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Summary. This paper deals with the reliability simulation of raa- 
chine elements. The random numbers whioh have the distribution of 
the given parameter can be generated by Monte Carlo method. Then the 
reliability oan be direotly simulated by substituting them properly 
into the strength forraulars. The assumptions for common analytical 
method are not needed. Hence the results of simulation oan be more 
reasonable.

This paper also deals with the reliability simulation of shofts 
Some suggestions are proposed and formulars are derived.

Examples are given in this paper to show the applications of the 
simulation to the reliability analysis of shafts.

1. INTRODUCTION

The assumptions that the stresses and fatigue limits of machine elements 
are normally distributed are usually made in the existing analytical me­
thod for estimating reliability of maohine elements [l] [2] [3] . The for­
mulars for calculating the means and variances of the functions of random 
variables are given in [1] .

Aooording to the central limit theorem the sum of random variables 
X^(i=1t...n), whioh oan have any kinds of distributions, is approximately 
normally distributed when n is large enough. But if the number of the ran­
dom variables n is small and the nonlinear operations such as production, 
division, exponentiation ... are also included in the operation of the 
random variables the result generally is not normally distributed.

Nonlinear operations are usually involved in the calculations of stras-' 
ses and fatigue limits of maohine parts and sometimes the number of randc-m 
variables involved is not large. Hence the results of the stresses and
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fatigue limits are not normally distributet even though all initial random 
variables involved are normally distributed. Therefor the assumptioe abo­
ve oauses errors and they oan not be estimated. Sometimes the fatigue li­
mits of materials are oonsidered to have Veibull distribution. But the 
computed fatigue limits of the parts generally do not have Veibull distri­
bution.

Monte Carlo simulation is adopted in this paper. It is no need to make 
the assumptions mentioned above. The distributions of the computed stres­
ses and strength limite of the part coneidered oan be simulated directly 
from the distributions of the given random variables. Then the reliabili­
ty of the part oan also be simulated. The confidence interval of the relia­
bility then oan be estimated. The results obtained in this way are more 
reasonable and reliable.

This paper also deals with the reliability simulation of shafts. Some 
suggestions are propose and formulare are derived. Several examples are 
given in this paper to iluetrate the prooedure and application of the si- 
mulaeion.

2. RELIABILITY ANALYSIS OF MACHINE PARTS BY COMPUTER SIMULATION AND 
THE DETERMINATION OF CONFIDENCE INTERVAL OF RELIABILITY

1) Reliability Analysis of Maohine Parts by Computer Simulation
The reliability of maohine parte oan be determined by the following 

formulari

R >  *  P ( i  - , ¿ > 0 )  ( l )

where R - reliability! ¿-strength limit of the part| (S - strees of the 
part; P̂ - - probobility.

The main prooedure of simulation of estimating the reliability of ma­
ohine elemente ie as followt
(1) For each given independent random variable generate a set of N random 

numbers whioh has the same distribution as the one of the given varia­
ble.

(2) Randomly piok out one number from eaoh set of random numbers generated 
above and then eubstitute them into the necessary formulars to calcu­
late the corresponding stresses and strength limits of the part. Check 
if it ie safe in this speoifio case. This step is repeated N times 
and the number safety NS is cumulated.

(3) Calculate the reliability of simulation R = NS/N and the oonfidence 
interval of the reliability.
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Obviousely this procedure simulates the pratioal situation whioh 
ocours in a set of N parts. After the simulation the distributions of 
(5- G> ) , V and <3 are atomatically obtained. It is no need to make the 
assumptions mentioned above. Hence the results of simulation are more 
reasonable and reliable.
2) Generation of Random Numbers

It is important to generate random numbers whioh have the same distri­
bution as the given one in reliability simulation.^
(1) Generation of random numbers which have a given cumulative probobility 

distribution function
There are several methods whioh can be applied [4] . For example, the 

inverse transform method can\be used. Its formular is:

X = F'Vu) (2)

where U — random numbers uniformly distributed over the interval (0,1)) 
Fz(x) — the given cumulative probobility distrubution function) X — the 
needed random numbers.

