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Chapter 1

Introduction

1.1 Motivation of the present study

Mathematical modelling is a widespread tool used by engineers and researches,

providing a cost-effective and convenient way to tackle practical problems. The

commercial packages have a variety of models available and can deal with a

range of different phenomena. The simulation can give an engineer a valuable

insight into the problem at hand, allowing to better understand the phenomena

and to avoid possible mistakes. The stated above benefits, together with the

rapid growth of computational power of modern computers, made the math-

ematical modelling very popular in the design, reliability estimation, research

and other processes.

In the last decade of the previous century a number of codes were developed

and then integrated into comprehensive commercial packages, which can deal

with multi-physics phenomena. At that time, most of the effort was put into the

stability and efficiency of the models. Although big improvements were done

in the field of the hardware, the possibilities of speeding up the simulations by

increasing the frequency of the processor are almost exhausted. Currently, the

appearance of multi-core processors and clouds of interconnected computers

opened the door to parallel programming. Another state-of-the art technique

of parallel computing originates from the computer graphics community and

makes use of graphical processor units.

The field of new models development was somewhat neglected by com-

mercial packages developers, in spite of the recent advances in computer ca-

pabilities. Nevertheless, the progress in computer power makes it possible to

introduce mathematical models, whose usage was previously limited, because

of long computing times and storage reqiurement. It is also worth to mention,
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that the code of the models implemented the commercial packages cannot be

readily modified. Thus, open-source packages have emerged, as a market re-

sponse to the needs of the users, who frequently modify the code in order to

test new solutions, or simply suit their needs. Open-source packages serve as a

convenient tool for researchers. Moreover, relatively high prices of commercial

codes should not be overlooked when discussing the motivation of using their

open-source counterparts.

Thermal radiation is a dominant heat transfer mode at elevated temper-

atures. Therefore, it is crucial in environments encountered in industrial fur-

naces, combustion systems, heating equipment, rocket plumes, etc. Radiative

heat transfer influences the gas and particle phases and also affects the combus-

tion chemistry. The difficulties arising when modelling radiative heat transfer

stem from the fact, that it is a long-distance and potentially all-to-all phe-

nomenon, contrary to convection or heat conduction, which can be treated as

local phenomena. The complexity is fully reflected in the mathematical descrip-

tion of the radiation transport, which is described by an integro-differential

equation. The level of complexity is elevated by the radiative properties of

medium, which are irregular functions of temperature, wavelength and gas

composition.

The models for solving radiation heat transfer problems available in com-

mercial CFD packages are often based upon many simplifications which limit

their usage or generate solutions with hard-to-control errors. Moreover, the

treatment of boundary conditions of special types (specular reflections, col-

limated beams) and material properties (non-diffusive surfaces, anisotropic

radiation) is limited or even impossible to account for within those models.

All the above reasons make the Monte Carlo a promising tool for solving

the heat radiation problems. Not only can it treat the radiation transfer with-

out many simplifications present in other techniques, but also is capable of

generating benchmark solutions. This is the only method capable of dealing

with radiative heat transfer problem of arbitrary level of complexity justified

by physics. The usage of the Monte Carlo in engineering applications was

limited, since its computer implementations resulted in excessively long com-

puting times. Therefore, the computational efficiency of the method is of great

importance. It should be emphasized, that Monte Carlo can be efficiently par-

allelized. This feature in the advent of easy access to large computer clusters

and graphical processor units significantly reduces the computation time.
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1.2 Earlier studies

1.2.1 Monte Carlo Method history

Historically, the statistical sampling technique, also named Monte Carlo, was

developed for the purposes of Manhattan Project during World War II in Los

Alamos Laboratory [62]. Stanisław Ulam, Enrico Fermi, John von Neumann

and Nicholas Metropolis used the method to create histories of life of neu-

trons during fission. According to those researchers, the process of fission can

be modelled by tracing a large, but finite, number of neutrons and analyse

the state of atoms the neutrons can interact with. The specific events in the

process like emission, absorption of the neutron, direction of emission or re-

flection, change of energy state etc. are determined by random sampling from

a known probability density function. Since then the field of Monte Carlo ap-

plication has grown and now include evaluation of multidimensional integrals

[62], rendering in 3D graphics, predicting the illumination [59, 60], radio-waves

propagation [113], radiation transport or generation of semi-exact solutions to

problems that have no analytical solution [62] - to name only a few. When it

comes to thermal radiation heat transfer, Monte Carlo was first used in early

1960’ by Fleck and later by Howell and Perlmutter [37, 52, 53, 54]. The recent

contributions to the enhancement of MC technique are due to the computer

graphics community [1, 30, 41, 94]. In this branch of engineering, MC is used

mainly for rendering of 3D scenes.

1.2.2 Monte Carlo in radiative heat transfer

Since the radiation mode of heat transfer predominates in high temperatures,

the fields of application of radiation models usually converge to the problems

in which high temperature is present. There exist a number of numerical meth-

ods capable of solving radiation problems, including Surface to Surface (S2S)

[50, 81], Zonal [49, 51], Spherical Harmonics (PN ) [6, 48, 58, 70, 71], Dis-

crete Ordinates (DO) [35, 36, 122, 123], Boundary Elements Method (BEM)

[7, 8, 9, 10, 131] and Discrete Transfer (DT) [22, 24, 72]. Each of these meth-

ods is described in some detail in chapter 3. Monte Carlo has a number of

distinctive features, that in some cases can make it preferable to the methods

mentioned earlier. Monte Carlo method is not prone to the ray effect, as it

is the case in DO [23, 81] and DT methods. The code of Monte Carlo tech-

nique can be kept relatively simple, yet capable of solving problems with some

3



specific boundary conditions (specular reflections, collimated rays) or detailed

material properties (non-diffusive surfaces, radiation anisotropy). It stands in

contrast with S2S and PN methods, for which the coding and solution efforts

rise drastically together with the problem complexity. Moreover, the core of

Monte Carlo, the ray tracing procedure, is a very good candidate to parallel

programming, described in details in section 1.2.5.

Monte Carlo Ray Tracing was applied to radiation heat transfer among sur-

faces by F. J. Nevárez-Ayala in FELIX code [87] and by C. Zeeb in MONT3D

code [138, 139]. The technique was also used in combustion simulations to de-

termine the effects of radiation-turbulence interactions. Different turbulence

models were employed, namely direct numerical simulation (DNS) [26, 137],

Reynolds-averaged Navier-Stokes (RANS) [110] and large-eddy simulation (LES)

[56, 111, 141].

Monte Carlo method was used to simulate the behaviour of the scattering

medium [115, 120] by exploring Mie theory. In those cases the ray direction

can be influenced by the presence of particles. In his work, Trivic [121] used

different method of incorporating the particles into Monte Carlo simulation.

The particles are treated as a gray gas of equivalent absorptivity. Thus, the

ray direction can not be changed due to ray-particle interaction. However, the

presence of particles is seen in the form of higher gas absorption coefficient

and consequently as a higher absorption probability. The main shortcoming of

Trivic’s approach is to assume the particles have the same temperature as the

surrounding medium. Such an approach may result in high inaccuracy in the

case of coal combustion systems, in which the temperature of coal particles

significantly differs from the gas they are suspended in.

When it comes to the simulation of practical systems, Monte Carlo method

was used to predict radiative heat transfer in coal-fired boilers in AIOLOS code

[64, 104] and flame modelling [110, 111, 117, 141].

1.2.3 Ray tracing on coarse meshes

The core of Monte Carlo technique is the procedure of ray tracing, in which

the most time consuming part is the routine of ray-boundary intersection [1,

43, 76, 109, 138, 139]. In the case of non-participating medium, the radiative

heat fluxes at boundary walls are of interest, thus the ray has to intersect only

real boundaries of the domain. More complicated case is an optically active

medium, for which the volumetric heat sources or sinks are also to be defined.

The volumetric heat sources or sinks correspond to the net radiative energy
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emitted or absorbed by the medium. In order to find the ray absorption point,

the information about the length of the ray within the medium is needed.

Thus, the intersections of the ray and the boundaries of inner volumetric cells

are to be defined as well. In the thesis, the main goal is to implement Monte

Carlo in an optically active medium.

Space traversal techniques help to reduce the number of ray-boundary in-

tersection tests, increasing the efficiency of a ray tracer. In the finite volume

approach the computational domain is to be discretized by an introduction of

a set of volumetric cells. The most straightforward implementation of Monte

Carlo technique is to trace the rays on the original convective mesh. In this

case, during the ray tracing the space is traversed volume-by-volume [77], re-

sulting in prohibitively long computation times. However, it should be noticed

that the characteristic dimension of the radiation is considerably larger than

that of turbulence or convection. Therefore, the usage of coarse mesh, build

on the basis of fine convective mesh, for solving the radiative heat transfer is

a natural step towards reducing the computational intensity of the ray tracing

algorithm. The idea of using coarse ortho-Cartesian mesh was presented in G.

Węcel Ph.D. thesis [131]. Later, this concept was also used by I. Hunsaker [56].

The present thesis makes use of the same idea.

The reason why a regular ortho-Cartesian mesh was chosen for ray tracing

is that, the volume elements are always axis-aligned cuboids and the pro-

cedure of finding the ray-cell intersection is fast and simple to implement

[4, 12, 39, 40, 131]. The model presented in the thesis implements uniform

ortho-Cartesian mesh, in which the ray is traced cell-by-cell and traverses

the space linearly in time. Similar concepts has been presented in the litera-

ture such as uniform space division [139] and volume-by-volume advancement

[77] methods but not with the boundary description by NURBS surfaces. It

should be emphasized that in the case of non-participating medium the pro-

posed method may not be optimal one in comparison with other space subdivi-

sion methods like octrees, BSP-trees, KD-trees or bounding volume hierarchy

(BVH). In those approaches the space can be traversed faster than linearly in

time. More information about the mentioned above methods can be found in

the literature [4, 39, 40, 42, 57]. However, in the case of participating medium,

the space subdivision method directly influences the size of volume elements

in which the medium properties are averaged. In general, the mesh resolu-

tion should be fine enough to adequately account for the changes in medium

properties. Moreover, the position of zones to be refined is not known a-priori.
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Therefore, the idea of a regular ortho-Cartesian mesh was chosen instead of

other space subdivision techniques mentioned before. G. Węcel used the ortho-

Cartesian mesh with varying cell sizing [131]. However, in his implementation,

it was not possible to locally refine the mesh. The idea of hierarchical mesh

presented in the thesis is a solution to this problem.

1.2.4 Boundary description

The mathematical description of 3D geometry can be a challenging task, espe-

cially when it comes to complicated shapes. The simplest way to describe the

3D surface is to express it as a finite set of triangular or quadrilateral surfaces

[138]. By doing so, the user has to accept its shortcomings in the form of rel-

atively large memory consumption and limited accuracy when the surface is

not planar. The usage of polynomials is a more elaborated way of 3D geometry

description. Polynomials are smooth and have a compact form. However, they

are proven to be unstable to floating point operations, since their coefficients

can attain very large or small values [31, 96]. In computer graphics it is also

important to have a possibility of local geometry modification, which is hard

to achieve using polynomials. The stated above shortcomings can be success-

fully circumvented by using a special form of the mathematical description of

boundaries, namely the parametric non-uniform rational basis spline (NURBS)

surfaces.

In order to specify the boundaries of the enclosure, NURBS surfaces were

chosen because of a few reasons. They are able to describe shapes of high com-

plexity, use little of computer memory, are stable to floating point operations

and are widely used in computer aided design (CAD) programs and computer

graphics [31, 95, 96]. Moreover, there exist efficient algorithms for finding ray-

NURBS surface intersection. Most of these algorithms were developed for the

purposes of surfaces visualization and rendering in computer graphics.

According to Pabst [91], the algorithms for finding ray-parametric surface

intersection can be classified as follows: subdivision, numerical, algebraic and

Bézier Clipping.

Subdivision-based algorithms make use of convex hull property of paramet-

ric surfaces [102, 136]. The surface is tested for the intersection with ray and

in the case of success it is subdivided. The process is repeated until no hit is

reported or the surface is smaller than prescribed threshold and therefore is

assumed to adequately approximate the real intersection point.
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The core of numerical algorithms is the iterative Newton’s method char-

acterized by quadratic convergence rate, provided it has a good initial guess.

The algorithm was first used in the context of finding ray-parametric surface

intersection by Toth [119]. The initial guesses for Newton’s method were ob-

tained from the interval analysis of the surface. Other authors [2, 41, 76, 91]

used hierarchies of axis aligned bounding boxes to properly initialize Newton’s

method and to limit the number of ray-surface intersection tests, but they

implemented different algorithms for bounding box creation.

Algebraic method for ray-parametric surface intersection was first demon-

strated by Kajiya [61]. The method requires finding the roots of 18th-degree

polynomial and is limited to 3-rd order surfaces without possibility to extend

it to arbitrary NURBS surfaces making its application impractical.

The Bézier Clipping algorithm for ray-patch intersection was introduced

by Nishita [86] and it can be thought of as an integration of subdivision-

based and numerical algorithms. The method utilizes convex hull property

of parametric patches to determine parts of surface that cannot contain an

intersection point. The algorithm has better convergence than subdivision-

based algorithms and was improved by Efremov [30]. Wang [125] improved the

performance of ray-parametric patch intersection algorithm for coherent rays

by combining Newton’s and Bézier Clipping methods.

From the algorithms presented above only Newton’s and Bézier Clipping

methods are fast enough to be implemented in ray tracing. Newton’s method

has an advantage over the Bézier Clipping, as it is not limited only to Bézier

patches and therefore this technique was used in this work.

1.2.5 Parallel ray tracing

Monte Carlo method requires tracing a huge number of rays in order to get an

accurate solution. It is considered a good candidate for parallel computation,

since the tracing procedure of a single ray does not require any information

about the fate of other rays [136, 138]. Therefore, the natural way to speed-up

the calculations is to use multi-processor machines. The reason for resorting

to parallel computing is even more obvious, as the possibilities of improving

the frequency of a single processor have almost reached the limit. The problem

of parallelization of Monte Carlo ray tracing radiation models is addressed in

works [21, 33, 56, 75, 79, 98, 127, 135], which report a good scaling of the ray

tracing algorithm.
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Single-instruction multiple-data stream (SIMD) machines were used in first

attempts of parallelization of Monte Carlo method. In this kind of architecture

the group of rays is passed to the processors at one time. After every ray from

the group is absorbed the new set of rays can be worked on. This led to

poor scalability, since in general the ray path lengths are different and some

processors may idle, waiting for the termination of the last ray. The way to

overcome the problem is to generate new rays as soon as one of them was

terminated [45].

The state-of-the-art technique, originating from computer graphics com-

munity, uses graphics process units (GPUs) for parallel ray tracing. A single

GPU has a shared memory and is composed of hundreds of cores, allowing

to trace hundreds of rays simultaneously. The technique proved to be very

efficient, as it allowed for the real-time rendering of 3D scenes in computer

graphics [1, 91, 103]. Moreover, Despres run Monte Carlo ray tracing on an

nVidia 7600 GS GPU and showed speedup of 6 in comparison with Xeon 2.4

GHz CPU [27].

Due to the fact, that the field of parallel computing is relatively young,

the programming standards of common C++ language lag behind. Thus, the

correct implementation of parallel code is a challenging task, in which the

programmer has to take into account the configuration of the computer or

computer network and the type of hardware. The codes with GPU-enhanced

processing are developed using libraries specific for a given GPU vendor, like

nVidia CUDA C/C++ [89]. For so called distributed-memory multiprocessors,

networks of workstations and combinations of those, the most popular pro-

gramming technique is Message Passing Interface (MPI) [85]. In this standard,

multiple copies of a program cooperate with each other by exchanging the

data. In order to force a single, sequential program to include parallel portions

of the code (multi-threading or farming), OpenMP library was introduced [16].

It is a gentle modification of C, C++ programs and thus is relatively easy in

implementation. It is also possible to stitch MPI and OpenMP together into

one hybrid parallel program [135].

In order to achieve good scaling, the inter-processor communication should

be minimised. In CFD applications, the common procedure is to decompose

the computational domain into fragments corresponding to different proces-

sors. Then MPI is used in order to allow data exchange between the processors.

The domain decomposition is a good strategy in the case of CFD calculations,

where all the phenomena have local character (fluid flow, turbulence, conduc-
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tion, combustion). However, radiation is potentially all-to-all phenomena, in

which the interaction occurs on a long distances. Therefore, there are two main

strategies for parallel treatment of Monte Carlo technique applied to radiation

heat transfer. The first is the domain decomposition, which requires passing

the rays between processors owing their part of the domain [135]. The second

idea is to create a local copy of a mesh, that can be used individually by each

processor, avoiding data exchange [56]. The latter idea is better, when the ray

tracing is done on coarse mesh of relatively low size. This topic was not cov-

ered within the thesis, but rather is described here in order to point out the

direction for further research.

1.3 Objectives

The main objective of the thesis is to develop Monte Carlo Ray Tracing method

able of solving conjugate heat transfer problems in domains of arbitrary shapes,

in the presence of non-gray gases and solid particles.

The stated above objective is to be realized, by dealing with the following

partial problems:

• Develop the system for ray tracing on hierarchical ortho-Cartesian meshes

with the geometry description in the form of NURBS surfaces.

• Implement the code within the open-source package OpenFOAM.

• Verify the technique using benchmark solutions.

• Prove the concept of using coarse meshes in the radiative analysis.

• Enhance the numerical efficiency of the method by

– introducing coarse ortho-Cartesian mesh,

– implementation of parallel ray tracing.

• Extend the applicability range of the MCRT method to include

– non-gray properties of gases,

– influence of solid particles suspended in the fluid.

• Compare Monte Carlo method with Discrete Ordinates.
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Chapter 2

Mathematical models

2.1 Radiative heat transfer

This section describes basic laws and definitions that are associated with heat

radiation. The purpose is to introduce the terminology and to give a general

overview of the subject matter. A detailed description of the radiative heat

transfer theory can be found in textbooks [51, 81, 108].

Radiative heat transfer and thermal radiation terms are frequently used to

describe the phenomena of heat transfer caused by emission and absorption

of electromagnetic waves or photons. There exist two theories describing the

behaviour of photons: electromagnetic wave theory and quantum mechanics.

Neither of these approaches is capable to fully explain all phenomena that are

observed. This fact is commonly known as the wave-particle duality and the

solution is to use both theories interchangeably, depending on the case at hand.

As in each mode of heat transfer, the driving force of radiation is the tem-

perature difference. What distinguishes radiation from conduction and con-

vection is that in simpler cases the heat transfer rates are proportional to the

difference in temperature to the fourth power. Therefore, the radiative heat

transfer mode becomes dominant at high temperatures.

In general all atoms emit radiative energy in the form of waves (photons)

when their temperature is above absolute zero. As explained by quantum me-

chanics theory, atoms and molecules, undergo transitions from one energy state

to another which is connected with the emission or absorption of energy in the

form of photons. Photons propagate in vacuum with the speed of light c0,

which equals to 2.998× 108 m/s. In the case of other media, the propagation
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speed c is expressed by introducing the index of refraction n:

c =
c0
n
. (2.1)

The value of refraction index depends on the type of medium. For most gases

n ≃ 1 and thus its influence can be neglected. On the other hand, the refractive

index for liquids and semi-transparent solids is much higher than one and in

this case it should be taken into account (eg. for glass n ≃ 1.55).

The electromagnetic wave (or photon) is described by means of its velocity

c, wavelength λ and frequency ν, coupled by equation:

c = λν. (2.2)

According to quantum mechanics, every photon has a discrete amount of en-

ergy eph expressed by means of Planck’s constant hP :

eph = hPν. (2.3)

The range of wavelength spectrum of electromagnetic waves is broad and varies

from order of couple hundred of meters (radio waves) to less than 10−14 meters

(γ rays). The wavelength range characteristic to thermal radiation spans from

0.1 to 100 µm and is limited to waves emitted by a medium only due to its

temperature. Therefore, the region corresponding to thermal radiation ranges

from long-wave portion of the ultraviolet, through the visible light up to the

mid-infrared (Fig. 2.1) [81].

10-5 10-4 10-3 10-2 10-1 1 10 102 103 104

λ, μm

Figure 2.1: Electromagnetic wave spectrum.

In order to solve engineering problems one has to consider the interaction

of incident radiant energy with matter. The problems involve emission and

absorption of radiation by solid surfaces, partially transmitting media such as

gases and clouds of suspended particles. All the material properties required by
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the radiative heat transfer equations may depend on the wavelengths of radiant

energy. It is customary to name the quantities related to a given wavelength

as spectral (monochromatic) and those concerning the whole spectrum as total

(panchromatic). The first group of quantities is denoted by a subscript λ.

2.1.1 Blackbody radiation

A blackbody is defined as a perfect absorber of thermal radiation, which means

it absorbs all incident radiation from all directions and at all wavelengths.

In thermodynamic equilibrium, blackbody must radiate away as much energy

as it absorbs, thus it was found that it is also a perfect isotropic emitter

[108]. The amount of energy a blackbody emits at a given temperature T

and wavelength λ is called the spectral blackbody emissive power and can be

determined according to Planck’s law (Fig. 2.2):

ebλ(T, λ) =
2πhP c

2
0

n2λ5 [e(hP c0/nλkBT ) − 1]
, (2.4)

where hP = 6.626 × 10−34 Js is Planck’s constant, n is refractive index, c0 is

speed of light in vacuum, kB = 1.381×10−23 J/K is Boltzmann constant. After

introducing constants C1 = hP c0
2 and C2 = hP c0/kB the equation 2.4 can be

simplified to

ebλ(T, λ) =
2πC1

n2λ5 [e(C2/nλT ) − 1]
. (2.5)

According to equations (2.4), (2.5), the overall level of emission rises with

increasing temperature, while the wavelength of maximum emission moves

towards shorter wavelengths. The wavelength of maximum emission at a given

temperature can be found from equation, known as Wien displacement law:

λmax =
C3

nT
, (2.6)

where C3 = 2897.8 µmK. Total blackbody emissive power is the energy flux

emitted by a blackbody within all wavelengths (W/m2). It can be calculated

from the Stefan-Boltzmann law:

eb(T ) =

∞
∫

0

ebλ(T, λ)dλ = n2σT 4, (2.7)
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Figure 2.2: Spectral blackbody emissive power for various temperatures.

where σ is Stefan-Boltzmann constant defined as

σ =
2C1π

5

15C4
2

= 5.6696 · 10−8 W/m2K4. (2.8)

The blackbody emissive power in the wavelength range λ1, λ2 is

eb,λ1−λ2
=

λ2
∫

λ1

ebλ(T, λ)dλ =

λ2
∫

λ1

2πC1

n2λ5 [e(C2/nλT ) − 1]
dλ. (2.9)

In order to compute integral (2.9) one can use tables or Wiebelt’s approxima-

tion, both returning f(nλT ), which is the fraction of total blackbody emissive

power in the wavelength interval from 0 to arbitrary value of λ for a given

value of nλT . Then

eb,λ1−λ2
= [f(nλ2T )− f(nλ1T )]n

2σT 4. (2.10)
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2.1.2 Intensity of radiation

The radiative energy flux (W/m2) is defined as spectral radiative energy Er
λ

transferred through differential surface area dS in time:

erλ =
Er

λ

dS dt
. (2.11)

The radiation emitted in a given direction is defined in terms of the intensity.

Intensity of radiation is the spectral radiative energy flux transferred within

an infinitesimal solid angle dΩ centered around a given direction (Fig. 2.3) and

is given by equation

Iλ =
derλ

cos φ dΩ
=

d3Er
λ

dS cos φ dΩ dt
, (2.12)

where φ is the angle between the differential surface normal and incoming

intensity direction vectors. The units of the intensity are W/(m2 sr), where sr

is called steradian and is a unit of solid angle dΩ. After integrating over entire

x

y

z

θ

ϕ

dS

dΩ

I

Figure 2.3: Intensity of radiation I travelling along direction, defined by polar
θ and azimuthal φ angles in an infinitesimal solid angle dΩ, centered around
that direction and striking differential surface dS.

spectrum, one can find total intensity of radiation:

I =

∞
∫

0

Iλ dλ. (2.13)
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θ

(a) intensity

θ

(b) directional emissive power

Figure 2.4: Angular dependence of blackbody intensity and blackbody direc-
tional emissive power.

It is proven [108] that intensity of radiation from a blackbody is independent

of the direction of emission (Fig. 2.4). Surfaces that do not have directional

dependence of radiative properties are called diffuse. In order to obtain the

radiative energy flux at a given surface, the normal component of the radiation

intensity should be integrated over a hemisphere

er =

∫

2π

I cos φ dΩ. (2.14)

The differential solid angle is related to the polar and azimuthal angles by

dΩ = sinφ dφ dθ. (2.15)

Inserting equation (2.15) into (2.1.2) yields for diffuse surfaces

er = I

2π
∫

θ=0

π/2
∫

φ=0

cos φ sinφ dφ dθ = πI. (2.16)

The above equation is also valid for the blackbody

erb = πIb. (2.17)

Radiative energy flux from a finite solid angle is defined by θ ∈< θ1, θ2 > and

φ ∈< φ1, φ2 >

er = I

θ2
∫

θ1

φ2
∫

φ1

cosφ sinφ dφ dθ =
1

2
I
(

sin θ2
2 − sin θ1

2
)

(φ2 − φ1). (2.18)
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2.1.3 Radiation between surfaces

Unlike their thermo-physical counterparts, radiative properties of materials

are in general a function of wavelength. Materials whose properties do not

change with wavelength are called gray. This assumption greatly simplifies

the analysis and it is accepted in most engineering applications. Thus, most

problems considered in the present work are analysed for the gray bodies.

When the beam of radiation strikes a surface of a body, it can be absorbed,

reflected or transmitted. The material is called opaque if no electromagnetic

wave can penetrate through it. Most solids absorb the radiation within a very

thin surface layer, thus no radiative energy transmission occurs (Fig. 2.5).

Irradiation Reflected

radiation

Absorbed 

radiation

Figure 2.5: Absorption and reflection by a surface.

In section 2.1.1 the blackbody was defined as a perfect emitter and ab-

sorber of radiant energy. The behaviour of real surfaces deviates from that of

blackbody, but their properties are defined by means of the respective black-

body counterparts. Therefore, the fraction of blackbody emission emitted by

a real surface of the same temperature is termed emissivity ǫ. By analogy,

the absorptivity α is the fraction of blackbody radiation absorbed by a real

surface. According to the Kirchhoff’s Law, when local thermodynamic equilib-

rium is assumed, the surface absorptivity equals to emissivity, for both total

and spectral cases

α = ǫ;αλ = ǫλ. (2.19)

Since not all radiation incoming at the real surface is absorbed, a part of it

should be reflected, in order to fulfil the balance of energy. The ability of the

surface to reflect the radiation is called reflectivity ρ and can be determined

from the equation

ρ = 1− α = 1− ǫ. (2.20)

For real surfaces, the direction of radiation beam after being reflected is strongly

dependent upon the angle of incidence. The most accurate is bidirectional re-

flectivity model, but such approach requires detailed material data, acquiring
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of which is cumbersome and not always possible. Instead, the model applied

in the current work treats the reflectivity as a sum of specular (or mirror-like)

ρs and diffuse ρd components:

ρ = ρs + ρd. (2.21)

The diffuse reflection is such, that all directions from a hemisphere above

the reflection point are equally probable. In the case of specular reflection,

the new direction of the beam lies symmetrically on the opposite side of the

surface normal at the point of reflection. The ratio of the specular component

of reflectivity to the overall reflectivity is given by specularity ratio

rs =
ρs
ρ

=
ρs

ρs + ρd
. (2.22)

2.1.4 Radiation in absorbing emitting media

The medium is called transparent if it does not interact with radiation. On the

other hand, if the interaction occurs, the medium is termed semitransparent

and this is the case for a number of media encountered in practical problems.

The interactions between medium and radiation include attenuation and

augmentation of the radiation intensity along a specific path. The attenuation

is caused by absorption of radiative energy by molecules and/or by scattering.

