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AN INDUSTRIAL CUTTING PROBLEM

Summary. An algorithm is described, for replacing two-dimensional 
polygonal shapes by thin shells consisting of triangles. This simplifies 
the computation of configuration space obstacles, an essential step in 
the generation of cutting layouts in a industrial context.
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1.CUTTING LAYOUTS

A shoe is constructed from a number of different components, many of which 
are irregular, non-convex 2-dimensional shapes which must be cut from sheets 
of material. Formerly, shoes were designed by hand using a physical model and 
the components were cut by hand from hides or skins. Nowadays, designs 
increasingly use CAD systems and the components are cut by computer- 
-controlled machines from rolls or sheets of atificial material.

A c u ttin g  la y o u t is a geometrical design showing how large numbers of 
copies of a particular component maz be cut from 2-dlmenslonal material. 
Thus, in Fig. 1, cutting layouts are shown for a horseshoe-shaped component 
known as a vamp. These particular layouts use the matierial with markedly 
different efficiencies: 54Z, 67% and 80X respectively for the layouts of
Fig. 1(a), 1(b), 1(c).

Cutting layouts are needed in order to program automatic cutting machines, 
but are also used to define efficiency standards for manual cutting. The 
layouts must be in the form of simple, repetitive patterns because the 
cutting is carried out by a machine which is a relatively limited in its 
operation. A cutting head travels across the material punching out a row of 
copies of the shape, then travels back punching out another row! On some 
machines, the cutting head is albe to rotate through 180° and follow a 
cutting layout like those fo Fig. 1(b), 1(c); on others, a layouts as in
Fig. 1(a) is produced.
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The material is usually not isotropic and the copies of the shape must 
therefore be cut so as to respect the grain, which may require them all to 
like with the same orientation as in Fig. 1(a), or may permit rotation 
through 180° as in Fig. 1(b), 1(c).

Fig. 1. Cutting layout for a horseshoe - shaped component 
Rys. 1. Trasowanie cięć dla składników o kształcie podkowy

u & I

2. PROBLEM OF OVERLAP

The computer program PAX, which produced the layouts of Fig. 1, accepts a 
specification of a shape in the form of a suitably close polygonal 
approximation and generates a large number of feasible layouts, choosing one 
for which the efficiency of material utilization is highest.Because of the 
regular nature of the layouts, this process is basically straightforward. 
Thus in Fig. 2, the layout is generated by the two translations u and v, 
and the rate of material usage Is measured by the area of the parallelogram 
which they span. However, the translations u and v must be feasible, i.e. 
the layout they generate must be free of overlapping shapes. That is to say 
each pair of shapes in the layout much have disjunct interiors. This leads us 
to the following problem.

Two polygonal shapes are given, each with a datum point (A and B 
respectively) labelled in its interior. If the shapes are placed, without 
change of orientation, so that the datum points fall on points Â , Bj of the 
plane respecltvely, will the interiors of the shapes have non-empty 
intersection? In other words, is the spatial relationship identified by the 
vector Aj B.̂ permissible for these two shapes?
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In systematically generating feasible translation-pairs, the program PAX 
needs an efficient way of answering this question for arbitrary spatial 
relationships, without making a global investigation each time. It does this 
by calculating a so-called configuration space obstacle (CSO) before layout- 
-generatlon begins.

Fig. 2. Layout generated by two translations 
Rys. 2. Trasowanie generowane przez 2 translacje

3. CONFIGURATION SPACE OBSTACLES

To simplify the discussion, suppose first that the shapes in question are 
respectively a triangle T and a quadrilateral Q, with Q initially
assumed fixed with its datum point B at the origin and T free to
translate without rotation.
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Now take triangle T and move It without rotation to some position where 
it just touches Q, then "wipe" T round Q. That is to say, move T round 
Q without rotation, constantly remaining in contact with Q but not
penetrating its interior. Consider the motion of datum point A of the
triangle T.

When a vertex of T slides along an edge of Q, the datum point A moves 
parallel to that edge; but when an edge of T slides on a vertex of Q the 
datum point A moves parallel to the edge of T. Fig. 3(b) illustrates 
this. Thus the path of the datum point A consists of copies of the four
edges of Q and the three edges of T coupled together in suitable
sequence, giving the heptagon debfagc labelled H in Fig. 3(c).

