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THE APPLICATION OF SPREADING 
MEASUREMENTS ON OIL TESTS.

By N. E. M. H a g e t i i o r n  and F. H. S t i e l t j e s . *

Following a description of tho method of testing the spreading valuo of oil, 
a theoretical conclusion based on experiments made proves that the measure
ments as such are j ustified and, finally, the possibilities o f putting this method  
into practice aro discussed.

I n t r o d u c t io n .

If  a pure liquid non-volatile hydrocarbon is placed on water, this will 
remain there in the form of a drop. A pure mineral oil acts the same way. 
Should the oil, however, contain compounds which are partly hydrophilo 
and this oil is spread out on water, then these molecules tend to accumulate 
in the interface while they adjust themselves in such a way that the hydro
philic part of the molecule comes into contact with the water and tho 
hydrophobe part turns away from the water. In this manner an oil film 
comes into existence. This film is not monomoleeular, one gets a rather 
thin layer of hydrocarbon almost devoid of hydrophilic substances in contact 
with tho water via the interface described above. This is called by Lang- 
rnuir a duplex film. The expanse of the Surface of this oil film is a measure 
for the quantity of these compounds which, are present. This is expressed 
in the spreading constant, which shows the surface occupied per unit of 
weight at the moment when the film just has started to exert pressure.

M e a s u r in g  A p p a r a t u s  a n d  M e t h o d  o f  M e a s u r e m e n t .

The measurements are executed by the apparatus constructed by 
Gorter and Seeder. 1

A barrier floats in a rectangular paraffinated glass container filled with
0-00lN-hjrdrochloric acid, to which container it is attached by means of 
very thin strips of platinum, so that it can move freely within certain 
limits. Forces affecting the barrier are transferred to a torsion balance 
and compensated by the torsion of a spring, care being taken to see that the 
barrier always returns to zero position. The amount of torsion is regis
tered on a scale, thus measuring tho pressure on the barrier. Displacement 
of the barrier is indicated by means of an optical system.

The oil to be measured is dissolved in petroleum ether and blown on the 
water surface between a paraffinated glass slide and the barrier by means 
of a micro-pipette. The glass slide is driven in the direction of the barrier, 
and as soon as the film starts to exert a pressure on tho barrier, the torsion 
balance is adjusted as described above and the pressure, as well as the 
distance from the glass slide to the barrier, is noted. After this, the glass 
slide is moved closer to the barrier and the measuring process repeated. 
In this way a pressure curve is obtained. In most instances—between 
wide limits—this is a straight line. By continuing this line one extrapo
lates to pressure zero. The surface thus found is used for the determination 
of the specific spreading value.

* Laboratory o f the Netherlands Cable Works.
U U
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The petroleum ether used should be purified to such an oxtont that it 
does not affect the readings. This is obtained by repeated distillation. 
At the same time the water surface should likewise be so purified that no 
interfering molecules arc present. I f  the spreading capacity of the oil is 
small, 0-05 ml petroleum ether is brought on the surface, which latter 
contains ± 1 5  mg of the oil. For oil which has a bigger spreading action 
a lesser quantity is sufficient. The determination takes three minutes. 
It is very fortunate that only small samples are needed.

T h e o r e t ic a l  Co n s id e r a t io n s .

When making tests the following can be observed. After blowing the 
solution over the surface and moving the slide until the film exerts pressure, 
the major part of the surface is covered by the duplex film, there is, however, 
a water surface left uncovered. I f  the film is neither too thin nor too thick, 
an interference colour can be noted, indicating that the film is equally thick 
all over. After waiting a little, the picture changes. Holes appear in the 
film and the latter continues to contract, with local thickenings in it, often 
indicated by different interference colours. Provided one waits long 
enough, the film contracts to very small lenses.

Considering the problem of the duplex film thermo-dynamically, one 
gets various conditions of equilibrium. One is mechanical and two others 
physico-chemical. The mechanical equilibrium of the surface tensions 
and hydrostatic pressures adjust themselves immediately, unless strongly 
viscous liquids are concerned. In the case of solids a mechanical equilibrium 
is also quickly established, which equilibrium may include anisotropic 
tensions, which makes it difficult to make any reliable calculations. The 
first physico-chemical equilibrium condition stipulates a certain relationship 
between volume concentration of the substances with hydrophilic groups 
in the oil layer and the surface concentration of these substances in the 
interface oil-water. According to Langmuir this equilibrium is established 
quickly enough, which is confirmed by our own experiments. This can 
easily be understood when considering that diffusion only takes place 
across the thin oil layer. The second physico-chemical equilibrium 
condition establishes a relationship between the surface concentrations of 
the active substances in the interface air-water and oil-water. This 
equilibrium adjusts itself much more slowly than the other since hero it is 
a question of diffusions along the surface. Langmuir 2 covers this in his 
experiments with stearic acid in petroleum. Our own experiments confirm 
this also, as described above.

Mechanical Equilibrhnn.
In the middle of the oil lense, where the interfaces show no curvature and 

are horizontal, the following horizontal forces work in the o i l :

1. The surface tension of the surface oil-air (a tensile force in 
dyne/cm );

2. That of the interface oil-water (likewise a tensile force in 
dime/cm).
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3. The integrated lateral hydrostatic pressure, being equal at the 
top to the atmospheric pressure and increasing with gp0 x  dyne/cm 2 
as one descends x cm (g is the acceleration of the force of gravity in 
cm/sec2, p0 is the density of the oil).

If there is equilibrium, and if the oil lense is large enough, these tensions 
must be equal to those in the adjoining oil-free water (the surface of which, 
however, may possibly be occupied by active substances) at the point 
where the water-air interface is horizontal. At the same time they must 
also equal those in the pure water at the other side of the barrier plus the 
pressure exerted per cm by the barrier itself. This results in :

t =  thickness of oil lense in cm ;
(yic)i> =  surface tension of the pure water 011 the other side of the barrier 

in dyne/cm ;
y lra — surface tension of water-air interface adjoining the oil in dyne/cm ;

F  =  the surface pressure exerted by the barrier in dyne/cm. 
y ow and y,ra will depend on the concentrations of the active substances in 
the surface concerned; y m does not alter, according to Langmuir,3 when the 
volumo concentrations of the activo substances in the oil vary. The 
thicknesses of the oil layer with which we are dealing run from 0 - 1  ¡1 to 
several g’s, so the term :

which is the difference between two integrated hydrostatic pressures

is approximately equal to :

5= \  . 1 0 0 0  . 0 - 1  (1 0 - 5 till 1 0 ~ 3) 2 s; | ( 1 0 - 8 till 1 0 --«) dyne/cm

so that this term can very often be disregarded.
The above-mentioned thicknesses can be deducted either from the 

interference colours or by means of a simple calculation— i.e., dividing the 
total oil volume by the surface occupied.

I f  the term is disregarded, it can be assumed that irrespective of the 
thickness of the oil-layer, the following equation applies :

Second Physico-chemical Equilibrium.
At a certain barrier pressure F , y Ka, the surface tension of the contami

nated surface water-air is fixed (see equation 1). Thus also the concen
tration of active substances on this surface. If  the second physico-chemical 
equilibrium holds, the concentration of active substances in the interface 
oil-water should also be fixed, and therefore also the interface tension and 
at the same time the thickness of the oil-layer.

J a w  - V  Y oa  ~  1(1 P0(P,J- - P° ) ' *  =  r -  =  ( y , ) P -  F  . . ( 1 )
Pt0

1 g Po(Ptt> Pp) ¿2

yow  ”f~ Yoa —  ytea  ('Yw)p F ...................................... (2 )
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This conflicts with observations made. For instance, if  oxidized oil 
is diluted with the original non-oxidized oil and this mixture is spread, 
entirely different thicknesses of the oil layer arc obtained at the same barrier 
surface pressure than if undiluted oxidized oil is spread.

It was also found, as has already been stated, that, provided one waits 
long enough, holes appear in the lense, the oil itself also changing in shape.

The interesting thing is that in all probability it is the peculiarity of the 
films of not attaining the second equilibrium during the measurements that 
renders it possible to obtain simple and comprehensible results. It is 
essential, however, that measurements are made quickly.

First Physico-chemical Equilibrium.
Using the described method of measurement, there is always a rather 

small water-air surfaco present between the barrier and the glass slide. 
The major section of the surface is, however, covered by the spread oil 
film. If, therefore, the water-air surfaces are disregarded, and it is as
sumed that there is a physico-chemical equilibrium between the surface 
concentration of the active substances in the interface oil-water and tho 
volume concentration in the oil, one can easily explain theoretically the 
relation revealed by experiments between :

1. The surface occupied at certain barrier pressures (including that 
obtained by extrapolating to zero pressure);

2. Total quantity of oil spread;
3. Quantity of active substances in the oil.

This naturally gives a great' deal of support to the acceptability of the 
suppositions.

At a certain barrier pressure F  there should be a certain -yow (equation 
2). This means that if there is only one active compound present, the 
concentration from this compound in the interface oil-water o0w (molecules 
per cm2) is fixed.

Similarly the volume concentration w0 (molecules per ml) is also fixed. 
But then the following formula holds independent of the original concen
tration of active substances in the oil.

A  —  c0WS  +  U q I  .......................................................(3)

in which we havo constants aow and u0, when the barrier pressure is fixed.

A — the total number of active molecules in the o il;
8  — the surface in cm2 of the o il;
V =  the volume in ml of the oil.

From formula 3 it is easy to explain the seemingly paradoxical experimental 
results that, by adding pure oil (increasing F) to a certain quantity of impure 
oil (A therefore remains constant), a smaller surface is obtained with the 
same barrier pressure. This means, therefore, that the thickness of the oil 
layer increases out of proportion to the volume. The new pure oil added 
must also be brought up to the concentration «„ of active molecules. These 
active molecules can only bo obtained from the interface, which must, 
however, retain the same concentration, so that the surface must of neces
sity become smaller.
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Before wo discuss the results of our experiments any further, we amend 
the formula (3) somewhat and go on to specific quantities :

S  I A u0
V <jow ' V

S
-pis the specific spreading: Surface in cm2 per total volume of oil in ml.

We will call this s (usually the specific spreading is given in cm2/mg oil, 
but for a theoretical research it is better to use the cipher cm2 per ml).

p is  the total concentration of active molecules per unit of volume (thus

including those present in the dividing surface). This number is unknown, 
and therefore we substitute a dilution x.
We started with a certain oxidized oil, which we assume had a total 

concentration au of active molecules per ml.
Spreading tests were made with this and other oils, which were obtained 

by mixing the latter with varying quantities of the original pure oil con
taining no active substances.

oxidized quantity of oil .. ,.
Ihe relation =----5— ;— ¿-p—n— we will call dilution x.

total quantity of oil
Formula (4) thus becomes :

COlO ÔlD
Fig. 1 shows s as a function of x. There are three curves. The first 
stands for the extrapolated barrier pressure of 0  dyne/cm ; the second for 
a barrier pressure of 1 dyne/cm and the third for 1-5 dyne/cm. It can be 
seen that the points fall quite nicely along straight lines. I f  these lines 
are continued, they intersect the s axis. The section between the

u
inter-section point and the origin should equal— . The reciprocal is a

®OW
linear dimension in cm. This magnitude equals the thickness of an oil 
layer containing as many molecules as the corresponding interface oil— 
water. Corresponding means that the concentrations at the interface and 
in the oil are in physico-chemical equilibrium with each other at the given 
barrier pressure. In the case in question this thickness appears to be 
s; 1 0 ~ 4 cm =  Ifx.

When x  =  1 (i.e., the unmixed oxidized oil), the actual thickness of the 
oil layer at a pressure of zero is ~0-06g; the major part of the active mole
cules is therefore present in the interface.

It is interesting to note that the lines for 0,1 and 1-5 dyne/cm all intersect 
the s axis at the same point. This means that at the equilibrium there is a 
constant ratio between the volume and surface concentrations for these 
pressures, which gives strong support to the hypothesis that the active 
molecules in the interface are present in a two-dimensional gas state in 
equilibrium with non-associated molecules in solution in the oil. This 
hypothesis complies with Gibb’s theorem, and demands a conforming with 
yoa +  you, — y«i of the pure oil in the same manner as Langmuir3 
has done with stearic acid and oil. It should be remarked that Langmuir
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gets quantitive results different from that which we find with oxidized oils. 
This leads us to believe that the active molecules, which cause the previously 
mentioned relations, are not acids. This is also apparent from the small 
influence of the pH of the water shown in the result of our tests. Should 
such acids still bo present, however, it can be understood that they would 
bo in a condensed two-dimensional phase, and would exert a small, constant 
saturation pressure.

Another consequence of the constant ratio between the surface- and 
volume-concentration can be deduced from formula (3).

s in cm2/cm?
X103

R E L A T IO N  B E T W E E N  T H E  S P E C IF IC  S P R E A D IN G  V A L U E S  A N D  T H E  D IL U T IO N  O F  A N  
O X ID IZ E D  O IL  W IT H  IT S  O R IG IN A L  U N O X ID IZ E D  O IL  F O R  D IF F E R E N T  B A R R IE R  
P R E S S U R E S .

This can be written :

A  =  (S +  ^  V),
&OW

— 2 =  a constant.
&OW

aow is a function of y ow, and therefore of the barrier pressure F  only. 
When there is an equal quantity of oxidized oil in the spread oil mixture 
(A =  constant), and the total amount of oil V is increased from Vl to V2,

u
the area S  decreases by a constant amount — (V2 — Fx), irrespective of the 

barrier pressure.
So the barrier pressure area curve, staying parallel to itself, moves along 

the surface axis to smaller surfaces when the oil is more diluted.
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This rather remarkable phenomenon was the first indication we received 
of the existence of the simple relationships described above.

If one examines what happens when two kinds of molecules with different 
surfaces are present, while the two-dimensional gas law applies, and at 
the same time these molecules are dissolved in non-associated condition, 
one obtains that the resultant theoretical relation between s and x will not 
be rendered by a straight line, but by a hyperbola. Over a great stretch 
this hyperbola cannot be distinguished from its asymptote, so that the 
straight line connection can still be used. (The straight line applies when 
the oil-layer is so thin that the major part of the active molecules are found 
in the surface.) The theoretical curve (the other asymptote of the hyperbola 
runs parallel to the x axis at a certain distance below it) likewise dips below 
the a: axis, where x has a positive value. In fact, of course, this is not 
feasible. The digressions of the actual curves as compared with the 
theoretical ones are caused by the fact that in the case of excessive dilutions :

(1) That part of the space between the barrier and the strip occupied 
by the free water surface can no longer be disregarded;

(2) The oil layer becomes so thick that the simplified equation (2) 
is no. longer applicable.

In any case one never gets too high values when the specific spreading 
(surface at barrier pressure zero divided by the total quantity of oil) is 
taken as a measure for the content of active substances. This content is 
always bigger in reality and the error relatively smaller as tho content 
increases.

A p p l ic a t io n .
Cable Research.

In such research the spreading values often give good indication as to  
what is happening in the insulation. The insulation of a high-tension cable 
consists of paper with impregnated oil. The oil used for this purpose must 
be of very special quality, and it is obvious that very thorough methods of 
investigation must be used in order to trace any changes in the oil.

The curves a of Fig. 2 show clearly that it is possible to point out very 
small differences. We are dealing here with centrifuged oil from tho 
paper from different layers in the insulation of four pieces of cable. Of 
these, III  and IV have been kept at an increased temperature for a certain 
length of time, while I  and II have remained at room temperature for the 
same period. Furthermore, II and IV have been subjected to electrical 
tension tests. The spreading values are shown as a function of the number 
of the layer.