Consequently, the augmentation occurs when a molecule releases energy by

emission of a photon and/or by scattering. The term scattering refers to the

interaction of electromagnetic waves with small particles (fly ash, fog, etc.)

and denotes a change of a direction in which a photon travels by one of three

mechanisms - diffraction, reflection or refraction. As a consequence, the inten-

sity of radiation in a given direction can also be amplified or attenuated by

means of inscattered and outscattered rays respectively.

The interaction between electromagnetic waves and particles, suspended

within a gaseous phase, depends on the dimension of the particles with respect

to radiation wavelength and is expressed by means of size parameter

x =
πdp
λ
, (2.23)

where dp is effective particle diameter. There are three regimes of interaction,

in which different theories are applied:

i) x≪ 1 - Rayleigh scattering,
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ii) x ≃ 1 - Mie scattering,

iii) x≫ 1 - the particle surface can be treated as an ordinary surface subject

to geometric optics.

The problems covered by the thesis include the combustion of pulverized

coal inside a chamber. The coal particles are assumed to be ideal spheres,

of diameters in the range of dp ∈ (10, 2000)µm, which corresponds to the

particle diameters encountered in industrial furnaces. The thermal radiation

wavelengths are in the range of λ ∈ (0.1, 100)µm. As a consequence, the

values of the size parameter x change from order of one up to order of tens

of thousands and in prevailing majority of cases x ≫ 1. Therefore, it was

assumed in the thesis, that radiation particles interaction can be described by

means of geometric optics. Moreover, the surface of coal particles is very rough

and irregular, thus its absorptivity is close to 1. It implies, that the radiation

scattering due to the presence of particles can be neglected and another method

for interaction of particles with radiation can be introduced.

The method of particle radiation interaction used in the thesis assumes,

that a cloud of particles is treated as an additional gray gas absorbing and

emitting the radiation. Therefore, the scattering effects on particles are not

considered within the thesis. However, it should be emphasized that Monte

Carlo ray tracing method is capable of including scattering effects [74, 81, 108].

The topic of coupling between radiation and particles is presented in details

in section 4.1.2.

Kirchhoff’s Law for media states, that at every point the ability of the

medium to absorb and emit radiation must be equal. The properties of medium

describing its ability to absorb and emit radiation are expressed by means of

absorption and emission coefficients. These coefficients are equal upon the

restrictions given by Kirchhoff’s Law.

The change of radiation intensity due to absorption when passing through

a semitransparent medium of thickness ds is

dIa = −κIds, (2.24)

where κ is absorption coefficient and I is the incoming intensity. The absorbed

portion of the radiation intensity on the path 0 → s can also be defined in

18



terms of absorptivity α:

α ≡ I(0)− I(s)

I(0)
= 1− exp



−
s
∫

0

κ ds



, (2.25)

where I(0), I(s) are respectively the intensities at the beginning and at the

end of the path s.

The intensity emitted along a differential path is

dIe = κIb ds, (2.26)

where Ib is the blackbody intensity. Equations (2.24) and (2.26) can be for-

mulated in terms of spectral variables by appending subscript λ to intensities

and absorption coefficient.

2.1.5 Radiative heat transfer equation

The change of total radiation intensity of the ray along a given direction and

in the given location within a semitransparent emitting and absorbing medium

is governed by the equation

dI

ds
= s · ∇I = κIb(Tm)− κI, (2.27)

where κ is absorption coefficient, I is intensity of incoming radiation, Ib is

emitted radiation and Tm denotes the temperature of the medium. Equation

(2.27) is called the differential form of the directional equation of radiative

transfer and is also valid for spectral quantities.

Equation (2.27) is subject to boundary condition

I(rw, s) = ǫ(rw)Ib(rw) +
1− ǫ(rw)

π

∫

n·s′<0

I(rw, s
′)|n · s′| dΩ′, (2.28)

where rw is a location at the wall, n denotes surface normal unit vector pointing

into the domain and making an angle θ′ with an arbitrary direction s′, such

that cos θ′ = n · s′.
The solution of RTE (2.27) yields the radiation intensity field I at any point

and any direction of the domain. Subsequently, the radiation intensity field can
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be used to determine the radiative heat flux vector according to equation

q =

∫

4π

I(s)s dΩ. (2.29)

The radiative heat flux in the direction of the vector n is:

qr = q · n =

∫

4π

I(s)n · s dΩ. (2.30)

The radiative heat source/sink due to absorption and emission within the par-

ticipating medium is obtained by integrating the equation of radiative transfer

(2.27) over all solid angles

qrv = ∇ · q =

∫

4π

κIb dΩ−
∫

4π

κI dΩ = 4κσT 4 − κG, (2.31)

where G is called incident radiation and equals to

G =

∫

4π

I dΩ. (2.32)

2.1.6 Radiative properties of gases and their approxima-

tions

The gray gas assumption, i.e. wavelength independent radiative properties of

gas, can deteriorate the accuracy of radiative heat transfer predictions. In the

case of the model, which is meant to provide benchmark solutions, the ability

to deal with real gas properties is crucial.

The gas can be seen as a composition of molecules, atoms, ions and free

electrons. According to quantum mechanics, the molecule is a system of atoms,

that has a discrete set of energy states, composed of electronic, rotational and

vibrational modes. The transitions between discrete energy states are con-

nected with absorption/emission of photons. Since energy states have discrete

values, so are the photon energies and wavelengths, according to the equation

(2.3). Consequently, the gas absorption and emission coefficients are highly

oscillating functions of wavelength in the form of a sequence of very narrow

spectral lines. Closely spaced spectral lines form bands. The width of spectral

lines depend on various broadening effects, which in turn are correlated to gas

temperature, pressure and composition.
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For the temperature levels encountered in most engineering applications,

gas mixtures emit/absorb energy of wavelengths corresponding to vibration-

rotation bands. Bands connected to electronic transitions play an important

role in higher temperatures (above several thousand K). Vibration-rotation

bands have the biggest width for triatomic molecules, among which CO2 and

H2O are of special interest, since they are frequently present in significant

amounts in most engineering problems.

Since the real behaviour of the gases is far from gray-gas assumption, their

radiative properties should be modelled in more detailed way. There are several

methods of modelling spectral properties of gases, which include:

1. Line-by-line,

2. Narrow-band,

3. Wide-band,

4. k-distribution,

5. Weighted Sum of Gray Gases.

Line-by-line

Line-by-line method is considered to be the most accurate. Simultaneously, it is

the most time consuming technique, which makes it impractical for engineering

calculations. The method uses databases of high-resolution line spectra for

different molecules and their mixtures at various temperatures. The databases

are known as HITRAN [100] and HITEMP [101]. In this method, the radiative

absorption is determined by integrating over all lines with contributions within

the band.

Narrow-band

Narrow-band models use simplifications to ease the spectral integration over

a given bandwidth. The simplifications concern mainly the shape of the line

structure. Within the narrow-band models, one can distinguish between the

Elsasser, the Goody and the Malkmus models. The differences are their assumed

distributions of line spacing, shape and intensity. More information can be

found in [28, 44].

Wide-band

By analogy, the wide-band model spans over an entire vibration-rotation band.
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Figure 2.6: Reordering of the absorption coefficient κ vs. wavenumber function
in order to form the κ-distribution in g-space.

In practice, to predict the radiative behaviour of gases and to derive the re-

lations for wide-band models, theoretical quantum mechanics can be used, as

was done by Grief [20, 55]. Another approach was presented by Edwards and

Menard [28] who modelled a band of rotation lines and introduced the expo-

nential wide band model. The model was verified against a large dataset and

presented in publications [29, 134]. It was proven to yield results of very good

agreement with experimental data.

k-distribution

The idea behind the k-distribution method is to avoid laborious integration

over the narrow spectral intervals (Fig. 2.6a) by replacing it by the integration

over the normalized artificial wavenumber g. In order to achieve it, the ab-

sorption coefficient is reordered to form a monotonic absorption coefficient cu-

mulative distribution function versus normalized artificial wavenumber g (Fig.

2.6b). Then, the smoothly varying function is used to calculate the spectral

property dependence in the radiative transfer relations. As a consequence of

reordering, the number of points required for integration is much less than in

the case of original dependence of the absorption coefficient and wavenumber.

The name of the method comes from the nomenclature used in the field of

meteorology, where k stands for the absorption coefficient.

Standard k-distribution method was found to be inefficient in cases of non-

homogeneous gas compositions or temperatures across the domain. The cor-

related k-distribution (c-k method) overcomes the limitations of the standard

model [44, 67, 99, 112, 141]. The most recent works of Modest, Zhang and Wang

[83, 84, 126, 140] resulted in an introduction of full-spectrum k-distribution
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(FSK) method, which is in fact a variant of c-k method. The authors claim,

that the technique is an exact method for a correlated absorption coefficient,

utilizing a continuous k-distribution over the whole spectrum and allowing us-

age of a quadrature scheme of arbitrary order. The experimental data for the

absorption coefficient was taken from HITEMP [101] for H2O and CDSD [116]

for CO2 species.

Weighted Sum of Gray Gases

WSGG model was developed by Hottel [51] for the purpose of its implementa-

tion in zonal method. Its main advantage, being a good compromise between

accuracy and computational time, made it one of the most widely used in

engineering problems [82, 108].

Although some researchers used more accurate modelling of radiative gas

properties in their ray tracing algorithms (c-k [117, 141]), none of them can be

easily used in engineering problems due to prohibitively long computational

time. This is caused by the fact, that spectral properties of the gases have to

be randomly sampled by statistically meaningful number of rays. The stated

above advantage was also the main reason why WSGG was employed within

the present work.

The theoretical background of the model is covered by this paragraph fol-

lowing the approach used by G. Węcel works [130, 131, 132, 133]. The numerical

implementation inside Monte Carlo Ray Tracing model is described in chapter

4.9. Finally, section 6.3 presents practical example.

⋆ ⋆ ⋆

The total absorptivity (equal to emissivity) of the gas is defined as

α = ǫ = 1− τ = 1− e
∫
s
κds. (2.33)

In accordance to paper of G. Wecel [132], total emissivity of H2O − CO2

mixture is calculated by

ǫ =

Ng
∑

i=0

ai
(

1− e−κipt(zC+zH)s
)

, (2.34)

where Ng, a, κ, pt, zC , zH , s are the number of gray gases in the model, the

weighting factor, the absorption coefficient, total pressure of the mixture, mo-

lar fraction of CO2 and H2O and path length, respectively. In the present
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formulation of WSGGM four gray gases Ng = 4 with a transparent gas (i = 0)

are used. The weighting factors are positive and sum-up to unity

Ng
∑

i=0

ai = 1.0, ai >= 0. (2.35)

For the transparent gas (i = 0)

a0 = 1−
Ng
∑

i=1

ai. (2.36)

The physical meaning of weighting factor is the following. It is the portion of

black body energy associated with the given component gas of the spectral

regions in which the absorption coefficient is close to κk (cf. Fig. 2.7). The

κ

κk

λ

Figure 2.7: Definition of weighting factors ak as a portion of spectral energy
distribution [51].

weighting factors are polynomial functions of temperature and molar fraction

ratio

ai =
4
∑

j=0

bi,jT
j
r , ai >= 0, (2.37)

where Tr is normalized temperature defined as Tr = T/Tref . Reference tem-

perature is set to be Tr = 1200K. The bi,j coefficient is a polynomial function

of molar fraction ratio of H2O to CO2 Mr = pH2O pCO2

bi,j =
4
∑

k=0

Ci,j,kM
k
r . (2.38)

The absorption coefficient of a single gray gas i is

κi =

4
∑

k=0

di,kM
k
r . (2.39)
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The WSGGM coefficients C and d are found by least-square surface fitting to

the data generated using HITEMP 2010 spectroscopic database. The model

coefficients for a CO2−H2O mixture for molar fraction ratio Mr ∈ (0.01, 4.00),

temperature T ∈ (300, 2400)K and pressure-path length product pts ∈ (0.01, 60)

atm were reported in paper [132] and used within the thesis.

2.2 Computational fluid dynamics

The purpose of this section is to give a brief description of the mathematical

models dealing with mass, momentum and energy transfer, that are connected

to fluid flow. In the present work, the open-source computational fluid dy-

namics (CFD) package OpenFOAM [90] was used. Within the package, all the

equations are already implemented and the author’s role was only to modify

the radiation model, visible in the overall energy balance equation as an energy

source term. It should be kept in mind, that the models presented within the

current section are limited to those, directly used in the problems addressed

by the thesis. Therefore, all the models being outside the scope of the thesis

were omitted.

2.2.1 Flow field

Mass Conservation

The mass conservation equation or continuity equation has the following form

∂ρ

∂t
+

∂

∂xi
(ρui) = Sm, (2.40)

where: ρ is fluid density, ui is velocity in i-th direction, Sm is the mass source.

In the case of species transport, the continuity equation reads

∂ρYA
∂t

+
∂

∂xi
(ρuiYA) = − ∂

∂xi
JA,i +RA + Sm,A, (2.41)

where: YA is mass fraction of species A, RA is the production rate of species

A due to reaction, Sm,A is the mass source of species A due to devolatilization

or evaporation and JA,i is the diffusion mass flux of species A. The diffusion

mass flux in the case of laminar flow regime, is described by Fick’s Law:

JA,i = −ρDA,m
∂YA
∂xi

, i = 1, 2, 3; (2.42)

where DA,m is diffusion coefficient of species A in the mixture.
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Momentum Conservation

The momentum conservation law is described by Navier-Stokes equation of the

form:
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

+ ρgi + Fi, (2.43)

where p denotes static pressure, τij is stress tensor, gi is gravitational acceler-

ation, Fi is the momentum source term, eg. due to the presence of particulate

matter and its interaction with continuous phase.

The stress tensor is determined from the following relation

τij =

[

µ
∂ui
∂xj

+
∂uj
∂xi

]

− 2

3
µ
∂ul
∂xl

δij, (2.44)

where µ is molecular dynamic viscosity, δij is Kronecker delta.

2.2.2 Heat transfer

The main equation describing heat transfer is called the energy conservation

equation. In the case of flows involving multi-species transport and including

chemical reactions, the equation is given by:

∂

∂t
(ρH) +

∂

∂xi
(ui(ρH)) =

∂

∂xi
(k + kt)

∂T

∂xi
− ∂

∂xi

∑

A

hAJA +
∂

∂xi
(τij)effuj + Sh,

(2.45)

where H is total specific enthalpy, k, kt are thermal and turbulent conductivi-

ties, hA denotes sensible specific enthalpy of species A, JA is diffusion flux of

species A, (τij)eff is effective stress tensor, Sh is the volumetric heat source,

defined as

Sh = Sh,r + Sh,p + Sh,react, (2.46)

where Sh,r, Sh,p, Sh,react are respectively the volumetric heat sources due to

radiation, particles and reactions. Sh,r is defined by equations (4.19) or (4.38),

Sh,p by (2.62) and Sh,react by (2.69), (2.76). The total enthalpy H is a sum of

sensible enthalpy and kinetic energy

H = h+
u2i
2
. (2.47)

The sensible enthalpy h in the case of multiple species transport is

h =
∑

A

YAhA, (2.48)
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where YA denotes the mass fraction of species A in the mixture and hA is the

sensible specific enthalpy of species A, which is given by

hA = h0A +

T
∫

Tref,A

cp,AdT, (2.49)

where cp,A is specific isobaric heat of species A, Tref,A is the reference temper-

ature of species A, at which the formation enthalpy h0A has been determined.

2.2.3 Turbulence

The characteristic feature of the turbulent flows is the presence of eddies of

different dimensions and time constants. The biggest eddies have dimensions

close to the dimensions of the main flow, while the smallest ones are responsi-

ble for kinetic energy dissipation and its transformation to heat. The presence

of eddies inside the flow results in the fluctuations of local flow velocity. In

theory, it is possible to take into account all the sizes and time constants of

vortex structures without resorting to any simplifications. This approach to

flow and turbulence modelling is known as direct numerical simulation (DNS).

The computational cost of this technique increases with the third power of

the turbulent Reynolds number Re3t , which excludes its application in most

engineering problems. Therefore, other models describing turbulence were de-

veloped, one of which is Reynolds averaging technique.

The Reynolds averaging model uses time averaged form of equations (2.40)

and (2.43). In the turbulent flow, every parameter ψ (arbitrary scalar) can be

decomposed into mean (time-averaged) and fluctuating components:

ψi = ψi + ψ′
i, (2.50)

where ψ is mean component of the parameter ψ and ψ′ is fluctuating compo-

nent.

Analogously, the velocity can be written as

ui = ui + u′i. (2.51)
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According to Reynolds, the continuity and momentum conservation equations

can be rewritten in terms of time averaged velocities as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2.52)

∂
∂t
(ρui) +

∂
∂xj

(ρuiuj) =

− ∂p
∂xi

+ ∂
∂xj

[

µ
(

ui

xj
+

uj

xi
− 2

3
δij

ul

xl

)]

+ ∂
∂xj

(

−ρu′iu′j
)

,
(2.53)

where
(

−ρu′iu′j
)

is Reynolds stresses term. Equation (2.53) is commonly known

as Reynolds-averaged Navier-Stokes (RANS) equation.

In general, the Reynolds stresses term is not known. Therefore, to find a solu-

tion to equation (2.53), the Boussinesq hypothesis is employed, due to which:

−ρu′iu′j = µt

(

∂ui
∂xi

+
∂uj
∂xi

)

− 2

3

(

ρk + µt
∂ui
∂xi

)

δij, (2.54)

where µt is turbulent viscosity and k denotes turbulent kinetic energy.

In order to determine the turbulent kinetic energy, the k − ǫ model was

introduced [68]. The model was named after the two equations, in which the

main variables are k - turbulent kinetic energy and ǫ - turbulence dissipation

rate. The equations have the following form:

ρ
Dk

Dt
=

∂

∂xj













(

µ+
µt

σk

)

∂k

∂xj













+Gk +Gb − ρǫ− YM + Sk (2.55)

and

ρ
Dǫ

Dt
=

∂

∂xj













(

µ+
µt

σǫ

)

∂ǫ

∂xj













+ C1ǫ
ǫ

k
(Gk + C3ǫGb)− C2ǫρ

ǫ2

k
+ Sǫ, (2.56)

where: Gk, Gb are the generation of turbulent kinetic energy due to the mean

velocity gradients and buoyancy respectively, YM is fluctuating dilatation dissi-

pation, C1ǫ, C2ǫ, C3ǫ are empirical constants, σk, σǫ are turbulent Prandtl num-

bers, determined experimentally, Sk, Sǫ are user defined source terms. The

turbulent viscosity µt from equation (2.54) is determined from the equation

µt = ρCµ
k2

ǫ
. (2.57)
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2.2.4 Dispersed phase

The multiphase flow of particles immersed in the fluid was modelled using

Euler-Lagrange approach. The main idea is is to treat the fluid phase as a

continuum, whose motion is governed by Navier-Stokes equation (2.43). The

dispersed phase is composed of a large set of independent particles. The mo-

tion of the dispersed phase is determined by tracking a representative number

of particles through the pre-calculated flow field. The two phases are inter-

connected by exchange of momentum, mass and energy (Fig. 2.8). The model

assumes, that particle-particle interactions can be neglected, which is true for

a low volume fraction occupied by the discrete phase. In the pulverized coal

combustion, where concentrations of coal are in most cases < 1 kg/m3, the

volume fraction of particles in the fluid are < 0.1. Therefore, the model can be

applied to the pulverized coal combustion.

particle trajectory

control volume

momentum, mass,

energy exchange

Figure 2.8: Particle trajectory.

Dispersed phase motion

The particle trajectory is determined by integrating the equation of force bal-

ance on the particle:

dup
dt

= FD(
−→u −−→up) +

−→g (ρp − ρ)

ρp
+
−→
F , (2.58)

where up, u are particle and fluid velocities, ρp, ρ are particle and fluid den-

sities, FD is drag coefficient, −→g is gravitational acceleration vector and
−→
F is

an acceleration vector due to the presence of additional phenomena like e.g.

thermophoresis, Brownian effects or Saffman’s lift forces.
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Dispersed phase heat transfer

The energy balance of the particle has the following form:

mpcp
dTp
dt

= hAp(T∞ − Tp) + ǫpApσ(T
4
r − T 4

p ), (2.59)

where mp, cp, Tp, Ap, ǫp are the particle mass, heat capacity, temperature, sur-

face area and emissivity, respectively, T∞ denotes local temperature of the

fluid, σ is Stefan-Boltzmann constant and Tr is radiation temperature, defined

by

Tr =

(

G

4σ

)1/4

. (2.60)

Symbol G denotes the incident radiation in W/m2, which is computed using

equation (2.32). The convective heat transfer coefficient h is computed using

Ranz-Marshall correlation:

Nu =
hdp
k∞

= 2.0 + 0.6Re
1/2
d Pr1/3, (2.61)

where dp is particle diameter, k∞ is thermal conductivity of the fluid, Red is

Reynolds number based on particle diameter and the relative velocity, Pr is

Prandtl number of the fluid (cpµ/k∞).

The volumetric heat source in equation (2.45) due to the presence of par-

ticles is

Sh,p = −hAp(T∞ − Tp). (2.62)

2.2.5 Reacting flow

One of the examples covered in the thesis is pulverized coal combustion in a

chamber (sec. 6.3). In this case, modelling of both homogeneous and hetero-

geneous reactions is necessary.

The source of species A due to reactions is a sum of contributions from all

chemical reactions in which the species is involved

RA =

KR
∑

k

RA,k, (2.63)

where KR is the number of reactions and RA,k is the production rate of species

A due to k − th reaction.
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Homogeneous reactions

In order to determine the rate of production due to reactions between gaseous

species finite-rate/eddy-dissipation model is employed. The idea of the method

is to upgrade diffusion driven model of Magnussen [73] with reaction kinetics

based on Arrhenius-type expression. In this model the rate of production of

species A due to reaction is given by the smallest value calculated from three

expressions:

RA = sA min(RA,R;RA,P ;RA,kin), (2.64)

where sA is stoichiometric coefficient of species A, RA,R, RA,P , RA,kin are re-

spectively the production rates of species A obtained from mixing rates of

reactants R, product species P and from kinetics of reaction.

The mixing rates can be determined from

RA,R = 4MAρ
ǫ

k
min

(

YR
νRMR

)

, (2.65)

RA,P = 2MAρ
ǫ

k

∑

P

YP
∑

P

νPMP

, (2.66)

where: MA,MR,MP are molar weights of A, reactants and product species,

ǫ is turbulent kinetic energy dissipation rate, k is kinetic energy, YR and YP

are mass fractions of reagent and product species, νR, νP are stoichiometric

coefficients of reactants and product species, respectively.

Kinetic rate of reaction is calculated from

RA,kin = krMA

n
∏

j=1

(

Yjρ

Mj

)ηj,P+ηj,R

, (2.67)

kr = B0e
−E/RT , (2.68)

where ηj,P , ηj,R are the exponents of j species in products and in reactants, B0

is pre-exponential coefficient, E is activation energy.

The occurrence of reactions inside the flow is accompanied by heat gen-

eration and consumption. This heat is accounted for in the energy balance

equation (2.45) in the form of source term:

Sh,react =
∑

A






h0A +

T
∫

Tref,A

cp,AdT






RA, (2.69)
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where Tref,A is the reference temperature of species A, at which the formation

enthalpy of species A, h0A, has been determined.

Char combustion - kinetic diffusion model

In the kinetic diffusion char combustion model reaction rate depends on kinet-

ics and on diffusion rate [14, 34]. It is assumed that CO2 is the only product

of the reaction. The char reaction rate is determined from:

−dmp

dt
= Ap

ρMRTYO2

MO2

D0Rk

Rk +D0

, (2.70)

where YO2 is oxygen mass fraction in the gaseous phase surrounding the parti-

cle, MO2 is molar weight of oxygen, D0 is oxygen diffusion rate, Rk is reaction

rate. The diffusion rate of oxygen and reaction rate are given by:

D0 = B1
[0.5(Tp + T )]0.75

dp
, (2.71)

Rk = B2e
E/RTp , (2.72)

where B1 is diffusion constant, B2 is pre-exponential coefficient, E is activation

energy.

In the case of char combustion in oxygen-enriched environment, multi-

reaction combustion model is implemented. It consists of three global reac-

tions:

C(s) +
1

2
O2 → CO, (2.73)

C(s) + CO2 → 2CO, (2.74)

C(s) +H2O → CO +H2. (2.75)

The rate of each reaction is determined in accordance with kinetic-diffusion

model (equations (2.70), (2.71) and (2.72)). The mass loss of char is a sum of

contributions from each reaction.

The heat released due to the presence of surface reactions can be determined

from energy balance using enthalpies of formation of reactant species:

Sh,react = mCOh
0
CO −mCh

0
C −mCO2h

0
CO2 −mH2Oh

0
H2O. (2.76)
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Chapter 3

Numerical methods of solving heat

radiation problems

The chapter deals with the brief description of models used in radiative heat

transfer in participating media. For each method, a set refences is given, which

allows the reader to deepen the knowledge in a particular subject.

In the process of MCRT model development, which is a main goal of the

thesis, surface to surface (S2S) model was used. This method is dedicated to ra-

diation transfer in non-participating medium and for the sake of completeness

its description can be found in appendix A.

3.1 Zonal method

The zonal method is an extension of the net exchange method, covered in

appendix A. It was developed by Hottel and Cohen [49] for an absorbing,

emitting, non-scattering gray gas with constant absorption coefficient and later

upgraded by Hottel and Sarofim [51] to include variable absorption coefficient

and isotropic scattering.

In order to find a solution to radiative heat exchange problem, i.e. to find

radiative heat fluxes at the enclosure walls and radiative heat sources/sinks

within participating medium, the enclosure boundary is divided into N sur-

face areas and the medium into K volume elements. Within each element the

surface or medium parameters (temperature, surface absorptivity or medium

absorption coefficient) are kept constant.

The method employs the concept of direct exchange areas between respec-

tive elements. In the following derivations it is assumed that medium has

uniform constant absorption coefficient and is non-scattering. The surface-
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to-surface direct exchange area, sisj (Fig. 3.1a) is defined by equations

Qr
ij = sisj q

r
out,i, (3.1)

sisj =

∫

Ai

∫

Aj

e−κ|rirj |
cos θi cos θj
π|rirj|2

dAj dAi, (3.2)

where Qr
ij is the total heat coming from zone i that travels directly (with-

out reflections) to zone j; qrout,i is radiosity of surface i (sum of emitted and

reflected radiative heat flux); dAi, dAj are differential areas; κ is absorption

coefficient; θi, θj are the angles between surface normal vectors ni, nj and

vector connecting elements rirj; |rirj | is the distance between elements.

The volume-to-surface direct exchange area, gisj (Fig. 3.1b) is defined by equa-

tions

Qr
ij = gisj eb,i, (3.3)

gisj =

∫

Vi

∫

Aj

e−κ|rirj |
cos θj
π|rirj |2

κ dAj dVi, (3.4)

where dVi is differential volume element, eb,i is blackbody emissive power of

element i.

The volume-to-volume direct exchange area, gigj (Fig. 3.1c) is defined by equa-

tions

Qr
ij = gigj eb,i, (3.5)

gigj =

∫

Vi

∫

Vj

e−κ|rirj |
κ2

π|rirj|2
dVj dVi. (3.6)

The reciprocity equations for direct exchange areas are

sisj = sjsi, gisj = sjgi, gigj = gjgi. (3.7)

Moreover, the following summation relations hold

N
∑

j=1

sjsi +
K
∑

k=1

gksi = Ai, 1 ≤ i ≤ N, (3.8)

N
∑

j=1

sjgi +
K
∑

k=1

gkgi = 4κVi, 1 ≤ i ≤ K. (3.9)
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nj

dAi
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dAi

θi
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dVj
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(b) Surface-Volume

dVj

rj

dVi

ri

(c) Volume-Volume

Figure 3.1: Radiative exchange between differential elements of different type.

