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NEURAL NETWORK FOR CLASSIFING ELECTROMEDICAL SIGNALS

Summary. An attempt to use a simulated neural network structure as 
a biomedical signal classifier is described in this paper. The input 
patterns are portions of digitized ECG recordings. The neural network 
is a two- or three-layer feedforward structure of sigmoidal elements. 
The generalized delta rule is used as a learining algorithm. The 
network, trained in a constant number of 300 rounds, can reach very 
high performance, close to 100% for training set and about 96% for tes­
ting set disjoint with the training set. The network also proves to be 
very robust when classifying patterns corrupted by simulated muscle 
noise. However, the negative effect of large storage capacity of the 
network can be observed when many hidden units are employed.

ZASTOSOWANIE TRÓJWARSTWOWYCH SIECI NEUR0P0D0BNYCH BEZ 
SPRZĘŻEŃ ZWROTNYCH DO. KLASYFIKACJI SYGNAŁÓW ELEKTROMEDYCZNYCH

Streszczenie. W artykule przedstawiono próbą wykorzystania dwu- i 
trójwarstwowych sieci neuropodobnych bez sprzężeń zwrotnych do 
klasyfikacji sygnałów EKG. Przeprowadzono badanie wpływu liczby 
jednostek ukrytych na Jakość klasyfikacji oraz badanie odporności sieci 
na zakłócenia sygnału wejściowego.



138 T. Sadowski

Input patterns

As one of the most important non-invasive diagnostic methods of modern 
medicine, electrocardiography allows not only early detection of cardiac 
diseases, but also support for diagnosis of many other disorders, like 
electrolytic imbalance. Diagnosing cardiac disorders, especially dangerous 
nowadays, becomes a medical task of very high priority.

A typical ECG signal recording contains several specific points that carry 
the most important information, appearing on a base line (isoline), that 
corresponds to zero electric activity of the heart muscle. The most 
interesting, from diagnostic point of view, is the so-called QRS complex, 
which corresponds to depolarization of the ventricular muscle of the heart. 
The QRS complex is preceded by the P wave that corresponds to depolarization 
of the auricular muscle; after it comes the ST line, corresponding to slow 
depolarization of the ventricular muscle, and the T wave that is generated 
during the phase of fast repolarization of the ventricular muscle. Correct 
interpretation of the QRS complex is essential for detecting most cardiac 
disorders, however, P and T waves also carry important information. In the 
.case described below, the whole PQRST complex was classified. Recognized 
patterns were divided into two classes:
a) "auricular" PQRST complexes that are characteristic for ECG recordings 

of healthy patients (see Fig. la).
b) "ventricular" PQRST complexes (which are, due to some disorder, generated 

in the ventricular area of the heart muscle). When such complexes are 
found in an ECG recording, i.t may indicate arhythmia: QRS complexes in 
this case are usually broader (more than 120 ms) than auricular complexes; 
furthermore, the T wave and ST line displacement is opposite to the 
largest-amplitude wave of the QRS complex, (see Fig. lb).
These two classes were also called “correct" and "incorrect". The purpose 

of the experiment was to find out whether a two-output neural-like structure 
can learn to respond correctly when a pattern containing a PQRST complex 
belonging to a certain class is presented at the inputs. As the input 
patterns we used unprocessed ECG recordings, containing several thousands of 
samples, that were made with an electrocardiograph supplied with a 12-bit AK 
running with sampling frequency of 250 Hz. These samples were collected into 
files of signed integers and stored on floppy disks.
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Fig. 1. Typical examples of auricular (a) and ventricular (b) PQRST complexes 
Rys. 1. Typowe przykłady zatokowych (a) i komorowych (bJ zespołów PQRST

Preprocessing

Due to the fact that a typical recording contains tens of PQRST complexes, 
we first have had to extract single patterns from a continuous set of 
samples. The reason to do it is that attempt to build a shift-invariant 
network, capable of detecting the beginning of a very PQRST complex 
by "sliding" its inputs through the signal record lies behind the 
computational power (and memory capacity) of the computers that we have used 
(such networks usually involve high redundancy due to the fact of duplicating 
Its fragments that learn to recognize the same parts of a pattern but 
differently shifted). Instead, we have decided to use preprocessing of the 
KG signal using a digital filter to detect R waves and "cutting out" several 
samples around it. To find the R wave, we have applied a "fiducial point" 
detector, being essentially a cascade of simple digital filters described by 
Equations 1..6 (14],

yi = l/4(x1_1 + 2xk + xi+1) (1)

yi = 1/S(xi+2 + 2(xi+l + xi + xi-l} + Xi-2) (2 )
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(3)

y. = 2x. - x, - x, _ 'i i 1+5 1-5 (4)