The random numbers uniformly distributed over the interval (0,l) can 
be obtained from the speoial function of most computers. And the computer 
algorithm for generating these random numbers oan be found in some refe­
rences [4] . It should noted that the uniformity of these random numbers 
has great influence on the aocuracy of the simulation.
(2) Generation of random numbers whioh are normally distributed

The random numbers whioh are normally distributed are widely used in 
reliability analysis. There are several methods to generate them [4] . The 
algorithm used in this paper is as follow:

21 = ( - 2 ln r 1) 1'̂ 2 oos(2STr2 )) Z2 = ( -2 1 n r1 )1/̂ 2 s in ( 2 S r 2 )

X1 - V  ♦ zis6» x2 " I1 + Z2S6

where , r2 - two numbers of the uniformly distributed random numbers 
over (0,1)) jj , Sg - the mean and standard deviaton of the needed random 
numbers normally distributed) x)f x2 - two numbers of the needed random 
numbers.

Fig. 1 is a reduced computer printout of the distribution of a norma­
lly distributed random variable generated by the oomputer program used 
in this paper. Beoause line printer is used all numbers in eaoh interval 
of the abscissa of the histogram are rounded to the lower bound of the



222 J. Yun

interval. Tab. 1 shows the results of both theoretical and statistical 
analysis of this set of random numbers.

Tab. 1

Size
Mean
S tandard 
Deviation
Pr(x < 2400)
P (x42690) r
P (x < 2845)r
P (x <3400)X*

Theoretical
Analysis

30000 

2600 

1.05# 
1 1 .6736 
27.68* 
9 3 .8 *

Statistio
Analysis

2000

29999
2594.8
1.05*

11.7*
27.85*
9 4 .3 * Fig. 1

It can be seen from the Fig. 1 and Tab. 1 that distribution of the ge­
nerated random numbers is close to the theoretical distribution and can 
be used in the simulation.

The desity of the random numbers in a few intervals of fig. 1 is a lit­
tle higher. This is caused by the ununiformity of the distribution of the 
random numbers and the unsufficiency of the size N. The curve is smoother 
when the size of the random numbers N is increased. The influence of the 
size N on the acouraoy of the simulation is taken into account by the 
confidence interval of the reliability.
3) Estimation of the Confidence Interval

There are only two events - safety or unsafety - in the reliability 
analysis. So it has (0,1) distrubution. According to the statistics the 
approximate formulars for estimating the 100(l - at )* confidence interval 
of reliability are [5] :

P = (-b - i b2 -4ao)/2a} P = (-b + ^b2 -4ao)/2a
(3)

a = N + Z^,2» b = -(2NP + Z%/2)\ o = UP2

where P1, p2 - the needed lower and upper bound of the 100(1 - 0C)* confi­
dence interval of the reliability} N - size of the sample} oi- signifi­
cance level} Zac/ 2  ~ two-side 100 percentile point of standard normal 
diatrubutionj P — the reliability of the test«

It can be seen from formular (3) that the size N has great effect on 
the width of confidence interval.
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EXAMPLE 1
Dotermine the reliability of a rod with round section subjected to an 

axial tensile load, the mean and standard deviation of which F, S, are
30000 (n ) and 1000 (n ) roopoctively• The mean and standard deviation of 
the dicunetor of the rod (D, S^) c (6.4, 0.3fc) mm and the strength limit 
of the material (£ , S*) = (1076, 42.22) MPa. Suppose that theso variables 
are normally distributed and independent.
Solution:

According to the mechanics of material the stress in the section of 
the rod is:

Th. flow din pram of the computer program la ahowed In Fig. 2.

[start|

- 1 -Input the given
data, N and CC

" 1
Generate random numbers
for F, D and 6

Randomly rearrange the 
aequancy of the Beta of 
random numbera generated

NN=1} NS=0

Calculate the stress

NN=NN+1 I— ©

Calculate the reliability 
and its confidence interval

Print out the results 
and the histogram

Stop

Fig. 2 

Tab. 2

Simulative
Results

Number o f  safety
Statistical reliability
Significance level
100( 1 - CC )* confidence 
interval
Size of earaple N

1819
9 0 .9 5 *
0.5

8 9 .6 1 *  
9 2 .13* 
2000
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The reeults of this example are listed in Tab. 2. Pig. 3 shows the dis­
tribution of the (S - (a ). It is obviously that resulted distribution is 
not a normal one. Hie assumptions mentioned above are unreasonable in the­
se cases. The analytioal result of reliability based on the assumptions 
above [l] , [3] is R=93.07^. The error resulted by analytioal method is
evident.