Writing an energy balance for surface zone i yields

Qr
i = Aiq

r
i = Ai(q

r
out,i − qrin,i) = Aiǫi

(

eb,i − qrin,i
)

, (3.10)

Qr
i =

N
∑

j=1

sjsi
(

qrout,i − qrout,j
)

+

K
∑

k=1

(

qrin,i − eb,k
)

= ǫi

(

Aieb,i −
N
∑

j=1

sjsi q
r
out,j −

K
∑

k=1

gksi eb,k

)

, 1 ≤ i ≤ N. (3.11)

Analogously, an energy balance for volume element i yields

Qr
v,i = Viq

r
v,i = κVi(4eb,i −Gi), (3.12)

Qr
v,i =

N
∑

j=1

sjgi
(

eb,i − qrout,j
)

+
K
∑

k=1

gkgi (eb,i − eb,k)

= 4κVieb,i −
N
∑

j=1

sjgi q
r
out,j −

K
∑

k=1

gkgi eb,k, 1 ≤ i ≤ K. (3.13)

In the case of known temperature field in the whole domain and by using

equation (A.9) to express net heat at wall elements Qr by means of radiosity,

equations (3.11), (3.13) form a system of N + K equations with unknown

surface radiosities qrout and unknown net heat at volume elements Qr
v. In order
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to find the unknown variables a set of linear algebraic equations needs to be

solved. In the case, the temperatures of the domain are unknown, they are to

be determined iteratively and the matrix inversion is to be done every iteration.

The equations of the zonal method can be simplified to the case of non-

participating medium, and in this particular case the method is similar to the

net exchange method described in appendix A.

⋆ ⋆ ⋆

The zonal method suffers from main drawback, being the computationally

intensive determination of direct exchange areas. A variant of the method used

the concept of total exchange areas, which can be calculated using direct ex-

change areas [49, 51, 88]. Upon the assumption that gas and surface absorption

properties do not vary with temperature and composition, direct exchange ar-

eas can be calculated once for a given case. Although the computation of total

exchange areas is more involved than direct exchange areas, it can shorten

the overall simulation time. The benefits of this approach are especially visi-

ble in the case of conjugate heat transfer, where the temperatures of surface

and volume elements can change and the solution is obtained in an iterative

manner.

3.2 Boundary Element

The Boundary Element Method (BEM) in the application to radiation heat

transfer problems was proposed by R. Białecki in [7] and developed in later

works [8, 9, 10]. In his Ph.D. thesis [131], G. Węcel improved the method and

applied it to conjugate heat transfer problems, including the simulations of

Czochralski crystal growth process and natural gas combustion [12, 13, 128,

129]. The method has common roots with Hottel’s zonal method and Finite

Element Method, which in turn can be viewed as a variants of the weighted

residuals methods.

The main idea behind BEM is to transform the original differential RTE

(2.27) into an equivalent form of an integral equation:

I(p) = I(r)τ(r,p) +

∫

Lrp

κ(r′)Ib [Tm(r
′)] τ(r′,p)dLrp(r

′), (3.14)

where Lrp denotes the line of sight between origin r and destination p points,

τ(r,p), τ(r′,p) are transmissivities, defined as a fraction of energy leaving the

36



origin point and reaching the destination point.

As a result of the transformation, the dimensionality of the problem is re-

duced. This can be achieved, since the integration over the enclosure volume

is replaced by an equivalent integration along a radiative path times an inte-

gration over the enclosure boundary. In the next step, the radiative transfer

equation (3.14) is solved by dividing the enclosure boundary into surface and

volume elements. In each volume element, the temperature and the absorption

coefficient of the medium are assumed uniform. At boundaries, the blackbody

emissive power and the radiative heat flux are approximated using shape func-

tions. In order to determine the unknown transmissivities in equation (3.14),

the ray tracing is performed. The resulting set of algebraic equations is solved

by means of the weighted residuals method [8]. Due to the introduction of

shape functions, approximating the radiative heat fluxes at boundaries, the ra-

diative energy balance is not fulfilled. The discrepancy (residuum) is minimized

by forcing it to vanish at selected set of nodes. This procedure is commonly

known as nodal collocation.

⋆ ⋆ ⋆

BEM can be treated as a generalization of S2S and Zonal methods assuming the

trial functions and weighted functions are constant in each boundary element

and vanish to zero outside it. BEM can also be interpreted as Galerkin solution

to radiative transfer equation. Since the weighted functions have a form of

Dirac delta, BEM method can be classified as a collocation method [7, 8].

BEM proved to be more efficient than Monte Carlo and Discrete Transfer

techniques, however it was much slower than Discrete Ordinates [131]. Dur-

ing the development stage of coupling BEM with CFD code, Węcel came to

the conclusion, that applying the method to the same numerical grid as used

for convective problems can lead to prohibitively long computational times.

To mitigate the problem, he introduced coarse Cartesian structured meshes

on which the radiative solution was obtained. Subsequently the solution was

transferred onto the convective mesh. Using the coarse meshes allowed BEM

achieving computational times comparable with DO method. Contrary to DT

and DO methods, BEM is not prone to ray effect.
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3.3 Spherical harmonics - PN approximation

The PN method solves RTE (2.27) using its approximation in the form of

a set of simultaneous partial differential equations. The approach was first

introduced by Jeans [58] in the early 20th century to model the heat transfer

in stars. Cheng [19] upgraded the method to the three-dimensional case. More

information about the enhancements of the method can be found in articles

[6, 48, 70, 71].

In order to develop the PN method, the radiation intensity at a given

location r and direction s is expressed in terms of Fourier series as

I(r, s) =

∞
∑

l=0

l
∑

m=−l

Iml (r)Y m
l (s), (3.15)

where Iml (r) are coefficients and Y m
l (s) are spherical harmonics, defined by

Y m
l (s) = (−1)(m+|m|)/2

[

(l − |m|)!
(l + |m|)!

]1/2

eimφP
|m|
l (cos θ), (3.16)

where θ, φ are polar and azimuthal angels defining the direction s, i =
√
−1

thus eimφ provides the harmonics cosmφ, sinmφ, P |m|
l (cos θ) are associated

Legendre polynomials of degree l and order m.

The spherical harmonics approximation is exact, when the number of terms

in Fourier series of equation (3.15) is infinite, i.e. when l → ∞. In practice,

the series is truncated after a given number of terms. The highest value for l

retained, N , defines the method name and order. The most common approxi-

mations are called P1 and P3, arisen from retaining terms of l less or equal to

1 and 3 respectively.

The coefficients Iml (r) of equation (3.15) are not known and must be evalu-

ated in order to determine I(r, s). To achieve this, the so called moment equa-

tions are generated by multiplying the intensity in a given location by powers

of the direction cosines and then integrating over all solid angles. Then the

local intensity from equation (3.15) is substituted into the moment equations,

forming a set of algebraic equations. Solving the set of equations yields the

representation of the local intensity in terms of moments, which are function

of location only.

The next step of the method is to determine the moments of intensity. This

is done by generating moment differential equations from the RTE (2.27), writ-

ten in terms of optical coordinate, by multiplying the equation by powers of
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the direction cosines and then integrating over all solid angles. This procedure

leads to a set of partial differential equations with unknown moments of in-

tensity. Once the moments are determined, the radiation intensity in a given

location and its angular variation can be evaluated and the problem is solved.

⋆ ⋆ ⋆

The P1-approximation gained popularity because of its relative simplicity

and compatibility of the solution methods for sets of partial differential equa-

tions, already available in CFD codes for equations describing flow and/or

heat transfer. It should be emphasized, that the results predicted by P1-

approximation can be far from accurate, especially in optically thin media

with strong anisotropy in radiation intensity in the case of geometries with

large aspect ratios [81]. The solution accuracy can be improved by increasing

the order of approximation. However, this requires a solution of much larger

set of partial differential equations, thus much bigger computation effort [80].

3.4 Discrete Ordinates - SN approximation

The Discrete Ordinates (DO) can be classified as a particular case of flux

method, which simplifies the directional variation of the radiation intensity. The

basic version of the flux method, introduced independently by Schuster [105]

and Schwarzschild [106], solves the radiation problem in one direction only and

is commonly known as two-flux method. Extending the two-flux model into two-

and three-dimensional problems gives four- and six-flux models respectively

[17]. In the methods described above, the directions in which the radiation

transport equation is solved are the same as the axes of Cartesian coordinate

system.

DO method in its current form was developed by Fiveland [35, 36] and

Truelove [122, 123], whose works allowed for its implementation to arbitrary

geometries and to absorbing, emitting and scattering media.

DO method solves RTE (2.27) with boundary condition defined by (2.28)

in an arbitrary number m of discrete directions S, dividing the entire solid

angle into finite solid angles. DO is also termed as SN method, in which N

denotes the order of method, given by

m = N(N + 2) (3.17)
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in the case of three-dimensional formulation. Each discrete direction corre-

sponds to a centreline of a differential solid angle. The finite solid angles do not

overlap and in each of them the radiation intensity is assumed to be uniform.

The computational domain is subdivided into a finite number of elements and

directional RTE (2.27) is formulated for each discrete direction. Subsequently,

the equations are discretized spatially using finite difference schemes and form

a system of partial differential equations. The radiative heat fluxes and heat

sources are determined by integration over the entire solid angle at each sur-

face (2.30) and volume element (2.31). The integration over the solid angle

employs numerical quadratures.

⋆ ⋆ ⋆

DO method is one of the most popular methods for solving radiative heat

transfer problems in engineering applications due to its capabilities and ease of

implementation, especially for coupled radiative and convective heat transfer.

The capabilities include absorbing, emitting media, anisotropic scattering and

diffusely, specularly reflecting walls. Moreover, the arbitrary level of the solu-

tion accuracy can be achieved by controlling the number of discrete directions.

The drawbacks of the method include the iterative character of the so-

lution, even when all the temperatures in the domain are known. Also, the

computational effort needed grows with the number of discrete directions and

there is no procedure of determining the optimal number of discrete directions.

The discrete ordinates method is known to be prone to so called ray effect,

connected to the angular discretization of RTE [23]. The ray effect is visible

especially in the cases of hot spots either in the medium or at the boundary

surfaces. The radiative energy from such spots is transmitted mainly in the

discrete directions, thus the reported values of radiative heat fluxes and heat

sources at locations distant form hot spots can be far from exact.

Moreover, there exist false scattering effect, also known as false diffusion

[23, 92]. This effect occurs due to the finite size of the control volumes and to

the fact, that in general the mesh is not aligned with the ordinates, in which

one solves the RTE. Thus, the solutions that should have a sharp step, exhibit

a smoothed slope. The negative consequences of the false diffusion effect can

be mitigated by increasing either the number of control volumes inside the

mesh or the order of spatial discretization. It should be emphasized, that the

ray effect and the false diffusion tend to minimize each others’ negative effects.
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The topic is covered in more details in section 6.2, where the solution

generated by DO model is compared with Monte Carlo.

3.5 Discrete Transfer

The Discrete Transfer (DT) method was developed by Lockwood and Shah

[72] in order to implement the radiation heat transfer mode into codes for

combustion and flow. Later it was improved by [22, 24]. The method exhibits

features encountered in Hottel zonal, Monte Carlo and flux methods. It is built

on the concept of solving the radiation transfer equation for representative rays

in the domain.

The procedure starts with the subdivision of the computational domain

into volume and surface elements. For each element the parameters of the sur-

face and volume are assumed to be uniform. Then, the hemisphere above each

surface element is subdivided into a finite number of non-overlapping differen-

tial solid angles, in which the radiation intensity is uniform. Subsequently, the

rays are traced from the surface elements in the directions corresponding to

the centres of the differential solid angles. Therefore, unlike in the Monte Carlo

method, the ray directions are set in advance, not randomly chosen. During

the tracing procedure, the ray passes through the volume cells, in which the

radiation intensity behaves accordingly to equation (2.27) i.e., it is attenuated

by absorption and amplified by emission of the medium. The ray is traced until

it hits another surface element. The radiative heat sources in volume cells are

computed by summing up the contributions from all rays passing through a

given volume cell. Analogously, the irradiation of the surface element is a sum

of contributions from rays that hit a given surface element.

⋆ ⋆ ⋆

Since DT method uses the ray tracing procedure in predefined directions,

it is prone to the ray effect, similar to DO method. On the other hand, the rays

are traced only from boundaries of the domain, therefore the computational

time is reduced compared to Monte Carlo model. The accuracy of the solution

can be adjusted by modifying the number of rays traced, although it should be

stressed, that the number of rays greatly influences the computational time.

Analogously to DO method the number of rays traced is to be set intuitively.
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3.6 Monte Carlo Ray Tracing

The statistical sampling technique, also named Monte Carlo, was developed for

the purposes of Manhattan Project during World War II in Los Alamos Lab-

oratory [62]. Stanisław Ulam, Enrico Fermi, John von Neumann and Nicholas

Metropolis used the method to create histories of life of neutrons during fission.

In the field of thermal radiation heat transfer, Monte Carlo was first used in

early 1960’ by Fleck and later by Howell and Perlmutter [37, 52, 53, 54].

The radiation can be viewed as an energy transport by photons (also termed

energy bundles or rays). The main idea behind Monte Carlo is to trace a mean-

ingful number of photons from their emission to the absorption point getting

an insight into the phenomenon. The behaviour of photons i.e., the emission

from surface, gas, direction of emission, their interaction with semitransparent

medium, particles or walls, are defined by random sampling with known prob-

ability density functions. The statistical component of the method is reflected

in its name, as Monte Carlo is a district of Monaco, famous of gambling and

casinos.

In the following, the variants of Monte Carlo Ray Tracing are described,

including standard ray tracing, energy partitioning, forward and backward.

In the Monte Carlo method the computational domain is subdivided into

a finite number of surface and volume elements. Inside each element, the ra-

diative properties of the medium or surface are assumed to be uniform. Sub-

sequently, the radiative energy balance is determined by registering the fate of

energy bundles emitted from each surface or volume element. In general, there

are two approaches to the Monte Carlo Ray Tracing technique [33, 81]. In one

of them, called standard ray tracing, the absorption-free path of the bundle

is determined randomly. When the bundle passes though subsequent volume

cells, its absorption-free and real travel paths are updated. The bundle is ab-

sorbed within the current volume element, as soon as its real path is greater

than absorption-free path. When the bundle reaches the wall it can be ab-

sorbed with a certain probability at the corresponding surface element. Upon

the absorption, the whole energy carried by a photon is assigned to the element

at which absorption occurred. The different approach is presented by energy

partitioning variant of Monte Carlo. In this variant of the method, during the

emission the bundle is assigned an initial energy. As a consequence of passing

through volume cells and of reflecting from walls, the bundle energy decays.

The tracing stops when the energy of the bundle is smaller than the prescribed

threshold. A word of comment is necessary here. The main difference between
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standard ray tracing and energy partitioning variants of the method is that the

latter is proven to be more efficient in the case of optically thick and optically

thin media [33, 81, 124]. In the former variant however, the reciprocity equa-

tions can be used (described in Chapter 4). After the ray tracing is completed,

the radiative heat fluxes at walls and volumetric heat sources in the medium

are computed. The accuracy of the method is influenced by the number of rays

traced as well as the resolution of spatial discretization of the computational

domain.

The described above Monte Carlo Ray Tracing procedure, together with

its two variants, is known as forward. The method is commonly used in the

classes of problems, where the information about the whole radiation field

is required. However, in the case only the information about the intensity

hitting a small point of the domain or over a small range of solid angles is of

interest (radiation detector, collimated rays), the forward Monte Carlo can be

very inefficient. For those special cases, the so called backward (reverse) Monte

Carlo can be employed. The approach is based on the idea, that a solution of

directional RTE in a given direction and boundary condition can be found from

the solution to a simpler problem defined in an opposite direction and different

boundary condition. Thus, instead of tracing rays from all the elements defining

an enclosure and registering those which hit the small radiation detector, the

solution procedure simplifies to follow the rays emitted from the detector. In

some cases the usage of the method can result in tremendous savings of CPU

time. More details about the method can be found in [56, 81, 114].

The scope of the thesis is the forward Monte Carlo Ray Tracing method in

its standard variant. Chapter 4 is devoted to the application of this method in

the code of OpenFOAM.
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Chapter 4

Monte Carlo Ray Tracing

application to radiative heat

transfer

The chapter presents a system for Monte Carlo ray tracing (MCRT) utilizing

coarse hierarchical ortho-Cartesian mesh which is created based upon con-

vective computational fluid dynamics (CFD) mesh. Parametric non-uniform

rational basis spline (NURBS) surfaces [31, 96] are used to define the enclo-

sure boundaries. The procedures of ray-surface intersection and the random

selection of emission points from the NURBS surface are described in details.

The radiation transport is solved on the coarse mesh and the solution is inter-

polated onto the underlying dense convective mesh. The model accounts for

the radiation in absorbing and emitting gases and the presence of particles.

The code is designed as an add-on to open-source program OpenFOAM [90].

The mathematical models described in chapter 2 are already implemented

inside the open-source package OpenFOAM. The package solves the governing

equations of mass, momentum, energy and radiation transfer in the fluid using

the control volume method (CVM). The solution involves the discretization

of the underlying equations in order to form a system of partial differential

equations. The implementation of MCRT model was realized by adding a new

radiation model to the existing structure of the package. Since MCRT solves

the radiation transport described by an integral equation on meshes of different

resolution, the procedure of coupling between the conductive and convective

heat transfer within the fluid is also developed. The radiation problem is solved

assuming that the temperature field at the boundary and inside the medium

is known. In practice, the temperature field is obtained from CFD analysis
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(equation (2.45)). Then, the radiative heat fluxes and volumetric heat sources

are computed. Since they influence the temperature field of the fluid, the final

solution is to be obtained in the iterative manner.

The equations governing the radiative heat transfer for MCRT method

are derived according to the Net Exchange Formulation. It is similar to the

formulations of S2S and Zonal models, presented in appendix A and section

3.1. Moreover, the variant of MCRT model described in the present chapter is

termed as standard and forward technique (cf. section 3.6).

4.1 Governing equations

4.1.1 Absorbing and emitting medium

This section presents the derivation of radiative heat flux at the wall and

volumetric heat source and sink in absorbing and emitting medium in the

absence of particles.

Suppose that the domain is divided into n elements, of which i ∈ [1, N ]

are surface elements and i ∈ [N + 1, n] are volume elements (Fig. 4.1). The

radiation distribution factor (RDF) is defined as [74]

Dij =
Er

ij

Er
e,i

≃ Nij

Ni
, (4.1)

where Er
ij is the fraction of the radiative energy emitted by element i and

absorbed in element j, Er
e,i is the radiative energy emitted from element i,

Nij is the number of rays emitted from element i and absorbed in element j

including reflections and the presence of semitransparent medium, Ni is the

total number of rays emitted from element i.

S

Ω

(a) Before discretization

S0

S1

SN

SN-1

VN+1 VN+2

Vn

Vn-1

(b) After discretization

Figure 4.1: The discretization of the domain into a finite number of surface S
and volume elements Ω.
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The radiative energy emitted by surface or volume element equals to

Er
e,i =

{

ǫiAieb,i , 1 6 i 6 N,

4πκiViIb,i , N + 1 6 i 6 n.
(4.2)

Rearranging equation (4.1)

Er
ij = Er

e,iDij (4.3)

and using (4.2) yields:

Er
ij =

{

ǫiAieb,iDij , 1 6 i 6 N,

4πκiViIb,iDij , N + 1 6 i 6 n.
(4.4)

Making the energy balance, the net radiative heat from element i is

Qr
i = Er

e,i −Er
a,i, (4.5)

where Ea,i is the radiative energy absorbed by element i.

The radiative energy absorbed by surface or volume element i is expressed as

a sum of contributions from all surface and volume elements:

Er
a,i =

N
∑

j=1

Er
ji +

n
∑

j=N+1

Er
ji. (4.6)

Using equation (4.4) yields

Er
a,i =

N
∑

j=1

ǫjAjeb,jDji + 4π

n
∑

j=N+1

κjVjIb,jDji , 1 6 i 6 n. (4.7)

Inserting (4.2) and (4.7) into equation (4.5):

Qr
i =



































ǫiAieb,i −
N
∑

j=1

ǫjAjeb,jDji − 4π
n
∑

j=N+1

κjVjIb,jDji , 1 6 i 6 N,

4πκiViIb,i −
N
∑

j=1

ǫjAjeb,jDji

−4π
n
∑

j=N+1

κjVjIb,jDji , N + 1 6 i 6 n.

(4.8)

46



The reciprocity equations between respective pairs of elements are [74]

κiViDij = κjVjDji, (volume-volume), (4.9)

ǫiAiDij = 4κjVjDji, (surface-volume), (4.10)

4κiViDij = ǫjAjDji, (volume-surface), (4.11)

ǫiAiDij = ǫjAjDji, (surface-surface). (4.12)

The derivation of the reciprocity equations (4.9) to (4.12) is presented in ap-

pendix B.1. Making use of the reciprocity equations, equation (4.8) becomes

Qr
i =



































ǫiAieb,i −
N
∑

j=1

ǫiAieb,jDij −
n
∑

j=N+1

πǫiAieb,j/πDij , 1 6 i 6 N,

4πκiVieb,i/π −
N
∑

j=1

4κiVieb,jDij

−
n
∑

j=N+1

4πκiVieb,j/πDij , N + 1 6 i 6 n.

(4.13)

The net radiative heat flux from i-th surface element, qri , and the volumetric

heat source and sink due to radiation absorption and emission from i-th volume

element, qrv,i, are

qri =
Qr

i

Ai
, 1 6 i 6 N, (4.14)

qrv,i =
Qr

i

Vi
, N + 1 6 i 6 n. (4.15)

qri =
1

Ai

{

ǫiAieb,i − ǫiAi

N
∑

j=1

eb,jDij − ǫiAi

n
∑

j=N+1

eb,jDij

}

, 1 6 i 6 N. (4.16)

qrv,i =
1

Vi

{

4κiVieb,i − 4κiVi

N
∑

j=1

eb,jDij − 4κiVi

n
∑

j=N+1

eb,jDij

}

, N + 1 6 i 6 n.

(4.17)

Finally

qri = ǫieb,i − ǫi

n
∑

j=1

eb,jDij, 1 6 i 6 N, (4.18)

qrv,i = 4κieb,i − 4κi

n
∑

j=1

eb,jDij, N + 1 6 i 6 n, (4.19)
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where the sum over j encloses both surface and volume elements.

4.1.2 Absorbing and emitting medium with particles

This section presents the derivation of radiative heat flux at the wall and

volumetric heat source and sink in absorbing and emitting medium in the

presence of particles. The particles are assumed to be spherical in shape.

Suppose that the domain is divided into n elements, of which i ∈ [1, N ]

are surface elements and i ∈ [N + 1, n] are volume elements (Fig. 4.1). The

radiation distribution factor is defined as

Dij =
Er

ij

Er
e,i

≃ Nij

Ni
, (4.20)

where Er
ij is the fraction of the radiative energy emitted by element i and

absorbed in element j, Er
e,i is the radiative energy emitted from element i,

Nij is the number of rays emitted from element i and absorbed in element j

including reflections, the presence of semitransparent medium and particles,

Ni is the total number of rays emitted from element i. The radiative energy

emitted by surface or volume element equals to

Er
e,i =

{

ǫiAieb,i , 1 6 i 6 N,

4πκiViIb,i + 4πViEp,i , N + 1 6 i 6 n.
(4.21)

where Ep,i is the radiative energy emission term due to the presence of particles

in volume element i. It is defined by

Ep,i =

M
∑

m=1

ǫp,mApc,m

σT 4
p,m

πVi
=

M
∑

m=1

ǫp,m
πd2p,m
4

σT 4
p,m

πVi
, (4.22)

where M is the number of particles in the volume Vi; ǫp, Apc, Tp, dp are respec-

tively emissivity, the cross-section area and temperature of the particle. After

rearranging equation (4.20)

Er
ij = Er

e,iDij , (4.23)

and using (4.21) yields:

Er
ij =

{

ǫiAieb,iDij , 1 6 i 6 N,

(4πκiViIb,i + 4πViEp,i)Dij , N + 1 6 i 6 n,
(4.24)
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Making the energy balance, the net radiative heat from element i is

Qr
i = Er

e,i −Er
a,i, (4.25)

where Ea,i is the radiative energy absorbed by element i.

The radiative energy absorbed by surface or volume element i is expressed as

a sum of contributions from all surface and volume elements:

Er
a,i =

N
∑

j=1

Er
ji +

n
∑

j=N+1

Er
ji. (4.26)

Using equation (4.24) yields

Er
a,i =

N
∑

j=1

ǫjAjeb,jDji+4π

n
∑

j=N+1

κjVjIb,jDji+4π

n
∑

j=N+1

VjEp,jDji , 1 6 i 6 n.

(4.27)

Inserting (4.21) and (4.27) into equation (4.25):

Qr
i =



















































ǫiAieb,i −
N
∑

j=1

ǫjAjeb,jDji − 4π
n
∑

j=N+1

κjVjIb,jDji

−4π
n
∑

j=N+1

VjEp,jDji , 1 6 i 6 N,

4πκiViIb,i + 4πViEp,i −
N
∑

j=1

ǫjAjeb,jDji

−4π
n
∑

j=N+1

κjVjIb,jDji − 4π
n
∑

j=N+1

VjEp,jDji , N + 1 6 i 6 n.

(4.28)

The reciprocity equations between respective pairs of elements are [74]

(κi + κp,i) ViDij = (κj + κp,j) VjDji, (volume-volume), (4.29)

ǫiAiDij = 4 (κj + κp,j) VjDji, (surface-volume), (4.30)

4 (κi + κp,i) ViDij = ǫjAjDji, (volume-surface), (4.31)

ǫiAiDij = ǫjAjDji, (surface-surface), (4.32)

where κp,i is particles equivalent absorption coefficient defined as

κp,i =
M
∑

m=1

ǫp,m
πd2p,m
4 Vi

. (4.33)

49



The derivation of the reciprocity equations (4.29) to (4.32) is presented in

appendix B.2. Making use of the reciprocity equations, equation (4.28) becomes

Qr
i =



















































ǫiAieb,i −
N
∑

j=1

ǫiAieb,jDij

−
n
∑

j=N+1

4Vj (κjeb,j + πEp,j)
ǫiAiDij

4Vj(κj+κp,j)
, 1 6 i 6 N,

4κiVieb,i + 4πViEp,i −
N
∑

j=1

4(κi + κp,i)Vieb,jDij

−
n
∑

j=N+1

4(κjeb,j + πEp,j)
κi+κp,i

κj+κp,j
ViDij , N + 1 6 i 6 n.

(4.34)

The net radiative heat flux from i-th surface element, qri , and the volumetric

heat source and sink due to radiation absorption and emission from i-th volume

element, qrv,i, are

qri =
Qr

i

Ai
, 1 6 i 6 N, (4.35)

qrv,i =
Qr

i

Vi
, N + 1 6 i 6 n. (4.36)

Finally

qri = ǫieb,i −
N
∑

j=1

ǫieb,jDij+ (4.37)

−
n
∑

j=N+1

κjeb,j + πEp,j

(κj + κp,j)
ǫiDij , 1 6 i 6 N,

qrv,i = 4(κieb,i + πEp,i)−
N
∑

j=1

4(κi + κp,i)eb,jDij (4.38)

−
n
∑

j=N+1

4(κjeb,j + πEp,j)
κi + κp,i
κj + κp,j

Dij , N + 1 6 i 6 n.

4.1.3 Non-participating medium

In the case of non-participating medium only the radiative heat fluxes at

boundary walls are of interest as the volumetric heat sources are by defini-

tion zero. For the sake of compactness, the derivation of the equation is not

reproduced here, but it is analogous to those presented in previous sections

4.1.1 and 4.1.2. The relation for radiative heat flux at wall can be obtained

from equation (4.18), where the summation concerns only surface elements.