(5)

/ (2k + 1) ( 6 )

The complete frequency gain characteristic Is described by Equation 7:

Due to the fact that the detector had a fixed frequency characteristic, 
position of the fiducial' point varied for different morphologies of the ECG 
signal (because of their slightly various spectra). This problem can be 
solved by centering each pattern to closest maximum of the QRS complex. 
However, It is not necessary, because patterns belonging to the same class 
will always have approximately the same shift; it is not "important" for the 
network that the patterns be all similar in general, only within classes.

After finding the fiducial point, the PQRST complex is to be classified as 
an "auricular" or "ventricular" by a human expert. This is done because we 
have used a supervised learning algorithm, so every teaching pattern should 
have its class description. The expert's task is also to determine the 
baseline level (usually found 66 msec before the fiducial point; this value 
is used as default but could be changed), used later in the experiment. 
Because of the limited size of the network, we have decided to take every 
second sample from the original recording. This has not impaired the 
essential features (shape) of a pattern but has made the teaching and 
recognizing time shorter. A complete pattern has contained 75 samples of the 
ECG signal, with the fiducial point placed at the 26th sample, a number 
specifying the isoline level and the class description.

(7)
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Muscular noise simulation

The second part ofthe experiment is to check the network’s ability to 
recognize ECG patterns corrupted by muscular noise. This kind of noise is 
frequently found in ECG recording due to the fact that motor units of the 
chest muscles generate random electrical pulses during their activity. These 
muscles are always active, sometimes highly (when the patient is subject to 
stress ECG recording or simply trembles), so muscular noise is always 
present in the ECG signal taken from the skin. In extreme conditions, 
amplitudes of muscular noise can completely distort the signal (SNR = 0 dB or 
less).

Up to the frequency of about 30 Hz, the spectral density of muscle noise 
is roughly constant. Above 30 Hz it increases and remains constant again. The 
larger the patient’s effort, the more the spectrum is shifted towards lower 
frequencies. Unfortunately, spectrum of the muscular noise overlaps the 
diagnostically significant area of the ECG signal spectrum. Thus, it cannot 
be simply filtered (e.g. electrically) without losing part of the information 
contained in the signal. A typical way of eliminating muscular noise is 
averaging a number of evolutions centered around a fiducial point [14]. It is 
an effective method of eliminating muscular noise, however, it requires 
implementation of special algorithms and also preclassification of input 
signal (averaging an evolution of a different morphology would significantly 
distort the result).

Muscular noise can be modeled by a random white noise of Gaussian amplitu­
de distribution. This model can be accepted because electrodes for ECG 
recordings have relatively large area comparing to the dimensions of a single 
motor unit, so they sum random potentials from many units at the same time, 
giving in result a Gaussian distribution. Such a model has been used in the 
second part of the experiment. To generate a noise simulation series we have 
used a Box-Muelier generator, in which mean value is 0 and variance is 
calculated directly from given signal-to-noise ratio. The Box-Muelier 
generator has. used unifanrv-disferibution random numbers generated by a Random 
function within the program.
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Network architecture

The network used in the experiment has been relatively simple; it has had 
an input layer 75 units wide, a hidden layer from 2 to 12 units wide (a 
two-layer model without hidden units has been also examined) and two outputs 
corresponding to the classes ’auricular’ and ’ventricular’. The architecture 
of the network has admitted neither feedback nor cross-connections (directly 
from input to output). Neither the strength nor sign of the connection has 
been limited, however, the output of any unit is limited to the interval 
(0,1) due to the characteristics of the sigmoidal model:

All the units are of the same type (uniform network).
To achieve initial conditions 'closest to the nature’ (no a priori

information in system) and avoid favoring any particular type of input,
Initial state of the network is generated randomly by filling the 
connectivity matrices with random numbers varying from -0,5 to 0,5.

