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AN INDUSTRIAL CUTTING PROBLEM

Summary. An algorithm is described, for replacing two-dimensional
polygonal shapes by thin shells consisting of triangles. This simplifies
the computation of configuration space obstacles, an essential step in
the generation of cutting layouts in a industrial context.

Keywords Cutting layouts; computational geometry.

1.CUTTING LAYOUTS

A shoe is constructed from a number of different components, many of which
are irregular, non-convex 2-dimensional shapes which must be cut from sheets
of material. Formerly, shoes were designed by hand using a physical model and
the components were cut by hand from hides or skins. Nowadays, designs
increasingly use CAD systems and the components are cut by computer-
-controlled machines from rolls or sheets of atificial material.

A cutting layout 1is a geometrical design showing how large numbers of
copies of a particular component maz be cut from 2-dlmenslonal material.
Thus, in Fig. 1, cutting layouts are shown for a horseshoe-shaped component
known as a vamp. These particular layouts use the matierial with markedly
different efficiencies: 54Z, 67% and 80X respectively for the layouts of
Fig- 1@, 1(®), 1(©)-

Cutting layouts are needed in order to program automatic cutting machines,
but are also used to define efficiency standards for manual cutting. The
layouts must be in the form of simple, repetitive patterns because the
cutting is carried out by a machine which is a relatively limited iIn its
operation. A cutting head travels across the material punching out a row of
copies of the shape, then travels back punching out another row! On some
machines, the cutting head is albe to rotate through 180° and follow a
cutting layout like those fo Fig. 1(b), 1(c); on others, a layouts as in
Fig. 1(a) 1is produced.
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The material is usually not isotropic and the copies of the shape must
therefore be cut so as to respect the grain, which may require them all to
like with the same orientation as in Fig. 1(@), or may permit rotation
through 180° as in Fig. 1(), 1(0)-

ué& |l

Fig. 1. Cutting layout for a horseshoe - shaped component
Rys. 1. Trasowanie cie¢ dla skkadnikéw o ksztakcie podkowy

2. PROBLEM OF OVERLAP

The computer program PAX, which produced the layouts of Fig. 1, accepts a
specification of a shape in the form of a suitably close polygonal
approximation and generates a large number of feasible layouts, choosing one
for which the efficiency of material utilization is highest.Because of the
regular nature of the layouts, this process is basically straightforward.
Thus in Fig. 2, the layout is generated by the two translations u and v,
and the rate of material usage Is measured by the area of the parallelogram
which they span. However, the translations u and v must be feasible, 1i.e.
the layout they generate must be free of overlapping shapes. That is to say
each pair of shapes iIn the layout much have disjunct interiors. This leads us
to the following problem.

Two polygonal shapes are given, each with a datum point (A and B
respectively) labelled in its interior. |If the shapes are placed, without
change of orientation, so that the datum points fall on points A, Bj of the
plane respecltvely, will the interiors of the shapes have non-empty
intersection? In other words, is the spatial relationship identified by the

vector Aj B~ permissible for these two shapes?
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In systematically generating feasible translation-pairs, the program PAX
needs an efficient way of answering this question for arbitrary spatial
relationships, without making a global investigation each time. It does this
by calculating a so-called configuration space obstacle (CSO) before layout-

-generatlon begins.

Fig. 2. Layout generated by two translations
Rys. 2. Trasowanie generowane przez 2 translacje

3. CONFIGURATION SPACE OBSTACLES

To simplify the discussion, suppose first that the shapes iIn question are
respectively a triangle T and a quadrilateral Q, with Q initially
assumed fixed with its datum point B at the origin and T free to

translate without rotation.
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Now take triangle T and move It without rotation to some position where
it just touches Q, then "wipe™ T round Q. That is to say, move T round
Q without vrotation, constantly remaining iIn contactwith Q but not
penetrating its interior. Consider themotion of datum point A of the
triangle T.