Fig. 3. The motlon of datum point 
Rys. 3. Ruch punktu odniesienia

'jit is quickly apparent that if we place T without rotation anywhere on 
the page, then T overlaps Q if the datum point A falls in the interior 
of heptagon H; T tiycges Q uf tge datyn oiubt A falls on the boundary 
of H, and T and Q do not meet if the datum point A falls in the 
exterior of H.
The heptagon H is called the configuration space obstacle (CSO).Evidently 
all CSO’s which arise if quadrilateral Q is initially translated to some 
other position are merely translates of H so it suffices to calculate any 
one of these translates. A method of calculation (as distinct from the 
physical process of wiping T round Q) is described next.
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4. Calculating COS’s

In Fig. 4(a), we have given 
directionality to the sides of the 
two polygons T and Q - clockwise 
for the polygon which moved during 
the "wiping" process (i.e. T) and 
anticlockwise for the other. The 
seven edge-vectors so created are 
bundled together, without change of 
magnitude or direction, at some 
convenient origin as in Fig. 4(b). 
They are then taken from the bundle 
in the order in which they lie 
anticlockwise about the origin 
(defagc in this case) and joined end 
to- end in that order. A closed figure 
is produced, which is seen in this 
case to be a translate of the 
heptagon discussed in Section 2.
This procedure is called merging the 
two polygons T and Q. It works for 
any pair of convex polygons [2] and 
clearly has linear computational 
complexity. Unfortunately, shapes 
which occur in industrial problems 
are usually non-convex, but one way 
out of this problem is to replace 
shapes by their convex hulls, a com
putation which may be carried out in 
0 (nlogn) time for an n-gon (21.

Fig.

Rys.

e
d

4. Calculation of the configura
tion space obstacles 

4. Wyznaczanie konfiguracyjnej 
przestrzeni przeszkód
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5. CONVEX DISSECTION

In the industry, practical software has been developed using the 
principles so far explained but it leaves something to be desired. For
example, if the vamps in Fig. 1 were replaced by their convex hulls, we 
should lose the possibility of interlocking them and thereby significantly 
reduce the level of utilization of material. A better approach is to cut up 
non-convex figures into smaller convex figures rather than embed them in
larger ones.

Thus, to calculate the CSO of our triangle T relative, say, to the
non-convex hexagon of Fig. 5, we first dissect the hexagon into convex 
components as shown, and calculate the CSO of T relative to each component

separately. The required CSO is the union
of the component CSO’s. And if,instead of 
the triangle T, we had been given some
non-convex figure we should have dissec
ted this, too, into convex components and 
related each of these to each of the 
convex components of the non-convex 
hexagon.

It is not hard to find an algorithm 
for convex dissection. We may simply 
apply the following procedure in turn to 
each re-entrant vertex of a given non- 
-convex polygon:

B isect the in te rio r  r e f l e x  an g le  and  

e x te n d  the b ise c to r u n til It m eets a  lin e  

a lre a d y  p re s e n t

Fig. 5 shows this procedure used to
dissect the non-convex hexagon into three convex components. In general, this
algorithm produces (v + 1) components if the original figure has v
re-entrant vertices. In this general way we may arrive at a technique for
cutting and packing highly irregular, non-convex shapes - such as the vamps 
of Fig. 1.

dissect the non-convex hexagon 
Rys. 5. Zastosowanie procedury 
rozciąć do niewypukłego sześcio- 

kąta
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6. PERIPHERAL TRIANGULATION

The approach described so far still has some computational drawbacks. The 
convex dissection algorithm described in Section 4 has quadratic complexity 
and does not usually produce the least number of components. On the other 
hand, algorithms aiming to produce the least number of components are of very 
great intricacy and not well-adapted to practical computing [2]. Moreover, 
all these algorithms produce an unpredictable mixture of components: some may
merely be triangles, others may be, say, 50-gons.