Learning scheme

Before attempting any pattern recognition, a network must learn sample
patterns for a certain period of time. In this experiment we have used a
supervised training algorithm called delta rule. It involves following 
operations:

for each training pattern do 
begin

feed pattern values to inputs; 
propagate activation through network; 
calculate outputs;
compare outputs with desired values and calculate output error; 
modify each weight, propogating the error back through the network; 

end

o1 = [1 + expi-netj^)) -1
( 8 )

where sum of the inputs.
j
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Three main formulas that stand for the basis of the general delta rule are 
described in Equations (9 - 11).

is the target value for PE^, 
ô  is the current output of PE^, 
net^ is the weighted sum of PE^ inputs, 
w ^  is the weight from PE^ to PE^,
F^ is the output function of PE^ (defined in (8)),
fj is the activation function of PE^ (identity),
T) is the learning rate,
index (n) means n-th layer.
Notice that there is no explicitly given error for hidden units: it must 

be calculated by backpropagating the error from subsequent layer (the 
algorithm is thus recursive).

In the case of two-layer structure, since there is no hidden layer, the 
learning algorithm involves the classical delta rule (16):

Awij = 71 ' (ti " °i^ ' Fi ' °j

After preprocessing, we have obtained 475 files containing PQRST complex 
patterns; among these are about 30% ’ventricular’ cases and about 70% ’auri­
cular’ cases. From this set we have randondy selected 300 patterns to produce 
a training set (proven that there are representatives of all possible morpho­
logies included), while the rest has been used for testing. Such a large 
number of training patterns should have guaranteed that the patterns will be 
generalized, not memorized individually; there is an empirical rule that says 
that proper generalization takes place when the number of training patterns 
Is roughly equal or larger than the number of modifiable connections

(9)

S.
(n)= f' (Fi(net[n))] • F^(net{n))- £ S].(n+1) (n+1)>, w. . k kii ( 10)

( 1 1 )

where:
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(however, it's a very general rule). During the learning process, patterns 
have been repeatedly presented to the inputs and weights have been modified, 
according to the delta rule algorithm. Each cycle of presentation of all the 
patterns has been called a teaching round. We have used a constant number of 
300 rounds, and, to observe the network's behavior dynamically, we have saved 
its image (i.e. connectivity materices) every 10 rounds.

Testing the networks
After training, we have performed three kinds of tests on the networks. 

First, we have checked their ability to classify patterns belonging to the 
training set, then we have tested the networks on the set of remaining 175 
patterns which are not included in the training set, finally we have tested 
the quality of recognition of noise - corrupted patterns. This test has been 
performed on 50 patterns selected randomly from these that were recognized 
correctly. To avoid the effect of strong influence of the noise to the input 
pattern (at very low signal-to-noise ratio, shape of the pattern depends more 
on the stochastic noise process than on the signal itself), we have
performed the tests 10 times for each pattern with different noise realiza­
tion.

As it was said before, we have been recording the network state (connecti­
vity matrices) during the training session every 10 rounds and then we have 
checked the network performance for all the matrices by repeating the 
recognition task. Recognition results for the training set are shown at 
Fig. 2. and for the testing set at Fig. 3. Summary of the results is contained 
in table 1.

It can be easily noted that the number of 300 teaching rounds is much too
large for achieving good results, for the performance close to 100% is
reached after 30 rounds. This may be explained by the fact that, even though 
there are 300 training patterns (a number comparable to the number of 
weights), there are only two classes; the representatives of each class are 
quite similar to each other. This probably has caused the situation when many 
similar training patterns are forcing the same output pattern. In fact, one 
training round, consisting of about 200 presentations of patterns belonging 
to one class, must be more effective than a round having for instance 20 
presentations, and the teaching process is therefore strongly convergent. 
Furthermore, no important deterioration of recognition quality has been
observed during tests on the second set of patterns, disjoint with the 
training set.
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Table 1
Quality of recognition of undisturbed patterns (results given in

percent scale)

Trai­
ning
rounds

Number of hidden units

0 2 4 6 9 12

101 98,33 98,67 99,00 99,33 99,33 99,33

1001 99,67 99,67 99,67 99,67 99,67 99,67

2001 99,67 99,67 99,67 99,67 99,67 99,67

3001 99,67 99,67 99,67 99,67 99,67 99,67

102 98, 29 98,29 98,86 98,86 98,86 98,86

1002 98,29 98,29 98,29 98,29 98,29 98, 29

2002 97,71 98,29 97,71 98,29 98,29 98,29

3002 97,71 98,29 97,71 98,29 98,29 98,29

test results for training set (300 patterns)
2 ) test results for testing set (175 patterns)

In the second part of the experiment we have performed some tests to check 
the networks's performance on noisy patterns. The results are summarized in 
Table 2 and shown on Fig. 4.