In addition to the spreading measurements, the power factor of the 
oil-impregnated paper is measured with a condenser such as described by 
W yatt .4 In curves b of Fig. 2 these measurements are shown. These 
paper tapes, after being measured at 75° C, were centrifuged too and the 
spreading values of the oil measured. See curves c of Fig. 2.

The remarkable thing is that the power factor measurements do not 
show the differences between the four pieces of cable in the middle of the 
insulation, found with the spreading measurements.
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O F  T H E  P A P E R  L A Y E R S  C O U N T E D  F R O M  T H E  L E A D  S H E A T H .

------------------- Cable kept at room temperature. No electrical tension applied.
-------------------- Cable kept at room temperature. Electrical tension applied 90-100 kV.
-------------------- Cable kept a t 55-75° C. No electrical tension applied.
........................  Cable kept a t 55-75° C. Electrical tension applied 90-100 kV.
a : Specific spreading values o f the oil centrifuged from the paper tapes.
6 : Power factor measurements o f the] impregnated paper tapes a t 75° C and a 

frequency of 76 c.p .s.
C : Specific spreading values o f the oil centrifuged from  the paper tapes after power 

factor measurements.



In addition, it is also noticeable that the oil in the condenser oxidizes 
slightly at a temperature of 75° C.

Oil Oxidation.
When making oxidation tests we use the specific spreading as a measure 

for the grade of oxidation. The top graph of Fig. 3 shows such a process
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5 10 1S t

OS 10 1.5 t

F ig . 3.
S P R E A D IN G  V A L U E S  A N D  O X Y G E N  A B S O R B E D  AS A  F U N C T IO N  O F  T H E  T IM E  IN

H O U R S .

with oxygen absorption plotted against the time. The way in which these 
oxidation tests are made has, of course, no bearing on the subject. Our 
test can determine the exact moment at which the oil commences to absorb 
oxygen, and in this particular instance the process began 15 minutes after 
the start of the test. It  is interesting to know if anything can be noticed 
in the oil in this preceding induction time. Spreading measurements give 
an affirmative answer. When the process began, the values were measured 
every ten minutes; they aro reproduced in the lower graph. It can be 
observed that the oil changes already in tlfe induction time. Now compare 
these spreading measurements with the acid value. After an oxidation 
time of two hours the oil has a specific spreading value of 2 0  cm2/mg, the 
original oil having a zero value. This is certainly no small value for the
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oxidized oil. The acid value is found to be 0 07 and 0-05 mg KOH/g oil 
for the oxidized and non-oxidized oil respectively. This result is self- 
explanatory.

Purifying of Oil.
It is possible to remove oxidation products from oil by treating it with 

charcoal or clay. The effect of such a purifying process can easily be 
followed by the aid of the spreading. 5

Oil with a spreading value of 52 cm2/mg was treated several times 
consecutively with charcoal and clay ( 1 0  per cent by weight) at a tempera
ture of 100° C. In the case of charcoal, after one treatment the value 
dropped from 52 to 33, after the second treatment to 7, and after the third 
to 3 cm2/mg. With clay the results were resp. 4, 2, and 1 cm2/mg. The 
Waterman 8 analysis shows that the composition of the oil changes less 
when treated with clay than when treated with charcoal.

Examination of Hydrogenated Oils.
Various samples of fractionated distillates were measured as well as the 

products after hydrogenation. The original products had a positive spread
ing value, which increased, according to the length of time the fractions 
had been kept. When hydrogenated, the active molecules disappear. 
In tests made, complete disappearance took place, however, only after the 
oil was entirely hydrogenated. In case of partial hydrogenation some 
active molecules are still present.

Here follow two examples :
First a fraction with its hydrogenated products, after having stood for 

a period of six years. The original oil had a value of 755 cm2/m g ; the 
partially hydrogenated a value of 360 cm2/mg and that entirely hydro
genated a value of 3 cm2/mg.

In comparison to this a measurement was made of a fraction and its 
entirely hydrogenated product immediately after distillation. The values 
were respectively 14 and 0 cm2/mg. This clearly illustrates the influence 
exerted by time.

Co n c l u s io n .

The spreading measurements described above offer a particularly sen
sitive method for investigating the properties of mineral oils which arc of 
importance for practical use from the standpoint of their oxidation stability, 
purity, etc. This method often enables one to show changes where other 
methods fail. The theoretical considerations teaches us to understand 
some of the formulae reached, and arouses the expectation that the method 
could be still further developed along the lines of what might be called 
differential diagnoses.

Finally we wish to pay a tribute to the memory of the late Mr. H. W. G. 
Van Gils, E .E., who instituted this method of research in connection with 
insulating oil at the laboratory. He was killed as a civilian by the 
Germans on May 10,1940.

Due to the isolation caused by the war, we only learned of the papers
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by W. A. Zisman and by W. D. Hartins (J. Ghem. Phys., 1941) after the 
above paper bad been written. We think that the interesting general 
investigations in these papers are supplemented from the practical 
viewpoint by our research.
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FRACTIONAL DISTILLATION OF TERNARY 
MIXTURES. PART II.

By A. J. V. U n d e r w o o d ,  D.Sc., M.I.CKem.E., A.M.I.Mech.E., F.R.I.C.,
E.Inst.F. (Follow).

Su m m a r y .

The basic equations derived in Part I aro em ployed to determine the con
ditions for a state o f minimum reflux. Equations aro presented by which 
the minimum reflux ratio for ternary m ixtures can be readily calculated when 
the fractionation between the key components is a sharp one.

I n  Part I  of this paper 1 equations were presented for computing the 
composition on any plate in a fractionating column for ternary mixtures. 
Since it appeared an alternative method of making these computations has 
been described by Harbert. 2

An alternative, and rather more elegant, derivation of the basic equations 
presented in Part I is the following.

The compositions of the liquids on adjacent plates are given by the 
relations

” " +  6  =  ^ + t o T R ..........................

* * *  +  ' “ r a ^ R .......................... (2)

mz0 +  d =  -r -~ ——— ............................... (3)
yx i +  +  zr

As previously, for a rectifying column, rn =  where R  is the reflux

ratio; b =  ■; c =  ; d  =  - . y and (3 are the relative
-ft +  1 it +  1

volatilities of components x and y  to component z and y >  (3 >  I. For a
S  - f -1stripping column, in =  — T,— , where S  is the “ reboil ratio ”— i.e., the

o
number of moles of vapour produced in the reboiler per mole of bottom

product withdrawn; b =  — ; c =  — — ; d — — For a stripping
o o  o

column on which a rectifying column is superimposed, S  =  —  — —— —.

For both rectifying and stripping columns

6  +  c +  d =  1 — m.

Constant molal reflux and constant relative volatilities are assumed.

Now multiply equations (1 ), (2), and (3) by —— _, — - and
y  — (p p — <p I — <p



respectively (where <j> is a quantity as yet undetermined), and add. 
Then
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(  +  - l a - )  +  +  _ £ Ë _  +
\ y  — d> r  R - d , ^  1 -  A' ^

d
y  — P 1 P —~ P 1 — P y — P P — P 1 — ^

+ Pyi•F
y*i +  Pyi +  «1

y-r t - 7 = ^  +  pyi •

Now choose <j> so that

y  — <f> (3 — <f> 1 — ^
Then

^  + A 1 + i — ! =  1 . . . .  (4)

f  y*o I Pi/o I 2o \  
V y  —  (/) P —  (f) 1 —  (/>/7/1 I
\y  -  0 ' ¡3 -

y* ~  0  +  pyi (p -jr^  -  0  +  2i ( x ~ ~ ÿ  ~ 1 )

y^i +  P ÿ i +  Zjl
and

y*i , Pyi , 2i
r x o , Pz/o , 2o l y - ^  P - 0  ! i - 0 {

y — 0 (3 -  <£ 1 -  <£ i»(yxx +  py i +  Zl)

Equation (4) is of the third degree, and gives three values of <f>, denoted by 
<t>v  <f>o, p3, it being understood that Pi <  P2 <  ’Pa-

Substituting these values in equation (5) and applying the method used 
in Part I, there arc obtained, for the composition on the nth plate, the three 
equations

y-ro +  Py0 _| M

yxo _j_ Py0 _j 5-‘o
y  — Pi $ — Pi 1 — Pi 

y x  o +  Py0 +  2o

ŷ o I Pyp _j_ zp
y — Pa P — Pa 1 — Pa

y* p I Pyp , 2p
+  +

y  — Pi
+

P — Pi
+ 1 — Pi

yxn + Pyn + zn
y  — Pi P Pi 1 Pi

y*n + P l)n + Zn

y  — Pi P Pi 1 — Pi
yxn

+
P Un

+
y  ~Pa P Pa 1 — Pa

yxn } Py« 1
y  -  pa

1
P Pa

1 1 i.3
yXn

+
Pyn

+

(6 a)

(66)

( (h ) n . y  ~  P̂  1 p ~  ¿ 3  1 ~  h > /6c\
V i,/ vxn B?/„ z„y x  o , Py0 , zp xPi

y  -  Pi 1 P — Pi i — Pi

In the above derivation the only property assumed for the parameter <f> 
is that it should satisfy equation (4). The other properties of this para
meter, stated in Part I, can be readily deduced. Assume the composition 
of the liquids on any two adjacent plates in the column to be the same, as
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is tlio case under minimum reflux conditions. I f  this composition is 
denoted by (h, k, I), then, from equation (5)

<j> — m{yli -f- ftk -f- Z) • . . . . . ( 7 )

Equations (1), (2) and (3) then give

mil +  b _  nik -f- c _  ml -\- d _  1  m
yh ß i I yh -f- Jik I <f>

and
h _  H  . j. _  ^  . I _  di  (8)
1 ~  m(y m(ß -  <j>) ’ m{ 1 -  <j>) ' ' K }

For the three values of <f>— i.e., <f>v  c/>2, <j>3—which satisfy equation (4) there 
arc three values of (h, k, I) which will be denoted by (hv  kv  Z1), (h2, k2, U) 
and (h3, k3, l3), respectively.

For a rectifying column b, c, d are positive, and it has been shown in 
Part I that, in this case,

0 < ^ < 1 ; 1 <  <f>2 <  ß ; ß <  <  y-
For </>,, equation (8 ) will give positive values for hv  kv  and lv  For tf>2, 
h2 and k2 will be positive and l2 will be negative. For <f>3, h3 will be positive 
and k3 and ls will be negative.

For a stripping column, it will be convenient to write c, iustoad of b, 
c, d and <]/ mstead of <f> and h, k, I instead of h, k, I. In this case b, c, d are 
negative and it can be readily shown that

1 <  4q <  ß ; ß <  ^2 <  y ; r  <  3̂ -
For ijjj, equation (8 ) will give Ai and kx negative and \  positive. For 4>2, 
Jl2 will be negative and k2 and J2 positive. For (Jj3, h3, k3, and l3 will all be 
positive.

For both a rectifying column and a stripping column there are thus three 
cases where compositions on adjacent plates are the same, and each of these 
cases will correspond to minimum reflux conditions. Equation (4), 
applied to a rectifying column, can be written in the form

A  +  Ä  +  r w ? " i !  +  1  ■ • ■ • < » >

For any given value of It, equation (9) gives the corresponding value of </>, 
and those of h, k, I are then obtained from equation (8 ). These values of
h, k, I represent the limiting compositions which can be attained with the
given reflux ratio when the number of plates is infinite.

The various types of cases which arise can be illustrated by the following 
three examples which all deal with a rectifying column. In all three 
examples y  =  4, ß =  2, R  =  3.

Example 1. All three components are present in substantial amounts in 
the top product. xD — 0 4 ;  yD =  0-4; zD =  0-2. Equation (9) gives 
^  =  0-9267; <j>2 — 1-774; <j>3 =  3-649. Equation (8 ) gives

=  0-040; Äq =  0-115; =  0-843
h2 =  0-106; k2 =  1-046; l2 =  -0 -1 5 3
h3 =  1-386; k3 =  -0 -2 9 5 ; l3 =  -0 -0 9 2 .
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Example 2. The heaviest component is present in only a small amount 
in the top product. xD =  0-599 ; y n =  0-400; zD =  0-001.
Then

-  0-999583; <j>2 =  1-729; <f>3 =  3-473
}h  =  0-0664; kx =  0-1333; l y =  0-8003
h2 =  0-152; k2 =  0-850; L =  -0-000791
h3 =  1-315; k3 =  -0 -3145; l3 — -0-000468

Example 3. The two heavier components aro present in only small 
amounts in the top product. xD =  0-999; y»  =  0-001; zD — 0-000001 =  
1 X 10“6. An extremely small amount of the heaviest component is here 
included. In any fractionation of a ternary mixture all three components 
will be present in the top product. Where the second heaviest component 
(y) is present in small amount in the product, the amount of the heaviest 
component in the product is quite negligible for all practical purposes and 
is not normally taken into account. The effect of including it in the 
calculation will bo discussed later.
Then

<j>x =  1 — 0-376 X 10-°; <¡>0 =  1-999; <j>3 =  3-0015
7  ̂=  0-111; 7;i =  0-00033; 7X =  0-88867
h2 =  0-333; k2 =  0-667; Z2 =  -0 -6 7  X lO' 6
h3 =  1-001; k3 =  -0 -0 0 1 ; l3 =  -0 - 5  X 10-°

The results for Examples 2 and 3 have been calculated to a degree of 
accuracy which is obviously greater than would bo required in any practical 
problem. The many decimal places shown in some of the results do not, 
however, mean that the calculations require an accuracy in computation 
greater than that of a slidc-rule. When any of the components are present 
in the product in small amount the calculations are considerably simplified.

For instance, in Example 2, zD is small. The root <j>x of equation (9) is 
therefore very nearly equal to 1. Equations (8 ) can be written in the form

¿ - * 2» . k =  J L V f i  ■ 1 =  f  • z» . . (io)
R ( y - * y  m - 4 > v  m - t )

As r/ij is very nearly equal to 1, the values of h1 and iq become and

Since h1 +  iq +  lx — I, the value of Zx can be found by
m  - 1)
difference.