When a vertex of T slides along an edge of Q, the datum point A moves
parallel to that edge; but when an edge of T slides on a vertex of Q the
datum point A moves parallel to the edge of T. Fig. 3(b) illustrates
this. Thus the path of the datum point A consists of copies of thefour
edges of Q and the three edges of Tcoupled together insuitable
sequence, giving the heptagon debfagc labelled H in Fig. 3(c)-

Fig. 3. The motlon of datum point
Rys. 3. Ruch punktu odniesienia

"jit is quickly apparent that if we place T without rotation anywhere on
the page, then T overlaps Q Iif the datum point A falls in the interior
of heptagon H; T tiycges Q uf tge datyn oiubt A falls on the boundary
of Hb and T and Q do not meet if the datum point A Tfalls in the
exterior of H.

The heptagon H is called the configuration space obstacle (CSO).Evidently
all CSO’s which arise iIf quadrilateral Q is initially translated to some
other position are merely translates of H so it suffices to calculate any
one of these translates. A method of calculation (as distinct from the

physical process of wiping T round Q) 1is described next.
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Fig. 4. Calculation of the configura-
tion space obstacles
Rys. 4. Wyznaczanie konfiguracyjnej

przestrzeni przeszkéd
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4. Calculating COS’s
In Fig. 4@(), we have given
directionality to the sides of the
two polygons T and Q - clockwise

for the polygon which moved during

the "wiping" process (i.e. T) and
anticlockwise for the other. The
seven edge-vectors so created are

bundled together, without change of

direction, at some

4(b) -
They are then taken from the bundle
in the

anticlockwise

magnitude or
convenient origin as in Fig.
in which lie
the

(defagc in this case) and joined end

order they

about origin

to-end in that order. A closed figure
in this

the

is produced, which is seen

case to be a translate of
heptagon discussed iIn Section 2.
This procedure is called merging the
two polygons T and Q. It works for

any pair of convex polygons [Z] and

clearly has [linear computational
complexity. Unfortunately, shapes
which occur 1in industrial problems

are usually non-convex, but one way

out of this problem is to replace

shapes by their convex hulls, a com-
putation which may be carried out in

0 (nlogn) time for an n-gon (21.
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5. CONVEX DISSECTION

In the industry, practical software has been developed using the
principles so far explainedbut it leaves something to be desired. For
example, 1f the vamps in Fig. 1 were replaced by their convex hulls, we
should lose the possibility of interlocking them and thereby significantly
reduce the level of utilization of material. A better approach is to cut up
non-convex figures intosmaller convex figures rather than embed them in
larger ones.

Thus, to calculate the CSO of our triangle T relative, say, to the
non-convex hexagon of Fig. 5, we Ffirst dissect the hexagon into convex
components as shown, and calculate the CSO of T relative to each component

separately. The required CSO is the union
of the component CSO’s. And if,instead of
the triangle T, we had been given some
non-convex figure we should have dissec-
ted this, too, into convex components and
related each of these to each of the
convex components of the non-convex
hexagon.

It is not hard to find an algorithm
for convex dissection. We may simply

apply the following procedure in turn to

dissect the non-convex hexagon each re-entrant vertex of a given non-

Rys. 5. Zastosowanie procedury -convex polygon:

rozcig¢ do niewypuktego szeScio- Bisect the interior reflex angle and
kata extend the bisector until It meets a line

already present

Fig. 5 shows this procedure used to
dissect thenon-convexhexagoninto three convex components. In general, this
algorithm produces (v + 1) components if the original figure has \Y;
re-entrant vertices. Inthisgeneral way we may arrive at a technique for
cutting and packing highly irregular, non-convex shapes - such as the vamps
of Fig. 1.
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6. PERIPHERAL TRIANGULATION

The approach described so far still has some computational drawbacks. The
convex dissection algorithm described iIn Section 4 has quadratic complexity
and does not usually produce the least number of components. On the other
hand, algorithms aiming to produce the least number of components are of very
great intricacy and not well-adapted to practical computing [Z]. Moreover,
all these algorithms produce an unpredictable mixture of components: some may
merely be triangles, others may be, say, 50-gons.

In the present application, however, we may avoid these difficulties by
making use of the fact that all the given shapes are congruent. For two
non-coincident congruent shapes iIn giwen positions, the condition that the
shapes should overla, 1i.e. have intersecting interiors. Is easily seen to be
equivalent to the following condition (C):

The boundary of one shape meets the interior of the other shape
arbitrarily close to its boundary

To check condition (C) between two shapes in given positions it suffices
to replace one shape by Its boundary and the other shape by a thin shell. The
boundary of one shape is made up of line-segments and the shell of the other
may be constructed of thin triangles, as iIn Fig. 6. Then the CSC is made up
of compnents each of which is the CSO of a line segment and a triangle,
calculated by a trivial use of the merging procedure already described.