It should be noted that the random numbers are generated from the same 
subprogram in this paper, the numbers in the same plaoe of the sets gene­
rated may have some kind of relations. To make sure that the numbers se­
quentially pioked out from eaoh set have no any relations, which means 
that they are Independent, a step of randomly rearranging the sequenoe of 
the numbers in eaoh set is applied right after the random numbers are ge­
nerated in Fig. 2. Then the numbers of the sets with new sequenoes oan be 
sequentially substituted into the neoessary formulars in the followed 
steps in Fig. 2.

If there are no any oocuranoes of unsafety after the simulation, accor­
ding to the formular (3) the P=1» P1=0.998 and Pg=1 when N=2000.
Even though £ - <5»  0 the P1 and P2 are not changed when N is not changed. 
In this case it is recommended that the histogram be printed out to know 
how far away the results of (6 - <0 ) are from the zero or the N be incre­
ased if the N is not large enough.
EXAMPLE 2

Suppose that the normal stress of the cross seotion of a machine part
(ó, S j) a (30000, 26002)MPa. The strength limit of the material (£, S2)=

2\ O= (40000, 3500 JMPa. Both of them are normally distributed. Determine its
reliability.
Solution1

The procedure of the simulation for this example is similar to and 
simpler than the one of example 1.

The results of this example is listed in Tab. 3. The analytioal suits 
in Tab. 3 are the precise results as the given 6 and i> are normally dis­
tributed and no nonlinear operations are involved. The simulative results 
are very oloee to the exaot solution, whioh means that the simulative re­
sults are good in engineering analysis.

The his to gram of (<5 - <3 ) is showed in Fig. 4. The curve will be smoo­
ther if the N is inoreased.
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Tab. 3

Simulative
Results

Analysis
Results

Size 2000
Mean 10020 10000
Standard
Deviation 4363.6 4301.16
Reliability 99.2# 98.956
Significant
level 0.05

100( t - ot)* 
Confidence 
Interval

99.5156
98.756

Fig. U

3. RELIABILITY SIMULATION OF SHAFTS SUBJECTED TO FLUCTUATING LOADS

Similar to ths analytical method, the a tress ratio r (see formular
(8) ) of the working stress is supposed to be a oonatant to simplify the
oaloulation of the fatigue limit of the parts.

The reliability simulation of shafts subjected to fluctuating load is
also based on the formulars (l), (3). The simulative calculations of wor­
king stresses and fatigue limits of shafts are stated bellow.
l) The simulative Calculation of Stresses of Shafts

The formulars for caloulating the stresses of shafts in the simulation 
are the same as the oonu.cn ones whioh are the follows:

The bending stress and the torsional stress are:

<sw *  M/(3Td3/ 3 2 ) |  ? =  M n / C l d V l S )  ( 4 )

where <ow t - the bending stress and the torsional stress in the cross 
section of the shaft) M, MQ — the bending and torsion moment in the sec­
tion) d - the diameter of the section.

According to the energy-of-distortion theory of strength, the equiva­
lent stress €>j.oan be written as

S’* + 3t2 (5 )

In the oommon cases the bending stress is a oomplete reverse stress and 
the torsional stress aan be considered as a static stress. Hence the dyna­
mic and statio component of the equivalent stress 1 & fm are:



The maximum value of the etreaa max i® >

fmax Sfa + ¿fm (7)

Ae mentioned above the etreae ratio of working stress r is considered to 
be a constant in the calculation of the fatigue limit of the part. So the 
mean of it is used and can be written ast

t . fmin ■ ■9fmax
1 “ ^fa/^fm
1 «• fm

1 - P 
1 + P (8)

where

Cofa'

P 3 « W ^ f m
<ïfm - the means of Sfa and (Sf|n respectively.

S, and can be obtained by substituting the means of loads and geome-t a fra
trio paramo tore into the forraularo (1*) and (6),

The prodecure of simulating the equivalent stress is similar to the one 
mentioned in example 1. After generating the corresponding sets of random 
numbers for the given parameters and randomly rearranging the sequenoies 
of the numbers in the sets, sequentially piok up one from eaoh set and 
substitute them into the necessary formulars of ( 4 ) - (7), The resulted 
numbers are the needed ones whioh shows the distribution of the equiva­
lent stress.
2) The Simulation of Fatigue Limits of Shafts

The commonly used method for calcu­
lating the fatigue limits of shafts are 
also used in the simulation. The slm* 
plied curve of fatigue limit stress 
showed in Fig. 5 i® adopted in this 
paper.