Alternatively, putting <f>x =  1 in the first two terms of equation (9), we 
have

£ i  +  r f e , + r T = , i  +  1.y — 1 B — I 1 — <Piy  — 1 ' P — 1 ' l — ^i

This gives the value of the small quantity (1 — 4>i) an<l  also the value of

-  ~D- - , which can then be used to find lx from equation (10). For this 
1 — <Pi
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example the other two roots </>,, and <f>3 are found by neglecting the term

- ~~~ 111 equation (9) and solving the resulting quadratic equation.
1 — 9

In Example 3 both y D and zD are small. In this ease <f>1 is very nearly 
equal to 1 and <f>2 is very nearly equal to p. For finding c[>t and hv  kv  lx 
the same procedure is used as for Example 2. For <j>2 a second approximation

is made as follows. Since cf>2 is very nearly equal to p, the term  ̂ 2i)^

can be neglected, and equation (9) can be written (with ¡3 for <j>2 in the first 
term) as

yXD + x - ^ r  = R  +  1 -y  — P P — <f>2
This gives the small quantity (p — <L) and the value of required

P Y2
for finding k2 from equation (10). I t  has been shown in Part I of this 
paper that =  m[iy, and when <j>l ~  \  and rj>2 =  p approximately,

B ythen <j>3 =  m y — approximately. A second approximation for <fis

can be found by a similar procedure to that already described for <f>2 by
writing

Yx d . PUn
'^3 n   R y

P R  +  1

=  R  +  1

Most discussions of calculations for minimum reflux conditions have 
dealt with the case of a rectifying column superimposed on a stripping 
column. This is obviously the most important type of case in practice, but 
certain important principles can be illustrated more clearly by considering 
a rectifying column or a stripping column alone. For the following 
discussion a rectifying column alone is considered, and is assumed to be 
mounted on a still kettle containing liquid of composition (xF, yF, zF). 
We now have to find the limiting kettle composition for a given reflux ratio 
when the number of plates is infinite.

A method which has been used by Colburn,3 by Gilliland 4 and by the 
author 5 for the case where the top product contains one component in 
small amount is the following. If the compositions on two adjacent plates 
are the same, equations (2) and (3) give

myF +  c _  yp
mzF "f- d zF

C 1/  n
and if d is negligible, then yF — __ ^  Similarly

xF =  -p —— This method obviously gives the values (hlt kv  lx)
R ( y  — 1)

obtained by putting <j>l =  1 in equations (1 0 ).
I f  y [t is small as well as zD, the usual procedure has been to neglect zD 

altogether—a very natural thing to do, as zD must be very small indeed, 
and, if  a small value yD is specified in the product, the value of zD cannot
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also be specified ab initio. Neglecting zn and also neglecting c in the 
equation

mxp +  b _  yxF 
myF +  c ~  $yF

we obtain
b xD 1

xF =  ■
m

(It is obvious that this represents the limiting composition under minimum 
reflux conditions for the binary mixture of components a; and y.) It is 
then assumed that, with this value of xF, a “ pinched-in region ” occurs in 
which zF is negligible and yF — \ — xF. The values so obtained are those 
of (h2, lc2, l2) obtained by putting tj>2 =  (i in equations (1 0 ) and neglecting the 
small value of l2. The calculation can be carried farther by adding in a 
small amount of component z and carrying out a plate-to-plate calculation 
down the column.

It would, however, be equally legitimate to base the calculation on zD 
instead of y F, and there would then be obtained the limiting compositions 
(hv  lcv  lx) corresponding to </),. As will be seen from the results of 
Example 3, where zD — 1 X I0-G, the final effect of including it in the 
calculation is very marked. The values of hv  kv  calculated for this 
example can, of course, also be arrived at by making a plate-to-plate 
calculation down the column, including the component z in the calculation.

The method just described does not give a correct conception of minimum 
reflux. It fails to provide answers' to the followdng questions :—

(1) In the apparently straightforward case where only zD is small the

limiting compositions are given by xF — Xd — and y F — '^DR ( y -  1 ) "  R(V -  I)-

The ratio of xF to yF is XP ^  ~— which is independent of R. I t therefore 
VrAy - 1)

depends only on the composition of the product and the relative volatilities 
of components x  and y, and is the same for any reflux ratio. I f  the still
kettle contains a charge in which the ratio of these components is other than

, how does this method of calculation apply ?
y A y  -  1) 1 -

(2) I f  both y D and zD are small, very different results are obtained for the 
limiting compositions, according as zn is omitted from or included in the 
calculation. Which of these results is correct ?

It is believed that the following analysis clarifies the position.
I t  has been shown in Part I that if  we put x0, y0, z0 equal to xD, y D, zD, 

respectively, the left-hand side of equations (6 a), (6 6 ) and (6 c) becomes 
unity. From equations (6 a) and (6 c) the composition on the nth plate 
below the top of the column is given by

yXn _ _j_ ?JU il j  ‘-n _

r - t *  1 - ^ g i ) n . . . ( l ia)
y x „  +  & / n  ^ _____ Z n  \</>2 S



and
yX;l ■ P//n___ J__ Zn

y  — <t>3 P — <f>3 1 — fa _  OK
yxn Pyn , 2n V  3

y  ~  0 i  P — <t>i l  — 0i
Since 0j <  <j>2 and 0 : <  03, when n becomes infinite
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(1 1 6 )

and
^  + ^ T  + T ^  =  °  ■ • ' ’ (12a)y  — 9a P — 02 1 — 92

+  r % -  + r ^ r  =  °  • • • • {l2b)y  — 93 P “  93 1 “  93
It is necessary that the values of a-„, yn, zn which satisfy equations (12a) 

and (126) should not make the denominator ^X,‘ +  -  ^ — 1_ Zn ■
y  — 9i P ~  0 i 1 — 01

equal to zero. The values of x„, yn, zn which meet these requirements are
6 j , l±.

The condition that h x, k v  should satisfy equation (1 2 a) is

+ - r ^ r  =  °  . . . .  (13) 
y  — 92 P — 92 1 ~  02

From equations (8 ), hx =  — - - k1 — ——p >l—  I — ■ —  and
1 t n ( Y M P ~ 0 i )

equation (13) becomes

_____________   _J_____________ £p___________  I____________ d ____________  Q Q4}
(y -  M y  -  0i )  “ ( P -  02)(P -  0 i) +  ( i  -  0 2) ( i  -  0i>

Now, from equation (4)

by cp d  ==_ J T _  . cp d  =  ^
y — 0 ! p — *" 1 — (j>1 y — 0 2 1 P — <f>2 ’T 1 — 0 ,

or
by[<f>i — 02) , cP(0i ~  02) , d^ i  ~  ^ 2) _  0

(y -  02)(y -  0 1) -  (P —  02)(P -  0 i) ( i  -  02)(i -  ¿ 1)
which is the same as equation (14), so that l iv  k v  l x satisfy equation (I2a). 
In exactly the same way it can be shown that they satisfy equation (126). 
Also

yhi  1 P^i .__________ __ by<f>i  cP ^ i 1______^ 0 i
y  — <j>i P — ^1 T  1 — <¿1 M y  — 0 i)2 1 «U P  — 0 i)2 ^  Wl( i  — 0 i)2

All three terms in this expression are positive for a rectifying column or 
negative for a stripping column, and therefore their sum cannot be zero.

It can similarly be shown generally that the three equations of the type 
of (1 2 a) are satisfied as follows :—

 ~-Z-r  +  +  1....~"X =  0  by  K  K  ?2 a n d  K  h >  lz-y  — 9i P — 0i 1 — 9i
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Yx ,__ity
y  — </> 2 1 P — <f>2 1 1 <f> 2

Yx  ■ __P.V____ _____
y  — 0 3 ' P — <f>3 ' 1 -  0a

+  ô J- +  1 - - 7- =  o by Ax, kv  and h3, k3, l3

+  Ô-" >- +  I j -  == 0  by hv  kv  l v  and h2, k2, l2

If any two of the equations are satisfied simultaneously the solution is 
the values of li, k, I, which correspond to the value of <j>, which does not 
appear in the two equations.

Suppose now that a plate-to-plate calculation is made starting from the 
top and proceeding upwards. This can be done by putting n — —N  (where 
N  is positive) to give the composition on the nth plate above the top. From 
equation (6 a), (6 6 ), and (6 c) the following equations can be derived in the 
same way as equations (1 1 a) and (116).

yx~N , P V-N , Z -a
y  — 0 i P — ¿ i  l — <f> i =  (<hY 
yx-N _|_ P V-N _|_ Z-N 03
y  3 ' P _  03 1 ~  03

and

yx-x , PU-N , z-y

(15 a)

y  — 0 2  P — 0 2   ̂ — 0 2

yx-N I P V-N ■ Z-iY V s
y — 03 ' P — 03 1 — 03

When N  becomes infinite,

( 156)

and
+  r ^ r  =  0  • • • • (16fl)y  0 1 P — 0 i 1 — <Pi

~^~~r +  +  r !=i r  =  0  • • • • (16fi)y  — <p2 P — 02 1 ~~ 02

The solution of these equations is then (h3, k3, l3).
Thus, if a plate-to-plate calculation is started at the top (including all 

components) and continued downwards, the limiting composition finally 
reached is (hv  kv  ly). I f  the calculation is made upwards, the limiting 
composition finally reached is (h3, k3, l3).

We now have to consider how the limiting composition (h2, k2, l2) can be 
reached. Suppose now that the values of (x, y, z) on any plate are such 
that they satisfy the equation

- J u r + r ^ T  +  i - t : " 0  ■ ■ •  •  ( 1 , )y  — 03 P — 03 1 — 03
but do not satisfy the other two equations, so that these values of (x , y, z) 
do not represent limiting compositions. From equation (5) it is seen that, 
if equation (17) holds good for a plate it will also hold good for the next plato 
above or below it, and therefore for all plates above or below it. From
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equation (6 a) it will be seen tbat, as ri increases, the left-hand side of the 
equation continuously decreases, and finally becomes zero when n is

infinite. This requires that — — )- —-— 7- +  -—2—r  = 0 .  As equation
y  — 9 1 P — fa  1 -  ? i 

(17) is also satisfied, this means that the limiting composition (h,,, k2, l2) is 
reached as the calculation is made up the column.. Note that h2, k2, l2 do not 
make the denominator of the left-hand side of equation (6 a) zero. In 
exactly the same way it can bo shown that the limiting composition 
(hv  kv  Ij) is reached as the calculation is made down the column.

Thus, if  the composition of the charge in the still kettle is such that it 
satisfies equation (17), a plate-to-plate calculation up the column, starting 
from the kettle, will finally reach the limiting composition (h2, k2, l2). A 
slight increase in the reflux ratio will result in an increase in the values of </> 
which satisfy equation (9), for, differentiating this equation, we have

yX S?/ Z
With an increase in the value of fa the expression — -—r +  £ — |-   r

rs y - f a  P -  fa 1 - fa
will no longer be zero, but will have a positive value. The plate-to-plate 
calculation up the column will then 110 longer pass into and remain stuck at 
the limiting composition (h2, k2, l2), but will be capable of being continued 
until the composition corresponding to the top product is reached. Thus 
any composition of the kettle charge which satisfies the equation (17) 
will be a composition for which the reflux ratio used in calculating 
the values of (j> from equation (9) is the minimum reflux ratio. The two 
limiting compositions [hv  kv  lj) and (h2, k2, l2) are merely particular values 
which satisfy the general equation (17). This conception of minimum 
reflux appears to answer satisfactorily the two questions which were stated 
earlier in this paper.

Examples 1, 2, and 3 show that the value of l2 is always negative.

Although a slight increase in the reflux ratio to make —^ 7- — \- -——-
y —fa $ —fa  A— 9>3

positive will permit of a platc-to-plate calculation being continued to the 
top of the column, it does not necessarily follow that this calculation will 
not pass through a negative value of 3 when plate compositions approaching 
k2, k2, l2 are reached in the calculation. A plate-to-plate calculation which 
passes through a negative value of one of the components obviously does 
not represent a practical ease. In a case like Example 1, where all three 
components are present in substantial amounts in the top product, l2 has a 
substantial negative value, and when the reflux is increased slightly over 
the minimum, a plate-to-plate calculation could still pass through a 
negative value of z. This case is, however, an unusual one. In the normal 
cases, such as Examples 2 and 3, where one or two of the components are 
only present in small amount in the top product, l2, although negative, is 
very small. A quite minute increase in the reflux ratio above the minimum 
will ensure that the plate-to-plate calculation does not pass through a 
negative value. In other words, the theoretically correct minimum reflux 
ratio is that which will give a value of 3  (at the appropriate point in the
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column) of -0-000791 in Example 2 or -0 -6 7  x  10'° in Example 3. Tlie 
minimum reflux ratio for practical purposes is that which gives a value of 
zero instead. The difference is obviously outsido the range of normal 
calculations.

I t  is to be noted that, as in the case of a binary mixture, as long as the 
amount of a component in the product is small, the actual amount does not 
affect the minimum reflux ratio appreciably, as tho limiting compositions 
do not occur in the neighbourhood of the product composition. If, however, 
a calculation is made for a finite number of plates, the actual amount of a 
component present in small quantity will appreciably affect the number of 
plates required for a given separation.

It has been shown that, for a rectifying column, if tho composition at any
fiw 2

point hi the column satisfies the equation — — -f- - — — [- ■ =  0
y  — 9  3 P — 93 1 -  93

thoro is a possible range of compositions between (hv  kv  l t ) and (h2, k2, l2).

It can be similarly shown that, if the equat i on— , +  - - — r  =  0
y  yo p <f>2 I — rP2 

is satisfied, there is a possible range of compositions between (hv  kv  l2) and
St/  z

(h3, k3, l3), and that if the equation — — ]- -— —— |-  --------- '== 0
y 9i  P 9 i  1 9i

is satisfied there is a possible range of compositions between (h2, k2, l2) and 
(h3, k3, l3). I t appears, however, that these other two cases arc not 
significant for practical problems of fractionation.

Tho analysis has been given in detail for a rectifying column. It can be 
made in exactly the same way for a stripping column. For a stripping
column, equation (4) becomes (writing y instead of <j>)

yx w , Pyir j _  z w
7 + I T ° 7  + r 1 ILr = - £  . . . .  (18)•1» ft — ù 1 — dj

Here also <jq <  <J/2 <  ^3-
For a strippmg column, tho limiting composition (Ji3, ¿3, J3) corresponding 

to ijig is the one reached by calculating up the column from the rcboiler, 
using all three components in the calculation. Tho limiting composition 
(hi, ki, li) corresponding to dq is tho one reached by calculating downwards 
below the reboiler. The limiting composition (k2, J;2, J2) is the intermediate 
one, and corresponds to that reached by calculation upwards from the re- 
boiler when two of the components are present in small amount in the 
reboiler and the lightest component is not taken into account in the 
calculation.

For any given value of S  in equation (18) minimum reflux conditions will 
obtain in the stripping column if tho composition at any point satisfies the 
equation

v x  +  fty ... +  _ s =  0  (19)
y -  ? — 4-1 1 -  *1 ' ' ■ ( }

and this equation represents a range of compositions between (Jl3, k3, J3) and 
(Ji2, ¿2, J2). Similar relations can be obtained for the other equations, but, 
as in the case of a rectifying column, they do not correspond to practical 
cases.



It should bo noted that equation (17) for a rectifying column contains 
<f>3, the value of which lies between (3 and y ,  while equation (19) for a stripping 
column contains t|q, the value of which lies between 1 and (3.

For a stripping column, equations (8 ) become

j _______^x w . j _________ M/w . - _________ 'rl2ir /nm
h (fif+  l)(y  —4.)’ * (S +  m - W ’ L (S +  l ) ( l - < |, )  * '

For ordinary purposes it is not necessary to calculate compositions to 
several decimal places, as was done in Examples 2 and 3, and this results 