The construction of a thin shell out of triangles we call peripheral

triangulation.

7. TRIANGULATION ALGORITHMS

The peripheral triangulation of a convex shape may be achieved stralght-
-forwardly in linear time, as suggested by Fig. 6. Let the vertices be
Xj Xn  taken iIn anticlockwise sequence and define Xg = Xnj; Xn+tl = X~
Xn+2 = X2- On each edge Xp+l Xp+2 choose a point Yr+] close to
Xr+1,(r = 1..... n). Then the required shell 1is the union of the n
triangles [Xr Xp+l Yr+1J-

If the shape is not convex, the construction must be more carefully
designed. For example, in Fig. 7, the shell produced by the chain of
triangles has zero thickness at two points, so that the boundary of the other

shape may cross without intersecting the interior of the shell.
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In the appendix, we present a linear-time algorithm for peripheral
triangulation. With each side X. Xr+j of the given shape, the algorithm
associates a thin triangle BrCrDr> such that line-segment Brcr constains
line-segment Xr xr+I with Br close to Xr and C at X D is

r r+l r
collinear with Xr+1” Xr+2 and close to Xr+

Fig. 6. Triangulation of a convexshape

Rys. 6. Triangularyzacja wypukdych ksztaktéw
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Specifically, if Xr is a convex vertex then Br is taken at Xr’
otherwise is taken exterior to the line-segment X~ X ; similarly if
Xr+l is convex vertex then Dr 1is taken interior to the line-segment X ,
Xr+2> otherwise exterior. Fig. 8 shows the four cases of convexity/concavity
of two consecutive vertices X , Xr, from which it will be seen that the

shell does not have zero thickness at any vertex X .

Fig. 7. The shell produced by the chain of triangles
Rys. 7. Powkoka wyznaczona przez #4ancuch tréjkatéow

8. CONCLUSIONS

until recently, industrial software for producing cutting layouts was
rather slow, and occasionally unreliable. Above all, being frequently based
on convex hulls, it was not capable of generating interlocking layouts of the
kind shown in Fig. 1.

The program PAX which generated these interlocking layouts was written in
interpreted BASIC for an Archimedes 310. It uses the above principle of
peripheral triangulation for the calculation of CSO’s and will generate a
fully-interlocking efficient layout of this kind, from a polygonal

specification, in something between 10 and 30 seconds.
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Fig. 8. Four cases of convexity/concavity of two consecutive vertices

Rys. 8. Cztery przypadki

wypuktosci/wklestosci dla dwu przyleghych

wierzchotkéw
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APPENDIX: PERIPHERAL TRIANGULATION

For simplicity, it 1is assumed that no three consecutive vertices are

collinear, c¢ >0 1is small.

INITIALISE Xn+1, : X'l
Xn+2 1 X2
111°
et : = eSgn det Xn X1 X2
o 1=X9
C0 = X.1
D :=C_+ e}
0 o K -c¢°

ALGORITHM For r=1T0 n
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PRZEMYSLOWY PROBLEM CIEC

Streszczenie

W pracy opisano algorytm zastepujacy dwuwymiarowe ksztaktty wielokatne
waskimi powkokami skladajacymi sie z tréjkatéow. Upraszcza to wyznaczanie
konfiguracyjnej przestrzeni przeszkéd, ktoéra stanowi podstawowy krok w

generacji rozmieszczenia cie¢ w zagadnieniach przemystowych.

HHHYCTPHAfIbHAS! nPOEJIEMA PE3KH

Pe3 piie

B pa6oTe npejcraBneH anropHT« 3aMeHSK>«HB OTytneHHne
MHoroyronbHbie cjxopMti yaicHMH noicpoBaMH coctosiuhmh kq
TpeyrontHHKOB . 3to ynpomaeT onpenenew.He Kom~HrypaunoHnoro

npocTpaHCTBa npensTCTBUR, KOTopoe npencTaBraeT ochobhoB mar b
odiiacTH reHepauHH pacnonoweHHs peaaHHft nna HHoycTpnanbHfcix

BONpOCOB .