Table 2
Quality of recognition of noise-contaminated patterns (results 

given in percent scale).

Signal to
noise
ratio

Number of hidden units

0 2 4 6 9 12

40 dB 100,0 100,0 100,0 100,0 100,0 100, 0
20 dB 100,0 100,0 100,0 100,0 100,0 100,0
10 dB 100, 0 99,80 99,80 100,0 99,80 99,80
5 dB 99,20 98,60 98,60 99,60 99, 40 99,40
0 dB 96,80 96,80 95,40 96,20 96,80 95,20

- 5 dB 83,60 85,40 84,60 81,60 83,80 85,80
-10 dB 68,20 64,40 63,20 66,40 63,60 62,80
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It can be noted that, at signal-to-noise ratios higher than +10 dB, the 
performance of the neural classifier is very close to 100'/.. It strongly 
decreases at SNR lower than 0 dB, when the image becomes difficult to 
recognize even for a human expert. The signal-to-noise ratio of -10 dB was the 
worst value tested. The noise is so strong that it is impossible for a human 
to recognize the pattern. The network reached more than 60% of correct 
recognitions, indicating that it is also a limit of its capabilities 
(however, the percentage of correct recognitioons is still larger than a 
half). As a rule, misclassifications are repeating for certain test patterns, 
indicating that some patterns are more liable to classification errors 
(errors depended on the signal features).

This test shows also another interesting feature: whenever classification 
errors occur, simpler networks (i.e. those having less hidden units) tend to 
perform generally better than those having more hidden units (for instance, 
at - 10 dB SNR the best results are obtained for the two-layer structure, 
while the worst - for the structure with 12 hidden units). Such a phenomenon 
can be explained by a fact that more hidden units means more 'degrees of 
freedom', which in consequence allow the network to develop more 'strict' 
class representations, while less or no hidden units allows only 
'approximate' or 'fuzzy' representations. A pattern that is distant from both 
classes may be then classified by a 'large' network as an error (both outputs 
close to 0), however, one of the outputs will be larger and will be chosen to 
indicate the class. 'Constrained' networks cannot develop so strict 
classification boundaries, so they may work better. It may lead to conclusion 
that increasing the number of hidden units not always improves the 
classification (it should be remembered however, that the task itself deos 
not require a large network).
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Fig. 3. Recognition quality (testing set - 175 patterns)
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Fig.4. Recognition quality after 300 rounds (summarized testing results for 
the set of 50 disturbed patterns)

Rys. 4. Jakość rozpoznania po 300 cyklach uczenia (wyniki zbiorcze testu dla
50 obrazów zakłóconych)
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S treszczen ie .

W artykule pt. “Application of a three-layer feedforward neural network 
for classifying electromedical signals" omówiona jest próba zastosowania 
warstwowych sieci neuropodobnych bez sprzężeń zwrotnych do klasyfikacji 
sygnału EKG. Badane sygnały dane są w dziedzinie czasu w postaci zespołów 
PQRST 1 klasyfikowane są do jednej z dwóch grup: przebiegów prawidłowych lub 
patologicznych. Do klasyfikacji wykorzystano sieci dwu- i trójwarstwowe ze
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zmienną liczbą elementów w warstwie ukrytej. Stosowanym algorytmem uczenia 
był uogólniony algorytm wstecznej propagacji błędów. W opisanych 
doświadczeniach przeprowadzono badanie jakości klasyfikacji w zależności od 
liczby elementów w warstwie ukrytej. Dodatkowo wykonano badanie wpływu 
zakłócenia sygnału wejściowego szumem modelującym rzeczywiste zakłócenia 
mięśniowe na jakoś klasyfikacji. Z przeprowadzonych doświadczeń wynika, że 
sieć neuropodobna jest w stanie prawidłowo rozpoznawać nawet silnie 
zakłócone sygnały: jednocześnie nie stwierdzono wyraźnego wpływu liczby
jednostek ukrytych na jakość rozpoznania, co może mieć swoją przyczynę w 
stosunkowo dobrym rozdzieleniu klas.


