1994 Nr kol. 1252

Janusz GUZIK Brunon SZADKOWSKI

KOMPARATOR DO BADAŇ DIELEKTRYKÓW W ZAKRESIE INFRANISKICH CZĘSTOTLIWOŚCI (10⁻³ - 10) Hz

> <u>Streszczenie</u>. W artykule przedstawiono koncepcję budowy równonapięciowego komparatora immitancji z wykorzystaniem aktywnego przetwornika i/i (i/u) w torze pomiarowym komparatora. Przeprowadzono weryfikację doświadczalną na zbudowanym modelu komparatora oraz podano przedziały możliwych do osiągnięcia w omawianym układzie zakresów mierzonych wielkości.

COMPARATOR FOR DIELECTRIC INVESTIGATIONS IN ULTRA-LOW FREQUENCY RANGE (10⁻³ - 10) Hz

Summary. The paper presents the idea of a equivoltage immitance comparator with use an active i/i (i/u) converter in measuring comparator's channel. The experimental verification based on the constructed comparator model and intervals possible measured values' ranges have been presented.

КОМПАРАТОР ДЛЯ ИЗУЧЕНИЯ ДИЭЛЕКТРИКОВ В ОБЛАСТИ ИНФРАНИЗКИХ ЧАСТОТ (10⁻³ - 10) Гц

> Резюме. В статье представлена концепция построения эквинапряженного компаратора иммитанса с применением активного преобразователя ток-ток (ток - напражение) в измерительном канале компаратора. Представлена экспериментальная верижикация построенной модели компаратора и приведено пределы возможных получаемых измеряемых величин.

1. WPROWADZENIE

Metody badań dielektryków zakresie infraniskich W częstotliwości pozwalają na uzyskanie z reguły większych czułości wykrywania makroskopowych zmian struktury dielektryka w porównaniu z metodami pomiarowymi stosowanymi w innych zakresach (np. [1], [2]). Dotychczas znane układy pomiarowe do badań dielektryków były z reguły układami wychyleniowymi [3], co z kolei nie zapewniało możliwości osiągnięcia wystarczającej dokładności, a zastosowanie układów mostkowych (po odpowiednich modyfikacjach) było nie do przyjęcia z uwagi na stosunkowo długi czas równoważenia. W dalszym ciągu zwrócono uwagę na możliwość budowy równonapięciowego komparatora immitancji dielektryków z aktywnym przetwornikiem i/i (i/u) umieszczonym w torze wielkości mierzonej i wzorcowej komparatora.

Metoda komparacyjna pomiaru immitancji T_{χ} badanych dielektryków polega na jej porównaniu z immitancją wzorcową T_{N} wg schematu blokowego pokazanego na rys.1. [4], [5].

Rys.1. Schemat blokowy komparacyjnej metody pomiaru immitancji Fig.1. Block diagram of comparator immitance measurement method

Komparowane immitancje T_x i T_N zostają przetworzone na odpowiadające im sygnały prądowe i_x i i_N , które z kolei są przetwarzane za pomocą aktywnych przetworników prądu typu i/w o transmitancjach odpowiednio równych H_x i H_N na proporcjonalne sygnały w_x i w_N tego samego rodzaju (prądowe lub napięciowe) [4].

Dla stanu komparacji AW = 0 obowiązuje zależność:

Komparator do badań dielektryków

$$T_{x} = T_{N} \frac{H_{N}}{H_{x}} , \qquad (1)$$

gdzie odpowiednie immitancje T_{x,N} są admitancjami Y_{x,N} lub impedancjami Z_{x,N}, przy czym

$$T_{X,N} \equiv Y_{X,N} , \qquad (2)$$

lub

$$\mathbf{T}_{\mathbf{X},\mathbf{N}}^{-1} \equiv \mathbf{Z}_{\mathbf{X},\mathbf{N}}$$
(3)

Przyjmując jednostkową wartość transmitancji H_N toru wielkości wzorcowej, tj. H_N ≡ 1, równanie komparacji (1) upraszcza się do postaci:

$$\Gamma_{\rm X} = \frac{T_{\rm N}}{H_{\rm X}} . \tag{4}$$

Wówczas zagadnienie pomiaru immitancji dielektryka można sprowadzić do zagadnienia wyznaczania odpowiedniej impedancji:

$$Z_{\chi} = H_{\chi} Z_{\chi}.$$
 (5)

Interpretacja metrologiczna równania (5) pozwala na wysunięcie przypuszczenia, że w takim układzie pomiarowym, jakim jest równonapięciowy komparator (o schemacie blokowym wg rys.1), możliwy jest pomiar impedancji H_x - razy większej od będącej do dyspozycji wartości impedancji wzorcowej Z_N , co może mieć decydujące znaczenie przy badaniach dielektryków, z reguły o impedancjach $|Z_x| > 10^{+8} \Omega$. Bliższe omówienie analizowanego układu komparatora przedstawiono w p.2.