Suppose that the boundary of the domain is divided into n surface elements.
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Then the radiative heat flux at surface element i is:

qri = ǫieb,i − ǫi

n
∑

j=1

eb,jDij, 1 6 i 6 n. (4.39)

⋆ ⋆ ⋆

The most general relationships for the wall radiative heat flux and volu-

metric heat source/sink are equations (4.37) and (4.38) respectively. However

it should be noticed, that by setting the terms related to the presence of the

particles to zero, i.e. κp = 0 and Ep = 0, equations (4.18), (4.19) are obtained.

Similarly, by setting the gas absorption coefficient to zero (κ = 0), equations

(4.18), (4.19) simplify to equation (4.39).

4.2 Radiation distribution factors

The ray tracing procedure used for calculating the values of radiation distribu-

tion factors (RDFs) is the core of MCRT method. All the governing equations

of MCRT method (4.18), (4.19), (4.37), (4.38) and (4.39) make use of RDFs

Dij. It should be pointed out here, that although the notation for the RDFs

in the equations from chapter 4.1 is identical, their physical meaning differs

between sections 4.1.1, 4.1.2, 4.1.3. The most general definition of the RDF

under the consideration is the one from section 4.1.2, since it accounts for the

presence of semitransparent medium and particles.

The RDFs are estimated by registration of absorption points of energy bun-

dles, that are emitted from each surface and volume element i and followed

taking into account reflections, presence of semitransparent medium and par-

ticles, according to [74]

Dij
∼= Nij

Ni
, (4.40)

whereNij is the number of energy bundles emitted from element i and absorbed

in element j, Ni denotes the total number of energy bundles emitted from

element i. The radiation distribution factors are computed for every surface

and volume element inside the domain and they form two dimensional radiation

distribution factor matrix D (Fig. 4.2). In the case of participating medium,

there exist four kinds of RDFs:

• surface - surface,

• surface - volume,
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Figure 4.2: The radiation distribution factor matrix D and its entries corre-
sponding to various combinations of surface and volume elements.

• volume - surface,

• volume - volume.

The distinction between those types of RDFs is important during the derivation

of governing equations and the usage of reciprocity equations, which was done

in section 4.1 of this chapter. The elements of the D matrix have the following

properties:

1. Conservation of energy

n
∑

j=1

Dij = 1.0, 1 6 i 6 n, (4.41)

2. Reciprocity

• non-participating medium: eqn (4.12),

• participating medium: eqns (4.9), (4.10), (4.11), (4.12),

• participating medium with particles: eqns (4.29), (4.30), (4.31),

(4.32).

A word of comment is necessary here. Since the ray tracing procedure

involves the emission of rays from subsequent surface and volume elements

denoted by index i and the absorption in elements denoted by index j, the

energy conservation law (4.41) is not fulfilled. To be more precise, it is fulfilled
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by summing up the elements from rows of matrix D, but not in columns. Thus,

in the standard formulation of Monte Carlo ray tracing (cf. section 3.6), the

usage of reciprocity equations is crucial, as it guarantees the energy conserva-

tion in the governing equations for wall heat fluxes and volumetric heat sources

(4.18), (4.19), (4.37), (4.38) and (4.39). In other words, if an equation uses the

RDFs from a single row, the energy conservation is guaranteed, otherwise it is

not. In the case, the reciprocity equations are not known, it is still possible to

derive the relations for wall heat fluxes and volumetric heat sources, but the D

matrix smoothing algorithm ought to be used. Such algorithms are described

in [25, 69].

A major advantage of the distribution factor approach presented by Ma-

han [74] is that the distribution factors are calculated independently from their

subsequent use. In the case, the radiative properties of the surface and/or gas

are independent of the temperature and composition, the D matrix needs to be

computed only once. Therefore, the influence of different temperature or heat

flux distributions on the enclosure walls can be evaluated without recomput-

ing the distribution factors each time, i.e. without repeating computationally

expensive ray tracing procedure.

4.3 Hierarchical ortho-Cartesian mesh

The most time consuming part of MCRT method is the ray tracing procedure

used for the determination of elements of RDF matrix, as was underlined in

section 4.2. In order to speed up the tracing of rays, the concept of hierarchi-

cal ortho-Cartesian mesh is introduced. The main idea is to create a regular,

coarse, ortho-Cartesian mesh (Uniform Spatial Division [139]) on which the

radiation heat transfer is solved and which communicates with the underlying

convective mesh. The ortho-Cartesian mesh cells are therefore cuboids with

all walls parallel to the planes of global coordinate system. The mesh can be

considered as uniform, since the height, width and depth of the cells are con-

stant throughout the whole mesh. The communication between both meshes

is assured by the fact that every ortho-Cartesian cell contains a list of CFD

cells. A given CFD cell belongs to ortho-Cartesian cell if its center is inside

the ortho-Cartesian cell. Depending on the type and the number of CFD cells

on the list the ortho-Cartesian cells are classified as follows (cf. Fig. 4.3):

• active - when the list is not empty,
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• boundary - when at least one CFD cell from the list is a boundary cell,

• inactive - when the list is empty.

Vi

cj

Ω
S

Figure 4.3: Ortho-Cartesian mesh cells (Vi) created on the basis of convective
mesh cells (cj). Dark colour - active inner cells, bright colour - active boundary
cells (containing boundary S of domain Ω), white colour - inactive cells.

The classification of the ortho-Cartesian mesh cells is important, since the

ray tracing is to be done only for active cells. Boundary cells are special kind

of cells, as they contain the surfaces that bound the enclosure. In the thesis the

parametric non-uniform rational basis spline (NURBS) surfaces were chosen

for the description of boundaries. The details concerning the topic of boundary

description are presented in section 4.4. As a consequence of the introduction

of the coarse mesh, the number of elements (both surface and volume), for

which the ray tracing needs to be performed, significantly reduces. During the

ray tracing, one active cell corresponds to one volume element. On the other

hand, one surface element placed in one boundary cell can be composed of a

set of NURBS surfaces (at least one).

The results of the numerical simulation are strongly influenced by the reso-

lution of the mesh. In the case of radiative analysis, the mesh should be refined

in the zones, where the strong gradients of emissive power of the medium and

enclosure surfaces are expected. The gradients of emissive power are caused by

the spatial variation of the radiative properties and temperautre of the medium

and surface. Therefore, it is of great importance to deliver the functionality of

the mesh resolution control to the user. In the case of ortho-Cartesian mesh

employed in the thesis, the resolution control is realized by means of:

1. global mesh resolution,
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2. local refinement regions,

together forming a mesh hierarchy (Fig. 4.4).

X X

X X

(a) (b)

Figure 4.4: Ortho-Cartesian mesh before and after refinement: (a) four cells
from 0-th level marked to be refined (X), (b) mesh after refinement with some
1-st level cells (gray).

The 0-th level of the mesh hierarchy is composed of the cells, formed by the

division of the domain using X, Y, Z global resolution. In the next step, some

cells from 0-th level can be marked to be refined by defining refinement regions.

As a consequence, the marked cells are further divided into eight (in 3D)

smaller uniform cells, which are placed in 1-st level of the mesh hierarchy. In

theory, it is possible to extend the mesh hierarchy beyond 1-st level. However,

in the thesis the depth of mesh hierarchy was limited to two levels: 0-th and

1-st.

Mesh refinement using the hierarchy is very efficient in terms of overall

mesh size. The refinement is local and does not influence the resolution of the

mesh outside the area of interest, as it is the case in non-hierarchical mesh

(Fig. 4.5). It should be noticed, that mesh refinement can be also realized by

varying cell size.

Figure 4.5: Ortho-Cartesian mesh refined without using mesh hierarchy.
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4.4 Description of boundaries on ortho-Cartesian

mesh

The computational domain consists of its bounding surfaces and the medium

filling-up the interior. In the case of radiative analysis, the surfaces bound the

entire domain and together form an enclosure. Thus, the enclosure bounding

surfaces can represent real walls, inlets or outlets. The domain can be prop-

erly described by means of bounding surfaces only, provided the convention of

their normal vector direction with respect to the interior is established. In the

current work, it was assumed that the surface normal vectors point outwards

the valid domain (Fig. 4.6).

ni

Ω

ni+1

Figure 4.6: Surface normal vectors n at boundaries pointing outwards the
domain Ω.

It has been already emphasized in section 1.2.4, that the mathematical de-

scription of 3D geometry can be a challenging task, especially for geometries

of complicated shapes. The simplest way to describe the 3D surface is to ex-

press it as a finite set of triangular or quadrilateral surfaces [138]. By doing

so, the user has to accept the shortcomings of this approach in the form of

relatively large memory demand and limited accuracy for not planar surfaces.

The usage of polynomials is a more elaborated way of 3D geometry description.

Polynomials are smooth and have a compact form, however they are unstable

to floating point operations, since their coefficients can attain very large or

small values [31, 95, 96]. In computer graphics it is also important to have a

possibility to locally modify the geometry, which is difficult to achieve using

polynomials. The stated above shortcomings can be avoided by using a special

form of the mathematical description of boundaries, namely the parametric

non-uniform rational b-spline (NURBS) surfaces.
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In the thesis, NURBS surfaces were chosen to define the boundaries of the

enclosure because of a few reasons. NURBS surfaces can describe shapes of

high complexity, use little of computer memory, are stable to floating point

operations and are widely used in CAD programs and computer graphics (Fig.

4.7) [31, 95, 96]. Moreover, there exist efficient algorithms for finding ray-

NURBS surface intersection, most of which were developed for the purposes of

surfaces visualization and rendering in computer graphics. More information

about those algorithms is presented in sections 1.2.4 and 4.4.2. A brief theo-

retical background of NURBS curves and surfaces is presented in appendix C.

A thorough discussion of the subject can be found in monographs [31, 96].

(a) source: www.pixar.com (b) source: www.ruiztaravillo.wordpress.com

Figure 4.7: Examples of NURBS surfaces used in computer graphics.

4.4.1 Generation of NURBS surfaces

Since NURBS surfaces describe the boundaries, it is natural, that they are

inside boundary cells of ortho-Cartesian mesh (cf. section 4.3). Those cells are

special ones, because each of them contains surface elements that describe the

enclosure geometry. It is assumed that each boundary cell contains exactly

one surface element, which in turn consists of many NURBS surfaces (at least

one). Therefore, the enclosure boundary is approximated by a set of NURBS

surfaces.

At first NURBS surfaces of order 3 are created using method of squared dis-

tance minimization and boundary points extracted from CFD cells belonging

to ortho-Cartesian boundary cells. After the surface flattening procedure (see

sect. 4.4.2.1) some of the surfaces are divided and therefore one surface element
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can consist of more than one surface. NURBS surfaces of order 3 are flexible

enough to express most of complex shapes adequately and the surface evalua-

tion time is acceptable. This is confirmed by the fact that the surfaces of 3-rd

order are widely used in computer graphics and CAD programs [31, 96]. The

algorithms for NURBS surface creation from unorganized cloud of points and

for surface evaluation were taken from Point Cloud Library [93]. The boundary

CFD cells for boundary points extraction are selected using ortho-Cartesian

cells overlapping (Fig. 4.8). The cells overlapping is defined by parameter OF

according to equation

OF =
(dx′ − dx)

2dx
=

(dy′ − dy)

2dy
=

(dz′ − dz)

2dz
, (4.42)

where dx, dy and dx′, dy′ are ortho-Cartesian cell dimensions before and after

introduction of cells overlapping. The value of OF parameter is defined by the

user and usually is set to 0.15− 0.25.

Ci+1

Vi

Ci

Vi+1

dx
dx’

d
y

d
y
’

Figure 4.8: Overlapping of ortho-Cartesian cells (V ) in order to extract bound-
ary points for NURBS surface creation. dx, dy and dx′, dy′ - cell dimensions
before and after introduction of cell overlapping, C - cell center.

The idea of ortho-Cartesian boundary cells overlapping was introduced

in order to assure the boundaries are water-tight and to avoid creation of

NURBS surfaces from too few points. In the neighbouring cells the genera-

tion of NURBS surfaces runs independently, thus the transitions between the

surfaces from cell-to-cell can be far from smooth and frequently may contain

gaps. As a consequence, during the ray-tracing some of the rays can escape

the enclosure, causing non-physical behaviour.

Fig. 4.9 depicts the steps involved in the procedure of NURBS surface

generation. In each ortho-Cartesian boundary cell, a list of boundary convective

mesh cells is created. A convective cell c belongs to a given ortho-Cartesian

cell V when its center Pc is inside this cell, accounting for cells overlapping.

Then, the boundary points Pb are extracted from the boundary convective
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cells. Finally, the NURBS surface S is generated on the basis of boundary

points using squared distance minimization. An example of surface fitting to

a set of points is presented in Fig. 4.10.

⋆ ⋆ ⋆

A word of comment is appropriate here. During the preliminary stage of

the program development a different approach for a generation of NURBS sur-

faces was considered. The 3D geometry was generated using a standard pro-

gram (Gambit, Ansys Design Modeller) and saved in standard IGES format.

Then, NURBS surfaces were extracted from the IGES file directly. However,

instead of uniform surface description using NURBS, the IGES file contains

the geometry described by many forms of surfaces like planes, surfaces of rev-

olution and others. Translating all the possible types of surfaces into NURBS

was prohibitively labourious task. Moreover, NURBS surfaces from IGES have

a general form of trimmed parametric surfaces (C.3). The need for surface

trimming adds one more level of complexity to the boundaries description.

Due to the encountered problems, the idea to read NURBS surfaces directly

from geometry file was abandoned. Despite all the issues stated above, the idea

is worth exploring, because it can greatly reduce the time of ortho-Cartesian

mesh preparation stage and reduce the number of NURBS surfaces used.
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V

cPc

(a)

V

Pc

Pb

(b)

V

Pb
S

(c)

Figure 4.9: Steps of NURBS surface S generation out of boundary boundary
points belonging to ortho-Cartesian cell. c, V denote convective and ortho-
Cartesian mesh cells, Pc are convective cell centres, Pb are boundary points.
Convective cells c marked gray are boundary cells selected to belong to a given
ortho-Cartesian cell V using cell overlapping.
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(a) set of points (b) NURBS surface

Figure 4.10: Stanford bunny - an example of NURBS surface created on the
basis of a set of points [93].
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4.4.2 Intersection of rays and NURBS surfaces

In the preceding section 4.4.1, the generation of a single NURBS surface was

introduced. The discussion about the available methods for ray-tracing NURBS

surfaces was presented in section 1.2.4. In the thesis, Newton’s method for ray-

NURBS surface has been choosen.

Starting from the emission point, the ray is followed cell-by-cell. The pro-

cedure for finding the ray-surface intersection point is triggered when the ray

hits the boundary cell of ortho-Cartesian mesh. The procedure comprises of

two main steps: iterative Newton’s method and bounding volume hierarchy

for proper initialization. Newton’s method has been proposed by [61], later

developed by [76] and is described in details in appendix D. It has a quadratic

convergence rate provided it was given an initial guess u0 = {u0, v0} that is

close enough to the solution. The proper initial guess for Newton’s method is

assured by the procedure of ray traversing the hierarchy of bounding boxes.

The method requires computation of the directional derivatives of the surface

at a given point, therefore the surface has to be differentiable in the considered

domain.

4.4.2.1 Bounding Volume Hierarchy

Newton’s method for finding ray-surface intersection point is computationally

expensive since it requires multiple evaluation of the surface point and surface

derivatives. Therefore it is important to avoid ray-surface intersection test

whenever possible. Additionally, Newton’s method needs a good initial guess

u0 = {u0, v0}, which should be closer to the real solution for considerably

curved surfaces.

Stated above requirements are met using bounding volume hierarchy (BVH)

described by Martin in [76]. Generally, the hierarchy consists of root, internal

and leaf nodes. The root node is the highest level node containing the other

ones, internal nodes are in the middle of each branch of the hierarchy. Leaf

nodes are placed only at the lowest level of each hierarchy branch and are

assigned an initial point for Newton’s iteration (Fig. 4.11). Bounding volumes

are more associated with the objects they are actually bounding and have

a tendency to bound them tightly, contrary to the volumes created by other

techniques like octrees, BSP-trees, KD-trees in which the space is divided using

top-down approach. For bounding volumes axis-aligned bounding boxes were

chosen i.e., the walls of the boxes are parallel to the planes of global coordinate
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system. Such definition produces a very efficient ray-box intersection algorithm

introduced by Kay [63] and mentioned later by Smits [109]. Axis-aligned boxes

can also nicely bound flat parts of the surface which is often the case, as shown

later in chapter 5.

Figure 4.11: An example of BVH that is assigned to a single NURBS surface.
Leaf nodes (grey) contain an initial point for Newton’s iteration.

In order to construct the BVH, the leaf nodes are created using Abert’s

method [1, 2] and then placed into the hierarchy using Goldsmith-Salmon

algorithm [43]. During the placement of leaf nodes into the hierarchy, the other

nodes (root and internal) are created. In Abert’s method, the leaf nodes are

created using the concept of surface flatness criterion p. It can be considered

as a parameter measuring how flat is the surface under the consideration. It is

defined as

p =

7
∏

i=1

ni · ni+1, (4.43)

where ni are surface normal vectors evaluated at eight points shown in Fig.

4.12.

A surface is considered to be perfectly flat if p = 1. For p > f a leaf bound-

ing box is created by taking x, y, z coordinates of four points corresponding

to four limiting vertices of the parametric domain. The initial point for New-

ton’s iteration is the arithmetic mean of the limiting values of the parametric

domain. If p 6 f the surface is divided in half of its parametric domain. The

process is recursively repeated till all subsurfaces fulfil the flatness criterion.

Parameter f ∈ [0, 1] is set empirically and usually equals to 0.8 − 0.9. In the

case p < 0, the surface is also subdivided in half of its parametric domain.
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Figure 4.12: Eight surface sampling points (black dots) used for the evaluation
of surface flatness criterion p.

(a) f = 0.8 (b) f = 0.95

Figure 4.13: Leaf bounding boxes for NURBS surface, created based on differ-
ent surface flatness criterion f .

Different approach was presented by Martin [76]. In his work, the curvature-

based refinement was used to divide the surface into almost flat Bézier patches

and convex hull property was employed to create bounding boxes. As well as

Abert, Martin used heuristics to estimate the curvature of the surface but in

his case the division of one segment causes analogical divisions in neighbour-

ing segments. Thus the method can lead to unnecessary divisions of the base

surface. Heuristics developed by Abert is more versatile, because it takes into

account surface curvature in both directions (u and v) simultaneously and does

not require so many divisions as Martin’s approach. Moreover, using convex

hull property in the case of NURBS surfaces to create bounding boxes leads

to inefficiencies, as was shown by Abert [1]. Taking into account the above

reasons, Abert’s method was used. Examples of leaf bounding boxes created

for two values of f parameter are shown in Fig. 4.13.

By taking f parameter closer to 1 the parts of surfaces inside bounding

boxes are more flat. As a consequence higher number of bounding boxes is cre-

ated leading to bigger hierarchy tree, higher memory consumption and slower

ray traversal through the hierarchy. On the other hand, Newton’s iteration is
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likely to converge faster. By providing an initial point from BVH created with

the f = 0.8− 0.9, the method usually converges after 3-4 iterations.

After computing all the leaf bounding boxes the BVH is created using

Goldsmith-Salmon algorithm [43]. The measure of quality for the hierarchy

is the average time needed for a ray to traverse the hierarchy. The principle

of the algorithm is to put the leaf nodes into the hierarchy tree one-by-one

and to search the tree for optimum insertion place which is determined by

the minimization of tree cost function. The algorithm allows to create almost

optimal hierarchy tree with the computational cost of order n log(n), where n

denotes the number of leaf nodes. An example of BVH is shown in Fig. 4.11.

In order to efficiently store and traverse the BVH a depth-first order array

of bounding box objects with skip-pointer mechanism was used (Fig. 4.14).

If the ray-box intersection test was successful, the next box to test is the

subsequent element of the array. Otherwise, the box to test is determined by a

skip-pointer mechanism which tells how many elements in front of the current

element of the array should be omitted. The advantages of such representation

of the hierarchy are efficient use of the computer memory (no empty elements),

limited to the minimum the amount of information stored in one element and

no need for using recursive function calls during the hierarchy traversal [109].

a

b c d

e f g

ba e f c g d

Figure 4.14: BVH representations. Left: using pointers to child nodes, right:
depth-first order array with skip-pointer mechanism.

It is important to note, that if the value of surface flatness criterion pa-

rameter f is set low, it is more probable for Newton’s method to converge to

improper point or even diverge. In this case the ray can travel to inactive ortho-

Cartesian cell and escape from the enclosure producing non physical result. It

does not terminate the code execution, simply the traced ray is neglected. It

should be kept in mind that the value of f parameter is a compromise between

the speed the ray traverses through BVH and the number of rays that can

escape from the enclosure.
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4.4.3 Bundle emission point at NURBS surface

An important step in MCRT method is determination of bundle emission point.

In the case of emitting and absorbing media, the bundle can originate from

both surface and volume elements. Current section presents only the procedure

of finding the bundle emission point from the surface element or, more precisely,

NURBS surfaces. The emission from volume elements is addressed in section

4.5.

The emission points should have uniform distribution across the surface,

because the amount of energy emitted from the surface of constant temperature

is proportional to its area. Algorithm that is capable of drawing random points

on any parametric surface with uniform distribution was described by Kopytov

in his works [65, 66].

A parametric surface S(u, v) is defined in parametric domain Ωp : {u1 6

u 6 u2; v1 6 v 6 v2}. The joint probability distribution function of parameters

u and v - f(u, v) is to be determined. This function corresponds to the uniform

point distribution in 3d-space. In the case of uniform distribution of points on

the surface, the probability of point A being on the small fragment of surface

∆S equals to

P (A ∈ ∆S) =
∆S

S
, (4.44)

where

∆S =
√
EG− F 2∆u∆v, (4.45)

S =

∫∫

Ωp

√
EG− F 2 dudv. (4.46)

E, F , G are coefficients of First Fundamental Form of the surface S:

E = Su · Su, (4.47)

F = Su · Sv, (4.48)

G = Sv · Sv. (4.49)

Inserting equations (4.45) and (4.46) into (4.43) leads to

P (A ∈ ∆S) =

√
EG− F 2∆u∆v

∫∫

Ωp

√
EG− F 2 dudv

. (4.50)
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On the other hand, probability of point A being on the surface fragment ∆S

equals to

P (A ∈ ∆S) = f(u, v)∆u∆v. (4.51)

Comparing the equations (4.50) and (4.51) the expression for unknown joint

probability distribution function is found

f(u, v) =

√
EG− F 2

∫∫

Ωp

√
EG− F 2 dudv

. (4.52)

The function f(u, v) is proportional to
√
EG− F 2.

The dependencies derived above are used in the algorithm for drawing

random points on parametric surface with uniform distribution in 3d-space:

1. Determine the maximum of the function fmax = max
√
EG− F 2 in do-

main Ωp.

2. Generate two random numbers Ru and Rv from [0, 1) interval and scale

them to the size of the domain Ωp by computing parameters u0, v0

u0 = (u2 − u1) · Ru + u1, v0 = (v2 − v1) · Rv + v1, (4.53)

where u1, u2, v1, v2 are local parameters bounding valid surface domain

Ωp.

3. Check the condition

fmaxR < f(u0, v0), (4.54)

where R - random number from [0, 1) interval. If the condition is fulfilled

the point S(u0, v0) is accepted, otherwise it is rejected.

4. Repeat steps 2, 3 till required number of points on the surface S is

achieved.

An example of 10k random point locations on NURBS surface sampled

with uniform distribution is shown in Fig. 4.15.

The algorithm described above is applicable to one surface only, thus it

needs upgrading to account for many surfaces, as it is the case for some of the

boundary cells of ortho-Cartesian mesh. If a boundary cell contains more than

one NURBS surface, the surface is chosen randomly with probability propor-

tional to its area. Kopytov’s algorithm is used to draw a single emission point

from this surface and then the point is tested if it lies inside the boundaries
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(a) (b)

Figure 4.15: 10k random points lying on NURBS surface sampled with uniform
distribution.

of ortho-Cartesian cell. If it does, it is accepted as an emission point for new

energy bundle, otherwise the procedure is repeated.

4.5 Ray tracing procedure

The aim of this section is to present the ray tracing algorithm, which is the

crucial part of MCRT method and during of which the values of radiation

distribution factors Dij are determined.

Up to this moment, among the issues covered by the current chapter were

the ortho-Cartesian mesh and the description of boundaries in the form of

NURBS surfaces. These are the elements of the system, needed for practical

tracing the rays. Since the radiation problem is solved on the coarse ortho-

Cartesian mesh, this mesh has to be created before. After the radiation model

is invoked by the CFD program, the check is performed whether the model

runs for the first time (Fig. 4.16). If it does, then the preprocessing stage

begins, which is done once for the whole simulation. The preprocessing stage

involves initialization of RDF matrix D and generation and initialization of

ortho-Cartesian mesh. As soon as the preprocessing stage is finished, the D

matrix is to be read from file. If the file is not present, then the loop over

surface and volume elements is executed. For each element the ray tracing

procedure starts in order to compute new values of D matrix entries. After the

values of RDFs are known, radiative heat fluxes qr and heat sources or sinks

qrv are evaluated and interpolated onto the underlying convective mesh. The

data exchange between meshes is the topic of section 4.6.

In the case the radiation model runs for the next time, the radiative prop-

erties of the medium and surfaces are updated. If the absorption coefficient of
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Figure 4.16: Stages of MCRT model.

the medium is constant with the changes of temperature and/or gas composi-

tion and so is the emissivity of surfaces, then there is no need to recompute the

D matrix. This situation corresponds to path #1 shown in Fig. 4.16. Other-

wise, the ray tracing procedure is to be repeated, following path #2. It should

be emphasized here, that the assumption of invariant radiative properties of

the medium and surfaces with respect to temperature can greatly shorten the

simulation time, by avoiding computationally expensive ray tracing procedure.

The ortho-Cartesian mesh initialization stage has the following steps:

• establish mesh resolution and refinement regions,

• assign cells from convective mesh to the ortho-Cartesian cells,

• classify cells to be: active, inactive, boundary,

• in each boundary cell select boundary points and use them to span

NURBS surface,

• orient NURBS surfaces, so that their normal vectors point outwards the

domain,

• create BVH for each NURBS surface,

• initialize radiative properties of medium and boundaries.

⋆ ⋆ ⋆

Once the preprocessing stage is accomplished, the ray tracing procedure is in-

voked. For each surface and volume element, a fixed number of rays is released
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and followed until absorption. In the following, the ray tracing procedure em-

ployed in the thesis is described in details, beginning with the flowchart (Fig.

4.17).

IMG REAL
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NO

YESNO

Diffuse Specular

NO YES

END

Compute distance

to boundary ds

3
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counter Ni
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Figure 4.17: The logic flowchart of the ray tracing procedure used in MCRT
method in participating medium.

The steps numbering corresponds to the one introduced in Fig. 4.17.

Step #1

The procedure of determining the ray emission point depends on the type of

element of ortho-Cartesian mesh:

Surface - the emission point is found using procedure described in section

4.4.3.

Inner Volume - the emission point is found by drawing three random num-

bers Rx, Ry, Rz from [0, 1) interval, forming vector Rx = {Rx, Ry, Rz}
and inserting it into

r0 = C+ (Rx − 0.5)dx, (4.55)
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where C is ortho-Cartesian cell center vector, dx = dx, dy, dz denote

cell dimensions vector.

Boundary Volume - the candidate for an emission point (rc0) is found from

equation (4.55). Then, the condition whether the candidate point lies

within the valid domain is checked. If it does, it is accepted, if not another

candidate point is drawn. The checking procedure makes use of boundary

faces obtained from boundary convective cells belonging to a given ortho-

Cartesian cell (Fig. 4.18). Those faces have normal vectors nf pointing

outwards the domain. In a loop over N boundary faces, the vector v =

rc0 − Cf is created and its direction is compared with the face normal

vector nf . If only for one face the direction of both vectors v and nf is

the same, the candidate point is rejected, otherwise it is accepted.