Because the fatigue limit of stress 
ratio r = 0.1 is given in the handbook 
of reliability design instead of r = 0, 
the fatigue limit of r = 0.1 is taken as
a reference point. The r s 0.1 is very close to r = 0 and the fatigue li­
mit of r = 0.1 is close to and a little smaller than the limit of r = 0, 
hence the simplified diagram is olose to and a little safer than the one 
of r = 0.

The formulars of fatigue limit whioh take r = 0.1 as a point of re­
ference can be derived easily in the similar way of r = 0.
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In Fig. 5 the dotted line is the theoretical fatigue limit of the ma­
terial. The abaoissa <5 represents the statio component of the alterna­
ting stress and the ordinate is the dynamio component. Point A and B 
are the fatigue limits of r = 1 and r z 0.1 respectively. Point C repr * 
sents the yield limit of the material. Two straight lines AB and CG repre­
sent the aimplifield curve of the theoretical fatigue limit. The angle 
between CG and the abscissa is ^5°. The line CG represents the statio 
yield limit of the material.

Because the stress oonoentration, dimension and the condition of the 
part only affect the dynamio component of the fatigue limit of the part, 
the line which represents the dynamio component of the fatigue limit of the 
part is decrease to A' B'G' from the line ABG which represents the dyna­
mic component of the fatigue limit of the material.

The equation of the line A' B' G' is

where
tí-, -tí ,

V -   p (9 )
e Go.1m

V  £B/*tí (10)

When the working stress of the part considered is at point F (Fig. 5 ) 
and if its stress ratio r is unchanged when the loads are increased, then 
its corresponding point of fatigue limit is point K. The value of the li­
miting stress OK can be written as:

tí-1 áa
* ~ Ká /p á m = p (11)

OK

where
1 -tf <

P = T T 7  = 5 I

As mentioned above, the r and p of the formulars (ll), (12).are repla­
ced by the means of them (fommlar (8) ).

The equation of the straight «line G C  is:



228 J. Yun

In (9) - (13), 6  ̂- yield limit of tho material) ¿ _ 1 - fatigue limit or
the material whan r a 1) tSQ 1 (SQ 1m - tho dynamio and atatio component 
of fatigua limit of the material whan r a 0 .1 respectively) &'m -
dynamio and atatio oomponent of fatigua limit of the part oonsidorad res­
pectively) 1 - coefficients of effeotive stress concentration, di­
mension and oondition of the surface in the oroas aeotion of the part res­
pectively.

\  ■ 1 + %( “i ” ’)

p - sensitive coefficient) cc - theoretloal coefficient of stress oonoen-
<3tration.

Vhen the maximum stress and stress ratio of fatigue limit f are gi­
ven, the corresponding dynamic and atatio oomponent 5^, :>m can be found
by (8):

- r)*Bax
(15)

Sm = I (1 * ''“Knax

In reliability simulation the means and standard deviations of and
 ̂ oan be found in handbook of reliability dealgn [7] . There are diffe­

rent suggeations for Ik̂ , £ , (5 [2] , [3] . In this paper the data in [2] are 
used.

The prooedure of simulation of fatigue limits is similar to the one 
for fatigue stress mentioned above.
3) The Reliability Simulation

The reliability simulation of fatigue strength of shafts is based on 
the formular (l).

Vhen the working stress of the shaft oonsidered is on the left of OG' 
(Fig. 5), the working etreaa should be found by formular (5) and the cor­
responding fatigue limit 6 should be calculated aooording to the formular 
(12). Compare them and then the reliability oan be found.

Vhen working streea of the shaft is on the right of oo', the working 
strees is limited by the atatio strength line CG . Then the working stress 
should be oaloulated aooording to the formular (7 ) and the limiting stress 
should be the

If the designer is not sure that whioh side of line OG' the working 
stress is in, then both comparations above should be done and the smaller 
reliability of them is the needed one.