2. RÓWNONAPIĘCIOWY KOMPARATOR IMPEDANCJI Z PRĄDOWYM WSKAŻNI-KIEM ZERA

Równanie komparacji (1) obowiązuje zarówno dla przypadku, kiedy sygnały wyjściowe z przetworników i/w: w, i w, są sygnałami prądowymi (zastosowano przetwornik typu i/i) lub napięciowymi (zastosowano przetwornik typu i/u), przy czym dla tego ostatniego przypadku wyniki odpowiedniej weryfikacji doświadczalnej zamieszczono w pracy [6]. Pozostał do rozpatrzenia przypadek równonapięciowej komparacji impedancji poprzez komparację odpowiednich sygnałów prądowych. W tym celu przyjęto pokazany na rys.2. schemat ideowy rozważanego komparatora impedancji.

- Rys.2. Schemat ideowy równonapięciowego komparatora impedancji dielektryków z komparacją prądów w_y i w_N
- Fig.2. Schematic diagram of equivoltage dielectric impedance comaparator with currents w and w comparation

Równanie komparacji (1) dla analizowanego układu komparatora dla poszczególnych składowych mierzonej impedancji Z_x przyjmuje następującą postać:

T

$$R_{\chi} = \frac{R_{\chi} (ac + bd) + \frac{1}{\omega C_{\chi}} (bc - ad)}{c^{2} + d^{2}}, \quad (6)$$

$$C_{x} = \frac{C_{N} (c^{2} + d^{2})}{ac + bd + \omega R_{N} C_{N} (ad - bc)},$$
(7)

gdzie: $Z_{\chi} = R_{\chi} + \frac{1}{j\omega C_{\chi}}, Z_{N} = R_{N} + \frac{1}{j\omega C_{N}}, a transmitancje odpo$ $wiednich przetworników (tu: typu i/i) <math>H_{\chi}, H_{N}$ wyrażały się liczbami zespolonymi postaci: $H_{\chi} = a + jb$ i $H_{N} = c + jd$. Warunkiem bezpośredniego odczytu mierzonych składowych jest spełnienie zależności:

a) b = 0 i d = 0, lub

b) $\frac{b}{a} = \frac{d}{c}$,

przy czym przypadek (a) występuje, gdy transmitancje H_x , H_N przetworników nie posiadają składowych urojonych, natomiast przypadek (b) oznacza, że przesunięcia fazowe φ_x , φ_N wnoszone przez odpowiednie przetworniki są sobie równe, tj. $\varphi_x = \varphi_N$, przy czym: $\varphi_x = arc$ tg (b/a) i $\varphi_N = arc$ tg (d/c).

Równania komparacji (6) i (7) wyrażają się wówczas prostymi zależnościami:

$$R_{\chi} = R_{N} \frac{a}{c}, \qquad (8)$$

$$C_{\chi} = C_{\chi} \frac{c}{a} .$$
 (9)

Względną niedokładność skrajną pomiaru składowych R_x, C_x mierzonej impedancji Z_x oblicza się (dla przypadku bezpośredniego odczytu) wg wzorów:

$$\Delta_{\mathbf{R}_{v}}^{\circ} = \pm \left[\left| \Delta_{\mathbf{R}_{v}}^{\circ} \right| + \left| \Delta_{a}^{\circ} \right| + \left| \Delta_{c}^{\circ} \right| \right], \tag{10}$$

$$\Delta_{C_{v}}^{\circ} = \pm \left[\left| \Delta_{C_{v}}^{\circ} \right| + \left| \Delta_{a}^{\circ} \right| + \left| \Delta_{c}^{\circ} \right| \right]$$
(11)

gdzie: $|\Delta_{R_{\chi}}^{\circ}|$, $|\Delta_{C_{\chi}}^{\circ}|$ - niedokładności składowych R_N, C_N zastosowanego wzorca impedancji Z_N, $|\Delta_{a}^{\circ}|$, $|\Delta_{c}^{\circ}|$ - niedokładności składowych czynnych a, c transmitancji H_v i H_v.