Cj

r0
c

f

Cf

v

Ω

Figure 4.18: A candidate emission point rc0 from volume cell being tested
whether it lies within valid domain Ω. The test involves checking the direction
of vector v = rc0 −Cf with respect to each face normal vector nf . Cf denotes
boundary face center, Cj is center of ortho-Cartesian cell.

Step #2

The procedure of determining the emission direction depends on the type of

element of ortho-Cartesian mesh [74]:

Surface - for diffuse surfaces, the emission direction d is defined by polar and

azimuthal angles φ ∈ [0, 2π) and θ ∈ [0, 1
2
π) (Fig. 4.20 a)):

φ = 2πRφ, (4.56)

θ = arcsin(
√

Rθ), (4.57)
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where Rφ and Rθ are random numbers from [0, 1) interval. Angles φ and

θ form a hemisphere above the surface emission point in the opposite di-

rection of surface normal vector n. In order to transform the ray direction

into global coordinate system, the following equation is used

d = −n cos(θ) + t1 sin(θ) cos(φ) + t2 sin(θ) cos(φ), (4.58)

where t1, t2 are unit tangent vectors of the surface at emission point.

Volume - the emission direction d is defined by polar and azimuthal angles

φ ∈ [0, 2π) and θ ∈ [0, π)

φ = 2πRφ, (4.59)

θ = arccos(2Rθ − 1), (4.60)

The transformation to global coordinate system gives:

d = nx cos(θ) + ny sin(θ) cos(φ) + nz sin(θ) cos(φ), (4.61)

where nx, ny, nz are unit vectors parallel to the axes of global coordinate

system.

Steps #3, #4, #5, #6

Within current ortho-Cartesian cell, denoted by index k, a distance to the

nearest boundary dsk is computed (Fig. 4.19). The boundary is understood to

be a plane bounding the cell (imaginary surface) or surface being a portion of

the enclosure (real surface). Then, the values of total s and absorption-free sa

paths are evaluated using the recursive relations:

sk =

{

0, k = 0,

sk−1 + dsk, k > 0,
(4.62)

sa,k =

{

s∗a,k, k = 0,
sk−1sa,k−1+dsks

∗

a,k

sk−1+dsk
, k > 0,

(4.63)

where

s∗a,k = − 1

κt,k
ln(1−Ra), (4.64)

Ra is a random number from [0, 1) interval, which should be drawn only once

per one ray. s∗a,k is absorption-free path computed on the basis of total ab-
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sorption coefficient κt,k, defined as a sum of gas κk and particle equivalent κp,k

absorption coefficients:

κt,k = κk + κp,k. (4.65)

The particle equivalent absorption coefficient can be determined from equation

(4.33).

d'

dr0

ds1
ds2

ds3

ds4a

ds4bs

r1
r2

r3
r4

r5

1 2 3 4

Figure 4.19: Updates of ray total path s using path increments ds during
tracing on ortho-Cartesian mesh. Red and blue points are ray-imaginary and
ray-real surface intersections respectively.

During the computation of the distance to the boundary ds an information

of the type of current ortho-Cartesian cell is used (Fig. 4.3). In the case, the

ray is within an active boundary cell, the intersection algorithm has to take

into account the fact, that the intersection point can be imaginary - with

cell bounding plane, or real one - with enclosure wall. Moreover, the ray can

have more than one intersection point with NURBS surface. All possible ray-

NURBS surface intersection points are found during BVH traversal in which,

provided the ray hits leaf node, the iterative Newton’s procedure is launched

(sec. 4.4.2). The hierarchy is traversed till its end, because finding one ray-

surface intersection point does not guarantee it is correct and unique one.

After BVH traversal is completed the list of all possible intersection points,

imaginary and real, is created. The task of the interrogation algorithm is to

choose the closest point to the ray origin that is within current ortho-Cartesian

cell.

Another issue worth mentioning is the minimum distance of the intersection

point from the bundle emission or reflection point Lmin. It was noted that

some intersection points were found exactly in the emission/reflection point.

It is caused by the fact that after emission or reflection the ray is inside the

boundary cell and the procedure of finding intersection point is automatically
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triggered. After introducing Lmin parameter the ray is forced to travel at least

this distance before intersection is reported. The value of the Lmin parameter

is set by the user and it should be equal to several percent of mean linear

dimension of ortho-Cartesian cell.

Setting proper values of NURBS surface flatness criterion f and Lmin pa-

rameters is crucial for good performance of ray tracer.

Step #7

In the case s > sa is true, the ray is absorbed in current volume element.

Steps #8, #9

In the case s > sa is not true, the ray is not absorbed within the volume. Thus,

the type of the boundary should be checked in order to determine if the ray

hits the real surface being a fragment of an enclosure walls or just crosses the

cell boundary plane (cf. Fig. 4.19). If the latter is true, the ray moves to the

neighbouring ortho-Cartesian cell.

Steps #10, #11

The ray hits a real surface, being a fragment of an enclosure walls. It is absorbed

at the surface element if the following is true

Rα < α, (4.66)

where Rα is random number from [0, 1) interval, α is wall absorptivity at a

surface element. Otherwise, the ray is reflected.

Step #12

The ray is reflected and the program has to determine the type of reflection,

which can be either diffuse or specular. The reflective properties of boundary

surfaces are described by means of specularity ratio: rs = ρs/(ρs + ρd). It can

be interpreted as a probability the ray is reflected in a specular way. Therefore

reflection is specular if

Rs < rs, (4.67)

where Rs is a random number from [0, 1) interval. Otherwise, the reflection is

diffuse.

Steps #13, #14

The direction of diffuse reflection (Fig. 4.20(a)) is computed in exactly the

same manner as for diffuse emission from surface (Step #2). In the case of
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specular reflection (Fig. 4.20(b)), new direction is

d′ = d− 2 (d · n)n, (4.68)

where d is ray direction before reflection.

t1

t2

-n θ

ϕdS

d'

(a) Diffuse reflection

t1

t2

-n

dS

d'

d

(b) Specular reflection

Figure 4.20: Types of ray reflection from differential surface dS. θ, φ are polar
and azimuthal angles, n, t1, t2 are surface normal and tangent vectors, d, d′

are ray direction vectors before and after reflection.

Steps #15, #16

Knowing the indices of elements from which the bundle was emitted (i) and at

which was absorbed (j), the corresponding entry of D matrix is updated and

the bundle counter Ni is incremented. If the total number of bundles traced

exceeds the maximum defined by the user, i.e. Ni > Nmax, then the ray tracing

for a given element ends and the program goes to next element. The procedure

is repeated till all surface and volume elements are visited.

4.6 Data exchange between convective and ortho-

Cartesian meshes

The radiative heat transfer problem is solved on coarse ortho-Cartesian mesh,

which is build on the basis of the underlying convective mesh. Therefore, the

two-way communication between both meshes is necessary in order to provide

appropriate data transfer.

The parameters needed for performing radiative analysis and which are

transferred from convective onto ortho-Cartesian mesh include:

• surface properties:

– T - temperature,
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– α - absorptivity,

– rs - specularity ratio,

• medium properties:

– Tm - temperature,

– κ - absorption coefficient,

– composition,

• particle properties:

– κp - particles equivalent absorption coefficient,

– Ep - radiative energy emission due to the presence of particles.

The transfer of parameters is achieved by surface and volume weighted aver-

aging applied to surface and volume parameters respectively. Suppose that N

convective cells belong to a given ortho-Cartesian cell, then an average value

of volume parameter is

ψavg
m =

∑N
i=0 ψm,i V

CFD
i

∑N
i=0 V

CFD
i

, (4.69)

where V CFD
i is convective cell volume. Analogously, for parameters defined on

surface:

ψavg
w =

∑M
i=0 ψw,iA

CFD
i

∑M
i=0 A

CFD
i

, (4.70)

where M is the number of convective boundary faces in a given ortho-Cartesian

cell and ACFD
i denotes the face area.

Since the radiative energy emitted by an arbitrary element is proportional

to the temperature to the fourth power (for the case of gray media), thus the

temperature field is a special kind of filed variables, which should be averaged

in a different manner:

T avg
m = 4

√

√

√

√

∑N
i=0 T

4
m,i V

CFD
i

∑N
i=0 V

CFD
i

, (4.71)

T avg
w = 4

√

√

√

√

∑M
i=0 T

4
w,iA

CFD
i

∑M
i=0 A

CFD
i

, (4.72)

where Tm, Tw are medium and wall temperatures.
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⋆ ⋆ ⋆

The results of radiative analysis, i.e. heat fluxes on walls qr and heat sources

or sinks in medium qrv are obtained on the ortho-Cartesian mesh. Those quan-

tities are assigned to the centres of ortho-Cartesian cells and are to be trans-

ferred onto the underlying convective mesh. The linear interpolation scheme

was employed in the thesis.

Let ψ denote continuous scalar field, whose values are given at discrete

locations corresponding to the centres C of ortho-Cartesian mesh. Then, the

value of the scalar in an arbitrary location r within the domain and within a

cuboid defined by eight nearest cell centres Cl (Fig. 4.21), is computed as

ψ(r) =

7
∑

l=0

Ll(r)ψ(Cl), (4.73)

where Ll(r) is an interpolant defined by

Ll(r) =

2
∏

i=0

Sl,i(ri), (4.74)

in which

Sl,i(ri) =

{

1− ti(ri), Cl,i 6 ri,

ti(ri), ri < Cl,i

(4.75)

for i = 0, 1, 2 and

ti(ri) =
ri − C0,i

dxi

, i = 0, 1, 2, (4.76)

where dx = {dx, dy, dz} are ortho-Cartesian cell dimensions.

x

y

z

C C

C C

C

C C

C

r

Figure 4.21: The numbering convention for the nearest cell centres C, which
define cuboid enclosing a given location r.
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4.7 Parallel ray tracing

The section presents the enhancements of the ray tracer code by implementing

parallel computing using OpenMP library. The topic of parallel computing in

Monte Carlo ray tracing has been also described in some detail in section 1.2.5.

The core of parallel computing is to divide the task at hand into smaller

problems and to distribute them among multiple processors [3]. Ideally, this

process can result in the reduction of wall-time (speedup) that is proportional

to the number of processors used. However, it is a rare case in reality. The

speedup is degraded by the time spend on passing the information between

processors and by idle processor time, caused by waiting for other processors

to finish their tasks. In order to keep the speedup as high as possible, the pro-

grammer should design a code in a manner, that guarantees a given processor

has an easy access to all the data it needs to complete the task. Also, he should

take care of the proper load balancing, i.e. distribute the load equally between

processors.

The most populat techniques used for parallel computing are:

• graphics process units (GPUs),

• distributed-memory multiprocessors,

• shared-memory multiprocessors.

Although the usage of GPU proved to be very efficient in parallel ray trac-

ing, this approach was not employed in the thesis. The main reason behind

such a decision are hardware limitations. The codes with GPU-enhanced pro-

cessing are developed using libraries, which are specific for a given GPU vendor

(nVidia CUDA C/C++ [89]) and severely limit code portability.

For the case of distributed-memory applications the programming standard

of Message Passing Interface (MPI) is employed [85]. In spite of very high po-

tential, the idea of using MPI in the thesis was abandoned due to relatively

complex programming and difficulties with data sharing between processors.

The implementation of MPI standard in CFD computations is a complicated

task, since it involves the domain decomposition and was beyond the scope of

the thesis. It should be noted, that the domain decomposition is a good strategy

for processes that exhibit local behaviour - fluid flow, thermal conduction, con-

vection, etc. However, thermal radiation is potentially all-to-all phenomenon,

in which the interaction between the elements occurs on long distances. Thus,

employing the domain decomposition in the form met in CFD applications is
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very inefficient, since it will involve exchanging large data pieces during the

ray tracing.

In shared-memory applications, OpenMP library is a well suited tool for

code parallelism [16]. It allows for multi threading, i.e. the existence of multiple

threads within a single process. The threads are executed independently and

share the process resources. The method gives reasonable speedup for moderate

number of processors. Moreover, implementation of OpenMP library into the

serial code is relatively simple. Taking all its benefits into account, it was used

in the thesis.

OpenMP allows to use two main ways for load balancing - static and dy-

namic. Static load balancing distributes the load once, at the beginning of the

computation. Thus, in the case the problem is not divided into equal parts, it

can generate an uneven load distribution among the processors and lower the

performance. In the dynamic load balancing, the work is divided into chunks,

which are assigned to the processors dynamically, i.e. as soon as they finish

their current task. Since the ray paths can have different lengths, the dynamic

load balancing scheme is favourable over the static one [46] and was used within

the code.

⋆ ⋆ ⋆

In the case of Monte Carlo method applied to thermal radiation problems,

the computational domain is divided into surface and volume elements. In

order to compute the values of RDF matrix, a ray tracing (cf. Fig. 4.17) is

performed for each of those elements individually. Thus, there is a loop over

the elements inside the code and this loop has been parallelized using OpenMP.

It should be noted that during the tracing of a single ray, the information about

other rays is not needed. Thus, tracing a single ray (or a number of rays) is an

independent task, that can be performed by a single processor.

The performance of the parallel code is measured using speedup, defined as

st =
t1
tn
, (4.77)

where t1, tn are the program execution times on one and n-threads respectively

and efficiency

η =
t1
n tn

. (4.78)

The results of the test, run on the eight-processor shared-memory 2x4 Intel

Xeon 2.33 GHz machine, are shown in Fig. 4.22, 4.23. In the test, the computer
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time spent only on ray tracing procedure was measured, as this part of the code

is parallelized. The time does not include the preprocessing stage. The results

are compared with an ideal case corresponding to linear speedup and maximum

efficiency equal to 1.0.

 
s

, 
-

n, -

Figure 4.22: Speedup of parallel ray tracing code as a function of number of
threads for MCRT and an ideal linear cases.

The results prove that Monte Carlo ray tracing is a good candidate for

parallel computations, because the usage of additional processors significantly

reduces the run time. However, the efficiency drops with the number of threads

involved in the computations to the value of 0.8 for 6 threads. Increasing the

number of threads above 6 causes the efficiency to decrease even more to the

value of 0.75. The scaling for moderate numbers of threads for Monte Carlo

code should be close to an ideal one, i.e. its efficiency should be close to 1.0.

Lower efficiencies achieved by the code employed in the thesis are caused by the

fact, that the code was not optimized for parallel computing. The code utilizes

container classes that are based on iterators instead of indices. Such container

classes are not designed to efficiently cooperate with OpenMP library. There-

fore, some time is consumed to access the data stored within those containers.

Moreover, on the eight-processor machine some computational resources are

wasted to maintain the operating system and auxiliary programs. Thus, set-

ting the number of threads close to the number of processors does not result

in as efficient speedup as for the lower numbers of threads.
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Figure 4.23: Efficiency of parallel ray tracing code as a function of number of
threads for MCRT and an ideal linear cases.

OpenMP library has its shortcomings in the form of usage limited to shared

memory machines, which excludes massive parallelism. Thus, for future work

it is recommended to employ MPI standard. However in this case, the issue of

minimizing the data exchange between processors, i.e. avoiding passing of the

rays between processors should be solved.

Similar attempts were made by Hunsaker in his Ph.D. thesis [56]. The idea

employed in his thesis was called adaptive focus mesh refinement, or data onion.

Each processor is handed a fully resolved version of a subset of the domain and

a coarsened version of the remainder of the domain. Then the rays are traced

by each processor on such simplified domain, thus avoiding passing the rays

between processors. The approach produced the results of poor accuracy, the

cause of which has not been clarified by the author.

4.8 Ray tracing on ortho-Cartesian vs. standard

meshes

The goal of the section is to show the benefits of using ortho-Cartesian mesh

for ray tracing. The comparison is done between MCRT model described in

the thesis, working on coarse ortho-Cartesian mesh in emitting and absorbing

medium, and the most crude implementation of Monte Carlo, in which the rays
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are traced from every volume and boundary face of standard dense convective

mesh. Since the crude implementation of Monte Carlo is not available, the

following considerations are purely theoretical and should be treated as an

estimate.

In the following, two cases from chapter 5 are analysed, namely:

1. BTC 1 - Well-stirred combustion chamber,

2. BTC 2 - Non-isothermal gray medium.

The summary of the meshes for both cases is shown in Tab. 4.1.

Table 4.1: The summary of dense convective and coarse ortho-Cartesian meshes
for considered cases, denoted by superscripts c and oC. Nv, Ns, Nnurbs, NBV

are the number of volume cells, boundary surfaces, NURBS surfaces and total
number of bounding volumes respectively.

Case N c
v N c

s NoC
v NoC

s NoC
nurbs NoC

BV

BTC 1 23 600 5 520 1 536 744 1 152 2 784
BTC 2 117 800 14 356 2 640 1 184 1 598 8 150

During the comparison of the ray tracing methods mentioned at the begin-

ning of this section, one has to take into account the following issues:

• total number of surface and volume elements,

• the presence of bounding volume hierarchy in the case of otho-Cartesian

mesh,

• the differences in geometrical description of volume elements between

ortho-Cartesian and convective meshes.

The main advantage of using ortho-Cartesian mesh over standard one is

much lower number of surface and volume elements the rays are to be traced

from. Thus, the total number of rays, expressed as

nr = Nr(Ns +Nv), (4.79)

where Nr is the number of rays per one element (surface or volume), Ns, Nv

are the number of surface and volume elements, is also heavily reduced. Tab.

4.2 shows estimates of total number of rays traced for both versions of Monte

Carlo model, assuming Nr = 100k rays released from one element. The results

prove that using ortho-Cartesian mesh significantly reduces the total number
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Table 4.2: Total number of rays traced nr for both versions of Monte Carlo
model and speedup (last column) obtained using ortho-Cartesian mesh instead
of convective one.

Case Nr nc
r noC

r nc
r/n

oC
r

BTC 1 100 000 2 912.0 M 228.0 M 12.8
BTC 2 100 000 13 215.6 M 382.4 M 34.6

of rays. The speedup, caused by avoiding tracing of some rays and defined as

nc
r/n

oC
r , depends on the case at hand and can be as high as 35.

The presence of bounding volumes hierarchy reduces the potential speedup

resulting from the reduction of elements. During the tracing of rays on ortho-

Cartesian mesh, the ray has to be intersected with some of the volumes from

the hierarchy. Under the assumption that the ray is tested for intersection with

every fourth bounding volume, the speedup is estimated to be 9.8 and 22.6 for

BTC1 and BTC2 respectively.

The last point in the current discussion is the difference in geometrical

description of volume elements between both considered meshes. In the case

of ortho-Cartesian mesh it is guaranteed, that every volume is defined by six

planes parallel to the planes of global coordinate system. When the ray tra-

verses the mesh, three ray-plane intersection points are found (ray direction is

known and only three planes from six can be selected) and the closest point

lying in front of the ray origin is accepted, allowing for finding the neighbour

cell. However, in the standard mesh composed of hexahedral elements, there

is no guarantee that for each of six faces defined by four vertices each of those

vertices lies on the same plane. This fact has been pointed out by G. Wecel in

his Ph.D. thesis [131] and has its consequences. Namely, each of six faces has

to be divided into two triangles and twelve ray-plane intersection points are

found. For further calculations the closest point lying on the triangular face is

accepted. As a consequence, two times more ray-intersection points have to be

computed together with one check if point is within triangle. Thus, it can be

concluded, that traversing a standard mesh is around four times slower than

ortho-Cartesian one.

Summarizing, the speedup resulting from using ortho-Cartesian mesh is

estimated to be 40 and 90 for BTC1 and BTC2 respectively. It is eveident,

that reported value of speed-up is greater for the case where the difference

between ortho-Cartesian and CFD cells is bigger. The ratio between number

of CFD and ortho-Cartesian cells is 16 and 45 for BTC1 and BTC2 respectively.

83



It should be kept in mind, that by using ortho-Cartesian mesh the quality

of the solution is sacrificed to the potential speedup in computational time.

This topic is covered in details in section 5.1.2.

4.9 Treatment of non-gray gases in Monte Carlo

technique

Within the current thesis, radiative properties of non-gray gases in Monte

Carlo model were accounted for using WSGGM described in some details in

section 2.1.6. Theoretical background of WSGGM is fully covered by works of

G. Węcel [130, 131, 132, 133].

In the case of WSGGM, fractions of blackbody emissive power, radiative

heat flux and radiative heat source corresponding to k-th gas are defined by

means of weighting factors ak:

eb,k = akeb, (4.80)

qrk = akq
r, (4.81)

qrv,k = akq
r
v. (4.82)

These fractions satisfy relationships

Ng
∑

k=0

eb,k = eb;

Ng
∑

k=0

qrk = qr;

Ng
∑

k=0

qrv,k = qrv. (4.83)

Using (4.80), (4.81) and (4.82) equations for radiative heat flux (4.37) and

volumetric heat source due to emission or absorption in medium and particles

(4.38) in element i can be rewritten in the following form

qri =

Ng
∑

k=0

[

ǫieb,iai,k −
N
∑

j=1

ǫieb,jDij,kaj,k (4.84)

−
n
∑

j=N+1

κj,keb,j + πEp,j

κj,k + κp,j
ǫiDij,kaj,k

]

, 1 6 i 6 N,

qrv,i =

Ng
∑

k=0

[

4(κi,keb,i + πEp,i)ai,k −
N
∑

j=1

4(κi,k + κp,i)eb,jDij,kaj,k (4.85)

−
n
∑

j=N+1

4(κj,keb,j + πEp,j)
κi,k + κp,i
κj,k + κp,j

Dij,kaj,k

]

, N + 1 6 i 6 n,
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where: k, Ng, ak Dij,k denote gray gas index (k = 0 is transparent one), weight-

ing factor, number of gray gases (Ng = 4) and one element of RDF matrix D.

ak and κk values are computed following procedure from section 2.1.6 and us-

ing data reported by Węcel in paper [132]. It is important to emphasize, that

there is a need to determine five D matrices, one for each gas, including trans-

parent one. Therefore, the penalty for taking into account non-gray properties

of gases is, as expected, a higher computational cost.
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Chapter 5

Verification of the radiation model

The chapter presents MCRT cases used for verification, classified into two

main groups: non-participating (sec. 5.1) and absorbing and emitting (sec.

5.2) media.

The reason for such a division lies in the history of MCRT model develop-

ment. The development was divided into the stages, which was possible due to

the relative easiness of code implementation. The code boasts the same struc-

ture for both variants - non-participating and semitransparent media. Firstly,

the system for ray-tracing using otho-Cartesian mesh using NURBS surfaces

for the boundaries description was implemented. At that stage, the absorp-

tion and emission of the ray inside semitransparent medium was not allowed.

Without the allowance for ray absorption and emission inside the medium,

the model solves the surface-to-surface radiation problems. The importance of

this stage of the model development should not be underestimated, since the

majority of the procedures tested here are used later in the upgraded version

of the model. Secondly, the model was upgraded to take into account the ab-

sorbing and emitting medium, for which the test cases are described in section

5.2.

5.1 Non-participating medium

5.1.1 View factor

MCRT model was used to estimate value of the view factor for two parallel

rectangular plates of sides equal to X and Y . Surfaces lay in front of each other

at a distance of L. The exact value of the view factor was calculated using an
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expression from the book [15]

Fij =
2

πX̄Ȳ

{

ln

[

(1 + X̄2)(1 + Ȳ 2)

1 + X̄2 + Ȳ 2

]1/2

+ X̄(1 + Ȳ 2)1/2 tan−1 X̄

(1 + Ȳ 2)1/2

}

+
2

πX̄Ȳ

{

Ȳ (1 + X̄2)1/2 tan−1 Ȳ

(1 + X̄2)1/2
− X̄ tan−1 X̄ − Ȳ tan−1 Ȳ

}

,

(5.1)

where X̄ = X/L, Ȳ = Y/L. By setting the values X = Y = 1/3m and L = 1m

the exact value of F exact
ij = 0.0329714.

During the simulation rays were traced from the surface of one plate and

hits were reported when rays arrived at the second plate. Using the number of

hits reported Nij and total number of rays traced Ni the view factor Fij can

be estimated using equation (4.40), repeated here for convenience: Fij = Dij
∼=

Nij

Ni

. For a given total number of rays traced Nrays 10 tests were performed for

different seeds of random number generator (RNG). It allowed to determine

mean value F estimate
ij , standard deviation s10 and relative error ǫ for the view

factor. The results are listed in Tab. 5.1 and shown on graph in Fig. 5.1.

Table 5.1: Results of simulation of view factor estimate. Values computed on
the basis of 10 runs with different RNG seeds.

Nrays, - F exact
ij , - F estimate

ij , - s10, - ǫ, %
100 0.0329714 0.038 0.02638 15.25

1000 0.0329714 0.0341 0.00370 3.42
10000 0.0329714 0.03289 0.00151 0.25

100000 0.0329714 0.033063 0.00043 0.24
1000000 0.0329714 0.0328263 0.00018 0.22

The results show that:

1. The estimated value of view factor tends to exact value with the increas-

ing number of rays traced.

2. The value of standard deviation for 10 samples decreases proportionally

to the value of the expression
√

Nrays.

3. Relative error tends to 0 for a large number of rays traced.

4. The mean value of the view factor for a given number of rays, should

tend to the exact value for the increasing number of tests performed. In

other words, performing 10 tests with 100 rays traced, should give the
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Figure 5.1: View factor estimates Fij for two parallel plates computed on the
basis of 10 tests with various RNG seeds done with MCRT model for different
number of rays traced Nrays and compared with exact value [15]. Vertical bars
denote standard deviation of the sampling set.

result similar to 1 test with 1000 rays. However, in the second case, the

information about the standard deviation is lost.

The results proved a proper behaviour of the MCRT model with respect to

computation of the view factor.

5.1.2 The cube

In this test the results obtained by surface-to-surface (S2S) Ansys Fluent [5]

and OpenFOAM MCRT models are compared on the geometry of cube that

has edges equal to 1 m (Fig. 5.2). The details of the S2S model are described

in appendix A.

Fixed temperature boundary conditions are listed in Tab. 5.2, in which

T (r) (in K) defines a temperature profile on the wall

T (r) =











(T0 − T1) · cos2(
π

2rmax
· r) + T1, if r < rmax,

T1, otherwise,
(5.2)
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Figure 5.2: The geometry of 1m cube with names of boundary walls.

where: r =
√
pi − p0 - distance between the center of the cell boundary wall

pi and the center of Z0 wall p0, T0 = 500K, T1 = 300K - maximum and

minimum temperature, rmax = 0.4m - radius of influence. T (r) function guar-

antees temperature continuity on the boundary walls. The walls are diffuse

with constant value of absorptivity, equal to 1.

Table 5.2: Boundary conditions - temperature and absorptivity at the walls.

Wall name T, K α, -
X0, X1, Y0, Y1, Z1 300 1

Z0 T (r) 1

CFD mesh consists of 125000 cells which corresponds to uniform x, y, z

resolution of 50. MCRT model was run 5 times for different RNG seeds for

each otho-Cartesian mesh resolutions Mres equal to 10, 20 and 40. The number

of rays traced from one surface element was set to 10000.

Table 5.3: Balance of radiative heat fluxes (W ) at cube walls for S2S and
MCRT models. In the case of MCRT model the results are average values of
5 runs for different RNG seeds.

Model Mres X0 X1 Y0 Y1 Z0 Z1 Net
MCRT 10 -60.72 -61.20 -59.38 -62.08 314.02 -71.78 -1.13
MCRT 20 -61.59 -63.05 -62.40 -63.32 323.43 -77.09 -4.03
MCRT 40 -62.58 -62.04 -62.39 -62.94 325.85 -76.55 -0.65

S2S - -62.76 -62.75 -62.77 -62.76 326.53 -75.52 -0.03

Table 5.3 shows balances of radiative heat fluxes computed by S2S model

and MCRT for three ortho-Cartesian mesh resolutions. The results produced

by MCRT model follow S2S results and are closer to them for greater ortho-

Cartesian mesh resolution. The balance of radiative heat fluxes for the entire

enclosure should be equal to zero. In the case of MCRT model the unbalance
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is greater than for S2S model, but the Monte Carlo results converge with

the increase of mesh resolution. The unbalance is caused by uncertainties in

computation of radiation distribution factors. The uncertainties can be lowered

either by increasing the number of energy bundles traced, or by smoothing the

distribution factor matrix. The smoothing procedure causes the elements of

distribution factor matrix to fulfil energy conservation and reciprocity rules,

described in details in section 4.2. Current version of MCRT model has not

the smoothing procedure implemented.