in considerable simplification. When x w =  0, equation (18) gives t|>3 =  y.  
Then, from equations (20),
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*t* yyw  7 y*w
k* =  (S  +  l ) (y  -  f y  h  =  (3  +  l ) ( y  -  1)

and, by difference,
T  _  i _  r lJ w _________y g ir___________
/i3 (S  +  l ) ( y _ P) (S  +  l ) (y  — 1)'

If, in addition, y w =  0, then equation (18) gives ty2 =  ¡3 and h2 =  0,

-j   P2 ir  _______ P _
. l2 ~ ( S  +  i ) 0 - i )  (S +  i ) ( p - i )

since Zjy — 1 .

By difference, J,2 =  I -  . . ^  P

If both X|r and y w are zero, equation (18) gives

z w o , (8 +  1
or =

and hy — 0 , kx — 0 , and lx —
Similarly for a rectifying column, if zD — 0, equation (9) gives <f) |  =  1 

and equations (1 0 ) give
  XD 7. V D

h l ~  B ( y  -  1 ) ’ ~  B (£  -  1)

and, by difference,
xj> Vdly  =  1 -

B ( y  -  1) £ ((3 -  1)'

If, in addition, y D =  0, equation (9) gives <f>2 =  (3 and, from equations (10), 

h2 =  Z2 =  0  a n d > b y  d ifferen co > k 2 = l  —  p )~ A ls o >

for this case, equation (9) gives

_ y xr> _  y  . = j R  +  1 a n d  ^  =
y  — 4>z y  — fa ' b  +  V

Then h3 =  1, ¿*3 =  0, l3 =  0.
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When a rectifjdng column is superimposed on a stripping column, true 
minimum reflux conditions obtain for the system when minimum reflux 
conditions obtain in both the rectifying column and the stripping column. 
With a mixture of three components, of which two are “ key ” components, 
one component will be small in the top product and two components will be 
small in the bottom product or vice versa. (The following analysis is 
limited to such sharp separations.)

Consider the former case, in which the third component is lighter than the 
key components y  and z. The top product contains component x and 
component y  with a small amount of component z. For minimum reflux 
conditions in the rectifying column, by calculating downwards, the limiting 
composition hv  kv  lx is reached. For the stripping column, the bottom  
product is component z with a negligible amount of x and a small amount 
of y. I f  on any plate below the feed-plate the equation

■yx
y  — 4-i

+
P -«I»!

+ 0
1 — 'hi

is satisfied, minimum reflux conditions will obtain in the stripping column. 
If, at the feed plate, the values hv  kv  lx for the rectifying column satisfy the 
equation

yx  , P y  . 1
y  -  4-i

+ 4-i 1 4-i
=  0

for the stripping column, then minimum reflux conditions will obtain in 
both columns. The condition for minimum reflux is therefore

yhi
+

-
h

4-i
0

Now it has been shown previously that hv  kv  lx is a solution of two 
equations for the rectifying column—namely,

and

Vh l
y — <f>2 

Vh l

+

+

Pfei 
P — ^2

P*1
y  — <¿3 (3 — <f>,

+

+

h
1 -  ¿a

h

- 0

=  0

There are thus three equations to be satisfied, and there are actually only
Ji etncl lc

two variables in these equations—namely, -A The condition that
h  n

the three equations are satisfied simultaneously is that the determinant

y P 1
y  —  4-1 P -  4-1 1 -  4-i

y P 1
y — 4> 2 P ^2 1 412

y P 1
y — <f> s P $ 3 1 1 -o- co

=  0 (21)
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This determinant becomes zero if  any two rows are the same, and this 
occurs if <jq =  or i|q =  <j>3 or <f)2 =  <f>3. Now, <j>2 cannot equal <f>3 because 
<f>2 lies between 1 and (3 and </>, lies between |3 and y. Also <|q cannot equal 
tf>3 because ijq lies between 1 and ¡3 and </>3 lies between (3 and y. But i}q 
and <f>2 both lie between 1 and |3, so that ijq =  <j>2 is the only possible solution. 
This, therefore, is the condition for minimum reflux in the case where tho 
third component is lighter than the key components. I t  is to be noted 
that <f>3 is the root corresponding to the light key component in the rectifying 
column, the components being regarded in the order of increasing volatility 
and the values of <j> in the order of increasing magnitude. In the same way, 
ijq is the root corresponding to tho heavy key component in the stripping 
column.

The other case to be considered is that in which tho third component is 
heavier than tho key components. In this case the key components are 
x and y. Tho top product is component x with a small amount of 
component y  and a negligible amount of component s. The bottom  
product is components y  and z, with a small amount of component x. Bor 
a stripping column the limiting composition, proceeding upwards, is reached 
at h3, ]q, 73. For the rectifying column, minimum reflux conditions obtain 
if  the equation

. y* +  _ J y  +  * = 0
r  — 9̂3 P “  <¿3 1 — 3̂

is satisfied, and this equation must be satisfied by A3, h  f ° r minimum 
reflux conditions to obtain in both sections of the column. Now, "/¿3, k:i, l3 is 
given by the equations

_ y ^ _  +  Py +  =  0
y  — 4q P — ’W 1 — 4q

and

r ',: + A - + r 4 r ^ « -

By the same reasoning as before, the condition that all three equations are 
satisfied is =  <f>3. Here again the value of <f> corresponds to the light key 
component in the rectifying column and the value of to the heavy key 
component in the stripping column.

The general condition for both cases is that equation (9) for tho rectifying 
column and equation (18) for the stripping column have a common root. 
Denoting this common root by 0 , then

y * n  +  + . ' R  +  1  # _ . . (22)
y — 0 [3 — 0

and
yx w , PZ/tt 1 sir

+  • • • • (23)y  — 0 ‘ ¡3 — 0 1 — 0

Multiplying the first equation by P  and the second equation by W  and 
noting that

Px0 -f- Wxv  =  Fxr ; P y D -f- IT y ir =  FyF ; P zd +  l^ ir  — FzP
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where xF, yF, zF are the composition of the feed, then

+ f — Q +  r ^ ô  = (jR + 1 ) P  - 15 ,7 • • <24)

Now, S W  =  R P  + q F  -  W =  (R +  1)P -  (1 -  q)F 
since W =  F  — P.
Equation (24) then becomes

J- '  + ^ .  +  A i - l - I  ■ • - ■ (25)y  -  0 ' ¡J -  0 ' 1 - 0

If tlic feed is liquid at boiling point, <7=1  and equation (25) reduces to a 
quadratic. I f  the feed is all vapour, q =  0. In this case equation (25) 
obviously has one solution 0 =  0 since xF +  yF +  zF =  1 and equation (25) 
again reduces to a quadratic.

If i = l ,  equation (25) becomes

(yxF +  $yF -f- Zp)02 — {y(P +  l)xF -f- p(y +  1 )yF 4- (y +
+  Py =  0 . (25a)

I f  q =  0, equation (25) becomes

02 — {(P +  1 )xF +  (y +  1 )yF +  (y +  P)2a},j +  \jXf  +  yl/p
-f” Py.i]•’ =  0 . (255)

We thus have a simple method of calculating the minimum reflux ratio. 
Equation (25) is used to find 0 , and this value of 0 is then substituted in 
equation (22) to find R, which is the required minimum reflux ratio. 
Alternatively, S, the minimum reboil ratio, can bo found from equation (23). 
Where y  and z are the key components, 0  =  <|q =  <f>2 and lies between 1
and p. Where x and y  are the key components, 0 =  4*2 — fa  and lies
between p and y. In both cases the value of 0 required from equation (25) 
is the one which lies between the relative volatilities of the key components.

The method of calculation is illustrated by the following examples taken 
from the paper by Colburn.3

Example 4. Third component lighter than the keys.

^ = 0 -6 ; y F =  0 -2 ; zF =  0-2\ q = l .
xD — 0-75; y D — 0-25; zD =  0; xjy =  0; y w =  0; =  1.

y  =  4 ;  p =  2.

Equation (25) or (25a) becomes

r r , + 2TT5 +  r ~ o 0 " 3 0 1  - 1(>-4 0  + 8  - 0

The desired value of 0 is that which is between 1 and 2. The solution is 
found to bo 1-152.

Equation (22) then gives
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Example 5. Third component heavier than the keys.

X y - 0 - 2 ;  yF — 0-2; 2  ̂ =  0 6 ;  q =  0.
=  1 ;  Vd =  0 ;  ZD =  0 ;  a-'ir =  0 ;  =  0 -2 » ;  =  0-75 .

y =  1 0 ; p = 2 .
Equation (25) or (256) becomes

2  -|- =  1 or 02 -  100 +  14-4 =  0.
1 0 - 0  1 2 - 0  ' 1 - 0

The desired value of 0 lies between 2 and 10, and is found to be 8-255. 
Then from equation (22),

1 0  =  i i  +  1 and R  =  4-73.
10 -  8-255

In a paper by Mayfield and May 6 a method was given for calculating 
minimum reflux ratio which was based on the hypothesis that the minimum 
reflux ratio of a ternary mixture was the same as the minimum reflux ratio 
of two binary mixtures into which the ternary mixture was resolved. The 
hypothesis was not proved, but was demonstrated to give results correspond
ing to the results obtained by other methods for a number of examples in 
which the condition of the feed was q =  1 or q — 0. It can, however, be 
proved correct for the general case by means of the equations which have 
been derived in this paper.

Consider the case where the third component is heavier than the key 
components, which are x  and y. The feed composition is xF, yF, zF. Let 
the ternary mixture be divided into two binary mixtures. The first binary 
mixture contains part of component a,-, say xF', and all of component y. 
The second binary mixture contains the rest of component x, say xF" and 
all of component z.

The feed composition for the first binary mixture is xF yF
xf' +  V f xf +  Vf

The relative volatility of the two components is ~. Applying equation (25)

to this binary mixture, the term  ̂ Q corresponding to the third com

ponent, disappears. The equation becomes

1  dÙW • XF
   +  =  (1  -  <7) ( V  + y F) . ■ • • (26)

For this binary mixture, with xD =  1 , equation (2 2 ) becomes
1  
P It' +  1, and substituting this value of R' in equation (26) gives

x’r (R' +  1) +  - - =  (1 — q){x'F +  yF) . . (27)
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Similarly for tho other binary mixture, with relative volatility y, there is 
obtained tho equation

xf"(R" +  1) +  =  (1 -  q)(xF" +  zF) . (28)

Now, by the hypothesis, if the minimum reflux ratios for the two binary 
mixtures are made equal to each other, they should also be equal to tho 
minimum reflux ratio for the ternary mixture.

Putting R' — R" =  R  in equations (27) and (28) and adding them, we 
have, since x'F - f  x"F — xF and xF +  yF +  zF =  1 ,

T ( R  I 11 I P & r t ® + '1) , zf (R  +  1)
+  l)  +  p -  (y - J ) R  +  r -  (y — Y jli - l ~ q * (29)

For the ternary mixture, the minimum reflux ratio is given by equations 
(25) and (22). From tho latter equation we have, since xD — 1,

^ o  =  i i  +  l o r 0 =  i r r i -

With this value of 0 , equation (25) becomes

/n  , n  , fiyyjR + 1 ) , sf(R + 1 ) _  , _
i  ( +  ) +  p -  (y -  p)ii +  I -  (y -  1)R q

which is the same as equation (29) derived from the two binary mixtures.
A similar proof can be given for the case where the third component is 

lighter than the key components. For this case it is more convenient to use 
equation (23) with equation (25) to give the final result in terms of the 
minimum reboil ratio.

It will be noted that equation (29) can be used to give a direct solution 
for R, instead of following the procedure previously described of first 
finding 0 from equation (25) and then finding R  from equation (22). This 
latter procedure is the more convenient one, as it readily permits of the 
correct value of 0 , and therefore of R, being selected. The use of equation 
(29) involves finding the various values of R  which satisfy it and then 
deciding which value correctly represents minimum reflux conditions.
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FRACTIONAL DISTILLATION OF MULTI-COMPON
ENT MIXTURES—CALCULATION OF MINIMUM 
REFLUX RATIO.

By A. J. V. U n d e k w o o d ,  D.Sc., M.I.Chem.E., A.M.I.Mech.E.
F.R.I.C., F .Inst.F. (Fellow).

S u m m a r y .
B y extending a method which has been applied to ternary m ixtures, 

equat ions are derived by which the minimum roflux ratio for m ulti-component 
mixtures can bo readily calculated when the fractionation between tho key  
components is a sharp one, relative volatilities and molal reflux being 
assumed constant. Numerical exam ples are given to illustrate the method 
o f  calculation.

T h e  calculation of minimum reflux ratio is an important problem. 
Several methods of calculation have been put forward such as thoso of 
Brown and Martin, 1 Brown and Holcomb , 2 Gilliland,3 Hogan , 1 and Col
burn.5 Some of those methods involve a considerable amount of calcula
tion and, as has been pointed out by Colburn, 8 are open to criticism in regard 
to tho basic assumptions made. The most convenient method for most 
purposes is that of Colburn,5 but it admittedly rests on an empirical basis.

B y extending to multi-component mixtures the methods previously 
described by the author6. 7 in connection with ternary mixtures, the 
calculation of minimum reflux ratio can be made fairly simply for cases of 
ideal mixtures with constant relative volatilities and sharp separation 
between the key components. Where the relative volatilities vary in 
the column the same method of calculation can be used to give the minimum 
reflux ratio approximately.

B y way of example a mixture of four components (w, x, y, z) will bo con
sidered, the relative volatilities, referred to component z, being 8 , y, S 
respectively. It has been shown previously 6 that an equation can be 
derived connecting the composition on any plate (w0, x0, y0, z0) with the 
composition (ttq, xv  y v  zt) on the next plate below it, namely

a —9> y  — 9  P — 9 *-—9  -p yx1 -p \iyx

where <f> is given by the equation

m{6w1 -t- yx1 -j- \‘,y1 +  px) (1 )

8 — <f> y  — <f) 1 p — — <j>
! b y  + _ £ i = 1 . . . . .  (2)

As previously, for a rectifying column, m  =  jjrqyp a = W 'D  7 ___

i T + T  “ I T + T  
, R P  +  qF -  W 

W

W j)  .  X j )

etc., and for a stripping column, m =  —5— , where S  =
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Equation (2) gives four values of <f>, which, in ascending order of magni
tude, are denoted by </>v  fa, fa, fa. These values of <f> give four equations 
when substituted in equation (1 ). Applying these to n  successive plates 
and dividing any one equation by any one of the others, there are obtained 
a set of equations such as

(»)

Any two of the four values of <f> will give an equation of this type, so that 
six equations are obtained in all. Denoting, for convenience, the expression

S w0 , yx0 y ¡typ
+  a s E (*<>• fa )  ■ • -(3 « )s — ^ i  y  — ^  i  P — fa  i — ^ i

the six equations, of which equation (13) is the first, are

E(x0, fa) -  W E{xn, fa). E(x0, fa) -  w
E(xn, <t>I) N

E(x0, fa) w ' E(xn, f a ) ’ E(x0, fa) KfaJ E(xn, fa)
E(x0, <£l) (far E{x, „ ¿ 1) . E(x 0, fa) _ (fa)" E{xn, fa)
E(x0, fa) \fa) ' E(x„, fa)’ E{x0, fa) ' E(xn, fa)
E{x0, fa) (fay E{ xn, $2). E(x0, fa) -  W E(xn, fa)
E  (■»'(), fa) W E (xn fa)’ E(x0, fa) 7̂ 4 ' E(x„, fa)

(4)

These six equations represent only three independent relations. The 
last three can obviously be derived from the first three. The three inde
pendent relations, combined with the equation

w + x + y + z — \
suffice to solve for the four variables, w, x, y, z.

Under certain conditions the composition on a plate may be exactly 
equal to the composition on the plate above or below it, and a plate-to- 
plate calculation leads to an infinite number of plates. For such conditions 
of “ constant composition ” or “ limiting composition,” denoting such a 
composition by (g, h, k, I), equation (1 ) gives

<j, =  m(Sg +  yh  -f- ¡3& +  I) ......................................(5)

As shown previously 6

a<j> . b</> c<f> d<f>
9  ~  m( S -  fa  ’ m (y - f a ’ m {  p - f a ’ m( 1 -  fa  ' w

There are four values of <f>, and consequently four limiting compositions 
which may be denoted by the suffix attached to the corresponding value 
of <f>. Thus gv  hv  kly l1 are obtained by using ^  in equations (6 ).



The expression E(xn, can be shown to become zero if g2, h2, k2, l2 are
substituted for wn, xn, yn, z„. The condition for this is that

I y K  I I h  «

8 _  <j>1 y  — <f>i P — 4>i 1 — <£i
or, from equations (6 ),

_______ ^ _________ i_________ &y________ i__________cP
(S — ^ ( S  — <f>2) (y — 0j)(y — <t>2) (p — ^X)(P — <̂2)