Zapewniając odpowiedni dobór niedokładności (odchyłek) $|\Delta^{\circ}|$ i $|\Delta^{\circ}_{\circ}|$, np. wg procedury podanej w pracy [7], osiągane niedokładności pomiaru składowych $\Delta^{\circ}_{R_{\chi}}$, $\Delta^{\circ}_{C_{\chi}}$ mogą być porównywalne z niedokładnościami składowych $|\Delta^{\circ}_{R_{\chi}}|$, $|\Delta^{\circ}_{C_{\chi}}|$ zastosowanego wzorca impedancji: $\Delta^{\circ}_{R_{\chi}} \approx \pm |\Delta^{\circ}_{R_{\chi}}|$ i $\Delta^{\circ}_{C_{\chi}} \approx \pm |\Delta^{\circ}_{C_{\chi}}|$.

Z drugiej strony, całkowitą względną czułość S_c pomiaru impedancji Z_x przy użyciu komparatora można ocenić na podstawie zależności:

$$S_{c} = S_{WZ} \left| Z_{X} \frac{d(\Delta W)}{dZ_{X}} \right| = S_{WZ} \left| Z_{X} \frac{d(W_{X} - W_{N})}{dZ_{X}} \right| =$$
$$= S_{WZ} \left| Z_{X} \frac{d(W_{X} - W_{N})}{dZ_{X}} \right| =$$
$$S_{WZ} \left| Z_{X} \frac{d(W_{X} - W_{N})}{dZ_{X}} \right| = S_{WZ} \left| Z_{X} \frac{d(W_{X} - W_{N})}{dZ_{X}} \right| =$$
$$(12)$$

gdzie: S_{WZ} - czułość zastosowanego wskaźnika zera.

Ewentualny spadek czułości S_c spowodowany zbyt dużym wzrostem wartości $|Z_{\chi}|$ (np. dla $\omega \longrightarrow 0$ można łatwo skompensować, dobierając zarówno wartość napięcia zasilającego komparator $|E_{g}|$, jak i zwiększając wartość transmitancji $|H_{\chi}|$, przy założeniu, że w obydwu przypadkach czułość zastosowanego wskaźnika zera jest taka sama.

3. WARIANT UKŁADU KOMPARATORA O TRANSMITANCJI H

Jednym ze sposobów minimalizacji niedokładności pomiaru składowych immitancji Z_{χ} (por. równania (10) i (11)) jest wyeliminowanie przetwornika o transmitancji H_{N} umieszczonego w torze wielkości wzorcowej i zastąpienie go gałęzią wzorcową (zawierającą przy tym impedancję wzorcową Z_{N}) zbudowaną z elementów biernych, z reguły o wyższej dokładności. Dla komparatora sygnałów napięciowych w_{χ} i w_{N} rolę tę pełni odpowiednio zestawiony dzielnik napięcia [6], natomiast dla przypadku komparacji sygnałów prądowych w_{χ} i w_{N} - odpowiedni schemat zamieszczono na rys.3.

Odpowiada on w pełni schematowi komparatora wg rys.2, gdy transmitancja $H_{_N} \equiv 1$, natomiast jedyna różnica to zmiana kierunku sygnału nierównowagi: $\Delta w = -(w_{_X} - w_{_N})$ wynikła z faktu zastosowania odwracającego przetwornika prądu i/w o transmitancji $H_{_X}$. Odpowiednie równania komparacji (dla przypadku bezpośredniego odczytu) (8) i (9) przybierają postać (c = 1):

$$R_{x} = R_{N} a, \qquad (13)$$

$$C_{\chi} = C_{N} \frac{1}{a} . \qquad (14)$$

Rys.3. Schemat ideowy układu komparatora wg rys.2 dla $H_N \equiv 1$ Fig.3. Schematic diagram of a comparator according to Fig.2 for $H_N \equiv 1$

Oznacza to możliwość pomiaru impedancji (a właściwie jej modułu - $|\mathbf{Z}_{\mathbf{x}}|$) a - razy większej od będącej do dyspozycji wartości impedancji wzorca (odpowiednio - $|\mathbf{Z}_{\mathbf{x}}|$), co ma znaczenie przy pomiarach impedancji, zwłaszcza dielektryków. Z drugiej strony wartość współczynnika strat dielektrycznych tg $\delta_{\mathbf{x}}$ mierzonego obiektu (o impedancji $\mathbf{Z}_{\mathbf{x}}$): tg $\delta_{\mathbf{x}} = \omega \mathbf{R}_{\mathbf{x}} \mathbf{C}_{\mathbf{x}}$, po uwzględnieniu równań (13) i (14) jest jednocześnie równa:

$$tg\delta_{\chi} = \omega R_{\chi} C_{\chi} = \omega (aR_{N}) \cdot \left(C_{N} \frac{1}{a}\right) = \omega R_{N} C_{N} = tg\delta_{N}, \qquad (15)$$

co predystynuje układ komparatora wg rys.3 do komparacji impedancji dielektryków o zbliżonych wartościach współczynnika stratności: tg $\delta_x \approx$ tgo. Dodatkowo, mając na uwadze fakt, że równania komparacji (13) i (14) są wzajemnie zależne – wzrostowi wartości nastawy, np. R_N, musi odpowiadać spadek wartości nastawy C, tak aby zadość uczynić równości (15): celowe wydaje się przystosowanie układu do pomiaru jednej z dwóch składowych mierzonej impedancji, np. R_X lub współczynnika stratności tg δ_x . W pierwszym przypadku pozwala to analizować układ komparatora w kategoriach omomierza [5] z wbudowanym wzorcem R_N, natomiast drugi przypadek - to układ komparatora współczynnika stratności tg δ_y z bezpośrednim odczytem. Do budowy układu komparatora wg rys.3 można także zastosować przetwornik i/u, lecz by nie dopuścić do jego zbytniego obciążenia, należy dobrać wartość impedancji |Z_{wz} | zastosowanego wskaźnika zera wg wzoru [8]:

$$\left|Z_{WZ}\right| \geq \frac{R_{o}}{1 + |K_{o}| \cdot |\beta|} \approx R_{o}, \qquad (16)$$

gdzie: R – rezystancja wyjściowa wzmacniacza operacyjnego przetwornika i/u,

ß

 $|K_{o}| - współczynnik wzmocnienia napięciowego wzmacniacza$ $operacyjnego przetwornika i/u dla <math>\omega \longrightarrow 0$, $|K_{o}| \longrightarrow \infty$,

β – współczynnik sprzężenia zwrotnego,

$$| = = \frac{1}{1 + \frac{R_{F}}{|Z_{\chi}|}},$$

przy czym: R_F - rezystancja obwodu sprzężenia zwrotnego przetwornika i/u,

co nie jest trudne, zważywszy, że dla większości typowych wzmacniaczy operacyjnych (stosowanych w przetwornikach i/u): R_ \approx (50 + 100) Ω [8].

Możliwy do uzyskania w tym układzie zakres mierzonych wielkości uzależniony jest praktycznie od składowej czynnej a transmitancji H, i wynosi:

$$R_{\text{Nmin min}} \leq R_{\text{X}} \leq R_{\text{Mmax max}}, \qquad (17)$$

$$C_{N\min} \frac{1}{a_{\max}} \leq C_{\chi} \leq C_{N\max} \frac{1}{a_{\min}}, \qquad (18)$$

przy czym zwykle 10^3 V/A $\leq a \leq 10^8$ V/A [4], [6].

4. WYNIKI BADAN

Celem weryfikacji niektórych wyników rozważań teoretycznych zamieszczonych w pkt. 2 i 3 zbudowano układ komparatora wg rys.3 z aktywnym przetwornikiem typu i/u zbudowanym na wzmacniaczu operacyjnym typu LF356. Wartości rezystancji R_x , R_N i pojemności C_x , C_N zamodelowano za pomocą dekad (odpowiednio) DR6-16 i DK5/50). Przykładowe wyniki pomiarów składowych R_χ i C_v dla różnych częstotliwości f zamieszczono w tabeli 1.

Tabela 1

wyprane wyniki pomiarow składowych $R_{\chi} = C_{\chi} (50 \text{ kM} + 100 \text{ nF})$									
Lp	f[Hz]	R _x [Ω]	C _x [nF]	$tg\delta_{\chi} = 2\Pi fR_{\chi}C_{\chi}$	R _{χοb1} [Ω]	C _{Xobl} [nF]	tgδ _{χοbl}		
1	2	50000	100	0,0628	50850	104,5	0,0667		
2	3	50000	100	0,0942	50649	96,8	0,0924		
3	4	50000	100	0,1256	50795	104,0	0,1327		
4	5	50000	100	0,1570	50603	103,6	0,1646		
5	6	50000	100	0,1884	50452	103,4	0,1966		
6	7	50000	100	0,2198	50639	103,7	0,2308		
7	8	50000	100	0,2512	50694	96,9	0,2468		
8	9	50000	100	0,2826	50810	96,3	0,2766		
9	10	50000	100	0,3140	50492	103,3	0,3276		
10	100	50000	100	3,140	51847	108,2	3,523		

