Lidia FEDOROWICZ, Jan FEDOROWICZ

INŻYNIERSKA REALIZACJA ITERACYJNEGO PROCESU OBLICZANIA BUDOWLI WSPÓŁPRACUJĄCEJ Z PODŁOŻEM

Streszczenie. W pracy przedstawiono propozycję rozwiązania zadania interakcji budowla-podłoże w sposób posiadający inżynierską interpretację postępowania. Proces iteracyjny zilustrowano przykładami testów numerycznych.

ENGINEERING REALIZATION OF AN ITERATIVE COMPUTATION PROCESS OF COLLABORATING WITH SUBSOIL BUILDING

Summary. There was proposed a solution of the interaction building-subsoil task with a way which has engineering interpretation of the approach. The iterative process was illustrated with numerical example's tests.

ИНЖИНЕРСКОЕ ВЫПОЛНЕНИЕ ИТЕРАЦИОННОГО ПРОЦЕССА РАЗЧЁТА СООРУЖЕНИЯ С УЧЁТОМ ВЗАИМОДЕЙСТВИЯ ОСНОВАНИЯ

Резюме. В работе дано предложение решения задачи интеракции постройка-основание способом обладающим инжинерскую интерпретацию. Итерационный процесс проиллюстрировано численным примером.

1. WSTĘP

Konstrukcja nośna budynku, najprostszego nawet typu, stanowi skornplikowany model obliczeniowy. We współczesnej analizie numerycznej model budynku powinien być sprzęgnięty z odpowiednio rozbudowanym modelem podłoża gruntowego, ponieważ wielkości wewnętrznę określane w konstrukcji zależą od wzajemnego współdziałania obu tych podukładów. Obliczanie całego układu budowla-podłoże w jednolitym modelu numerycznym jest postępowaniem niezmiernie skomplikowanym, nie znajdującym racji bytu w analizie typowych zadań inżynierskich. Bardziej racjonalne wydaje się zatem obliczanie rozdzielnie numerycznie wymodelowanych podukładów (B) i (P) poprzez ich złożenie drogą iteracyjną. W pracach [1,2] przedstawiono propozycję analitycznej interpretacji procesu iteracyjnego realizującego zadanie kontaktowe budowla-podłoże. Obecnie autorzy, odwołując się do postępowania analitycznego podanego w [1,2], przedstawiają jego fizyczną implikację, mogącą stanowić drogę inżynierskiego ujęcia obliczeń konstrukcji budowlanej współpracującej z podłożem gruntowym.

2. ITERACYJNE ZŁOŻENIE WSPÓŁPRACUJĄCYCH PODUKŁADÓW (B) I (P) -SPOSOBY : ANALITYCZNY (S1) I INŻYNIERSKI (S2)

Przedstawione w [1,2] postępowanie iteracyjne wskazuje na możliwość otrzymania rozwiązania zbieżnego w każdym przypadku zadania rzeczywistego w stanach 2D i 3D, jeżeli iteracja prowadzona będzie na podukładach poprzez odpowiednio określoną warstwę kontaktową. Warstwa ta nie jest paramodelem podłoża (nie pełni też roli "sprowadzonej" konstrukcji). Służy ona do wywołania efektu takiego, jaki w wyniku redukcji pełnego układu równań macierzy sztywności uzyskalibyśmy eliminując równania jednego z podukładów, a pozostawiając równania drugiego podukładu ze skorygowanym wektorem obciążeń. Na rysunku 1a pokazano schematycznie sposób dyskretyzacji dwóch stykających się ze sobą w linii kontaktu LK podukładów (B) i (P).Podukład (B) jest wymodelowany metodą sztywnych elementów skończonych SES [3,4], podukład (P) metodą MES, tak aby wspólne węzły obu modeli, w których poszukiwane są przemieszczenia współpracujących podukładów, znalazły się na linii LK. Zakłada się, że podukłady oddziałują na siebie jedynie pionowymi siłami kontaktowymi SK, zgodnymi z kierunkiem przemieszczeń kontaktowych v.

Ideowy przebieg procesu iteracyjnego (S1), prowadzonego poprzez warstwę kontaktową o odpowiednio określonych analitycznie, pionowych parametrach k [1,2] przedstawiono na rysunku 2. Rysunek 2a pokazuje realizację 1 kroku iteracyjnego, gdy ugięcie $b_{j,1}$ w dowolnym j-tym punkcie linii kontaktu LK^B wywołane jest jedynie obciążeniem własnym Q podukładu (B). Siła kontaktowa SK_{j,1}wzajemnego oddziaływania obu deformujących się podukładów, przyłożona do modelu (P) wywołuje przemieszczenia pionowe v_{j,1} linii LK^P. W każdym następnym i-tym kroku iteracyjnym stan ugięcia linii LK^B, określany w podukładzie (B), realizuje się poprzez obciążenie podukładu rzeczywistym obciążeniem Q oraz wymuszeniem przemieszczeń v dolnego brzegu warstwy kontaktowej (rys. 2b,c).