+  ( T i .  ¿ l ) ( i  _  =  0  •

Prom equation (2 )

aS 6 y cp rZ
S _ ^ i  y  _  ^  p — ^  1 — <f>1

-  aS | + °P_. +  g _  =  i
8 — (f>2 y  — <f> 2 P — 9 2̂ 1 — </ ’2

or
_______OS_______ J y  Cp
(S — — <j>2) (y — <f>4){y — <̂2) (P — P — 02)

+  * =  0-t- (1 _  ¿ 1)(1 _  0 2)

whicli is the same as equation (7).
Similarly it can be shown that E(x„, i^) also becomes zero for the values 

g3, h3, k3, l3 and g.v h4, Z*4, Z4. It does not become zero for the values
gv  hv  kv  lv  as may be seen by putting <f>2 =  <f>1 in equation (7). All the
terms on the left-hand side are positive for a rectifying column and negative 
for a stripping column, and the sum of them can hi neither case be zero.

Similar relations can be obtained for the other expressions similar to 
E(xn, 0 j). The various equations are satisfied as follows. (The suffix n is 
here dropped for the sake of generality.)

E(x, çq) =  0 by (<72, /¿2, k2, Z2), (g3, h3, k3, l3) and (g4, h4, k4, Z4)
E(x, <j>2) =  0 by (<72, h4, klt l4), (g3, h3, k3, l3) and (g4, h4, k4, Z4)
E{x, <f>3) — 0 by (fJi, Zq, Zq, Z4), (f/2, /¿2, k2, Z2) and (g4, h4, k4, Z4)
E(x, </q) =  0  by (g4, 7q, Aq, l4), (g2, h2, k2, l2) and (g3, h3, k3, l3)

I f  any three of these equations are simultaneously satisfied, they have one 
common solution.
Thus E(x, qSj) =  E{x, <j>3) =  E(x, <f>4) =  0

have (g2, h2, k2, l2) as the common solution. The suffix attached to g, h, k, I 
is the one which does not appear in the values of <f> involved in the three 
equations.

I f any two of the equations are simultaneously satisfied, they have two 
common solutions.
Thus E(x, <f>3) =  E(x, <f>4) — 0

6 1 6  UNDERWOOD :
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have (gv  hv  Jcv  ly) and (g2, h„, k2, l2) as common solutions. Here again the 
suffixes attached to g, h, k, I are those which do not appear in the values 
of «■}>.

The significance of the four limiting compositions can be shown as follows, 
a rectifying column being considered by way of example. It  is readily 
shown, as in the case of ternary mixtures, that putting w0 =  wD, x0 =  xD, 
etc., makes any of the expressions on the left-hand side of equations (4) 
equal to (1). We then have, by selecting the three appropriate equations,

E(xn, fa) /9W .  E (Xn, fa) __ ( 4 >1\ \ E ( x n, fa )  ( f a \ n
E(x„, V9V  ’ E(xn> fa) W>3/ ’ E(xm <j>j) \ f a l

Now >̂y < f a < f a < f a  ancl  therefore, when n  becomes infinite,

E(xn, fa) =  E(xn> fa) =  E(xn, <f>,J =  0.

These equations are satisfied by (gv  hv  kv  ly), which, in addition, does not 
make the denominator E(xn, </>x) zero. Thus a calculation proceeding down 
the column from the top finally reaches the limiting composition 
(d v  ^r> ^r> ^i)-

If  we put n — — N,  where N  is positive, the composition can be obtained 
for an imaginary plate located N  plates above the top of the column. From 
equations (4) we have

E(x_n, fa) . E(x_n> fa) _  ( f a \N. E(x_y , <f>3) _  (fay
E (x_.fi, fa) \fa) ’ E(x_fi, fa) *f>4 ’ E(x_fi, fa) \faJ

When n becomes infinite

E(x_fi, rj>j) — E(x_fi, fa) =  E(x_fi, fa) =  0

and the solution is (gq, hv  kit Z4), which is the limiting composition reached 
when a calculation is carried upwards from the top of the column.

The other two limiting compositions (g2, h2, k2, l2) and (g3, h3, k3, l3) have 
particular practical significance when certain components are only present 
in small amount in the top product.

There are three cases to be considered :—

Case I. z is the heavy key component and is present in the top 
product in small amount.

Case I I .  y  is the heavy key component and both y  and z are present 
in the top product in small amounts.

Case I I I .  x is the heavy key component and x, y  and z are present 
in the top product in small amounts.

For case I, since d in equation (2) is approximately zero, <j>i is approxi
mately equal to 1. Substituting this value in equations (6 ) gives gy, hv  kv  ly 
the last of these by difference. These are the values of the limiting com
position reached by calculating downwards from the top of the column with 
all four components in the calculation.

For case II, since both d and c in equation (2) are approximately zero, 
<f>y =  1 and fa =  ¡3 approximately. Using the value <f>y =  1, the values 
of gv  hv  kv  ly can be calculated when the values of d and c, although very 
small, are specified. The method of calculation is similar to that given for
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Example 3 of the previous paper. 7 Using the value <f>2 =  p in equations (6 ) 
gives g2, h2, k2, l2. l2 has a very small negative value which, as explained in 
connection with ternary mixtures,7 may be neglected for practical purposes. 
k2 is indeterminate in equation (6 ) when c =  0  and <f> — ¡3, but can bo found 
by difference, or by the method of approximation described in connection 
with ternary mixtures. Tliis limiting composition thus contains the three 
components w, x, y, and is the one reached by calculating down from the 
top of the column using these three components. It can also be calculated 
by the usual method based on the small amount of the heavy key component.

For Case III, since d, c, and b are all small in equation (2), <j>l =  1, 
<j>2 =  p, and <j>3 =  y  approximately. Using <f>3 — y  in equation (6 ) gives 
k3 =  l3 =  0. After finding ¡73, then h3 is found by difference. The limiting 
composition contains only the two components w  and x, and is the one 
obtained by calculating down the column from the top using these two 
components. It represents the limiting composition that would be reached 
with a binary mixture.

Thus, when making a calculation i down wards from the top (gv  hv  kv  lx) 
is reached if z is the heavy key. I f  y  is the heavy key, (g2, h2, k2, l2) is 
reached. If  a- is the heavy key, (g3, h3, k3, l3) is reached.

For a rectifying column, superimposed on a stripping column, minimum 
reflux conditions prevail (hi the rectifying column) when a calculation made 
downwards from the top and a calculation made upwards from the feed- 
platc both meet at the appropriate limiting composition which, as shown 
above, depends on which are the key components. It is possible to specify 
what composition or range of compositions can exist at the feed-plate if the 
downward and upward caleulatioris are to meet in this way.

If z is the heavy key, the composition at the feed-plate will be 
(gv  hv  kv  7,), and the downward and upward calculations actually meet at 
the feed-plate. The composition at the feed-plate is thus defined by the 
three equations

E(x, <f>2) =  0 ; E(x, i 3) =  0 ; E(x, ¿4) =  0 . . . (8 )

I f  y  is the heavy key, the limiting composition (g2, h2, k2, l2) is reached by 
the downward calculation. I f  the upward calculation is to reach this 
point, E(xn, <f>2) must not be equal to zero. (Here wn, xn, yn, z„ is taken to 
be the feed plate composition.) From equation (1) it will be seen that, if 
E(x, </},,) is zero for any given plate, it will also be zero for all successive 
plates. From equations (4) we have, for a plate 0 which is n plates above 
the feed plate,

E(x0, ¿ t) =  /M "  E(xn, <f>t)
E(x0, <f>2) ‘ E(xn, 4>2Y

When n becomes infinite, E(x0, </>j) becomes zero. At (g2, h2, k2, l2), in 
addition to E(x0> ^3) =  Owe must also have E(x0, <f>3) =  0  and E(xa, <£4) =  0. 
I f  these two equations are satisfied by the feed-plate composition, they will 
also be satisfied by the compositions on all plates above it, as will be seen 
from equation (1 ). Thus, where y  is the heavy key, there is a possible range 
of compositions at the feed-plate, and this range is defined by the equations

E(x, <f>3) =  0 ; E(x, fa) =  0 (9 )



From these equations it is also clear that the upward calculation will not 
pass through (g3> h3, k3, l3) or (git /i4, fa, l4).

I f  x  is the heavy key, the limiting composition reached by the downward 
calculation is (g3, h3, Jc3, l3). This composition must also be reached by the 
upward calculation. Then E(x„, <j>3) must not be zero.

From equations (4),

E(x0, 0 X)  / <Mn E(xn, ^ j  E(xq, </>2) /£ \ »  E(xn, <¡>2 )
E(x0, <f>3) E(xn, <f>3) E(Xq, </>3) cf>3 ~E{xn, if>3)

When 1 1  becomes infinite, E(x0, </>{) =  0 and E(x0, </>2) =  0. At (g3, h3, k3, l3), 
we must also have E(xg, <f>4) — 0. If  the feed-plate composition satisfies 
this equation, the upward calculation will reach (g3, h3, k3, l3). Thus, where 
x is the heavy key, the possible range of compositions at the feed plate is 
defined by the equation

E(x, </>,) =  0 ...................................................(10)
From equations (8 ), (9), and (10) it will be seen that the composition at 

the feed-plate, for minimum reflux conditions, is defined by three, two or 
one equations according as z, y, or x is the heavy key.

Conditions for minimum reflux in the stripping column can be defined in 
a similar manner. When calculating upwards from the reboiler, the limiting 
composition (g4, fa, £4, h) is reached when w is the light key. When x is 
the light key, (g3, h3, k3, l3) is reached. When y  is the light kcy,(g2,J>2,k 3, fa) 
is reached. B y calculating downwards below the reboiler (gv  fa, kfa fa) 
is reached.

For the stripping column it is convenient to write y instead of <f>. Also 
'W <1>2 <'t’3 < 1W- Let (R'o> *o> 2/o. z0) refer to the feed-plate and (w„, xn, yn, z,,) 
to a plate n plates below the feed-plate. When y  is the light key, 
(ffz> fa, fa, fa) is reached by calculating upwards from the bottom, and must 
also be reached by calculating downwards from the feed-plate. Then 
E(x0, fa) is not zero.

From equations (4)
E(x„, '̂ 3)   (  fa \n E(xQ, ^3) ^ E(Xn, ijq) _  / tĴ Y1 E(xp, 4̂)
E(x„, ^2) _  Ws' ’ E(x0, +2) ' E &n> +2) WY ' E(x0, ^2)

When n becomes infinite, E(xn, y3) =  0 and E(xn, <]/4j =  0. For (g2, fa, fa, fa)
to be reached it is also necessary that E(Xn, ijq) =  0 , and this will be the
case if the feed-plate composition satisfies the relation

E { x , ^  =  0 ...................................................(1 1 )
I f  X is the light key, (g3, fa, fa, ¡3 ) has to be reached by calculating down 

from the feed-plate.
E(xo> ^3) is not zero. From equations (4)

E{x,„ fa) _  /M "  E(xy  4q)
E{Xn, <h) W4' ' E(x0, ^3)'

Wrhen n  becomes infinite, E(x„, iJ/4) == 0. In addition, for (g3, h3, k3, fa) it is 
necessary that E(fa, i|q) =  0 and E{xn, 'fa) =  0. This will be the case if the 
feed-plate composition satisfies the relations

E(x, <{q) =  0 and E(x, *2) =  0 ............................... (12)
Y Y
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I f  w  is the light key, the limiting composition (gi , /¿4, l4) is reached at
the feed-plate and the relations to be satisfied are

E(x,j>i) =  0; E(x, ^2) =  0; E(x, <J*3) =  0 . . . (13)

Relations have now been derived which specify the composition or range 
of compositions at the feed-plate if minimum reflux conditions prevail in 
the rectifying column or in the stripping column. I f  minimum reflux 
conditions prevail throughout the whole column, the conditions for feed- 
plate composition derived from the rectifying column and those derived 
from the stripping column must bo satisfied simultaneously. Collecting 
together the results which have been obtained, the conditions to be satisfied 
for the various separations arc shown in Table I.

T a b l e  I .

Light
key.

H eavy
key. From rectifying column. From stripping column.

y

X

w

y

X

(E(x, <f>2) =~- 0  ; E(x,  f . , )  -  0 \  
I and E(x, <f>t) =  0 J 
E( x, fa) =  0 ; E(x, <f>t) =  0
E(x, fa) =  0

E(x,ifi, )  =  0
E( x,  i/ij) =  0 ; E(x, ifri) =  0 

(E (x , fa) —  0 ; E(x, fa) — O') 
t  and E( x, ip3) =  0 )

In each case there are four equations to be satisfied. Each of these 
equations is of the type

Stv , y x , Py | z =  n 
8 — 0 i  ^  Y ~  01 P ~  01 1 — 01

XV CC TJ
and involves only three independent variables such as —, - ,  and - .  (In

z z z
addition, there is, of course, the equation w - \ - x + y - \ - z  — l f o r  finding 
the actual values of the components from their ratios.) There must, 
therefore, be a relation between the four equations which reduces them to 
three independent equations. A relation which obviously meets this 
requirement is that any two of the values of <f> or involved in the equations 
should be equal.

From equation (2) it is readily shown that, for a rectifying column where 
a, b, c, d are positive

o < 0 i < i ; 1 < 0 2 <P;  P < 0 3 < y ;  y < 0 . i< 8-
Similarly for a stripping column where a, b, c, d are negative

i < 0 i < P ;  P < 0 2 < Y ’ y < 0 3 < 8 ; s < (t'4- ■
Thus none of the values of <f> can be equal and none of the values of  ̂ can 
be equal. To satisfy the conditions for minimum reflux it is therefore 
necessary that one of the values of <f> involved should be equal to one of the 
values of  ̂ involved.

For the case where y  and 3 are the light and heavy' keys respectively, 
must then be equal to <j>2 or <j>3 or </>4. From the ranges of the values of



FRACTIONAL DISTILLATION OF MULTI-COMPONENT MIXTURES. G21

<f> and ij>, it is obvious that the only possibility is </>2 =  t}q. Both these lie 
between 1 and (3—that is, between the relative volatilities of the key 
components y  and z. The limiting composition in the rectifying column in 
this case is (gv  hv  kv  Zx) which satisfies E(x, <f>2) =  0. The limiting com
position for the stripping column is (gr2, Tin, k2, h) which satisfies E{x, 4q) == 0. 
Since <f>2 =  vJjj, both limiting compositions satisfy the same equation.

Where x and y  are the light and heavy keys, or must be equal to 
<f>3 or <£4. The only possibility is <f>3 — t|i2, as both lie between ¡3 and y, the 
relative volatilities of the key components. Here again it can be shown, 
as before, that the limiting compositions for the rectifying and stripping 
columns both satisfy the same equation E(x, <j>3) =  0 or E(x, t}/2) =  0.

Where w  and x are the light and heavy keys, <f>i must be equal to  i]q or 
tjj2 or <Jj3. Thus <j>4 must bo equal to y 3, as both lie between y  and 8.

The condition for minimum reflux in both the rectifying column and the 
stripping column is therefore

where n and (n +  1 ) represent the numbers to be attached to the values 
of <f> and when counting up from the lowest values, and also represent the 
numbers to be attached to the heavy and light keys components when 
counting up from the least volatile component. Also </>„+ 4 and <h» have a 
value which lies between the relative volatilities of the key components.

Wlien equation (14) is satisfied, a step-wise calculation starting from the 
reboiler will reach a limiting composition hi the stripping column and an 
infinite number of plates will be required to pass through this composition. 
The calculation will then pass up through the feed plate and will reach a 
limiting composition in the rectifying column and an infinite number of 
plates will again be required to pass through this composition to reach the 
composition at the top of the column.

Equation (2) for the rectifying column and the corresponding equation 
for the stripping column thus have a common root, which will be denoted 
by 6 . This root has a value lying between the relative volatilities of the key 
components. Substituting for a, b, c, d  in equation (2), the appropriate 
values for a rectifying column and for a stripping column, there are obtained 
the two equations which define 0

where wF, xF, etc., denote the composition of the feed.
Also S W  =  R P  4 - qF -  W =  ( R +  1 )P -  (1 -  q)F since W =  F  — P.  

Then multiplying equation (15) by P  and equation (16) by W, and adding, 
we obtain

fin + l  — 'hi • (14)

d — D y  — 0 p — u 1 — u
and

Su> if . y x w Pÿir 1 Zir   „
S — O ^ y - G ^ p  — 0 1 -  0 “

Now PwD +  Www — Fwf ; PxD +  Wx]r =  Fxf ; etc.

. (16)

SwF , yxF ! $yF t zF
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When the feed is liquid at boiling-point, q =  1. When the feed is vapour 