After the signifioanoe level 01 is given, the 100(1 - ac)% oonfidenoe 
level of reliability oan be found from formular (3).
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If the data of ((J-ó) are far away from zero which oan be aaen from the 
histogram of (¿>-6) , the reliability ia too large, a amallar diameter of 
the eeotion should be considered to be ohoaen.

k. EXAMPLE OF RELIABILITY SIMULATION OF SHAFT SUBJECTED TO 
FLUCTUATING LOADS

Fig. 6

Suppose that a third shaft of the gear box of a oonveyer is showed in 
Fig. 6. The foroea aoting on the shaft from gears are: F , = 1726(n ),
Fri = 4I*50(n), Ft1 - 12110(N), Ft2 a 3250O(n), F<2 a 11830(N). The torsio­
nal moment T a 15.6 x 10 N-mm. The toleranoe of theso loads is - 10% and 
they are normally diatributed. The dimensions of the ahaft are shown in 
Fig. 6. The toleranoe of the lengths is - 1)1 and the one of the radial 
dlnonaione ia - 0.1)t. They are alao normally diatributed. The material 
of the shaft ia IfOCrNiMoA. The aurfaoe of the ahaft ia ground and its li- 
fa should be longer than 10 eyolea. Determine ita reliability.
Solution:

The mein atape of the alnulativa oaloulation are aa followa:
l) Calculation of the atandard deviations of the given parameters.

As the given parameters are normally diatributed between their upper 
and lower bounda, this interval oan be considered to be equal to - 3 times 
of the standard deviation. So the atandard deviations of Fa1, F^, ... 
oan be written respeotively as:

SFh1 " (1°* * Fa1)/3* SFri ' <1(*  x Fr1)/3»

S ^  a ( 1?C x Lt)/3ł S m ( x L )/3ł . 
2



230 J. Yun

2) Determination of the etresa limits of the material.
The stress limits of the material can be found in the handbook [7] .

r a -1» oc.x 1» N = to7, g = 53<*MPa, S = 20.0MPa,
® ¿-1

r = 0.1, aea m 1, N = 107, g = 1050HPa, S . = 33.33MPa,y> u. 1 o0>1

g = 935 - 1148 MPa, (N - life of the shaft tested (cycle))

The 1, S60 1 are the mean and deviation of the maximum stress of the
fatigue limit of the aaterial when r = 0.1. The means and the standard
deviations of its dynamic and atatio oomponent 6 - ., g n t• mU*1 aO.1 mO.1
can be found according to the formular (15). The mean and standard devia­
tion of the yield limit can be found similar to step l).
3) Determination of the dangerous cross section

From the means of the given parameters the bending and tortional moment 
and then the diagram of the oomputed moment can be obtained. Then the dan­
gerous section can be determined. In this example the section CC is the 
dangerous section.
4) Determination of the mean of stress ratio r of the working stress 

After the means of bending and torsional stress are found, the r and 
can be obtained from the formulars (6), (8).

5) Determination of the coefficients affeoting the stresses
k^ can be found aooordlng to the handbook (6J . In this example 

rt = 3rnm, r1/d1 = 0.04, D/d^ = 1.54, so the oĉ  = 2.21. (Pg , S2) can be fo­
und in [2], (P^ , S2) a (0.7341, 0.046862). Then the k^ can be calculated 
aocording to the formular (l4).

Acoording to [2], (8, S2) a (0.85625, 0.088952) and ^ a 1 for this 
example. Then the oan be oaloulated aooordlng to formular (10).
6) Generation of the random variables which have the given distributions 
for eaoh parameter and random rearrangement of the sequenoe of the num­
bers in each set of random numbers.
7 ) Simulative calculation of £ and 6 by sequentially picking out one num­
ber from each set rearranged and substituting them into the neoeasary for­
mulars (4) - (15).
8) Simulation of the reliability based on the formular (l) and the calcu­
lation of 100(1 - oc)% oonfidence interval ef the reliability.

The results are listed in Tab. 4 Fig. 7 shows the distribution of the 
(¿— (a). The (¿>-(9) are far from zero whioh means that the reliability of 
this shaft is too high. The oomparision between this distribution and the 
exaot normal distribution whioh has the same mean and standard deviation
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and are in the same scale of obscieaa (Fis. 8) shows that the distri­
bution of (S-(o) is not a normal one.

Ali

Fig. 7 Fig. 8

Tab. 4

Case 1 Case 2
Diameter 70 ^5
Size of
Sample 2000 2000

Numbers of 0 4Unsafety
Reliability 100* 99.8*
Significance
Level 0.05 0.05

Confidence 100# 99.9*
Interval 99.8* 99.5* Fig. 9

Vhen d1 = ^5 mm, r1 = 1 .5 mm are taken in this example, the results 
listed in Tab. k and the distribution of (6-d) is showed in Fig. 9.