Rys.4.

Rys.5.

(5)

Możemy zapisać, że w dowolnym i-tym kroku iteracyjnym dla podukładu (B) zachodzi:

$$\frac{\partial \mathbf{R}_{i,i}}{\mathbf{h}} = \mathbf{b}_{i,i}, \quad \text{gdzie } \mathbf{b}_{i,i} = \mathbf{a}_{i,i}^Q + \mathbf{a}_{i,i}^{V,H}. \tag{1}$$

Dla zbieżnego procesu iteracyjnego, gdy $i \rightarrow n$ każde przemieszczenie kontaktowe podukładu (B) staje się równe odpowiadającemu mu przemieszczeniu podukładu (P) (rys.1b). Wyrazimy zatem analitycznie określone i niezmienne w kolejnych krokach iteracyjnych parametry warstwy kontaktowej k, podobnie jak w (1), poprzez siły kontaktowe SK., i przemieszczenia v., linii LK^P

Dla kroku n-1 możemy zapisać:

$$\frac{SK_{\dots n-1}}{V_{\dots n-1}} = k .$$
(2)

Wstawiając (2) do (1) dla kroku n-tego zapiszemy:

$$b_{.,n} = \frac{SK_{.,n} \cdot v_{.,n-1}}{SK_{.,n-1}}.$$
(3)

Ponieważ zachodzi SK₁ \rightarrow SK₁ i v₁ \rightarrow v_n, mamy b₁ = v₁.

Określenie parametrów warstwy kontaktowej jest zabiegiem analitycznie stosunkowo prostym przy spełnieniu przez podukłady pewnych warunków. Są one związane między innymi z zastosowaną metodą numeryczną oraz sposobem dyskretyzacji podukładów w strefie kontaktu i wpływają bezpośrednio na efektywność (czas i liczbę kroków) procesu iteracyjnego [2,5].

W związku z powyższym zaproponowano postępowanie iteracyjne, nazwane (S2), którego realizacja numeryczna ma charakter typowo inżynierski. Postępowanie w iteracji (S2) można zdaniem autorów przyrównać do realizacji iteracji (S1) w ten sposób, że uwidacznia się ich równowartość.Na rysunku 3 pokazano przebieg procesu iteracyjnego (S2). Parametry $\overline{k}_{.,i}$ zmieniającej się w kolejnych krokach warstwy kontaktowej dobieramy w 1 kroku w sposób uproszczony, posługując się wyjściowymi obliczeniami przeprowadzonymi na modelu podłoża obciążonego sprowadzoną konstrukcją (rys.3a). Dla i-tego kroku iteracyjnego ugięcie linii kontaktu LK^B możemy wyrazić:

$$\mathbf{b}_{i,i} = \frac{\mathbf{SK}_{i,i}}{\mathbf{K}_{i,i}},\tag{4}$$

Zapisując natomiast zmieniane w każdym kroku parametry warstwy kontaktowej mamy: $\vec{k}_{i,i} = \frac{SK_{i,i-1}}{v_{i+1}}$.

Wstawiając (5) do (4) zapiszemy:

CV

Rys.6.

$$\mathbf{b}_{i,i} = \frac{\mathbf{SK}_{i,i} \cdot \mathbf{v}_{i,i-1}}{\mathbf{SK}_{i,i-1}}.$$
(6)

Gdy $i \rightarrow n$ wyrażenie (6) odpowiada wyrażeniu (3).

Widać stąd, że gdy proces (S1) jest zbieżny, to (S2) jest także zbieżny, a liczba kroków iteracyjnych zależy jedynie od trafności doboru parametrów $\overline{k}_{...}$ warstwy kontaktowej. Jako warunek zbieżności procesu iteracyjnego uznano równość prac wykonanych przez uzewnętrznione siły kontaktowe SK na przemieszczeniach elementów dyskretnych obu podukładów, mających wspólną powierzchnię kontaktu F.

$$\Delta L = \int_{\mathbf{p}} SK_{\cdot, \mathbf{n}} \cdot \mathbf{b}_{\cdot, \mathbf{n}} \cdot d\mathbf{F} + \int_{\mathbf{p}} SK_{\cdot, \mathbf{n}} \cdot \mathbf{v}_{\cdot, \mathbf{n}} \cdot d\mathbf{F}.$$
(7)

W realizacji numerycznej żądamy, aby wyrażenie (7) przyjmowało wartość minimalną.