at dew point, q — 0 .

From equation (17) is found the appropriate value of 0 which is the one 
lying between the relative volatilities of the key components. On sub
stituting this value of 0 in equation (15), the minimum reflux ratio is 
obtained. Similarly the minimum reboil ratio can be obtained from 
equation (16).

When R  and S  have thus been found, equations (19) and (20) can bo 
used to find the other values <j> and  ̂required in the equations for the feed- 
plate- composition listed in Table I. These equations can then be used to 
solve for the feed-platc composition.

In equations (15), (16), (17) the relative volatilities are all referred to the 
least volatile component. The relative volatilities can, however, be referred 
to any component. Thus, if y  is the heavy key, and it is desired to refer 
the relative volatilities to it, equation (17) takes the form

Equations (15) and (16) can be written in the same form. The variable is

between the relative volatilities of the key components. The value obtained 
for the minimum reflux ratio is obviously the same whichever form of the 
equations is used.

The general equations corresponding to equations (15) and (16) for 
conditions other than minimum reflux are

By differentiating these equations it will be seen that <f> increases as R 
increases, while  ̂decreases as S  increases. R  and S  must obviously increase 
together. When R  and S  become infinite, the roots of both equations (19) 
and (20) are obviously 1, (3, y, 8 . As R  decreases from infinity to a finite 
value, the values of <f> decrease and the values of <]> increase. As R  is 
gradually decreased there will come a point when a value of <f> and a value 
of 4> (lying between the relative volatilities of the key components) will 
become equal, and this will correspond to minimum reflux conditions.

The analysis has been given in detail for a four-component mixture. It 
can be made in exactly the same way for a mixture of any number of com
ponents, and equations exactly similar to equations (15), (16), (17) are then 
obtained. For instance, for a six-component- mixture there will be six  
equations to be satisfied at the feed-plate for minimum reflux conditions. 
The ratios of the components constitute five independent variables. Two

8 y
q * WF a

1

P P P P P P P

and
Swir _L Yx w

8 — ' y  — S  . . . (20)
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of the equations must be the same, and this condition is found to be 
equation (14)

</>n + 1 =  'f'll

where n and (n +  1 ) refer to the heavy and light key components and the 
common value of <j> and iJj lies between the relative volatilities of those 
components. The relation is quite a general one, and also holds good for 
binary mixtures.

The root of equation (17) which is normally required is the one lying 
between the relative volatilities of the key components. In some cases it is 
useful to obtain the other roots. For instance, if  a mixture of four com
ponents is to be separated into the four pure substances, three fractionating 
columns are required. There are five different ways of using these three 
columns to produce the four pure substances, as illustrated diagram- 
matically by Thormann.8 In such a case it is useful to calculate the heat 
requirements for the different ways of effecting the total separation. 
Equation (17) is then used to find the three values of 0 corresponding to the 
cases where one, two, or three components are taken as the top product of 
the first colunm. Equation (15) is then used to obtain the corresponding 
minimum reflux ratios, it being noted that equation (15) varies with the 

' composition of the top product, while equation (17) does not. The mini
mum reflux ratios for the other two columns, which may be separating 
either ternary mixtures or binary mixtures, are calculated similarly for the 
various cases.

The relative case with which the calculation of minimum reflux ratio for 
multi-component mixtures can be made is illustrated by the following 
numerical examples.

Example 1 (from Colburn 5)
w  and x are the key components

wp =  xF — yF =  zF =  0-25; wD — 1 

8  =  8 ; y =  4; (5 =  2. q =  1.

Equation (17) gives

2  n + o ^ n  +  r - 1 - ^  0  • • • (2 D8 — 0 1 4 — 0 1 2 — 0 1 1 — 0

The value of 0 required lies between 4 and 8 . It is found by trial solution 
to be 5-58.

From equation (15),

8  =  11 +  1 R  =  2-31
8  -  5-58

Example 2 (from Colburn 5)
As in Example 1, but with x and y  as key components

wD — xD =  0-5.

Equation (21) is used again, the value of 0 now required being that 
between 2 and 4. It is found to be 2-556.



From equation (15), 
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S -  2-556 + 2-556

Example 3 (From Colburn 5).
As in Example 1 , but with y  and z as key components

Wd =  xD =  y D =  0-3333.

Equation (21) is used again, the value of 0 now required being that 
between 1 and 2. It is found to be 1-196.

From equation (15)

2-667 1-333 . 0-333
Tic 5 + ,8  -  1 196 1 4 -  1-196 ' 2 

Example 4 (from Gilliland 3).

1-196 = R  + 1 R  =  0-698.

Feed. D istillate. Kesidue.
R elative  
volatility  

to o-cresol.

Phenol 0-35 0-95 0-0524 1-26
o-Cresol . 0-15 0-05 0-199 1-0
»»-Cresol . . . . 0-30 — 0-449 0-6G3
Xylonols 0-15 — 0-224 0-394
Residue . . . . 0-05 — 0-075 0-087

Here there are five components. Relative volatilities are referred to 
o-cresol. Instead of recalculating them relative to the heaviest component, 
an equation of the type of equation (18) can be used with the variable 
changed to 0'. An appropriate term for the fifth component is brought into 
the equation, (q =  1 )

1-26 x  0-35 , 0-15
1-26 -  0 ' + 1 -  0 '

. 0 -663 x  0-3 0-394 x  0-15
r aao w +0-663 -  0' 0-394 -  0'

, 0-087 X 0-05 
+  0-087 -  0'

(22)

The value of 0' required lies between 1 and 1-26. By trial solution it is 
found to be 1-0798. Successive approximations and interpolations are not 
laborious, as, when an approximate solution has been obtained, only the 
first two terms in the equation change appreciably with small variations in 
the assumed valuo of O'.

The equation corresponding to equation (15) for the modified variable 
0 ' is

1-26 X 0-95 , 1 x  0-05 D , , _ j  „  CA(,
1-26 -  1-0798 +  1 -  1-0798 ~  +  -

Gilliland 3 states that “ detailed stepwise calculations indicate that the 
true minimum reflux ratio is approximately 5-2.” The difference between 
this and the figure calculated above is thus 3-4 per cent. In this example 
the amounts of the heavy key in the distillate (0-05) and of the light key in



the residue (0-0524), though small, are not negligible. This may affect the 
accuracy of the method used in this paper, which is based on negligible 
amounts of the heavy and light keys in thedistillatc and residue respectively. 
On the other hand, plate-to-plato calculations are not easy to carry out 
with a high degree of accuracy, owing to the possibility of small errors being 
cumulative.

This example may be used to illustrate the effect on the minimum reflux 
ratio of a comparatively small change in the relative volatilities of the key 
components when these are fairly close to each other. Assume that the 
relative volatility of phenol to o-cresol is 1-28 instead of 1-26, all other data 
remaining unchanged. Equation (22) then gives 0' =  1-0856 instead of
1-0798, and R  is found to be 4-67 instead of 5-02. Thus a difference of 
about H  per cent in the relative volatility makes a difference of about 7 per 
cent in the minimum reflux ratio. This is approximately the same differ

ence as for a binary mixture where R  =   -----3--—  and the effect on R  is
(a  — 1)»>

proportional to (a — 1). It appears that a high degree of accuracy in the 
method of determining minimum reflux ratio is unwarranted unless the 
relative volatilities, particularly of the key components, are known to a 
correspondingly high degree of accuracy. Especially is this the case when 
the relative volatilities of the key components are not greatly different.
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Example 5 (From Jenny 9).

Feed. D istillate. Bottom s.
Relativo volatilities at—

03° F. 175° F. 300° F.

Cl 0-26 0-434 „ 514-5 100 30-25
c, 0-09 0-150 --- 100-3 24-6 12-95
c , 0-25 0-411 0-010 34-1 10 5-51

nC4 0-17 0-005 0-417 10-69 4-85 2-96
nC s 0-11 — 0-274 3-35 2-OS 107
nC , 0-12 — 0-299 1 1 1

The feed is 6 6  per cent vapour and 34 per cent liquid, so that q — 0-34. The 
temperatures at the top and bottom of the column are 63° F. and 300° F. 
respectively. The temperature of the feed is 175° F.

Jenny gives relative volatility data for all components at the feed tem 
perature, but only for some components at the top and bottom tempera
tures. The additional data used have been taken from those published 
by Kirkbride. 10 The relative volatilities vary considerably through the 
column. For the key components the variation is from 1-86 at the bottom  
to 3-19 at the top.

The method of calculation described in this paper is based on constant 
relative volatilities. To apply it to this example it appeared a reasonable 
approximation to take relative volatilities at a temperature midway be
tween the top and bottom temperatures. Actually the feed temperature 
(175° F.) has been taken instead of the true mean (181-5° F.), owing to the 
data being readily available for the former temperature.
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Using these data in equation (17) with two additional terms, since there 
are six components, we have

The value of 0 required lies between 4-85 and 10. It is found by trial 
solution to be 6-73. Substituting in the equation corresponding to equation 
(15) gives

100 X 0-434 24-6 X 0-150 , 10 X 0-411
100 -  6-73 +  24-6 -  6-73 +  10 -  6-73 +

from which R  =  0-93.
Jenny 9 obtained a value of 0-95 and Colburn a value of 0-96. The 

agreement with these values is quite good. The general validity of the 
basis assumed in the above calculation—namely, taking relative volatilities 
at the mean temperature in the column—requires, however, to be checked 
by a larger number of examples.

The limits between which the true minimum reflux must lie can be found 
by making two calculations, one based on the relative volatilities at the 
top of the column and the other based on the relative volatilities at the 
bottom. The first calculation assumes that the relative volatilities through
out the column are equal to the high values at the top and obviously gives 
too low a value for the minimum reflux ratio. Similarly, the other calcula
tion obviously gives too high a value.

The value of R  found by the first calculation is 0-53 and that found by the 
second calculation is 1-15. The mean of these is 0-84, compared with the 
true value of 0-95 or 0-96. As this mean value is obtained by averaging two 
substantially different values, the approximation can only be regarded as 
a rough one.

For many practical purposes the higher limit for t he minimum reflux ratio, 
obtained by taking the low relative volatilities at the bottom of the column, 
provides a useful figure for guidance and, as shown, it can be quite readily 
calculated.
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100 X 0-26 24-6 X 0-09 10 X 0-25 4-85 X 0-17
100 -  0 +  24-6 -  0 +  10 — 0 +  4-85 -  0

2-08 X 0-11 
X 2-08 -  0 +  r ~ r 0 = 0,66 • <23>

References.



6 2 7

*■ - — - “

THE TENDENCY TO SMOKE OF ORGANIC
SUBSTANCES ON BURNING. PART I.

By A. E. C l a r k e ,  Ph.D., T. G . H u n t e r ,  D .S c .,  A.R.T.C., M.I.Chem.E. 
(Fellow), and F. H. G a r n e r ,  O.B.E., Ph.D., F.R.I.C. (Fellow).

The British incendiary bomb, used in very largo quantities by tho R .A .F. 
for tho bombing o f German towns and cities, was essentially a  30-lb. bomb 
filled with a special benzol gel together w ith white phosphorus. The benzol 
gel filling produced, on burning, a  large am ount o f black carbon smoke which 
obscured tho target, and resulted also in an appreciable portion of the filling 
being wasted as unburned carbon. In  addition, copious white smoko pro
duced by tho burning phosphorus increased tho obscuring effect over tho 
target. The possibility o f replacing this benzol gel-pliosphorus combination 
with a smokeless filling of a satisfactory nature was therefore investigated.

Towards this end tho smoking tendency of a large number of organic 
compounds was assessed by flame-height measurements in a special lamp 
based on the I.P . smoke lamp.

A burning organic substance has a flame-height at, and above which, 
smoking occurs, and this height is a measure of tho tendency to smoke. A 
new form of lamp was devised to measure flamo-lieights, from about 9 to  
450 mm, o f liquid compounds burning freely in air.

A  wide range o f hydrocarbons, alcohols, ketones, esters, and nitro-com- 
pounds was exam ined— 115 compounds in all. In  general, a compact 
moleculo was found to givo a sm oky flame. Tho order for increasing 
tendency to smoko for hydrocarbons is : »»-paraffins (in which increased 
chain length or chain branching gave increased smoke), naphthenes, olefines, 
and aromatics (in which appreciable aliphatic sido chains on tho benzene 
ring appeared to give no marked reduction in smoke).

In  general, increased oxygen content o f an organic compound resulted in 
decreased smoking tendency and compounds, such as m ethyl acetate, 
containing high percentages o f oxygen only smoked a t very large (lame- 
heights. Some compounds, such as allyl alcohol, although having appreci
able oxygen contents, had relatively high smoking tendencies, due to the 
nature of the carbon-liydrogen portion of the compound.

Of the aliphatic alcohols, tho tertiary compounds were more sm oky than  
the primary compounds. This also applied to nitro-parafiins. For each 
set o f isomeric aliphatic esters, the flame-height a t which smoking began 
increased with the chain length attached directly to the carboxylie carbon 
atom.

A t equal oxygon content, tho general order for increasing tendency to 
smoke w a s : n-primary alcohols, »»-primary nitro-paraffins, propionates,
acotates, lactates, and formates, although tho order varied slightly for 
different oxygen contents.

W h e n  an organic substance bums under fixed conditions tkero is a 
particular critical flame-height at and above which smoking occurs. It 
would appear that the tendency to smoke is determined by the amount 
of oxygen (required by the flame on the one hand and by the amount of 
oxygen) available to the flame on the other. At tho critical flame-height 
the two quantities are equal.

It has been observed by Bancroft1 that a luminous flame can be regarded 
as a colloidal suspension of carbon in a gaseous medium. Further, 
Minchin 2 suggests that through coagulation the charged carbon particles 
vary in size through the flame, being smallest towards the base and largest 
at the tip. Thus, in certain instances this coagulation may proceed to 
such an extent that the particles at the tip of the flame are too large to be

S u m m a r y .



burned in the prevailing conditions of temperature and oxygen supply, 
and under these conditions smoking occurs. This coagulation rate, how
ever, depends on many factors, such as the concentration, the initial size 
and the initial charge of the carbon particles, tho rate of loss of charge, the 
mean flame temperature, and the composition of the gaseous medium, 
which, it appears, in their turn depend on the molecular structure of tho 
compound.

The amount of oxygen required by the flame from a compound under 
fixed conditions of burning and air supply will thus depend on :

(1) The molecular structure, which determines the initial state and 
the properties of the carbon particles when the fuel is decomposed;

(2) The rate of burning of which flame volume is a function;
(3) The flame-height, which not only influences the final particle 