(a) S2S (b) MCRT Mres = 40

(c) MCRT Mres = 20 (d) MCRT Mres = 10

Figure 5.3: The influence of ortho-Cartesian mesh resolution on the radiative
heat fluxes (W/m2) on the walls.

Fig. 5.3 shows the influence of ortho-Cartesian mesh resolution Mres on

the radiative heat fluxes. Increasing the resolution causes the solution to be

more smooth and to approach the reference solution of S2S model. Moreover,

the lower the resolution, the bigger the difference between extreme values of

radiative heat flux reported by S2S and MCRT models. This fact is caused by

the temperature averaging inside the ortho-Cartesian cells and it is important,

since the radiative heat flux is proportional to the fourth power of temperature.

Similar conclusions can be drawn by analysing Fig. 5.4, in which radiative heat

fluxes along a symmetry line of wall Z0 were presented.

In order to measure how the solution of MCRT model deviates from the

accurate solution of S2S model the radiative heat fluxes on the line of symmetry
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Figure 5.4: Radiative heat flux along the symmetry line of Z0 wall for different
resolutions of MCRT and S2S model.

of X0 wall were extracted and compared using p-norms. The norms are defined

as follows

||x||p = (|x1|p + |x2|p + ... + |xn|p)1/p , (5.3)

||x||∞ = max {|x1|, |x2|, ..., |xn|} , (5.4)

where: p = 1, 2, xi = xS2Si − xMCRT
i .

The results are summarized in Tab. 5.4. Increasing the ortho-Cartesian

mesh resolution two times causes the norms to decrease by a factor of two

and to improve the accuracy of MCRT model. It should be noted that the

resolution of ortho-Cartesian mesh can not be greater than the resolution of

CFD mesh.

Table 5.4: The influence of ortho-Cartesian mesh resolution Mres on the de-
viation of heat fluxes on the symmetry line of X0 wall obtained using MCRT
model from S2S solution.

Mres ||x||∞ ||x||1 ||x||2
10 11.9 239.3 39.4
20 9.4 130.2 24.3
40 3.4 59.3 10.7
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5.2 Absorbing and emitting gray medium

The section covers the verification of MCRT model applied to absorbing and

emitting gray medium. The verification of the model has been done by using

the benchmark solutions obtained by several research institutions obtained

with different techniques. The benchmark solutions were generated within the

Radiarare Network of research institutions [47] and also has been used by G.

Węcel in his work on BEM method [131].

The goal of Radiarare project was to establish a set of benchmark test cases

(BTC). Subsequently, those cases are used in verification of various radiation

heat transfer models. In all tests the temperatures of the walls and the medium

were known, therefore the radiative analysis was uncoupled from the energy

conservation for the fluid. Moreover, the medium and the walls were treated

as gray.

The results were obtained by the following partners of the Radiarare Net-

work:

• ENEL Produzione - Research (ENEL), Pisa, Italy;

Discrete Transfer Method (DTM) and Discrete Ordinates Method (DOM)

• Lehrsthul fuer Stroemungsmechanik (LSTM), Erlangen, Germany;

Monte-Carlo Method (MC);

• Instituto Superiori Tecnico (IST), Lisbon, Portugal;

Discrete Transfer Method (DTM) and Discrete Ordinates Method (DOM)

• International Flame Research Foundation (IFRF), Ijmuiden, The Nether-

lands;

Boundary Element Method (BEM)

Moreover, the results obtained by G. Węcel during his work on Boundary

Element Method [131] are added for a reference:

• Institute of Thermal Technology (ITT), Silesian University of Technol-

ogy, Gliwice, Poland;

Boundary Element Method (BEM)

A detailed description of the models is covered in chapter 3. The naming

convention for the respective models is summarized in Tab. 5.5.

The set of benchmark test cases consists of:
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Table 5.5: The naming convention for the models used in verification procedure.

Abbrev. Institution Model
LSTM MC Lehrsthul fuer Stroemun- Monte Carlo

gsmechanik, Germany
IST DOM Instituto Superiori Tecnico, Discrete Ordinates

Portugal
IST DTM Instituto Superiori Tecnico, Discrete Transfer

Portugal
Enel DOM ENEL Produzione - Research, Discrete Ordinates

Italy
Enel DTM ENEL Produzione - Research, Discrete Transfer

Italy
IFRF BEM International Flame Research Boundary Element

Foundation, The Netherlands
ITC BEM Institute of Thermal Techno- Boundary Element,

logy, Poland BERTA code
ITC MC Institute of Thermal Techno Monte Carlo

logy, Poland

• BTC 1

Well-stirred combustion chamber with prescribed uniform temperatures

of the medium, uniform wall emissivities and uniform wall temperatures.

• BTC 2

Non-isothermal gray medium with prescribed uniform wall emissivities

and a distribution of the wall and medium temperatures.
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5.2.1 Well-stirred combustion chamber

Case set-up

The test case simulates a rectangular combustion chamber of dimensions 1m

x 1m x 3m, presented in Fig. 5.5. Well-stirred assumption implies, that the

temperature and absorption coefficient of the medium are uniform across the

enclosure. Also the temperature and emissivity of walls are uniform. The walls

have lower temperature than gas, thus they can be regarded as a heat sink.

The radiative properties of both walls and medium are gray. The geometry of

the chamber was simplified, including the burner inlet and the flue gas outlet,

placed at the front and back walls of the chamber. The boundary conditions

for the case are summarized in Tab. 5.6.

3m

1m

1m

Figure 5.5: Geometry of benchmark case 1 - Well-stirred combustion chamber.

Table 5.6: Boundary conditions for BTC 1.

Parameter V alue Units
Wall temperature 1000 ◦C

Wall emissivity 0.5; 0.8 −
Gas temperature 1500 ◦C

Gas absorption coeff. 0.1 m−1

Results

CFD mesh resolution for this case is set to 20 x 20 x 60 corresponding to 24k

of CFD cells. The resolution of ortho-Cartesian mesh for radiative analysis,

created on the basis of CFD mesh, is 8 x 8 x 24 yielding 1536 cells. The

number of rays traced from one volume or surface element is 1 million for ITT

MC model.

The case was run two times with different wall emissivities ǫ, equal to 0.5

and 0.8. The output of the radiative analysis are the net heat fluxes at walls

qr. The surface irradiation (or the incident heat flux) i can be calculated from
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the equation

qr = ǫ(i− eb), (5.5)

where eb is the blackbody emissive power at the wall temperature.

220

Distance from burner, m

3

LSTM MC

IST DOM

IST DTM

Enel DOM

Enel DTM

IFRF BEM

ITT BEM

ITT MC

Figure 5.6: Comparison of the incident heat flux along the longer symmetry
axis of chamber side wall obtained using different models; ǫ = 0.5.

200

Distance from burner, m

3

Figure 5.7: Comparison of the incident heat flux along the longer symmetry
axis of chamber side wall obtained using different models; ǫ = 0.8.

The comparison of incident heat flux along the longer axis of symmetry of

the chamber side wall obtained using different models is shown in Fig. 5.6 and
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Fig. 5.7 for cases of wall emissivity equal to ǫ = 0.5 and ǫ = 0.8 respectively.

The results of ITT MC model show very good agreement with the results of

most of the other methods. The observable differences are < 0.5%. It should

be noted, that the results of IFRF BEM method differ the most from other

models. This fact can be explained by the simplified integration routines and

ray tracing procedures employed in the code [78].

5.2.2 Non-isothermal gray medium

Case set-up

The test case simulates a cylindrical combustion chamber of length 3m and

radius 0.5m, presented in Fig. 5.8. The chamber is axially fired and symmet-

rically cooled. The walls have uniform emissivity and the gas filling-up the

enclosure has uniform absorption coefficient. The temperature of the gas and

the walls is given by a location-dependent function T (p), that simulates a

flame from a burner, installed axially at the front wall of the chamber. The

geometrical details of the burner as well as outlet were omitted for simplicity.

The boundary conditions are summarized in Tab. 5.7.

3m

1m

Figure 5.8: Geometry of benchmark case 2 - Non-isothermal gray medium.

Table 5.7: Boundary conditions for BTC 2.

Parameter V alue Units
Wall temperature T (p) ◦C

Wall emissivity 0.7 −
Gas temperature T (p) ◦C

Gas absorption coeff. 0.1 m−1
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The temperature distribution of both the gas and the walls T (p) (in ◦C)

across the enclosure is given by the following equations

T (p) = T0(p) + (Ta − T0(p))g(p), (5.6)

T0(p) =
T1
2

(

1 +
1

2R

√

x2 + y2
)

, (5.7)

g(p) =
L

z
exp

[

−m0 −
1

2

(

(

ln(z/L) +m0

s

)2

+
x2 + y2

(σR)2

)]

, (5.8)

where Ta is the maximum temperature of the flame, x, y, z are Cartesian coor-

dinates, R,L denotes the chamber radius and length, m0, s are the parameters

of the flame position along z-axis, σ is flame width parameter and T1 is tem-

perature at x = y = z = 0.

The temperature distribution function T (p) is symmetrical with respect to

the chamber axis. The temperature profile along the axis of symmetry has the

following properties: at z = 0 the temperature equals to T0, then it reaches

a maximum and finally decreases at the cold end of the furnace. Along the

radius of the chamber, the temperature follows a Gaussian profile.

The parameters necessary to determine the temperature profile are given

in Tab. 5.8. The simulations were performed for two kinds of flames: short

and long, corresponding to the values of m0 parameter equal to 0.75 and 0.25

respectively (cf. Fig. 5.9).

Table 5.8: Boundary conditions for BTC 2.

Parameter V alue Units
T1 1200 ◦C
Ta 1800 ◦C
m0 0.75 (short flame) −

0.25 (long flame) −
s 1 −
σ 0.375 −

Results

CFD mesh size for this case is 100k of CFD cells. The resolution of ortho-

Cartesian mesh for radiative analysis, created on the basis of CFD mesh, is 10

x 10 x 30 yielding 3000 cells. The number of rays traced from one volume or

surface element is 1 million for ITT MC model.

The case was run two times with different temperature profiles, correspond-

ing to short (m0 = 0.75) and long (m0 = 0.25) flames. The output of the

radiative analysis are the net heat fluxes at walls qr.
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Figure 5.9: Temperature profiles (K) in the plane of symmetry of the chamber.
Above: short flame, m0 = 0.75, below: long flame m0 = 0.25.

150

Distance from burner, m

3

LSTM MC

IST DOM

IST DTM

Enel DTM

IFRF BEM

ITT BEM

ITT MC

Figure 5.10: Comparison of the incident heat flux along the chamber side wall
obtained using different models; short flame, m0 = 0.75.
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LSTM MC
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ITT BEM
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Figure 5.11: Comparison of the incident heat flux along the chamber side wall
obtained using different models; long flame, m0 = 0.25.

The comparison of incident heat flux along the chamber side wall obtained

using different models is shown in Fig. 5.10 and Fig. 5.11 for cases of short

and long flame temperature profiles. The results of ITT MC model show very

good agreement with the results of most of the other methods. The observable

differences are < 1.5%.

5.3 Absorbing and emitting non-gray medium

The section deals with verification of MCRT model with implemented WSGGM

to take into account non-gray properties of gases. As a benchmark rectangular

combustion chamber with oxygen-fired flame [97] was selected.

Case set-up

The geometry of the combustion chamber has dimensions 2 x 2 x 4m and

is filled with a gas mixture surrounded by cold black walls at Tw = 300K.

Inside the chamber, the total pressure equals to 1 bar and the gas mixture is

composed of (molar fractions) 85% CO2, 10% H2O and 5% of other gas neutral

to radiation heat transfer.

The temperature distribution inside the chamber is given by

T = (Tc − Te)f(r/R) + Te, (5.9)
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where: Te is temperature at the end of the chamber, i.e. z = 4m and equals

800K, Tc is centerline temperature:

Tc(z) =







400 + z/0.375 · (1800− 400), if 0 ≤ z < 0.375,

1903.5− z/(4− 0.375) · (1800− 800), otherwise.
(5.10)

Function f(r/R) is defined as

f(r/R) = 1− 3(r/R)2 + 2(r/R)3, (5.11)

where r and R denote the shortest distance of a point from centerline and

radius equal to 1m. Temperature distribution described above resembles the

temperature field of a flame.

Results

The CFD mesh for ITT MC consisted of 128k cells, while the resolution of uni-

form ortho-Cartesian mesh was 17 x 17 x 34, yielding 9826 cells. Calculations

were done releasing 100k bundles from one element. The results were compared

to benchmark solutions of Porter [97] and Bordbar [132]. Authors of the first

benchmark used ray tracing and statistical narrow-band model for calculating

radiative properties of gases and solved the problem on 17 x 17 x 24 grid. The

concentration of grid points was greater in the vicinity of temperature peak at

z = 0.375m. The solution of Bordbar was generated with the zonal approach

and WSGG model for radiative gas properties on uniform cubical mesh, which

had resolution of 17 x 17 x 34 points. The comparison of the results being

radiative heat flux and radiative heat source term is shown in Fig. 5.12 and

5.13 respectively.
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Figure 5.12: Comparison of the radiative heat flux along the centerline of z =
4m wall.

Figure 5.13: Comparison of the radiative heat source term along the centerline
of the chamber.

The results show good agreement of ITT MC model with the benchmark

solutions of Porter and Bordbar. The difference in radiative heat source term
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along the centerline reported by the present model and benchmarks is ≤ 5%

in all the regions except zone near z = 0.375m, where the temperature peak is

present.

The radiative heat flux along the centerline of z = 4m wall shown by ITT

MC model is close to benchmark solution of Porter with accuracy of ≤ 5%.

⋆ ⋆ ⋆

The cases presented in this chapter served as a perfect tool for checking

the code of Monte Carlo method. The results show very good agreement with

benchmark solutions in all cases, therefore the model can be considered

as verified.
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Chapter 6

Applications

The chapter presents the practical applications of MCRT model on the example

of a few cases. The first part of the chapter covers non-participating medium,

while the second - semitransparent medium.

6.1 Non-participating medium - pit furnace

MCRT model was used for simulation of pit furnace performance. It is a perfect

example of conjugate heat transfer, since the simulation involved all the modes

of heat transfer - convection, conduction and radiation.

Pit furnaces are used (among other processes) for nitriding process of metal

parts, such as connecting-rods, gear wheels, sleeves, housings etc. As a result of

nitriding, a coating is created on the outer surface of the material. The coating

has high hardness and good anti-wear properties. The nitriding process is op-

erated in controlled atmosphere of 20% ammonia, 80% nitrogen mixture and in

temperatures between 753 and 973 K. Depending on the required thickness of

coating and the type of material, the whole process can last from several hours

to couple of days. The simulation covered steady-state stage of the nitriding

process.

The cross-section of the cylindrical pit furnace in the vertical plane of

symmetry of real furnace is shown in Fig. 6.1. Fig. 6.2 presents the details

of the geometrical model, created for the simulation purpose. The cylindrical

chamber 14 of the pit furnace has a working space of dimensions: base diameter

φ 600 mm, height 900 mm and is closed by a removable lid at the top. The sides

of the chamber are covered by electric heaters 1-10 which have a maximum

power of 40 kW. The furnace is insulated by bricks 12 and ceramic blankets

15. Steel legs 11 reinforce the furnace base on which a steel shaft 13 is placed.
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Ammonia/nitrogen mixture flows to the chamber through inlet 18 and escapes

through outlet 16. The mixing fan shaft 17 is placed in the center of the lid.

Figure 6.1: Cross-section of the cylindrical pit furnace in the vertical plane of
symmetry. Courtesy of Seco/Warwick Group [107].

It should be noted that during the creation of geometrical model of the

furnace certain simplifications and assumptions were made including:

• placing heaters inside the insulation,

• neglecting the presence of the gas-tight retort,

• neglecting the presence of the fan.

In practice, the furnace load is placed inside the gas-tight retort which pre-

vents the heaters to have contact with nitriding atmosphere. The usage of

the fan causes the atmosphere and its temperature to be more uniform inside

the retort, especially in the neighbourhood of surfaces undergoing nitrification

which influence the quality of the process. It should be kept in mind that the

introduced simplifications influence the flow of the nitriding mixture inside the

chamber. However, they do not change the overall energy balance of the system

and are not crucial for testing the MCRT radiation model. Because of the low

optical thickness of the medium inside the chamber, the absorption/emission

properties of ammonia/nitrogen mixture were neglected.
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Figure 6.2: Cylindrical furnace cross-section through vertical plane of symme-
try. 1-10 - electric heaters, 11 - steel legs, 12 - insulating brick, 13 - shaft, 14
- chamber, 15 - insulating ceramic blankets, 16 - outlet, 17 - fan shaft, 18 -
inlet, s1-s10 - inner surfaces of electric heaters, s11 - bottom surf. of steel legs,
s12 - bottom surf. of insulating brick, s13, s14, s15 - bottom/side/top surf. of
insulating blanket, s16, s20 - outlet/inlet, s17, s19 - outlet/inlet pipes walls,
s18 - top surf. of fan shaft. The furnace data acquired from Seco/Warwick
Group [107].

Selected boundary conditions are named in Fig. 6.2 and listed in Tab. 6.1.

Material properties are shown in Tab. 6.2. The emissivity of all walls inside the

furnace chamber was set to 1. The simulation was run for two radiation models

MCRT and S2S for comparison. The resolution of ortho-Cartesian mesh was

set to 20 x 20 x 22 and the number if rays released from each surface element

was 10k.

Results

As a result of the simulation, temperatures and radiative heat fluxes within

the chamber were determined and overall energy balance of the furnace was

calculated. Fig. 6.3(a) shows the resulting temperature profile in the plane

of symmetry. The detailed inspection of the profile reveals the existence of

thermal bridges, created by fan shaft and steel legs. Also the cold stream of

ammonia/nitrogen mixture, close to the inlet is visible. Fig. 6.3(b) shows the

radiative heat fluxes on the sides of the chamber. Although the duty of each

heater is the same, their radiant power differs significantly. This fact is caused

by the different temperatures of the heaters. The heaters 1 and 10 have the

lowest temperature and corresponding radiant power. The temperature and

radiative heat flux profiles on the surface of nitriding object are shown in Fig.
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Table 6.1: Boundary conditions for the case of pit furnace. Names correspond
to the numeration introduced in Fig. 6.2.

Name BC type Property Units Value

s11, s12, s13, wall natural Text K 300
s14, s15, s18 convection hext W/m2K 5

s16 pressure p Pa 0
outlet

s20 velocity v m/s 0.0853
inlet V̇ l/min 10

T K 300
s17, s19 wall q W/m2 0

1 - 10 volume qv W/m3 130 000
Text - external free-stream temperature, hext - external heat transfer
coefficient, p - pressure, v - velocity, V̇ - volumetric flow rate, T -
temperature, q - surface heat flux, qv - volumetric heat source.

Table 6.2: Material properties used in the simulation. Volumes numbering cor-
responds to the one introduced in Fig. 6.2.

Material Volumes k,W/mK ρ, kg/m3 cp, J/kgK
steel 11, 13, 17 58.00 7800 600

insulating blanket 15 0.20 70 970
insulating brick 12 0.14 480 1050

heaters rod 1 - 10 80.00 8000 450
k - heat conductivity, ρ - density, cp - heat capacity.

6.4. The temperature on the shaft equals to 967±4K and its range is too wide

to assure the quality of the process. The non-uniform temperature is caused

by the cold stream of ammonia/nitrogen mixture and exposure to the low-

temperature side of fan shaft. The uniformity of the temperature distribution

(and simultaneously nitrogen concentration) can be improved by using fan and

gas flow-distribution equipment. Moreover, the electric power input for each

heater should be adjusted in order to maintain uniform temperature across the

chamber.

The overall energy balance for the furnace is shown in Tab. 6.3. In order

to maintain the required temperature inside the chamber in steady state, only

10% of maximum heaters duty is needed. It is clear that most of the heat is

lost through the insulation and metal parts and only a small percent (< 4%)

by hot exhaust gases. Mean temperature outside the side insulation is 382 K

which is too high for people who operate the furnace. Additional cooling device

should be installed in order to avoid contact with hot surfaces.

The comparison of radiative heat flux, mean temperature on selected walls

and heat fluxes from Tab. 6.3 done for MCRT and S2S models shows good
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(a)

(b)

Figure 6.3: (a) Temperature profile (K) in furnace cross-section through ver-
tical plane of symmetry. (b) Radiative heat flux (W/m2) on the outer sides of
cylindrical chamber.

agreement and the unbalance of the radiative heat fluxes is < 0.7%. The differ-

ences are caused mainly by the temperature averaging inside ortho-Cartesian

cells done in MCRT model.
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(a)

(b)

Figure 6.4: (a) Temperature (K) and (b) radiative heat flux (W/m2) profiles
on the outer surface of the shaft.
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Table 6.3: Overall energy balance of the furnace for MCRT and S2S models.
Surface names correspond to the ones introduced in Fig. 6.2.

Surfaces QMCRT ,W QS2S,W
s11, s12, s13 -508 -522

s14 -2761 -2766
s15, s17, s18, s19 -489 -469

s16, s20 -79 -108
Hgas -137 -136

Qheaters 4000 4000
Net -26 1
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6.2 Absorbing/emitting medium - cylindrical comb.

chamber

The issue of ray effect has been already introduced in chapter 3 together with

the description of radiation models. The ray effect is an inherent feature of

discrete ordinates and discrete transfer methods. The current section deals

only with DO (also named SN), as this method is widely used to solve many

engineering problems, while the former is regarded as obsolete.

The ray effect is the deterioration of the solution of the radiative trans-

fer equation (2.27) caused by the angular discretization [23]. In the case of

DO model, it manifests itself in transferring the radiation preferably in the

directions resulting from the angular discretization. The ray effect is visible

especially in the cases of hot spots either in the medium or at the boundary

surfaces. The radiative energy from such spots is transmitted mainly in the

discrete directions, thus the reported values of radiative heat fluxes and heat

sources at locations distant form hot spots can be far from exact.

Since the solution of the directional RTE is realized on the finite volume

mesh, there exists another effect, known as false scattering or false diffusion

[23, 92]. This effect occurs due to the spatial discretization of RTE and also

due to the fact, that in general the mesh is not aligned with the ordinates, in

which RTE is solved. Thus, the solutions that should have a sharp step, ex-

hibit a smoothed slope. The negative consequences of the false diffusion effect

can be mitigated by increasing either the number of control volumes inside the

mesh or the order of spatial discretization. The ray effect and the false diffusion

tend to minimize each others’ negative effects, which is proven in the following.

Current section involves comparisons of solutions obtained by DO model

for varying resolution of angular discretization, which is related to the order

of the method N by equation (3.17), repeated here for convenience:

m = N(N + 2), (6.1)

where m is the number of discrete directions. Table 6.4 shows the order of SN

method and corresponding number of discrete directions. In general, the order

N can attain values that are not integers but it was rounded to the closest

integer value for simplicity.
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Table 6.4: Order of DO method N and corresponding number of discrete di-
rections m in the case of 3D.

Notation N m
S2 2 8
S5 5 32
S10 10 128
S16 16 288
S25 25 648
S27 27 800

The existence of ray and false diffusion effects is shown on an example of

cylindrical combustion chamber. In those examples the radiation heat transfer

is computed using MCRT and DO models. Moreover, in DO model the influ-

ence of varying resolution of the angular discretization and the order of spatial

discretization on the solution is analysed.

6.2.1 Case set-up

The geometry and setup of the case is the same as for the case of non-isothermal

medium from section 5.2.2. The case simulates a cylindrical combustion cham-

ber of length 3m and diameter 1m (cf. Fig. 6.5). The walls have uniform

3m

1m

1m

0.5m

Figure 6.5: Geometry of cylindrical combustion chamber with two sampling
lines on the circumference of the chamber side wall, located 0.5m and 1.0m
from the front wall.

emissivity equal to 0.7, the gas has uniform absorption coefficient of 0.1m−1.

The temperature distribution of both the gas and the walls is given by function

T (p) in ◦C, defined by equations (5.6), (5.7) and (5.8). The parameters for the

proper calculation of the temperature profile are: T1 = 1200 ◦C, Ta = 1800 ◦C,

m0 = 0.75, s = 1, σ = 0.375 and they correspond to the short flame profile (cf.
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Fig. 5.9). The results for DO model are generated on fine CFD mesh of size

100k cells. The resolution of coarse ortho-Cartesian mesh for MCRT model is

10 x 10 x 30, yielding 3k cells.

6.2.2 Results

In order to visualize the ray effect, the case was run using DO (SN) model

with different parameters and the results were compared with MCRT model.

The abbreviations of the models and their settings are the following:

1. S5 − 1stO: coarse angular resolution and 1st order spatial discretization,

2. S16 − 1stO: fine angular resolution and 1st order spatial discretization,

3. S5−2ndO: coarse angular resolution and 2nd order spatial discretization,

4. S16 − 2ndO: fine angular resolution and 2st order spatial discretization,

5. MCRTN = X: Monte Carlo ray tracing with the number of rays released

from one element equal to X.

The results are the incident heat fluxes reported at walls (Fig. 6.6) and

also along two sampling lines located on the circumference of the chamber

at distances z = 0.5m (Fig. 6.7, 6.9) and z = 1.0m (Fig. 6.8, 6.10) from

front wall. The mean value of the incident heat flux on the sampling lines and

deviations from the mean for all considered models are summarized in Tab.

6.5. In order to measure the deviations form the mean p-norms are employed,

given by equations (5.3) and (5.4).
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Table 6.5: Mean value of the incident heat flux i, kW/m2 on sampling lines
and deviations from the mean expressed in the form of p-norms.

Model i ||i||1 ||i||2 ||i||∞ ||i||∞
i

z = 0.5m kW/m2 kW/m2 kW/m2 kW/m2 %
S5 − 1stO 141.5 125.6 15.0 3.4 2.4
S16 − 1stO 141.5 107.1 11.3 2.0 1.4
S5 − 2ndO 142.2 485.5 48.2 6.6 4.6
S16 − 2ndO 141.0 4.7 0.5 0.1 0.1

MCRTN = 1k 139.8 213.3 26.1 7.2 5.2
MCRTN = 10k 141.1 98.0 11.1 2.9 2.1

MCRTN = 100k 141.1 29.8 3.5 0.9 0.6
MCRTN = 1M 141.2 11.2 1.9 0.5 0.4

z = 1.0m
S5 − 1stO 140.1 109.6 13.8 3.6 2.5
S16 − 1stO 141.0 89.1 9.4 1.6 1.1
S5 − 2ndO 139.6 388.1 38.4 5.4 3.8
S16 − 2ndO 141.2 3.8 0.4 0.1 0.1

MCRTN = 1k 142.0 215.7 24.1 5.3 3.7
MCRTN = 10k 141.7 66.5 7.8 1.9 1.3

MCRTN = 100k 141.4 27.6 3.2 0.8 0.6
MCRTN = 1M 141.4 13.6 1.6 0.5 0.4
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(a) S5 − 2
nd

(b) S6 − 2
nd

(c) MCRTN = 1k

(d) MCRTN = 1M

Figure 6.6: Wall incident heat flux (W/m2) obtained using selected models.
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φ, ∘

Figure 6.7: Surface incident heat flux along the sampling line. The line is
located on the circumference of the chamber side wall and at distance 0.5m
from burner.