In the present application, however, we may avoid these difficulties by 
making use of the fact that all the given shapes are congruent. For two
non-coincident congruent shapes in giwen positions, the condition that the
shapes should overla, i.e. have intersecting interiors. Is easily seen to be 
equivalent to the following condition (C):

The boundary o f  one sh ap e  m eets the in te rio r  o f  the o th e r sh a p e  

a rb i tra r ily  c lo s e  to i ts  boundary

To check condition (C) between two shapes in given positions it suffices 
to replace one shape by Its boundary and the other shape by a thin shell. The 
boundary of one shape is made up of 1ine-segments and the shell of the other 
may be constructed of thin triangles, as in Fig. 6. Then the CSC is made up 
of compnents each of which is the CSO of a line segment and a triangle, 
calculated by a trivial use of the merging procedure already described.

The construction of a thin shell out of triangles we call peripheral 
triangulation.

7. TRIANGULATION ALGORITHMS

The peripheral triangulation of a convex shape may be achieved stralght-
-forwardly in linear time, as suggested by Fig. 6. Let the vertices be
Xj Xn taken in anticlockwise sequence and define Xq = Xn; Xn+1 = X^
Xn+2 = X2- On each edge Xp+1 Xp+2 choose a point Yr+] close to
X „ (r = 1.....  n). Then the required shell is the union of the nr+1
triangles [Xr Xp+1 Yr+1J-

If the shape is not convex, the construction must be more carefully 
designed. For example, in Fig. 7, the shell produced by the chain of 
triangles has zero thickness at two points, so that the boundary of the other 
shape may cross without intersecting the interior of the shell.
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In the appendix, we present a linear-time algorithm for peripheral
triangulation. With each side X̂. Xr+j of the given shape, the algorithm
associates a thin triangle BrCrDr> such that line-segment Brcr constains
line-segment X X , with B close to X and C at X D is° r r+1 r r r r+1 r
collinear with X ,, X _ and close to X ..r+1’ r+2 r+i

Fig. 6. Triangulation of a convexshape 
Rys. 6. Triangularyzacja wypukłych kształtów
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Specifically, if X is a convex vertex then B is taken at X , r r r
otherwise is taken exterior to the line-segment X^ X ; similarly if
Xr+1 is convex vertex then Dr is taken interior to the line-segment X , 
Xr+2> otherwise exterior. Fig. 8 shows the four cases of convexity/concavity 
of two consecutive vertices X , Xr, from which it will be seen that the 
shell does not have zero thickness at any vertex X .

Fig. 7. The shell produced by the chain of triangles 
Rys. 7. Powłoka wyznaczona przez łańcuch trójkątów

8. CONCLUSIONS

Until recently, industrial software for producing cutting layouts was 
rather slow, and occasionally unreliable. Above all, being frequently based 
on convex hulls, it was not capable of generating interlocking layouts of the 
kind shown in Fig. 1.

The program PAX which generated these interlocking layouts was written in 
interpreted BASIC for an Archimedes 310. It uses the above principle of 
peripheral triangulation for the calculation of CSO’s and will generate a 
fully-interlocking efficient layout of this kind, from a polygonal 
specification, in something between 10 and 30 seconds.
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Fig. 8. Four cases of convexity/concavity of two consecutive vertices 
Rys. 8. Cztery przypadki wypukłości/wklęsłości dla dwu przyległych
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APPENDIX: PERIPHERAL TRIANGULATION

For simplicity, it is assumed that no three consecutive vertices are 
collinear, c > 0 is small.

INITIALISE X , : X. n+1 1

Xn+2 : X2

et : = eSgn det
1 1 1 '  
Xn X1 X2

! = X9o z

C : = X. o 1

D : = C + e1 o o 1 K  - c°)

ALGORITHM For r = 1 TO n
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PRZEMYSŁOWY PROBLEM CIĘĆ

S t r e s z c z e n i e
W pracy opisano algorytm zastępujący dwuwymiarowe kształty wielokątne 

wąskimi powłokami składającymi się z trójkątów. Upraszcza to wyznaczanie 
konfiguracyjnej przestrzeni przeszkód, która stanowi podstawowy krok w 
generacji rozmieszczenia cięć w zagadnieniach przemysłowych.
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