size of the carbon, but is also intimately connected with flame volume, 
and hence with rate of burning.

On the other hand, the amount of oxygen available to the flame will 
depend on :

(а) The oxygen content of the compound;
(б) The area of flame surface in contact with the a ir;
(c) The extent of dilution of oxygen at the flame surface by gases of 

combustion..

Thus the flame-height at which smoking begins is intimately related to 
the tendency to smoke, and hence this critical flame-height can be used as 
a measure of the smoking tendency of the compound. Kewley and 
Jackson 3 have described a method of evaluating the tendency to smoke of 
kerosine, which is now employed as a standard method of assessing this 
property (I.P. Standard Method 57/45), in which the maximum height of 
flame that can be obtained just short of smoking is measured in milli
metres. The flame-height thus obtained is, in the standard method, used 
as a measure of the tendency to smoke.

Minchin4 employed with this flame-height lamp a slightly different 
method of expressing the value “ tendency to smoke ” using the formula :

St =  320¡h 
where St =  smoking tendency

h — maximum flame-height in millimetres.

Further, Terry and Field 5 have described an improved form of the Davis 
Factor lamp in which flame-heights of up to 102 mm could be measured.

A  N e w  S m o k e  P o in t  L a m p .

The maximum flame-height capable of measurement in the I.P. lamp is 
50 mm, but with the improved Davis Factor lamp the maximum measurable 
flame-height is 1 0 2  mm, while the smoking flame-height of a good kerosine, 
with this lamp, exceeds 75 mm .5

A lamp was required for this work in which the flame-height could be
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varied and measured over a wide range without the use of a wick. 
Preliminary experiments indicated that, when a substance burned, an 
increase or decrease in burning area resulted in a corresponding increase or 
decrease in flame-height. It was felt that this principle might bo used to 
vary the flame-height in a lamp, and the method finally adopted for 
changing the burning area is illustrated in Fig. 1. A shallow conical 
metal vessel was connected by oil-resisting rubber tubing to a liquid 
reservoir as shown. When liquid was introduced, the level in the reservoir 
determined the level in the cone, and hence the exposed liquid area in the 
cone. Thus, on burning the liquid in the cone, a variation in the height of 
the reservoir produced a corresponding variation in the burning area, and 
hence in the flame-height.

It was apparent that for anj7 accurate observation of flame-height a 
very steady flame was essential. With the large flames that could be 
produced when using the cone burner, however, it was found that even in

T H E  P R IN C IP L E  O F  T H E  C O N E  B U R N E R .

the absence of draughts, bad flickering occurred. This difficulty was 
overcome by enclosing the flame and using the draught from a glass chimney 
to draw the air necessary for the combustion through two fine copper 
gauzes (120 mesh) before reaching the burner (see Fig. 2). Thus the air
flow was stream-lined, and a steady flame resulted.

As the determination of the exact point at which smoking began was 
somewhat difficult, it was decided to mark the position of the tip of the 
flame by a wire hook, which could be raised or lowered in the chimney by 
means of a screw. This wire passed through a hole in a copper gauze 
(18 mesh) at the top of the chimney, which damped any vibration set up 
when the wire was moved. The height of the hook was shown on a metre 
rule, the position of which was adjusted so that zero flame-height was 
indicated when the wire just touched the lowest point in the burner.

Preliminary experiments with this lamp were carried out by burning 
both highly inflammable substances and those substances such as cresol 
which burned only with difficulty. With the latter type of compound it 
was found that the burner had to reach a high temperature before a steady 
flame was produced. Thus the burner was made from thin brass (specific 
heat 0-092 cal/gm), which gave it a low heat capacity. This alone, however, 
was unsatisfactory, since substances of high volatility tended to boil and 
produce an irregular flame. This difficult}7 was overcome by fitting to 
the base of the burner a cold-water-circulating jacket which could be used 
when burning these volatile substances.
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A diagram showing constructional details of the lamp finally employed 
is given in Fig. 2, and a photograph is shown in Fig. 3. In Fig. 2

A  is the conical burner;
B  is the chim ney;
C is the glass collar.

COPPER GAUZE 
18 MESH

G Z /1 S S  C H I M N E Y  B

T H E  SM O K E -P O E N T  L A M P .

It is important that A  should be of a larger diameter than B, and the 
distance between the base of B  and the top of A  is adjustable, so that flow 
is in the laminar regime, and thus is steady. With this lamp flame- 
heights were measured over the range of 9 mm to 450 mm.



F i g . 3.

T H E  S M O K E -P O IN T  L A M P .

[T o  fa ce  p .  630.
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Procedure.
Having removed the chimney and glass collar, the reservoir, connection 

tube, and burner were washed with the liquid to bo used and then filled to 
a suitable level. After igniting with a bunsen burner (some liquids 
required heating before they burned), the collar and chimney were replaced, 
and the liquid was allowed to burn for 3 minutes to obtain fairly steady 
conditions.

The flame was then raised or lowered, by movement of the reservoir, to 
its smoke-point, which was indicated by the movable wire. It was found 
that each flame formed a long red “ tail ” just before smoking began, and 
in theso tests the smoke point was taken as the height at which this “ tail ” 
just disappeared. A number of observations were made for each substance, 
and the mean value taken. The experimental error is considered to be not 
greater than ± 3  per cent.

The smoke points of a wide variety of organic substances (115 in all) 
were determined in the lamp, and were used as a measure of the tendency 
to smoke—a high smoke point indicating a low tendency to smoke, and a 
low smoko point indicating a correspondingly high tendency to smoke.

The compounds examined in the lamp were :

(1) Hydrocarbons and hydrocarbon mixtures.
(2) Oxygen containing compounds, including :

(a) Alcohols.
(h) Glycol and glycerol compounds.
(c) Nitro compounds.
(d) Ketones.
(e) Esters.
(/) Carboxylic acids.

Results.
(1) Pure Hydrocarbons.

The smoke points of pure hydrocarbons as determined in the lamp are 
given hi Table I.

Of the three normal paraffins examined, «-pentane and n-heptane have 
similar flame-heights with cetane somewhat lower, showing a gradual 
increased tendency to smoke with increased chain length. Isopentanc 
with a branched chain is more smoky than n-pentane. The flame-heights 
of n-hexane and «-octane must be close to those of «-pentane and «- 
heptane (i.e., roughly 15-16 cm), and 2 : 2-dimethylbutane with a highly 
branched chain is much more smoky, and similarly with the branched-chain 
octanes. Thus the branching of the carbon chain in a compound increases 
the tendency to smoke, and the results suggest that more than one branch 
produces a greater effect. The flame-heights of the three branched-chain 
octanes indicate that the positions of the carbon branches have little or no 
effect on the smoking properties.

As the only olefines available were probably mixtures, no reliable con
clusion can be drawn, except that the introduction of the double bond, 
and probably some branching, make these compounds very smoky.



Benzene, having a high C/H ratio, is very smoky indeed, and the building 
up of this effect may be traced from »-hexane through q/cZohexane to 
cycZohexene and benzene. A similar effect may be noted with decalm and 
tetralin. Results 14-17 for toluene, xylene, di-isopropyl benzene and 
p-cymene indicate that the introduction of aliphatic side-chains in the 
benzene nucleus has little effect on the smoky nature of the benzene flame.

It is interesting to compare these results with those obtained by 
Minchin.4 This investigator was able to show that the flame volume was

T a b l e  I .
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II ydrocarbons.

Substance.
Boiling  
point, 

° C.

C/H
ratio.

Smoke point 
flame height, 

cm.

I. u-Pentane . . . . . 36 0-42 15-5
2. Isopentane . . . . . 30 0-42 11-8
3. 2 : 2-Dim ethyl butane 49-5 0-43 6-9
4. n-H eptane . . . . . 98 0-44 15-9
5. Iso-octano ( 2 : 2 :  4-trim ethyl pentane) 100 0-44 6-3
6. 2 : 2 :  3-Trimethyl pontano (84%) ;— 0-44 6-6
7. 2 : 3 :  4-Trimethyl pentano (82%) — 0-44 8-7
8. Cetane . . . . . . m.  pt .  17 . 0-47 12-5
9. Penteno . . . . . . „ 42 0-50 4-8

10. Hoxeno . . . . . . ,, 65 0-50 5-1
11. Heptene . . . . . . „ 94 0-50 6-4
12. Decene . . . . . . „ 167 0-50 7-0
13. Benzene . . . . . . „ 80 1-00 0-9
14. Toluene . . . . . . 110 0-88 1 0
15. “ X y le n e ” .............................................. 135-142 0-80 0'9
16. m-Di-isopropyl benzeno 200 0-67 1-2
17. p-Cymene . . . . . 175 0-71 1-3
18. cycioPentano . . . . . 49 0-50 6-2
19. cycloH.exa.ne . . . . . 81 0-50 7-7
20. cvc/olloxene . . . . . 84 0-60 4-3
21. Methylci/ciohoxane . . . . 101 0-50 7-0
22. DicycZohexyl . . . . . — 0-55 5-2
23. Pineno . . . . . . 156 0-63 2-1
24. T e t r a l in ......................................................... 206 0-83 1-2
25. Decalin . . . . . . 192 0-56 3-5

related to the molecular volumes of combusted products and of oxygen 
required for combustion by the formula :

2. — ]c y. _l b 
V ~  xx  1 2 

where V — flame volum e;
y  — molecular volume of oxygen required for complete com

bustion ;
x — molecular volume of combusted products;

K 1 and K 2 =  constants.

Since the flame, in the lamp lie employed, was conical, then I  .== ^ X a

constant, and hence h (the smoke point flamc-height), for any substance, 
could be calculated if K ± and K t were evaluated. B y burning various
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substances in his lamp and measuring flame-heights and radii at their 
smoke points by means of a travelling microscope, he evaluated K l and K 2

F i g . 4.

and calculated h for several homologous series. From these calculated 
values of h the “ tendency to smoke ” was obtained from the equation :

St =  320¡h
His results are shown in Fig. 4.

T a b l e  I I .

Hydrocarbon M ixtures.

Substance.
Smoko point 
flamo-heiglit, 

cm.

26. Benzole (sp. gr. 0-88) . . . . . . . . 0-9
27. Pool motor spirit (sp. gr. 0-738, aromatics 25%) 5-1
28. Aromatic-free Pool motor spirit . . . . . . 9-3
29. Pool motor spirit distilled . . . . . . . 5-4
30. Pool motor spirit distilled and freed from aromatics . 9-5
31. Aromatic-free Pool motor spirit distilled over the same range as 29 9-5
32. Petroleum ether 40-60° C. . . . . . . 11-7
32a. Aromatic-free petroleum ether 60-S0° C. . . . . 8-9
33. Special B .P . Solvent No. 1 . . . . . . 9-0
33a. ,, ,, ,, No. 1 (aromatic-free) . . . . 10-3
34. „ „ „ No. 2 . . . 7-5
35. „ „ „ No. 4 ..................................................................... 7-4
36. ,, „ ,, No. 5 . . . . . . 6-4

One of the most interesting features of these curves is the fact that the 
tendency to smoke of the hydrocarbon series investigated decreased with 
increase in the number of carbon atoms or boiling point, with the exception 
of the paraffins, which show an increased tendency to smoke with increase



6 3 4 CLARKE, HUNTER, AND GARNER : THE TENDENCY

in molecular weight. In the other series examined the increase in molecular 
weight is brought about largely by the addition of paraffinic side-chains, 
and the influence of the nucleus is thus progressively offset by the increased 
paraffinicity.

Hydrocarbon Mixtures.
The smoke points of commercial hydrocarbon mixtures are listed in 

Table II.
Pool motor spirit (27) is appreciably less smoky than benzole (26), and 

the removal of its aromatics produces further marked improvement. 
Results 29, 30, and 31 indicate that, if any high-boiling-point polymers 
are formed during the acid treatment, their effect on the tendency to smoke 
of the spirit is negligible. The 40-60° C petroleum ether (32) produces 
little smoke, but the aromatic-free 60-80° C fraction (32a) is rather more 
smoky.

Of the Special B.P. Solvents, No. 1 is the least smoky (33), its flame- 
height being close to that of aromatic-free Pool motor spirit, while result 
33a shows that the removal of its aromatics (although only 3 per cent) 
produces an appreciable increase in flame-height. The flame-heights of 
Nos. 2 and 4 are very similar, with No. 5 a little more smoky. All of these 
special solvents have a greater flame-height than Pool motor spirit.

O x y g e n -Co n t a in in g  Co m p o u n d s .
(a) Alcohols.

T a b l e  III.
Alcohols.

Substance.
Boiling
point,

Oxygen in 
compound 
as a per

centage of 
the total 

required for 
complete 

combustion.

Smoko
point
flamo-
lieight,

cm.
° C.

37. M ethyl alcohol . . . . . 65 25-0 Blue flame
38. E thyl alcohol . . . . . 78 14-3 37-7
39. »¡-Propyl alcohol . . . . . 97 10-0 27-7
40. Isopropyl alcohol . . . . 83 10-0 17-9
41. n-B utyl alcohol . . . . . 116 7-7 23-6
42. Isobutyl alcohol . . . . . 108 7-7 18-4
43. Secondary butyl alcohol 99 7-7 191
44. Tertiary butyl alcohol . . . . 83 7-7 10-6
45. n-Ainyl alcohol . . . . . 136 6-3 19-7
46, Isobutyl carbinol . . . . . 131 6-3 16-5
47. Secondary butyl carbinol 128 6-3 16-2
48. M ethyl propyl carbinol (secondary amyl) 119 6-3 16-7
49. Dim ctliyl-ethyl-carbinol (tertiary amyl) . 101 6-3 10-8
50. n-H cxyl alcohol . . . . . 156 5-3 16-9
51. 1 : 3-Dim ethyl butyl alcohol . 131 5-3 11-2
52. 2-Ethyl butyl alcohol . . . . 147 5-3 12-8
53. A llyl alcohol . . . . . 97 11-1 8-3
54. Benzyl alcohol . . . . . 205 5-6 1-3
55. cycloHexanol . . . . . 160 5-6 9-3
56. Cresylic acid . . . . . 0-6 1-2



With the straight-chain primary alcohols the tendency to smoke increases 
with increasing chain length, the flame-heights of the lower members 
showing a straight-line relationship with their oxygen content expressed as 
a percentage of the total required for complete combustion (Fig. 5).
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OF TO TAL REQUIRED FOR C O M P LE T E  COMBUSTION

F i g . 5 .

Further, for these compounds the inverse of flame-height shows a straight- 
line relationship with the boiling point (Fig. 6 ). The secondary alcohols 
are in all cases more smoky than the corresponding primary compounds,

F i g . 6.

which indicates that the shifting of the -O H  group from the end of the 
chain to some other position increases the tendency to smoke. As in the 
case of the hydrocarbons, the branching of the chain increases the smoke, 
and it is interesting to note that a primary alcohol with a single-carbon
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branch has roughly the same flame-height as the corresponding secondary 
alcohol; results for isobutyl carbinol (46) and secondary butyl carbinol (47) 
suggest that the position of the branch relative to the primary -O H  group 
has little or no effect on the smoking properties.

(b) Glycol and Glycerol Compounds.
T a b l e  IV .

Olycol and Glycerol Compounds.

Substance.
Boiling 
point, 

° C.

Oxygen in 
compound 
as a  per

centage of 
the total 

required for 
com plete 

combustion.

Smoke
point
flame-
height,

cm.

57. Ethylene glycol . . . . . 197 28-6 Semi-
luminous

58. Cellosolvo (ethyleno glycol m ono-ethyl
ether) . . . . . . 127 15-4 38-5

59. Cellosolve acetate . . . . 156 16-7 28-2
60. Ethylene glycol diacetate 188 23-5 29-2
61. Triacetin . . . . . . 258 24-0 26-1

The importance of the C/H ratio in these compounds is stressed by a 
comparison of n-propyl alcohol (39) and allyl alcohol (53), since allyl 