 

φ, ∘

Figure 6.8: Surface incident heat flux along the sampling line. The line is
located on the circumference of the chamber side wall and at distance 1.0m
from burner.
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φ, ∘

MCRT N=100k

Figure 6.9: Surface incident heat flux along the sampling line. The line is
located on the circumference of the chamber side wall and at distance 0.5m
from burner.

 

φ, ∘

MCRT N=100k

Figure 6.10: Surface incident heat flux along the sampling line. The line is
located on the circumference of the chamber side wall and at distance 1.0m
from burner.
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The geometry of the chamber is axis-symmetrical and so is the temperature

profile defined by function T (p). Therefore, the values of the incident heat

flux, reported along sampling lines z = 0.5m and z = 1.0m are expected to

be uniform - however they are not. Analysing the results from Figs 6.6, 6.7,

6.8 and Tab. 6.5 it is clear, that the solution generated by DO model oscillates

around mean value. The solution oscillations can not be eliminated only by

increasing the method’s order, i.e. increasing the number of ordinates, which

is proven by comparing S5 − 1stO and S16 − 1stO. It is also not possible to

achieve smoother solution only by setting higher order of spatial discretization:

solutions of S5 − 1stO and S5 − 2ndO. In those cases, the maximum relative

difference of the reported incident heat flux has risen from 2.4% to 4.6% of

the mean value for z = 0.5m line. The only way to improve the quality of the

solution is to increase both the number of ordinates and the order of spatial

discretization (S16 − 2ndO). The findings are consistent with the conclusions

presented in paper by Coelho [23] and prove the existence of ray and false

diffusion effects.

MCRT method is not prone to the ray effect, since the directions in which

the rays are emitted cover the entire solid angle, not its discrete values. The

reported oscillations result from the statistical nature of the model and de-

pend on the number of rays N traced from one element. It has been shown in

section 5.1.1, that the standard deviation of the solution from the mean value

decreases proportionally to
√
N . The influence of the number of rays released

from one element on the solution quality can be seen in Fig. 6.6 (c), (d) and

Figs 6.9, 6.10 and compared using data from Tab. 6.5. As a consequence of the

statistical nature of MC, its solution is characterized by irregular oscillations,

which stands in contrast with regular oscillations of DO.

In order to provide quantitative information how much the values deviate

from the mean value p-norms are used. By analysing Tab. 6.5 it can be con-

cluded, that the solution generated by MCRTN = 1k model has the quality

falling between S5−1stO and S5−2ndO, whereas the quality of MCRTN = 10k

model is similar to S16−1stO. From the models of the best quality MCRTN =

100k, MCRTN = 1M and S16−2ndO are comparable. The mean value of irra-

diation along sampling lines for MCRT models with lower number of rays per

element, is close to quasi exact value obtained by MCRTN = 1M . The differ-

ences are < 0.3%. What is remarkable, MCRTN = 100k and MCRTN = 1M

produce the results of almost the same accuracy.
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The quasi exact value of mean incident heat flux at sampling lines, i, can be

taken from the solutions of the highest order methods - MCRTN = 1M and

S16−2ndO (Tab. 6.5). The mean values reported by lower order methods differ

from the quasi exact values by no more than 1%. In the quasi exact solution

iz=0.5m < iz=1.0m, which is not the case for lower order DO models S5 − 1stO,

S16− 1stO and S5− 2ndO. However, for all MCRT models, the tendency is the

same as for quasi exact solution.

6.2.3 Comparison of execution time

The goal of this paragraph is to provide the information about the execution

time of MCRT and DO models. The models are run on the same case, which

is cylindrical combustion chamber and for which the temperature field across

the domain is given. The presented comparison is done under the following

assumptions:

• radiative properties of gas and walls are temperature independent,

• DO model runs on 8 threads,

• DO model convergence threshold ǫ = 1e− 6,

• MCRT Ray Tracing procedure runs on 8 threads,

• MCRT pre- and post-processing stages run on 1 thread.

The whole MCRT model code is not run in parallel, only the ray tracing pro-

cedure is parallelized using OpenMP library (section 4.7). However, for the

purpose of comparison, the real execution time of pre- and post-processing

stages for MCRT model is divided by speedup reported for 8-processor ma-

chine, i.e. the value of 6 (cf Fig. 4.22).

Fig. 6.11 shows time needed by the considered models to generate converged

solution. The auxiliary data, i.e. the number of DO iterations till convergence

and time of pre- and post-processing stages of MCRT model, is presented in

Fig. 6.12.

Before analysing the results, it is worth to rcall a few details concerning the

used models. DO and MCRT models are very different in their architectures

and solution techniques. DO uses standard dense convective mesh and iterative

solution of the system of discretized differential equations, while MCRT creates

coarse ortho-Cartesian mesh (pre-processing), traces the rays and interpolates

the results back onto the convective mesh (post-processing). The pre-processing
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Figure 6.11: Execution time needed to obtain converged solution to radiation
problem for considered models.

stage of MCRT model is executed only once. It needs to be emphasized, that

in the case of temperature independent radiative properties, the ray tracing,

i.e. the determination of radiation distribution factors (RDF) matrix, is also

done only once per simulation. Thus, if the temperature distribution inside the

domain changes, MCRT model can use previously calculated values of RDF

matrix. This is not the case for DO model, for which the solution is found

exclusively by iteratively.

Analysing the results, execution time of getting the radiative solution for

a known temperature field, measured for all DO models is shorter than for

almost all MCRT cases. The exception is MCRTN = 1k, which has execution

time comparable to high order S16 − 2ndO model. Comparing pairs of models

of similar accuracy, using MCRT instead of DO increased the solution time:

• 6 times for MCRTN = 1k and S5 − 1stO,

• 8 times for MCRTN = 10k and S16 − 1stO,

• 39 times for MCRTN = 100k and S16 − 2ndO,

• 384 times for MCRTN = 1M and S16 − 2ndO.

This example shows the level of computational effort needed by MCRT method,

even when run on coarse ortho-Cartesian mesh, which reduces the number of
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(a) Number of iterations till conver-
gence at threshold ǫ = 1e− 6.

 

 

M
C
RT N

=
1M

(b) Time of pre- and post-
processing.

Figure 6.12: Auxiliary data for DO and MCRT models.

cells from 100k to 3k.

Taking into the consideration MCRT models, the ray tracing procedure

takes the majority of computational resources. The pre-processing stage takes

the same time tpre−proc = 2.6 s for all models, regardless the varying num-

ber of rays released. Similar situation is for the post-processing stage, for

which tpost−proc ≃ 5.0 s (Fig. 6.12 (b)). Pre- and post-processing stages use

rather small portion of the overall execution time, which varies from 34% for

MCRTN = 1k, 5% for MCRTN = 10k, to 0.05% for MCRTN = 1M . The

ray tracing time rises proportionally to the number of rays released from one

element.

The number of iterations needed for DO models to achieve converged so-

lution is shown in Fig. 6.12 (a). In general, models using second order spatial

discretization converge slower than their first order counterparts. However, the

better angular discretization, the lower number of iterations required to obtain

the solution.

⋆ ⋆ ⋆

The purpose of this paragraph is to investigate under which circumstances

MCRT model can give better performance than DO. The comparison of exe-

cution time between DO and MCRT models in the case of known temperature

field proved the latter to be computationally expensive. However, known tem-
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perature field across the domain is rarely the case. In most practical engineer-

ing problems the temperature distribution is determined iteratively by solving

the energy equation coupled with flow, turbulence, presence of reactions etc.

The radiation model is run typically once per 10 or 20 flow iterations. MCRT

model can benefit from such situation, assuming the absorption coeffcient of

gases and wall radiative properties are temperature independent. In this case,

the ray tracing and pre-processing are done only once at the beginning of the

simulation.

The radiation iteration nr is understood as a one radiation model run,

which is activated every 10 or 20 flow iterations and is not the same as the

iteration within DO model. For the purpose of the analysis let us assume,

that the time needed by DO model to achieve converged solution does not

depend on the radiation iteration (nr). The assumption is not always true.

During the solution the temperature field converge to a certain state, thus the

changes of the temperature field are the smaller the greater is the number of

iterations. In such situation DO model should converge faster than reported

for the fist radiation iteration. Such behaviour of the model is accounted for

by introducing the speedup of convergence for DO model:

sDO
t = tDO

e,0 /t
DO
e,nr

, (6.2)

where tDO
e,nr

is DO model execution time for a given radiation iteration nr and

tDO
e,0 is DO model execution time for the first radiation iteration and is taken

from Fig. 6.11. Since the speedup sDO
t depends on the simulation, for the

purpose of analysis its value was assumed to be equal to 1.25.

The total execution time of radiation model (i.e. the sum of radiation model

execution time for all radiation iterations) for both DO and MCRT can be

expressed by functions of the number of radiation iterations nr:

tDO(nr) = nrt
DO
e,0 /s

DO
t , (6.3)

tMC(nr) = tpre−proc + tRT + nrtpost−proc. (6.4)

The values of tDO
e,0 , tpre−proc, tRT and tpost−proc are taken from Fig. 6.11 Fig.

6.12 to construct chart from Fig. 6.13.

The following pairs of models of similar accuracy were considered:

1. MCRTN = 10k and S16 − 1stO,

2. MCRTN = 100k and S16 − 2ndO,
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Figure 6.13: Total execution time of radiation model as a function of radiation
iterations nr. nr,0 is the number of iterations at which MCRTN = 10k becomes
more efficient than S16−1stO; nr,1 corresponds to MCRTN = 100k and S16−
2ndO; nr,2 corresponds to MCRTN = 1M and S16 − 2ndO

3. MCRTN = 1M and S16 − 2ndO.

As has already been discussed in section 6.2.2 MCRTN = 100k and MCRTN =

1M models produce the results of comparable accuracy, however their execu-

tion time is much different.

Fig. 6.13 shows total execution time of considered models as a function

of the number of radiation model iterations nr. The intersection of the lines

with vertical axis shows the time needed for preparing the model. For MCRT

models the time covers pre processing and ray tracing stages. In the case of

DO, those stages are not present.

The slope of the lines corresponds to the time needed by a given model

to generate converged solution. For DO the slope depends strongly on the

order of spatial discretization, contrary to MCRT, for which the slope is the

same for all models. The most important conclusion, is that the time needed by

MCRT models to generate subsequent radiation solutions is much less than for

DO models. Comparing models of the similar solution accuracy, the minimum

number of radiation iterations nr justifying the usage of MCRT model instead

of DO is

• nr,0 = 13 for MCRTN = 10k and S16 − 1stO,
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• nr,1 = 60 for MCRTN = 100k and S16 − 2ndO,

• nr,2 = 595 for MCRTN = 1M and S16 − 2ndO.

It should be emphasized here, that MCRT model has not been profession-

ally optimized, as is commercial DO Fluent. Thus, the results of computational

time for MCRT model shown above, are expected to be better after code op-

timisation.

In the case of complex system modelling, involving the solution of flow

and energy equations with the presence of turbulence, reactions, particles and

radiation, the number of flow iterations needed to achieve converged solution is

of order 103−104. If the radiation transport is updated every 10 flow iterations,

is gives the total number of radiation model runs of order 102−103. Therefore,

using MCRT model instead of DO can save the time especially for the cases,

when

• the radiative properties of gases and walls are temperature independent,

• there is significant number of radiation iterations expected,

• the solution free of ray-effect is desired.

6.2.4 Local mesh refinement

This section shows the importance of ortho-Cartesian mesh resolution. The

case of non-isothermal gray medium has been computed using locally refined

mesh. All the cells whose centers lie inside bounding box defined by x-y-z

points pmin = {−0.2,−0.2, 0.4} and pmax = {0.2, 0.2, 1.2} were divided into

eight smaller cells. The refinement region conincides with the region of the

highest temperature and is marked in Fig. 6.15 b).

Fig. 6.14 shows radiative heat source term on the axis of symmetry of

the chamber for case without and with mesh refinement. Fig. 6.15 depicts

coutourplots of the scalar variable on the symmetry plane.

The solution generated using locally refined mesh can be treated as more

accurate. The differences in reported values of radiative heat soure term are

< 16% and thus are signifficant. The reason behind it is that smaller volumetric

cells better reflect local temperature profile. The higher the local temperature

gradient, the denser should be the mesh. This observation coincides with con-

clusions from section 5.1.2, in which the ortho-Cartesian mesh resolution was

changed and influenced the quality of the solution. However, in that case the

mesh refinement was not local, but covered all the cells.
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Figure 6.14: Values of radiative heat source term on chamber axis of symmetry.
Gray rectangle marks the zone of local ortho-Cartesian mesh refinement.

W/m3

a) without mesh refinement

b) mesh locally refined

Figure 6.15: Contourplot of radiative heat source term at chamber plane of
symmetry. Blue dashed rectangle marks zone of local ortho-Cartesian mesh
refinement.
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6.3 Absorbing/emitting medium - 0.5 MW test

rig

This section covers the modelling of pulverized coal combustion in a test rig

in two atmospheres: air and a mixture of CO2, O2 and H2O. The process

was modelled using OpenFoam with implemented MCRT model. In one case

ortho-Cartesian mesh is refined to show what is the impact on the results. The

simulation results were confronted with experimental results of analogous test

cases done in a test rig installed at Institute of Power Engineering in Warsaw.

Moreover, the results for air case were compared with solution generated by

Ansys Fluent with DO model.

Pulverized coal combustion

Modelling of pulverized fuels combustion is a challenging task involving a num-

ber of phenomena like turbulence, species transport, interaction of gaseous

phase with particulate matter, convective and radiative heat transfer, evapo-

ration, devolatilization, chemical reactions etc. The ability of modelling such

systems gives an engineer a tool that plays an important role in design process

of combustion chambers, furnaces, burners and emission reduction devices. In

combustion chambers and furnaces, where high temperature levels are present,

radiation heat transfer mode is of great importance as it becomes a dominant

one. In most of furnaces exploited in power engineering, combustion processes

are held in air atmosphere. As a consequence, radiation models were suited

for application to heat exchange in air. However, new combustion technolo-

gies emerged due to the latest environmental policy of developed countries,

accordingly to which CO2 emissions are to be significantly reduced. One of

such technologies is oxy-combustion in which fuel is combusted in atmosphere

comprising of CO2, O2 and H2O gases. Thus, there is also a need for a mod-

elling tool that is capable of dealing with radiative properties of modified

atmospheres. The current section presents MCRT model applied to radiation

modelling of pulverized coal combustion in both air and oxy atmospheres.

6.3.1 Test rig

The test rig is installed at Institute of Power Engineering in Warsaw (Fig.

6.16). It has a maximum thermal input of 0.5 MW and allows to:
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Figure 6.16: Overall view of 0.5 MW test rig installed at Institute of Power
Engineering in Warsaw used to test fuel combustion in various atmospheres.

• test new designs of pulverized and gaseous fuel burners in order to de-

termine the ranges of operational parameters,

• examine the behaviour of various fuels during the combustion and co-

firing,

• examine the combustion process in modified atmospheres consisting of

O2, CO2, N2, H2O, SO2, NO,

• test technologies for reducing NOx emissions: SCR, SNCR,

• examine processes of ash accretion and its influence on metal erosion.

A schematic view of the combustion chamber is shown in Fig. 6.17. First

section of the chamber has cylindrical shape of diameter 0.64m and length

of Z = 3.61m. Second section widens to the diameter of 0.40m at the outlet,

which is positioned at Zmax = 4.10m from the front wall. The burner is installed

along the main symmetry axis in the center of the front wall.

Gas temperature is measured with thermocouples TC1, TC2, TC3 located

at Z = 0.33, Z = 1.80 and Z = 3.92m respectively. Moreover, concentrations

of O2 and CO are measured in the last location near chamber exit by FTIR

analyser.

The rig is equipped with two inspection windows which are cooled with

air or, in the case of oxy-combustion, CO2. The front wall is cooled down by

water piping system. Side walls are insulated by a layer of mineral wool which
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Figure 6.17: Schematic view of combustion chamber of 0.5 MW test rig
equipped with two side windows for visual inspection and thermocouples TC1,
TC2, TC3.

is placed at a distance from the chamber outer shell. Thus, there exist a gap

in between the chamber outer shell and insulation filled with air. In this way,

side walls are also cooled by unmeasured amount of air from the room, where

the rig is installed. It is known from experience that air escaping from the gap

has temperature of 373− 473K.

Burner

During the tests a pulverized coal swirl burner designed in Institute of Power

Engineering in Warsaw was used, a scheme and sub-model geometry of which

are shown in Fig. 6.18 and Fig. 6.19.

Figure 6.18: Schematic view of a swirl burner used in tests, design of Institute
of Power Engineering in Warsaw. inlet 3 - fuel supply, inlet 1, inlet 2 - oxidant
supply through swirlers having exit angle 50 degrees with respect to burner
symmetry axis.
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Figure 6.19: Sub-model of the burner.

Fuel is fed into the burner by inlet 3, while inlet 1, inlet 2 are used to deliver

oxidant - air or a mixture of O2 and CO2. The distribution of the flow between

inlet 1 and inlet 2 is proportional to the inlet cross-section area. Oxidant

passes through swirlers, after which its velocity forms an angle of 50 degrees

with burner symmetry axis. High swirl results in large recirculation zone in

the vicinity of the burner exit. Flame stability is ensured by the presence of

a cone-shaped blunt body in the center of the burner. The sub-model of the

burner is connected to the chamber by an interface.

6.3.2 Cases set-up

Cases

There are four cases of pulverized coal combustion analysed in the work, which

are summarized in Tab. 6.6:

Table 6.6: Cases summary

Case Name Atmosphere CFD Package Radiation Model
AIR-Fl air Fluent Discrete Ordinates
AIR-OF air OpenFoam MCRT
AIR-OFref air OpenFoam, refined mesh MCRT
OXY-OF O2 − CO2 OpenFoam MCRT

Mesh

In order to account for a complex swirling flow with particles from a burner a

sub-model has been used (Fig. 6.19). It allowed for significant reduction of the

mesh size and computational time of the main model without compromising

accuracy. The main model consisted of two meshes - CFD and uniform ortho-
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Cartesian for ray-tracing. The x-y-z resolution of ortho-Cartesian mesh is 12 x

12 x 60. The summary of the meshes used in the simulation is given in Tab. 6.7.

Table 6.7: Mesh summary

Mesh No. of cells Avg. cell volume, m3

Burner sub-model 433 k 6.7 e-9
Chamber, CFD 356 k 5.6 e-6
Chamber, ortho-Cart. 8640 1.5 e-4
Chamber, ortho-Cart. refined 9504 1.4 e-4

Case AIR-OFref used locally refined ortho-Cartesian mesh. The refinement

region is located in the chamber in the visinity of burner exit, where the temper-

ature gradients are expected to be the highest. It is bounded by a prism defined

by two x-y-z points: pmin = {−0.16,−0.16, 0.05}, pmax = {0.16, 0.16, 0.28}, re-

sulting in refinement of 6 x 6 x 3 cells. The cells marked for refinement are

divided into eight smaller cells and yield 864 additional cells.

Coal Parameters

The test rig was fed with pulverized coal, a parameters of which are sum-

marized in Tab. 6.8. The diameters of coal particles are sampled from Rosin-

Table 6.8: Proximate and ultimate coal analysis, test conditions

Parameter Units Value
Moisture % wght. 4.2
Ash % wght. 11.7
Volatiles % wght. 33.7
HHV kJ/kg 25619
LHV kJ/kg 24582
C % wght. 63.58
H % wght. 4.28
O % wght. 13.84
N % wght. 1.03
S % wght. 1.37

Rammler distribution. The parameters of the distribution were determined

using data from sieve analysis: for mesh size 90 and 200 µm the retained mass

of coal was 8.21% and 0.72% respectively.

In general, when a coal particle enters hot combustion chamber it is heated

up and moisture evaporates. As the particle temperature increases, devolatiliza-

tion occurs and finally char is oxidized. In the simulation evaporation is en-

abled, devolatilization rate is approximated by single kinetic rate model with

pre-exponential constant A = 2.0e5 and activation energy E = 4.9e7. Coal
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combustion is modelled using finite rate eddy dissipation model with a set of

homogeneous and heterogeneous global reactions listed below.

R#1 1.000V ol + 1.086O2 → 0.977CO + 1.890H2O + 0.038SO2 + 0.033N2,

R#2 1.0CO + 0.5O2 + 1.0H2O → 1.0CO2 + 1.0H2O,

R#3 1.0H2 + 0.5O2 → 1.0H2O,

R#4 1.0C + 0.5O2 → 1.0CO,

R#5 1.0C + 1.0H2O → 1.0CO + 1.0H2,

R#6 1.0C + 1.0CO2 → 2.0CO.

The exact definition of the reactions is possible together with parameters from

Tab. 6.9. Data was taken from Toporov [118] and Chen [18] papers. Moreover,

Table 6.9: Parameters defining finite rate chemistry - coal combustion in air
and oxy atmospheres [18, 118] A - pre-exponential constant, E - activation
energy, β - temperature exponent

Reaction A E β
R#1 1.60e6 5.06e7 1.00
R#2 5.42e9 1.26e8 0.75
R#3 5.00e12 1.00e7 1.0e7
R#4 0.00500 7.40e7 0.00
R#5 0.00192 1.47e8 0.00
R#6 0.00635 1.62e8 0.00

mass diffusion coefficients for reactions R#4, R#5, R#6 in air atmosphere are

equal to 5.32e-12, 5.77e-12 and 1.72e-12 s/K0.75 respectively [18]. In the case

of oxy-combustion respective coefficients read 4.13e-12, 4.12e-12 and 1.69e-12.

Boundary Conditions

Tab. 6.10 presents the summary of the flows for two tested cases - AIR and

OXY combustion conditions, while Tab. 6.11 scrutinizes boundary conditions

for energy equation.

Total heat flux at side wall of the chamber has been estimated as a sum of

contributions from convection and radiation at external surface of the wall:

q = qr + qc. (6.5)

The temperature of the chamber outer shell and internal surface of the insu-

lation are assumed to be 563 K and 440 K respectively. Emissivity of both
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Table 6.10: Flows summary for test cases.

Flows Units AIR OXY
Primary Oxidant m3

u/h 50 50
Secondary Oxidant m3

u/h 280 155
Side Windows Cooling m3

u/h 30 30
Coal kg/h 47.9 47.9

Composition Units AIR OXY
Primary Oxidant
N2 mole fr. 0.210 0.000
CO2 mole fr. 0.000 0.800
O2 mole fr. 0.790 0.200
H2O mole fr. 0.000 0.000
Secondary Oxidant
N2 mole fr. 0.762 0.000
CO2 mole fr. 0.000 0.548
O2 mole fr. 0.203 0.452
H2O mole fr. 0.036 0.000

Table 6.11: Temperature, heat flux boundary conditions.

BC Name Units AIR OXY
inlet 1, 2 K 338 338
inlet 3 K 553 553
front wall K 1000 1000
side wall W/m2 -4000 -4000
side windows W/m2 -55 500 -55 500

surfaces equals to 1.0. Thus, the radiative heat flux is:

qr = ǫσ(T 4
w1 − T 4

w2) = 3571W/m2. (6.6)

Air enters the gap between the insulation and outer shell of the chamber with

temperature of 293 K and leaves having 493 K. The amount of air was not

measured however, it is estimated to be 45 m3
u/h. Having the necessary data,

convective heat flux is

qc = mcp(Tout − Tin) = 441W/m2 (6.7)

finally giving q = 3571 + 441W/m2 = 4012W/m2.

Total heat flux at side windows was difficult to assess, since there were

no experimental data, that could explicitly be used. Therefore, the value of

total heat flux has been found iteratively from the simulation. The value was

modified to give the temperature at chamber exit close to the measurements,
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with the condition, that values of other monitored parameters (eg. O2 at exit,

temperature at other measurement points) were also acceptable.

Radiation Model

In the case of MCRT model uniform ortho-Cartesian mesh of x-y-z resolution

12 x 12 x 60 is used. The number of rays traced from each surface and volume

element is N = 400k.

DO model uses CFD mesh of size 356k elements. The angular discretization

is φ = 4, θ = 4 yielding the order of the method equal to 16 (S16).

The emissivity of coal particle surface is set to 0.9.

Surface emissivity of all chamber walls equals to 0.9 except for side windows,

for which emissivity is 1.0. Walls are assumed to be diffuse and gray.

Radiative properties of gases in the case of air combustion are modelled

by constant absorption coefficient of 1.0m−1. In oxy-combustion atmosphere

the properties of gases filling-up the enclosure are spectral-dependent and are

modelled using WSGG model with coefficients determined by G. Węcel [132].

6.3.3 Results

The results are organized in three sections. First section deals with pulver-

ized coal combustion in air atmosphere computed by two models Fluent and

OpenFoam - cases AIR-OF and AIR-Fl. Second section compares results of

OpenFoam models for two atmospheres air and oxy O2−CO2 - cases AIR-OF

and OXY-OF. In the last part results of ortho-Cartesian mesh refinement are

shown by comparison of AIR-OF and AIR-OFref cases.

Air Atmosphere

Tab. 6.12 shows comparison of the parameters measured during the test

on the rig with the simulation results. Energy balance is summarized in Tab.

6.13.

Fig. 6.20 and Fig. 6.21 show plots of mean temperature at sections located

at a distance from burner outlet and irradiation at centerline of the chamber

respectively.

Contours of velocity magnitude, temperature, irradiation, O2 and CO2

mass fractions at the symmetry plane of the chamber are depicted in Figs

6.22, 6.23, 6.24, 6.25 and 6.26 respectively.
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Table 6.12: Comparison of the parameters measured during the test with sim-
ulation results (cf Fig. 6.17).

Param. Units Rig Meas. Rig Meas. AIR- AIR- OXY- AIR-
AIR OXY OF Fl OF OFref

T |TC1 K 1618 1733 1650 1612 1689 1631
T |TC2 K 1550 1571 1553 1486 1525 1515
T |TC3 K 1273 1246 1280 1246 1208 1301
O2|out vol.fr. 0.035 0.035 0.020 0.021 0.072 0.018
CO|out ppm 19 84 5 1 < 1 7

Table 6.13: Energy balance.

Name Units AIR-OF AIR-Fl OXY-OF AIR-OFref
Heat of Reaction kW 302.0 301.6 269.3 303.0
Side windows kW -84.4 -84.4 -83.0 -84.3

Radiative kW -80.4 -82.7 -80.8 -80.4
Convective kW -4.0 -1.7 -2.2 -3.9

Front wall kW -61.6 -68.2 -61.7 -62.5
Radiative kW -57.6 -65.4 -58.9 -58.4
Convective kW -4.0 -2.8 -2.8 -4.1

Side walls kW -25.5 -26.2 -25.2 -26.1
Convective kW -21.3 -23.3 -19.9 -21.5
Radiative kW -4.2 -2.9 -5.3 -4.6

Burner walls kW -1.3 0.0 -0.9 -1.8
Inlet 1 kW 0.03 1.3 0.2 -0.1
Inlet 2 kW 23.8 23.9 16.7 23.5
Outlet kW -150.3 -143.4 -111.2 -153.3
NET kW 2.8 3.2 4.2 -1.6
NET/Heat of Rct. % 0.9 1.1 1.6 -0.5

Temperatures predicted by both OF and Fluent models agree well with

the rig measurements (cf. Tab. 6.12). The differences between measured and

reported values are below 5%, with absolute differences being ≤ 32 K and

≤ 64 K for OF and Fluent respectively. Moreover, O2 concentration at the

outlet is close to the measured value for both models.

A good agreement between OF and Fluent models can be seen by com-

paring mean temperature at sections, shown in Fig. 6.20. The values corre-

sponding to AIR-Fl are lower than those reported by AIR-OF by up to 5%

excluding the close vicinity of the burner outlet, where the difference is higher.

Also in this case, simulation results are close to the temperatures measured by

thermocouples.

The values of irradiation along the chamber’s main axis, shown in Fig.