Lp.	f[Hz]	δ [°] _R [%] χ	δ° _c [%]	ð [°] tgð _x [%]
1	2	+ 1,7	+ 4,5	+ 6,2
2	3	+ 1,3	- 3,2	- 1,9
3	4	+ 1,6	+ 4,0	+ 5,6
4	5	+ 1,2	+ 3,6	+ 4,8
5	6	+ 0,9	+ 3,4	+ 4,4
6	7	+ 1,3	+ 3,7	+ 5,0
7	8	+ 1,4	- 3,1	- 1,8
8	9	+ 1,6	- 3,7	- 2,1
9	10	+ 1,1	+ 3,3	+ 4,3
10	100	+ 3,7	+ 8,2	+ 12,2

Wartości $R_{\chi_{obl}}$ i $C_{\chi_{obl}}$ uzyskano posługując się zależnościami (13) i (14), przy czym: tg $\delta_{\chi_{obl}} = 2\Pi f R_{\chi_{obl}} C_{\chi_{obl}}$.

49

5. WNIOSKI

Przeprowadzone badania na modelu komparatora wykazały jego przydatność do pracy przy infraniskich częstotliwościach, przy czym stwierdzono, że dokładność pomiaru odpowiednich składowych maleje w miarę wzrostu częstotliwości. Można temu zapobiec odpowiednio kształtując charakterystykę częstotliwościową przetwornika i/u (i/i). Dokładność pomiaru składowej czynnej R_{χ} mierzonej impedancji Z_{χ} jest w przybliżeniu o rząd lepsza, co pozwala sądzić, że analizowany komparator lepiej nadaje się do pomiarów rezystancji obiektów o ustabilizowanej pojemności.

LITERATURA

- Wiła W.: Model matematyczno-fizyczny stanu izolacji okrętowych maszyn elektrycznych. Prace Instytutu Elektrotechniki, z. 122, Warszawa 1982, s.59-77.
- Esposti G.G., Tommasini D.: A Model for the Simulation of Relaxation Phenomena in Dielectrics IEEE Transactions on Electrical Insulation, vol. 25, Nr 4, August, 1990, p. 617-621.
- Burnley H.G., Exon J.L.T.: Diagnostic Measurement Based on Bridge Out-of-Balance Signals, IEEE Transactions on Electrical Insulation, vol. 26, Nr 2, April, 1991, p. 200-209.
- 4. Szadkowski B.:Pomiary immitancji dielektryków w zakresie infraniskich częstotliwości. Raport z pracy BK-323/RE-2/91. Instytut Metrologii i Automatyki Elektrotechnicznej, Pol. Śl., Gliwice, grudzień 1991.
- 5. Szadkowski B.: Synteza metod pomiaru immitancji. ZN Pol. Śl., ser. Elektryka, z. 93, Gliwice 1984.
- Guzik J.: Aktywny, równonapięciowy komparator admitancji do badań dielektryków. Raport z pracy BW-455/RE-2/92. Instytut Metrologii i Automatyki Elektrotechnicznej, Pol. \$1., Gliwice, grudzień 1992.
- Sawicki J.: Dobór odchyłek elementów urządzenia pomiarowego jako prosty sposób zwiększenia dokładności. Pomiary, Automatyka, Kontrola, 1989, nr 7, s. 178-179.

 Nadachowski M., Kulka Z.: Analogowe układy scalone. WKiŁ, Warszawa 1983, s. 120-121.

Recenzent: prof. dr hab. inż. Zygmunt Kuśmierek

Wpłynęło do Redakcji 15 marca 1994

Abstract

The paper presents the idea of a equivoltage immitance comparator with use an active i/u or i/i converter in measuring comparator channel by the way as on Fig.1. Compared immitances T and T are here transformed into current signals w and w, respecively undergo right comparison. The state of comparison $\Delta W = W - W_N = 0$ generated the dependence (1): $T_x = T_N \frac{N}{H}$, the basis the seeking immitance value T is calculated. The direct reading conditions are defined by the relation b = 0 and d = 0, relatively b/a - d/c and then the dependence (1) assumed the form (8) and (9). Considerable reduction of a comparators structure is obtained for H = 1 (see Fig.3) and then exists the possibility to measure the impedance Z a - time greater as to be on the hand the standards impedance Ζ. . experimental verification based on the constructed comparator model (for H = 1) have been presented.