alcohol, although having a higher oxygen content, is far more smoky than 
n-propyl alcohol. Also cycZohexanol has a greater tendency to smoke than

T a b l e  V. 
Nitro-compounds.

Substance.
Boiling 

point, ° C.

Oxygen in 
Compound as a 

percentage o f the 
total required 
for com plete 
combustion.

Smoke point 
flame-height, 

cm.

62. Nitro-methane
63. Nitro-ethano
64. 1-Nitro-propane
65. 2-Nitro-propane
66. Tertiary-nitro-isobutano
67. Nitrated Pool motor spirit
68. Nitrated aviation spirit .
69. Nitrated spirit 100 flat .
70. Nitrated spirit 90 flat

101
114
132
120
128

("Much brc 
J burner m  
|_ difficult.

assuming 
N —>  NOj

wn “ oil ” 
ade measure

[36-4
23-5
17-4
17-4

.13-8

on
ment

Semi-luminous 
44 (approx.) 
36-6 
20-3 

7-9 
5-2 
4-3
4-5
4-5

w-hexyl alcohol, although in this case ring formation may be an additional 
effect. Benzyl alcohol and cresylic acid, being essentially aromatic, are 
very smoky, in spite of their oxygen content.

When the flame-height of cellosolve (58) is plotted against oxygen content
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in Fig. 8 , the point lies close to the normal primary alcohol line, suggesting 
that the introduction of an oxygen atom into the carbon chain does not 
greatly modify the flame-height/oxygon content relationship. A com
parison of cellosolve (58) with cellosolvo acetate (59) indicates that the 
presence of the acetate group increases the tendency to smoke and this 
receives some support from the comparison between / ethylene glycol 
diacetate (60) and triacetin (61) (cf. Fig. 8 ).

(c) Nitro Compounds.—The flame-heights of several pure nitro-com- 
pounds and of the products obtained by the nitration of some commercial 
hydrocarbon mixtures are tabulated in Table V.

As in the case of aliphatic alcohols, the tertiary nitro-compound is

45 

4 0

2
O

O
b,
X

20

1010 15 20
O X YG EN  IN  C OM PO UND AS PERCENTAGE 

OF TOTAL REQUIRED FOR COMPLETE C0M6U5T10N

F io .,7 .

relatively smoky in spite of its high oxygen content. Also 2-nitro-propane 
(secondary) is more smoky than 1 -nitro-propane (primary).

Acetone and methyl ethyl ketone appear to have very similar smoking 
properties, although they differ in oxygen content. The flame-height of 
diacetone alcohol is much higher than might be expected, since it contains a 
tertiary alcohol grouping. Also the flame-height of cycZohexanone (which 
is very close to that of cycZohexanol—9-8 cm) suggests that the substitution 
of 0  for H 2 in cycZohexane (7-7 cm) reduces the smoke. Phenyl-n-butyl 
ketone, although it contains a n-butyl chain, shows that the benzene ring 
is still strongly influencing the smoking tendency.

The graph of smoke point flame-height against oxygen content for the 
straight-ehain esters (Fig. 7) reveals an interesting relationship. For each 
set of isomers (members having equal oxygen content and similar boiling 
points in this case) there is a decrease in flame-height in the order butyrate, 
propionate, acetate, formate. Thus for each oxygen content the flame-
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height at which smoking begins, increases with the chain length attached 
directly to the carboxylic carbon atom. Results for n- and iso-butyl 
acetate (8 6 ) and (87), for n- and iso-butyl propionate (94) and (95), and for 
n- and iso-butyl butyrate (1 0 0 ) and (1 0 1 ) indicate that, as with other 
compounds, the branching of a carbon chain tends to increase the smoke 
from these esters. Again results for ethyl formate and oxylate (80) and 
(103), and for ethyl acetate and malonate (84) and (104) suggest that the 
ethyl esters of dibasic acids have a greater tendency to smoke than the 
ethyl esters of mono-basic acids of similar oxygen content. A comparison 
of ethyl carbonate (110) and ethyl lactate (105) gives further evidence that 
the introduction of an oxygen atom into a carbon chain docs not affect the 
flame-height/oxygen content relationship.

Ethyl benzoate (108), although having a moderate oxygen content, is 
still very smoky, as would be expected.

(d) Ketones. See Table VI.
(e) Esters. See Table VIII.
(f) Carboxylic Acids.—Tests were made on glacial acetic acid, oleic acid, 

and naphtkenic acid, but, owing to the unsteady nature of the flame, 
reliable measurements were not possible : the first named appeared to 
have a high smoke point and the latter two, very low smoke points.

D i s c u s s io n .

It is apparent from the above results that the tendency to smoke of an 
■ organic compound on burning freely in air is intimately related to its 

molecular structure. Certain general relationships between smoking 
tendency and molecular structure may be expressed as follows.

Hydrocarbons.
Of all the hydrocarbons examined, the normal paraffins are the least 

smoky. With these compounds the tendency to smoke increases with 
increasing chain length. Although the normal paraffins have the lowest 
C/H ratios of the hydrocarbons, it is apparent that other factors also have 
an important bearing on the smoking tendency. Thus branched-chain 
paraffins are more smoky than their normal isomers, although they have the 
same C/H ratios. Indeed, the more highly branched the carbon chain, the 
more smoky does the paraffin become, while the relative positions of the 
branches appear to have little effect.

Although the olefines examined were probably mixtures, the results 
suggest that unsaturation in a hydrocarbon produces an appreciable 
increase in the tendency to smoke. It seems probable, however, that an 
increase hi chain length of an define results in a decreased smoking tendency, 
since the effect of the double bond is progressively offset by increased 
paraffinicity.

The tendency to smoke of the naphthenes, although relatively high hi 
comparison with the normal paraffins, is approximately equal to that of 
those paraffins having two or three branches in the carbon chain. There is 
insufficient evidence to show the effect of the number of carbon atoms in 
the naphtbene ring on the smoking tendency, but a comparison of cyclo- 
pentane and cycZohexane suggests that the effect is not pronounced. As 
with other hydrocarbons, the introduction of one double bond in a naptheno 
produces a marked increase in the tendency to smoke.

6 3 8  CLARKE, IIUNTER, AND GARNER : THE TENDENCY
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T a b l e  VI.
Ketones.

Substance. Boiling 
point, 0 C.

Oxygen in 
compound as a 

percentage o f the 
total required 
for complete 
combustion.

Smoke point 
flamo-hoight, 

cm.

71. Acetone . . . . 5G 11-1 26-3
72. M ethyl-ethyl ketone 80 8-3 20-2
73. D i-acetone alcohol 104 11-1 26-4
74. cycZoHexanone 155 5-9 10-0
75. Phenyl-n-butyl ketone . 240 3-4 1-2

T a b l e  V III.

Esters.

Substance. Boiling 
point, ° C.

Oxygen in 
Compound 
as a per

centage of  
the total 

required for 
complete 

combustion.

Smoko
point
flame-
height,

cm.
»

80. E thyl formate . . . . 54 22-2 38-5
81. n-Propyl formate . . . . 81 16-7 15-6
82. n-B utyl formate . . . . 107 13-3 11-6
83. M ethyl acetate . . . . 57 22-2 About 45
84. E thy l acetate . . . . 77 16-7 28-6
85. n-Propyl acetate . . . . 101 13-3 13-0
80. n-Butyl acetate . . . . 120 11-1 10-5
87. Isobutyl acetate . . . . l i e 11-1 9-2
88. Am yl acetate . . . . 131-135 9-5 10-0
89. cycZoHexyl acetate 175 8-7 9-2
90. Octyl acetate (2-othyl-hexyl acetate) 190 6-7 9-6
91. E thyl acetoacetate 181 17-0 21-6
92. M ethyl propionate 79 16-7 36-0
93. E thy l propionate . . . . 98 13-3 24-5
94. n-B utyl propionate 140 9-5 13-7
95. Isobutyl propionate 137 9-5 10-3
90. Am yl propionate . . . . 150 8-3 10-5
97. M ethyl butyrate . . . . 102 13-3 27-5
98. E thyl butyrate • 120 1 11 22-9
99. Propyl butyrate . . . . 143 9-5 14-4

100. n-B utyl butyrate . . . . 165 8-3 13-3
101. Isobutyl butyrate . . . . 157 8-3 11-3
102. E thy l laurate . . . . 209 4-8 18-4
103. E thyl oxalate . . . . 186 23-5 29-0
104. E thyl m alonate . . . . 198 20-0 25-7
105. E thyl lactate . . . . 154 20-0 32-1
100. B uty l lactate . . . . 187 14-3 19-0
107. Am yl lactate . . . . 198 12-5 15-4
108. E thyl benzoate . . . . 213 8-7 2-5
109. E thyl nitrate . . . . 87 35-3 Semi-

luminous
110. E thyl carbonate . . . . 126 2 0 0 33-0



Benzene, having three double bonds in its ring and a correspondingly high 
C/H ratio, is very smoky, and the building up of this effect may be traced 
from w-hexane through eyefohexane to cyctohexene and benzene. Further, 
the results obtained with this lamp indicate that aliphatic side-chains on 
the benzene ring have little effect on its tendency to smoke.

In the naphthalene series the effect of unsaturation (or C/H ratio) is 
shown, since decalin (C/H ratio 0-56) is appreciably less smoky than 
tetralin (C/H ratio 0-83).

The Compactness of a Hydrocarbon Molecule and the Tendency to Smoke.
It seems likely that when a hydrocarbon is decomposed in a flame, the 

more compact the molecule, the greater will be the initial size of the carbon 
particles. This in its turn will probably produce a greater tendency to 
smoke. Thus a branched-chain paraffin, having a more ̂ compact molecule, 
is more smoky than its straight chain isomer, although they have the same 
C/H ratio. Ring formation also produces a compact molecule, and these 
substances, even when saturated, are more smoky than the corresponding 
straight chain compounds.

Oxygen-Containing Compounds.
The effect of the structure of oxygen-containing organic compounds on 

the tendency to smoke on burning may be resolved into three factors :
(1 ) The structure of the hydrocarbon portion of the molecule;
(2) The structure of the oxygen-containing group of groups;
(3) The oxygen content as a percentage of that required for complete 

combustion.

The structure of the hydrocarbon portion of the molecule is of primary 
importance, and largely determines the tendency to smoke of the compound. 
It woidd appear that the relationships between the structure of the hydro
carbon portion and the smoking tendency of the substance are largely the 
same as for the hydrocarbon compounds. In general, increased oxygen 
content results in a decreased tendency to smoke, but this effect may be 
offset by the influence of the hydrocarbon portion.

With the straight-chain primary alcohols the tendency to smoko increases 
with increasing chain length, the flame-heights of the lower members 
shoving a straight-line relationship with their oxygen contents expressed 
as a percentage of the total required for complete combustion. Further, for 
these compounds the inverse of flame-height shows a straight-line relation
ship -with the boiling points. Tertiary alcohols are more smoky than the 
corresponding secondary alcohols, which are in turn more smoky than 
the primary compounds.

The importance of the hydrocarbon structure in alcohols is apparent in 
several instances. Firstly an alcohol with a branched chain is more smoky 
than the corresponding straight-chain compound, although they have the 
same oxygen content. Also an alcohol having an unsaturated carbon 
chain is, in spite of its higher oxygen content, far more smoky than the 
corresponding saturated alcohol. Further, a saturated cyclic alcohol has 
a greater tendency to smoke than the straight-chain compound, and an 
aromatic alcohol shows the pronounced influence of the aromatic ring in 
spite of its oxygen content.
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With the straight-chain aliphatic esters the tendency to smoko is 
influenced by the carbon chain length attached to the carbox3dic carbon 
atom and to, the hydroxyl oxygen atom respectively. For each set of 
isomers (members having equal oxygen content and similar boiling points 
in this case) there is a variation in the smoke point flame-height, and the 
order of decreasing tendency to smoke is : formate, acetate, propionate, 
butyrate. Thus for equal oxygen content the flame-height at which 
smoking begins increases with the chain length attached directly to tho 
carboxyl carbon atom.

As with the other types of compounds, the branching of a carbon chain

O X Y G E N  IN  C O M PO U ND  AS PERCENTAGE OF TOTAL REQ UIPEO FOR C O M P LE T E  
C O M B U S T IO N

F i g . 8.

tends to increase the smoke from these esters. Also the results suggest 
that the ethyl esters of dibasic acids are more smoky than the ethyl esters 
of monobasic acids of similar oxygen content. Aromatic esters are again 
very smoky.

I t  would appear from the few aliphatic nitro-compounds examined that 
the tertiary compound is more smoky than the corresponding secondary 
compound, which is in turn more smoky than the primary compound.

I t  is interesting to note that with several substances the introduction of 
one or two oxygen atoms into the carbon chain appears to have little or no 
effect on the flame-height/oxygen content relationship.

The relative smokiness of the various types of organic compounds may 
he observed from Fig. 8 . The introduction of an oxygen atom into n-
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pentane (1) to form n-amyl alcohol (45) produces a marked increase in 
flame-height. If, however, the flame-heights of «-hexane and «-heptyl 
alcohol are obtained by extrapolation, the results suggest thąt the increase 
from «-hexane to w-hexyl alcohol (50) is less marked than for the above 
5-carbon compounds and that the conversion of «-heptane (4) into ra-heptyl 
alcohol produces no increase in flame-height. It is interesting to note that, 
due to their structures, a number of compounds containing fairly high 
percentages of oxygen are more smoky than hydrocarbons, such as n- 
pentane (1 ) and «-heptane (4). Examples of such substances are :

Unsaturated aliphatic alcohol-allyl alcohol (33); 
Nitro-paraffin-tertiary nitro-¿sobutane (6 6 );
Aliphatic esters-n-butyl formate (82) and «-propyl acetate (85); 
Aromatic esters-ethyl benzoate (108).

However, «-pentane and «-heptane (the best of the hydrocarbons 
examined) are far more smoky than the best of the oxygen-containing 
compounds examined. Of the latter, the normal primary alcohols have the 
greatest flame heights on an equal oxygen content basis.

Although methyl ethyl ketone (72) lies above the alcohol line, acetone 
(71), having the highest oxygen content (11-1 per cent) of this ketone series, 
lies below the line. Nitro-ethane (63) and 1-nitro-propane (64) are more 
smoky than the normal primary alcohols for equal oxygen content. The 
oxygen content of a mono-nitro paraffin is, however, much higher than that 
of the alcohol having the same number of carbon atoms. Hence 1-nitro- 
propane (64) has a much greater flame-height than «-propyl alcohol (39), 
and, similarly (only to a lesser degree due to the different slope of the 
lines), nitro-ethane (63) is less smoky than ethyl alcohol (38), while by 
extrapolation (assuming for this purpose a straight-line relationship for the 
nitro-paraffins) the flame-height of nitro-methane (oxygen 36-4 per cent of 
total required) would be roughly equal to that of methyl alcohol (oxygen 
25-0 per cent of total required).

For any particular set of isomeric aliphatic esters, the methyl ester of the 
highest acid has the greatest flame-height. However, the results suggest 
that of these methyl esters, methyl formate is the least smoky, due to its 
high oxygen content.

At equal oxygen content the general order for increasing tendency to 
smoke is :

(1 ) Normal primary alcohols;
(2) Normal primary nitro-parafifins;
(3) Propionates;
(4) Acetates;
(5) Lactates;
(6 ) Formates;

although this order will vary slightly for different oxygen contents.

References.
1 Bancroft, “ Applied Colloid Chemistry,” p. 421.
2 Jlinchin, S. T .  Proc. World Petrol. Cong., 1935, 2, 738.
3 Kewloy, J ., and Jackson, J . S. J . Inst. Petrol. Tech., 1927, 13, 364.
4 Minehin, S. T .  J . Inst. Petrol. Tech., 1931, 17, 102.
5 Terry and Field. Industr. Engng. Chem. A nal., 1936, 8, 293.