3. NUMERYCZNA ANALIZA PROCESU ITERACYJNEGO (S2)

Zadanie 1. Podukład (B), imitujący wyodrębnioną ścianę podłużną masywnej kondygnacji piwnicznnej, modelowano metodą SES. Przy opisie (P) wykorzystano liniowo-sprężystą ścieżkę pakietu programów CRISP 93 [6] (rys.4a). Model (B) sprzęgnięto w procesie iteracyjnym z warstwą kontaktową, której parametry wyjściowe określono na podstawie przemieszczeń belki zastępczej obciążającej podłoże (P). Rozpatrzono warstwę W1 o parametrach wyjściowych stałych oraz warstwę W2 o parametrach zmiennych na długości (B). Na rysunku 4b pokazano wykresy zbieżności procesu iteracyjnego (dla warstw W1 i W2), wyrażone zgodnie z (7) przez pracę Δ L uzewnętrznionych sił kontaktowych SK.,. na różnicy przemieszczeń brzegowych (b.,. - v.,.) obu podukładów.

Zadanie 2. Przykładowy budynek o ścianowym poprzecznym układzie nośnym i ścianach podłużnych samonośnych, obciążony ciężarem własnym Q i obciążeniem użytkowym P obliczono na sprężysto-idealnieplastycznym niejednorodnym podłożu Coulomba-Mohra [6] (rys.5). Przyjmując założenie dużej sztywności poprzecznej uznano, że dominujące deformacje wystąpią w kierunku podłużnym, a znaczące dla określenia wielkości wewnętrznych w konstrukcji będą przemieszczenia określane w miejscach kontaktu ław poprzecznych z podłożem gruntowym. Na rysunku 6a pokazano stan uplastycznienia zachodzący w podłożu przy jego pełnym obciążeniu bez uwzględnienia korygującej roli konstrukcji (I) oraz stan uzyskany w wyniku przeprowadzonego procesu iteracyjnego (II). Na

rysunku 6b pokazano przykładowo, otrzymany w wyniku iteracji II, rozkład sił krawędziowych między środkową ścianą poprzeczną a ścianą podłużną budynku.

4 ZAKOŃCZENIE

Niesprzężony kontakt budowli z podłożem, gdy nie uwzględniamy w obliczeniach konstrukcji dodatkowych obciążeń wywołanych osiadaniem, a stan deformacji podłoża nie zależy od sztywności konstrukcji, może być przyjęciem uzasadnionym jedynie w przypadkach gruntów małościśliwych. Poszukiwanie rozwiązania zadania kontaktowego poprzez proces iteracyjny pozwala na wykorzystanie w opisie konstrukcji i podłoża dowolnych metod numerycznych i niezależnych programów komputerowych. Przedstawiona w pracy propozycja sposobu iteracji wykazywała w przeprowadzonych dotychczas testach znaczną skuteczność, mierzoną liczbą wykonanych kroków iteracyjnych. Za miarę szybkości zbiegania się procesu iteracyjnego można uznać gradient funkcji ΔL, określany w początkowej fazie iteracji i zależny od doboru parametrów wyjściowej warstwy kontaktowej.

LITERATURA

- Praca zbiorowa: Numeryczna realizacja iteracyjnego procesu współpracy dwóch substruktur: budowli i podłoża. Praca nie publikowana. Archiwum IKB. Politechniki Śląskiej, symbol BK-72/RB-1/94, zad.1. Gliwice 1994.
- [2] Fedorowicz L., Fedorowicz J.: Numeryczne modelowanie interakcyjnego zadania budowla-podłoże. Zeszyty Naukowe Pol. Śl., seria Budownictwo, z.80, Głiwice 1995.
- [3] Fedorowicz L.: Modelowanie numeryczne w analizie statycznej budynków o konstrukcji ścianowej posadowionych na podłożu górniczym. OTG, nr 87, 1989, s.13÷21.
- [4] Fedorowicz L., Fedorowicz J.: Wall structures affected by the static effects of mining operations. 4th International Conference on Ground Movements and Structures, Session I to IV, paper no 23. Cardiff, VIII 1991.
- [5] Nowacki W.: Mechanika budowli, t.1. PWN, Warszawa 1957.
- [6] Britto A.: CRISP'92. PC-386/486 Version, user's and programmers guide, Vol.3, Cambridge Univ. Res. Rep., 1/7/92, 1992.

Recenzent: Prof. dr hab. inż. Stanisław Bielak

Wpłynęło do Redakcji dnia 30.05.1995r.

Abstract

There was presented an iterative approach between subsystems building-subsoil. The iteration has been led, on the subsystems, by a particulary determined contact loyer. It was given reasons of possibility of obtaining a couvergent solutio in every case of the real task in 2D and 3D states. Examples of numerical tests were appended.