5. CONCLUSION

1) Because nonlinear operations are usually Involved in the calculations 
of the reliability analysis of machins elements, the distributions of the 
equivalent stresses and Tatigue limits are not the normal oiiea. The assump­
tions used in the analytical method of reliability analysis lead to some 
errors.
2) Simulative method mentioned in this paper is good for reliability ana­
lysis of machine elements. It can directly simulate the pratioal situa­
tions and gives reasonable results.
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KOMPUTEROWA SYMULACJA ANALIZY NIEZAWODNOŚCI I JEJ ZASTOSOWANIA W SZYBACH

S t r e s z c z e n i e
Opracowania przedstawia problemy związana z symulaoją niezawodności 

ozęśoi maszyn. Liozby losowa, które przedstawiają dystrybuoję danego pa­
rametru, moina generować metodą Monte Carlo. Wtedy niezawodność motna sy­
mulować bezpośrednio poprzaz wlaśolwa podstawienia liozb losowych w opra­
cowanych wyraienlaoh. Nia Jest koniaozna stosowania załotań prostych metod 
analitycznych. Rozkład obliczanych naprętań i granic wytrzymałości rozwa­
żanej części maszyny motna symulować bezpośrednio z rozkładów danych zmien­
nych losowych. Wtady to motna symulować niezawodność taj ozęśoi, a następ­
nie motna ocenić przedział ufnośoi niezawodności. Uzyskana w tan sposób 
wyniki symulaoji są bardziej przekonująca i motna bardziej na nioh polegać.

Opracowanie zajmuje się takie symulaoją niezawodności szybów. Zapropo­
nowano nowsza rozwiązania i wyprowadzono wyratenia.

Opracowanie zawiera kilka przykładów, które ilustrują przyjętą prooe- 
durę i zastosowania symulaoji.
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KOMIIbiQTEPHAfî AHAJIHSA HAßEJKHOCTH 
H EË IIPHMEHEHHE B CTBOJIAI

P  e  3  »  M e

B p a ö o ie  npefloiaBjiHBTCH npoÖJieMu, cBH3aHHue o auHTauneit Ha^exHocTH f le t a -  
jie ä  uanmH. G toxaciH H ecK iie HHCxa, K o iop ae npe^ciaBJiH BT oÖoÖnieHHyio $yHKUHK) 
iaH H oro n a p a a e ip a  aoatHO bocnpoHSBecTH a e io ,a o a  M om e K a p io . T o r ja  HaneatHocTb 
uoxHO HenocpeACTBeHHO caaatH poBaTB npaBHJibHoft c o o t b 6 I c t b 6 h h o ö  noACiaHOBKoä 
cToxacTHaecKHX n acen  b  p a3p a ö o t aHHue BupaxeHHH. He H B Jiaeioa 00H3aTeabHna 
npnaeHeHHe ,ąaHHHx npocTux aH a a a ia n ecK a x  aeT ojtoB . P acnpeaeneH ae B m a c jia e a a x  

Harpy30K h  rpaHai* npeneaoB b h h o c j i b b o c t b  * s a  p a c c a a ip a B a e a n x  n e ia n e fl aamaH 
u o x h o  ctoiHTHpoBaiB HenoopefloiBeHHO o p acn p eaeaeH aa naHHax oaynaflHHx nepeaeH 
aL£x. T o rx a  aoxHO Ö ynei C H uaiapoBaib H aaexH o db x e i a j i a ,  a  3 a ie a  opbhhtb xobb 

pHTejIbHHñ HHTepBaa Ha^eXHOCTH.

I I ó a y a e H H a e  l a n a a  o C p a s o a  p e 3 y j i b i a i a  a a H T a u a a  ö o a e e  y Ó e n a T e n b H u ,  h  H a  h b x  

a o x H O  a o j i a r a i b c a .

B p a ö o i e  p a c c a a i p a B a e i c a  T a n a t e  M u n T a i s u a  H a n e a H o c i a  c i b o x o b .  n p e Æ n a r a B T -  

CH h o b b ie  p e r a e H H H  h  b b o a h i c ä  a a i e B a i a n e c K a e  B h ip a x e H H H .

P a ö o i a  c o ^ e p x H T  H e c K O ji b K o  n p n a e p o B ,  h j i j i i o c t p a p y x m n x  n p a a i n y »  n p o a e n y p y  u  

n p H a e H e H H e  a B a i a i p i H .


