic Co. Aktlengesellschaft seek leave to nmemi the Specifieation of the application for Letters Patent No. 570,240 entitled "A process for the manufacture of thlophane-3-one-carboxylic netd esters and of thlophane-3-onc.'

Parifeulars of the proposed amendment were set forth In the Oificinl Journal (Patents) No. 20j4 dated September athl, 1945.

Any person may yive Notice of Opposition to the amendment by leaving Patents Form No. 19) at the Iratent Office, 25 , Southampton Ruiklings, Lombon, W.C.2, on or before the 5th Octaber. 1045.

SERVICING

GRINDING, Drying, Screening and Grading of materials undertaken for the trade. Also Suppliers of Ground Sillica and Fillers, ete. James Kent Lid. Millers, Fenton, Staffordshire. Telegrams: Kenmil, Stoke-on-Trent. Telephone : 4253 and 4254, Stoke-onTrent (2 lines).

GRINDING of every descripuon of chemical and other materials for the trade with Improved mills.Thos. Hill-Jones, Lrd., "Invicta "Mills, Bow Common Lane, London, E. Telegrams: " Hill-Jones, Bochurch. London." Telephone: 3285 East
henti lepersonve
(Melgian born)
CIvil Engheer
HRUSSELS (BELGICM)
(Establlshed 1011)
Introxuction and elevelopment of patented proeceses In Beluium (and Congo), Netherlands and Luxemburg.

Will act as your agent (quite hodependent) for the granting of licences.
MNLNG, ORFS \& COAL CONCHENPRATION \& THEATMENT. CHEMLCAL N METAL.

IVRGICAL NDDETHES.
Postal address: 8, Avenue Géo. Hernier, Ixelles, BuCsSE:L.s (Relglum).

WANTED

REGLLAR supplies of purlined Lactlc Acld required, Full detalls of quantities and specifications to: Rox No. 2233, The Chfmical Age, 154, Fleet Strect, London, E.C.4.
WANTED.-Supplies of Nitre Cake In ten-ton lote. Street, E.C. 4

Exports to Switzerland

British manufacturers and exporters of chemicals, solvents, oils, waxes and allied raw materials are requested to communicate with the experienced importing firm and agency.
WALTER MOESCH \& Co. ZURICH - SWITZERLAND

BARIUM CARBONATE
BARIUM HYDRATE
BARIUM MONOXIDE
BARIUM NAPHTHENATE
BARIUM OLEATE
BARIUM PEROXIDE
BARIUM STEARATE
BARIUM SULPHATE
BARIUM SULPHIDE

SODIUM HYPOCHLORITE
SODIUM SULPHIDE
SODIUM PERCARBONATE

TIIANIUM OXIDE

SOAPS
ALKALINE CLEANERS HYDROGEN PEROXIDE AMMONIUM PERSULPHATE BENZOYL PEROXIDE CALCIUM PEROXIDE MAGNESIUM PEROXIDE POTASSIUM PERSULPHATE UREA PEROXIDE
ZINC PEROXIDE:

SODIUM ACID PHOSPHATE SODIUM ACID PYROPHOSPHATE SODIUM PERPYROPHOSPHATE SODIUM PYROPHOSPHATE

LAPORTE

B. LAPORTE Ltd. LUTON 'Phone: LuTOM as!

VACUUM PUMPS

For Medium and Ultra High Vacuum
Laboratory and Industrial sizes
Sennox Foundry Co. Ltd. Glenville Grove, London, S.E. 8

BELTING AND
ENDLESS VEEROPES

Superlative Quality Large Stocks - Prompt Despatch FRANCIS W. HARRIS \& Co. Ltd. BURSLEM - Stoke-on-Trent
'Phone: Jtoke-on-Trent 7181.
Grams: Belting, Surstem

For all klnds of Acid Lifting, Haughton's Cenfilfugal and Plunger Pumps in Regulus and Ironac Metal

HAUGHTON'S METALLIC CO. Ltd.
30, ST. MARY-AT-HILL, LONDON, E.C. 3

"LION BRAND" METALS AND ALLOYS MINERALS AND ORES

 RUTILE, ILMENITE, ZIRCON. MONAZITE, MANGANESE, Etc.BLACKWELL'S METALLURGICAL WORKS LTD. GARSTON, LIVERPOOL, 19 ESTABLISHED 1869

INSURE WITH

FULL PARTICULARS may be obtalned firom

The
London \& Lancashire Insurance Co. Lid. 7 Chancery Lane, London

GRINDING

Grading, Mixing,

Sieving or Separating
oo $\quad \begin{aligned} & \text { ond Drying of } \\ & \text { materials, etc., under- }\end{aligned}$ taken for the trade

$$
\begin{aligned}
& \text { Also Suppliers of } \\
& \text { GROUND SILICA, FILLERS, } \\
& \text { AND CHEMICALS }
\end{aligned}
$$

"LION" PACKINGS
 FOR ALL PURPOSES AND PRESSURES

PLEASE CONSULT US

On all matters concerning PACKINGS \& JOINTINGS

For Chemical Plant

WRITE FOR CATALOGUE R6

JAMES WALKER \& CO., LTD. "LION" WORKS, WOKING, SURREY PHONE: WOKING 2432 (6 Iines)

GRAMS: LIONCELLE

[^0]: The AvoMeter Is one of a useful range of " Avo " electrical testing Instruments which are malntalning the "Avo" reputation for an unexcelled standard of accuracy and dependabllity-in fact. a standard by which ocher instruments are judged.

[^1]: A SOUND ANSWER to practically every problem of fuel economy is quickly found in these Fuel Efficiency Bulletins. Keep a list of their titles handy; then you can turn up at once the particular Bulletin you need. The Bulletins are free from your Regional Office of the Ministry of Fuel and Power.

[^2]: - From an article by N. I. Sharma, of the School of