6.21, correspond to the mean gas temperatures at sections. Here, the differ-

ence between models is 10% in the first part of the chamber located near the
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Figure 6.20: Mean temperature from chamber cross-sections located at dis-
tance Z from burner outlet and perpendicular to chamber axis compared to
temperature measurements from the test rig.
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Figure 6.21: Irradiation distribution along the main axis of the rig.

burner and up-to 20% near the chamber outlet. This fact can explained by the

discrepancies in both gas and wall temperatures. Average temperature of gas

equals to 1496 K and 1447 K, and average wall temperature is 1472 K and
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Figure 6.22: Comparison of velocity magnitude fields (m/s) for AIR-Fl and
AIR-OF cases.

Figure 6.23: Comparison of temperature fields (K) for AIR-Fl and AIR-OF
cases.

1410 K for AIR-OF and AIR-Fl respectively. Irradiation is proportional to T 4,

thus 5% difference in temperatures can cause 20% difference in irradiation.
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Figure 6.24: Comparison of irradiation fields (W/m2) for AIR-Fl and AIR-OF
cases.

Figure 6.25: Comparison of O2 mass fraction fields (-) for AIR-Fl and AIR-OF
cases.

Heat of reaction yielded by both OF and Fluent models is the same to the

accuracy of 0.2% (cf. Tab. 6.13). The values of total heat flux at individual

surfaces of the chamber are also in good agreement. However, convective part

of the heat flux calculated by AIR-OF model is higher than that of AIR-Fl for

all considered surfaces.

An inspection of contour plots confirms the statement that the simulation

results generated by OF and Fluent models are almost equivalent. The main

differences between considered models can be seen in the vicinity of the burner.
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Figure 6.26: Comparison of CO2 mass fraction fields (-) for AIR-Fl and AIR-
OF cases.

In this region, the swirling flow coming out of the burner creates a recircula-

tion zone, whose shape differs between OF and Fluent (cf. Fig 6.22). Not only

the shape of this zone is a result of the flow pattern, but it is also influenced

by other factors like devolatilization and evaporation rate, chemical reactions

kinetics and turbulence. Thus the differences are also seen in contour plots

of temperature, O2 and CO2 concentrations (Figs 6.23, 6.25, 6.26). Although

special care has been put to set all the model parameters to be exactly the

same in both models, there are some inherent differences between the models

codes, that can create discrepancies. The detailed investigation of the differ-

ences between Fluent and OF codes, excluding radiation models, is outside the

scope of the thesis.
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Air and Oxy Atmospheres

This section covers comparison of OXY-OF and AIR-OF cases. Tab. 6.12

shows comparison of the parameters measured during the test on the rig with

the simulation results. Energy balance is summarized in Tab. 6.13.

Fig. 6.27 and Fig. 6.28 show plots of mean temperature at sections located

at a distance from burner outlet and irradiation at centerline of the chamber

respectively.

Contours of velocity magnitude, temperature, irradiation, O2 and CO2

mass fractions at the symmetry plane of the chamber are depicted in Figs

6.29, 6.30, 6.31, 6.32 and 6.33 respectively.
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Figure 6.27: Mean temperature from chamber cross-sections located at dis-
tance Z from burner outlet and perpendicular to chamber axis compared to
temperature measurements from the test rig.

Temperature reported by simulations in locations where thermocouples

were installed shows very good agreement with measurements at the test rig

in both AIR-OF and OXY-OF cases (cf. Tab. 6.12). The differences between

measured and predicted values for respective cases are below 3%.

Due to the low amount of recirculated CO2 in gases entering the combustion

chamber and their higher density, the velocities at the burner exit are lower in

the case of OXY-OF than in AIR-OF.
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Figure 6.28: Irradiation distribution along the main axis of the rig.

Figure 6.29: Comparison of velocity magnitude fields (m/s) for OXY-OF and
AIR-OF cases.

In the case of OXY-OF mole fraction of O2 resulting from simulation (7.2%)

significantly differs from measured value of 3.5%. Reported value of CO in ex-

haust gases is ≤ 1 ppm (measured value 84 ppm), however there is unburned

char in ash escaping the chamber. The fact that not all combustibles entering

the chamber are completely burned is also seen in the value of heat of reaction

(Tab. 6.13). The value of 269.3 kW is lower than for AIR-OF case by 32.7 kW.

The discrepancies between O2 values from OXY-OF and measurements are

attributed to the kinetics of coal combustion chemistry. Constants for hetero-

geneous reactions were taken from open literature (cf. Tab. 6.9) for arbitrary
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Figure 6.30: Comparison of temperature fields (K) for OXY-OF and AIR-OF
cases.

Figure 6.31: Comparison of irradiation fields (W/m2) for OXY-OF and AIR-
OF cases.

coal. Therefore, those values should be reconsidered and modified in order to

achieve good agreement of simulation and test.
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Figure 6.32: Comparison of O2 mass fraction fields (-) for OXY-OF and AIR-
OF cases.

Figure 6.33: Comparison of CO2 mass fraction fields (-) for OXY-OF and AIR-
OF cases.

By comparing average temperature at sections (Fig. 6.27) it can be noted,

that OXY-OF case has higher temperatures than AIR-OF case near the burner

outlet and lower in the remaining part of the chamber. This observation is

consistent with measurements and also can be seen in respective contourplots

in Fig. 6.30. It should be noted that the values of temperature predicted by

model for oxy-combustion are lower than measured values by up to 46 K (Tab.

6.12). This situation is expected to improve as soon as proper combustion

kinetics is employed.

The values of irradiation along the centerline of the chamber (Fig. 6.28)

are significantly lower in the case of OXY-OF than in AIR-OF. The reason

behind such situation is that OXY-OF case has lower temperatures (cf. Fig.

6.27). Moreover, in OXY-OF case there should be higher equivalent absorption

coefficient, however this is not evident, since in WSGG model the medium is
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treated as a sum of gray gases. The full overview of the differences in irradiation

fields is seen in Fig. 6.31. It can be noted that irradiation corresponds to

the temperature field depicted in Fig. 6.30. For OXY-OF case the maximum

values of irradiation occur in the vicinity of the burner, where the maximum

temperature is also present.

It is also evident that OXY-OF case is much more sensitive to the sta-

tistical nature of Monte Carlo method, since the irradiation field has visible

oscillations throughout the domain. In the case of OXY-OF, spectral prop-

erties of gases are modelled using WSGG approach, in which an irradiation

field is a sum of irradiations resulting from each gray gas. In the equation

describing irradiation for a specific gas there is a division by a sum of gas

and particle equivalent absorption coefficients. Since not all of gases from a

mixture have high absorption coefficient (a neutral gas has absorption coeffi-

cient equal to 0) and not all domain is covered by particles, there are cells in

which there is a division by a close-to-zero term. In those cells, the value of

irradiation is computed less accurately. The solution is to trace more energy

bundles from a surface or volume element, reducing the variation in qr and qv

terms also present in the equation. However by doing so, it is clear that the

computational time quickly becomes a bottle-neck. In the present study 400k

of bundles were traced for each of 5 gray gases considered in WSGG model,

giving the total number of rays traced close to 16 · 109. The problem of the

quality of the solution is a known issue. In the case of optically thin media (as

it is the case for some of gray gases from WSGG model) the formulation of

Monte Carlo model presented in the thesis is not optimal one. In the case of

optically thin medium it is preferable to use energy-partitioning formulation

to achieve good compromise between the solution quality and computational

time (cf. Sec. 3.6). Besides the issue described above, the presented model is

capable of generating results with good quality.

Air - Mesh Refinement

In the following the influence of ortho-Cartesian mesh refinement onto the

results is investigated. Therefore, two cases of pulverized coal combustion in air

are compared: AIR-OF and AIR-OFref, the second having the locally refined

mesh.

The location of the mesh refinement zone corresponds to the region of

high temperature gradients occuring in the vicinity of burner outlet. Higher

resolution of the mesh allows for better accuracy of the model, because the
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gas temperature, particle emission term and particle equivalent absorption

coefficient in ortho-Cartesian cell are averaged from lower number of CFD

cells.

Tab. 6.12 shows comparison of the parameters measured during the test

on the rig with the simulation results. Energy balance is summarized in Tab.

6.13.

Fig. 6.34 and Fig. 6.35 show plots of mean temperature at sections located

at a distance from burner outlet and irradiation at centerline of the chamber

respectively. The mesh refinement region is marked with blue rectangle.

Contours of temperature and irradiation at the symmetry plane of the

chamber are depicted in Figs 6.36 and 6.37 respectively.
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Figure 6.34: Mean temperature from chamber cross-sections located at dis-
tance Z from burner outlet and perpendicular to chamber axis compared to
temperature measurements from the test rig.

The comparison of mean temperatures at chamber cross-sections between

AIR-OF and AIR-OFref cases (cf. Fig. 6.34) shows the differences being < 2%.

Such differences are more attributed to the convergence of the model rather

than mesh refinement. Moreover, looking at temperature contourplot (Fig.

6.36) local temperatures in the refined region do not differ significantly.

Analogously, the reported values of irradiation are almost identical (cf. Figs

6.35 and 6.37), the differences being < 7%.
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Figure 6.35: Irradiation distribution along the main axis of the rig.

Figure 6.36: Comparison of temperature fields (K) for AIR-OF and AIR-OFref
cases. Refinement region marked by blue rectangle.

In section 6.2.4 the mesh refinement showed significant impact on the re-

sults, however this is not the case for current example. The reason behind

it is the nature of the temperature field. The temperature field for the case
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Figure 6.37: Comparison of irradiation fields (W/m2) for AIR-OF and AIR-
OFref cases. Refinement region marked by blue rectangle.

presented in section 6.2.4 was given by a function of position and was con-

stant. In the case of 500kW combustion chamber, the temperature field is a

result of iterative calculations of conjugated heat transfer problem. Thus, even

if the zone of high temperature gradient is covered by mesh refinement, the

temperature field can change after some iterations to the state similar to that

before mesh refinement. Secondly, the case of pulverized coal combustion is

much more complicated than non-isothermal combustion chamber, because of

the presence of reacting particles. The radiative solution is affected not only by

temperature, but also by particle absorption and emission terms. Therefore,

even if the temperature field shows high local gradients, suggesting the loca-

tion of mesh refinement, it can be desceptive because of the opposite gradient

of particle emission terms. The presence of particles can cause more uniform

solution of radiative analysis than expected judging just from the temperature

field. In another words, the net radiative heat flux from a cell filled with cold

gas and hot particles can be the same as from the cell filled with hot gas only

(as is suspected to be the case in the vicinity of burner exit).

Since the cases with and without mesh refinement give results with only

small differences, it can be concluded, that the ortho-Cartesian mesh resolution

is adequate. It is also an evidence that the radiation problem can be solved on

much coarser mesh than CFD mesh without significant impact on the results.
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Chapter 7

Concluding remarks

7.1 Thesis summary

The thesis deals with development, validation and practical usage of Monte

Carlo Ray Tracing model applied to radiative heat transfer in absorbing, emit-

ting media.

MCRT technique in its application to radiative heat transfer has common

features with Hottel’s zonal method. In both methods the domain is subdivided

into a finite number of surface and volume elements. Within each element the

surface or medium parameters like temperature, surface emissivity or absorp-

tion coefficient of the medium have uniform distribution. In the case of formu-

lation used in the thesis, the results of radiative heat transfer, radiative heat

flux at walls and radiative heat source or sink in medium, are calculated using

so called radiation distribution factors (RDFs). The computation of RDFs is

the most time consuming part of MCRT. In the case of Monte Carlo in its

standard ray tracing variant, values of RDFs are estimated by tracing the rays,

i.e. emitting a large number of rays from a given element and registering the

elements in which absorption takes place. Random sampling, a feature char-

acteristic for Monte Carlo method, is used to determine the fate of each ray.

Thus the parameters and events specific for the ray like its emission direction,

absorption-free path, absorption at wall are determined by random sampling

from known probability density functions.

Contrary to Discrete Ordinates, a method widely used in engineering appli-

cations, MCRT can deal with boundaries of special type (specular reflections,

collimated beams) and complex material properties (non-diffusive surfaces,

anisotropic radiation). This is the only method capable of dealing with radia-

tive heat transfer problem of arbitrary level of complexity. Moreover, MCRT
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is not prone to ray effect and false scattering as it is the case of DO and is ca-

pable of generating benchmark solutions. Stated above features make MCRT

a promising tool for solving radiative heat transfer problems. However, the

method has some drawbacks that limit its applicability.

The main drawback of MCRT is the need for computational resources.

During the solution process, a huge number of rays (typically of order 105,

106) is emitted from each element and each of those rays has to be followed

till absorption. In the case of conjugate heat transfer simulations, there is a

need to simultaneously solve flow, turbulence, energy and radiation transfer

equations. Thus, the mesh has to be dense enough to allow for dealing with

small vortex structures characteristic for turbulent flow. Implementation of

MCRT method to dense meshes used for CFD purposes, results in prohibitively

long computational times. This fact is the reason why the method has not

been used widely in engineering applications. Moreover, it is not present in

commercial CFD packages, except for its basic version of surface-to-surface

radiation model for determination of view factors.

The stated above reasons have driven the subject and goal of the thesis,

i.e. to improve the performance of MCRT method, so that it would be capable

of dealing with conjugate heat transfer problems in times acceptable from the

engineering point of view.

The main outcome of the thesis was the development of an efficient system

for ray tracing utilizing coarse, ortho-Cartesian, structured meshes, which are

independent of CFD mesh and on which the radiation problem is solved. The

idea of using coarse, structured meshes was based on research of G. Węcel and

R. Białecki [128, 129, 131], who used them in their work on boundary element

method. G. Wecel observed that BEM yields accurate results even for coarse

discretization of the domain. This fact was explained by the long distance inter-

actions occurring in radiative heat transfer, which tend to flatten temperature

gradients making dense mesh not necessary. Within the current thesis, the

solution of radiation heat transfer is interpolated from ortho-Cartesian mesh

onto CFD mesh using tri-linear interpolation scheme. The code is written in

C++ and is as an add-on to open-source CFD package OpenFOAM.

The ray tracing system developed within the current thesis incorporates

parametric non-uniform rational basis spline surfaces for the description of

boundaries. It can also deal with shadow zones. To the best knowledge of the

author, there was no ray tracer using NURBS surfaces employed in the field

of radiative heat transfer modelling. By using NURBS surfaces the domains of
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complex shapes can be easily approximated and their mathematical description

is compact, saving computer memory and transfer time. The main drawback

of employing NURBS surfaces is the ray-surface intersection algorithm - much

slower in comparison with the basic ray-triangle intersection. It was estimated

that the speedup resulting from usage of ortho-Cartesian mesh is 40 to 90

depending on the case, without significant impact on the accuracy. However,

it should be emphasized that the code is not professionally optimized, thus

the reported values of speed-up are believed to be substantially higher. The

higher the difference between ortho-Cartesian and CFD cells, the higher the

speed-up.

An important step towards better efficiency of MCRT method was the im-

plementation of parallel computing inside the code of ray tracer using OpenMP

library. The logic behind employing the parallelization procedure is that trac-

ing of a single ray does not need any information from other rays. In other

words, rays can be traced independently. The code upgrade allows to run ray

tracer procedure, the execution of which is the most time-consuming part of the

whole code, on multiple threads on shared memory machines. In general, the

speedup depends on the machine, however the test case run on eight-processor

2x4 Intel Xeon 2.33 GHz machine with eight threads showed speedup of 6.

Due to relatively simple mathematical description of MCRT model, the

level of complexity of physics it describes can be gradually elevated with mod-

erate programming effort. The model developed in the thesis has few versions,

each of which can be chosen to suit a specific problem needs. Basic variant

of the model, deals with radiative heat exchange between gray surfaces. Sub-

sequently, it has been upgraded to account for the presence of optically ac-

tive gray medium, solid particles suspended in the fluid and, finally, non-gray

medium properties.

In the case of non-participating medium MCRT model developed within

the thesis is capable of dealing with specular and diffuse surfaces. Additionally,

it accounts for the presence of shadow zones i.e., when emitting and absorbing

surfaces do not lay on their line-of-sight.

The presence of solid particles suspended in the medium is taken into ac-

count in MCRT model. The particles are assumed to be ideal spheres that emit

and absorb radiation. However, during the tracing the ray can not be scattered

by them. Instead, the particles are seen by the ray in the form of a gas hav-

ing equivalent absorption coefficient. The equivalent absorption coefficient is

proportional to the concentration and section area of the particulates and it is
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being added to the gas absorption coefficient, resulting in higher ray absorption

probability. The formulation allows the particles to have different temperature

than surrounding medium, contrary to the approach found in literature [121].

This fact improves the accuracy of the model in the case of pulverized coal

combustion, in which coal particles temperature significantly differs from the

gas.

Non-gray medium properties are modelled using WSGG approach which

guarantees accuracy and reasonable computing times needed in engineering

applications. The coefficients of WSGG model has been determined by G.

Wecel [130, 131, 132, 133] using HITEMP 2010 spectroscopic database to model

properties of O − 2 - CO2 mixture encountered in oxy-combustion systems.

In order to be certain the developed model produces unbiased results it

has been verified against available data. For non-participating medium, the

verification of the model has been done using two cases. First, was to compute

the value of a view factor and compare the result to the exact expression.

Second - to calculate radiative heat fluxes at walls of the cube and confront

the solution with S2S Fluent model. In both cases MCRT solution agreed very

well with benchmarks. The version of MCRT model dealing with absorbing and

emitting gray medium has been verfied against data generated by Radiarare

Network of research institutions. Two benchmark problems have been solved.

MCRT model results agreed to those obtained by other methods (MC, DO,

DT, BEM), yielding the differences 6 1.5%. The last test has been conducted

to prove the non-gray medium properties are implemented in proper manner.

MCRT solution was found to follow benchmarks presented in G. Wecel paper

[132]. The differences of reported radiative heat source term were 6 5% while

the predictions of radiative heat flux at wall were accurate to 6 9%. The

main contributor to the discrepancies was different mesh resolution, causing

flattening of the temperature profile peak.

The developed version of MCRT for non-participating medium has been

demonstrated on the example of pit furnace conjugated heat transfer prob-

lem. The results were compared with Fluent S2S model showing very good

agreement and proving the model can be successfully applied to geometries of

complicated shapes with shadow zones.

The benefits of using MCRT model to gray participating medium has been

shown on the example of cylindrical combustion chamber by comparison to

Fluent DO model. Contrary to MCRT, DO is known to be prone to ray and

false scattering effects due to angular and spatial discretization of RTE respec-
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tively. It was shown, that to mitigate the solution deterioration due the the

presence of those effects, both angular and spatial discretication orders have

to be increased in DO model. The quality of the solution generated by the

highest order DO model (S16 − 2ndO) was similar to MCRT model with 100k

rays emitted from one element.

In terms of performance, in the case the temperature field is given, DO

S16 − 2ndO was 40 times faster than MCRT with 100k rays. Looking only

at this result, one can conclude that DO is more efficient, however it is not

always the case. For conjugate heat transfer problems, the temperature field is

found in iterative procedure, which involves flow, energy and radiation transfer

equations updates. The number of radiation field iterations can be very high

(102 − 104), however it strongly depends on case. This fact reveals a field of

application of MCRT model, in which it can be better in terms of performance

than DO. The most time consuming part of MCRT is the determination of

RDFs matrix. It is done in the pre-processing stage and needs to be run only

once, provided the radiative properties of medium and walls are independent

of temperature. Once determined, RDFs matrix is used to determine radiative

heat fluxes at walls and heat sources in medium by substitution into equations.

It was found that after 60 radiation iterations, the total computational time

spend on MCRT model with 100k rays emitted from one element is less than

computational time of DO S16 − 2ndO. Thus, in application to conjugate heat

transfer problems, MCRT can be an interesting alternative to DO. It should be

emphasized here, that the code of MCRT model has not been optimized to give

the best performance, as it is the case of Fluent commercial code. Thus, it can

be expected, that there is a field for further improvement of the performance.

The concept of ortho-Cartesian mesh hierarchy was tested using this ex-

ample. The mesh was locally refined in the region of highest temperature gra-

dients. The reported differences in results were significant and < 16%.

OpenFoam code together with MCRT radiation model has been applied to

pulverized coal combustion in a test rig of maximum thermal input of 500 kW

installed in Institute of Power Engineering in Warsaw. Simulations included

combustion in air atmosphere, where the medium was treated as a gray gas

of constant absorption coefficient. In this case the results of OF with MCRT

model were validated against both Fluent DO solution and experimental re-

sults. The results shown very good agreement to analogous result generated

by Fluent code and to measured parameters (temperature, O2 at the outlet).

The differences in temperature predictions were 6 5%. The version of MCRT

150



code with WSGG model allowed to take into account spectrally dependent

gas properties in the simulation of coal combustion in CO2 − O2 mixture.

The results were confronted with measurements on the test rig yielding very

good temperature matching with differences 6 3.5%. The simulation predicted

higher O2 concentration in exhaust gases and higher unburned char content in

ash escaping the chamber. The discrepancies were contributed to the kinetics

of coal combustion chemistry. Reaction rates constants have been taken from

open literature for coal of properties different from coal used during the test

on 500 kW rig. An interesting observation is that in the case of WSGG model

there is no need to recompute RDFs matrix, provided there is no significant

changes in particles, H2O and CO2 concentrations throughout the domain. In

WSGG model absorption coefficients of the gray gases comprising the model

depend only on the H2O and CO2 concentrations. Temperature variations are

taken into account in weighting coefficients, which can be updated indepen-

dently. This observation can save a lot of time, since computing values of RDFs

matrix is the most time-consuming part of the method.

In the case of combustion in air atmosphere, the ortho-Cartesian mesh was

locally refined in the vicinity of the burner, where the temperature gradients

are the highest. The comparison of the results shown no significant differences

between models with and without mesh refinement. It is explained by the

presence of hot coal particles in the relatively cold air coming from the burner.

Thus, even if the mesh was refined, it did not appreciably influence the radiative

energy emitted in each cell. In this case it has been proven, that using coarse

mesh in radiation heat transfer problem is good assumption and it has not

lowered the quality of the solution.

The thesis presented MCRT model, which at the current stage of develop-

ment is a mature method that can be successfully used for modelling radiative

transfer in engineering applications including conjugated heat transfer prob-

lems, spectral-dependent gas properties and presence of particles. The model

improvements, namely coarse hierarchical ortho-Cartesian mesh with NURBS

surfaces, resulted in almost 100 speed-up comparing to MCRT using dense

CFD mesh. The efficiency of MCRT is still worse than Discrete Ordinates,

however it has been shown that in conjugate heat transfer, MCRT can give

comparable or even shorter computational time. MCRT does not suffer from

ray and false scattering effects. In order to achieve reasonable computational

time a generation of ortho-Cartesian mesh is necessary.
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7.2 Suggestions for future work

Below, there is a list of ideas and problems that can be dealt with in the future:

• Read boundaries description directly from CAD file. This would greatly

simplify and shorten the preprocessing stage of the radiation model. In

the current version, every time the model is run it has to create NURBS

surfaces describing the boundaries from the selected points lying on the

boundary, which is a time consuming task.

• In the presented version of the radiation model, the boundary is described

by a set of NURBS surfaces. Each boundary cell of the domain has

at least one NURBS surface representing a fragment of the boundary.

It is suggested to allow the boundary cells to share the same NURBS

surface with other cells. In this way the mathematical description of the

boundaries will be simplified and the number of bounding boxes crossed

by the ray will be lowered.

• Adapt the code of MCRT radiation model to handle massively parallel

computations. Now the code allows parallel computing of RDFs matrix

only on shared memory computers. However, a step forward would be to

take advantage of the distributed-memory multiprocessors and/or net-

works of workstations as they have huge computational power.

• MCRT radiation model can be upgraded to account for scattering on

particles.

• A detailed models of gas radiative properties (k-distributions models) can

be implemented within the framework of the current radiation model.
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Appendix A

Surface to Surface method

The surface to surface (S2S) method was developed by Hottel [50] to deal

with radiative heat transfer between surfaces, where the effects of participating

medium are negligibly small or do not exist at all. It is also referred to as a

Net Exchange Method.

The derivation of the equations for the method uses the concept of an en-

closure, which is defined as an outer surface of the domain under the considera-

tion. The enclosure may be composed of real and artificial surfaces, altogether

forming a closed region.

The quantity of interest in the case of surface to surface radiation, when

the boundary temperatures are known, is the net radiative heat flux qr at

any location on the boundaries of the enclosure. In the case, the radiative

heat fluxes are specified, the unknowns are the surface temperatures T . In the

following, it is assumed, that the surfaces are gray and diffuse.

The net radiative heat flux at the surface is obtained by making an en-

ergy balance, which in the absence of convection and conduction, is given by

equation (see Fig. A.1)

qr = b− i, (A.1)

where qr, b, i are respectively net, outgoing and incident radiative energy fluxes.

i is also called surface irradiation and b radiosity.

The incident heat flux is calculated using the concept of view factor, the

detailed derivation of which can be found in [81, 108]. The view factor dFdAi−dAj

is defined as (cf. Fig. A.2)

dFdAi−dAj
=

cos θi cos θj
π|rirj|2

dAj, (A.2)
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i b

ϵ, T

qr

Figure A.1: Radiative energy balance for a surface.

where dAi, dAj are differential surfaces centred at points ri, rj and having

normal vectors ni, nj , |rirj | is the distance between surfaces and θi, θj are

angles between surface normal vectors and the line connecting the surfaces.

The view factor can also be interpreted as a diffuse energy leaving dAi directly

ni

nj

dAi

dAj

θi

θj

ri

rj

Figure A.2: Notation for radiative exchange between two diffuse differential
areas.

towards and intercepted by dAj to the total diffuse energy leaving dAi.

In practical problems, the enclosure is subdivided into a finite number of

areas. Over each area the following following assumptions are made:

i) the temperature is uniform,

ii) the surface properties ǫ, α, ρ are uniform and are independent of wave-

length and direction,

iii) all the energy is emitted and reflected diffusely,

iv) the incident and reflected energy flux is uniform.

In the case of finite areas Ai and Aj the view factor Fij is defined by

Fij =
1

Ai

∫

Ai

∫

Aj

cos θi cos θj
π|rirj|2

dAj dAi. (A.3)
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The view factors obey reciprocity and summation rules

Ai Fij = Aj Fji, (A.4)
N
∑

j=1

Fij = 1.0, (A.5)

where N is the number of surfaces, which the enclosure was divided into.

Recalling equation (A.1), the surface net heat flux is a difference between

irradiation and radiosity. The irradiation on a surface element i can be ex-

pressed by means of view factors as

iiAi =
N
∑

j=1

bjFjiAj , 1 ≤ i ≤ N. (A.6)

Using reciprocity rule (A.4) and dividing by Ai yields

ii =

N
∑

j=1

bjFij , 1 ≤ i ≤ N. (A.7)

The radiosity from surface element i is a sum of emitted and reflected energy

fluxes

bi = (1− ǫi)ii + ǫieb,i, 1 ≤ i ≤ N. (A.8)

Substituting i from equation (A.1) into (A.8) yields

bi = eb,i −
(

1

ǫi
− 1

)

qri , 1 ≤ i ≤ N. (A.9)

Then, using equations (A.1), (A.7) and (A.9) and rearranging produces

N
∑

j=1

[

δij
ǫj

−
(

1

ǫj
− 1

)

Fij

]

qrj =

N
∑

j=1

[δij − Fij] eb,j, 1 ≤ i ≤ N, (A.10)

where δij is Kronecker delta. In the case all temperatures are known, equation

(A.10) may be presented in the matrix notation as

C · qr = e, (A.11)

and

e = A · eb, (A.12)
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where C, A are matrices with elements

Cij =
δij
ǫj

−
(

1

ǫj
− 1

)

Fij , (A.13)

Aij = δij − Fij , (A.14)

for 1 ≤ i, j ≤ N . Matrix C is generally fully populated, while A diagonal. qr

is the vector of unknown radiative heat fluxes and eb denotes known surface

emissive powers. Set of linear algebraic equations (A.11) and (A.12) is solved

for unknown vector qr.

In the case the surface temperatures are not defined for all the surfaces,

equation (A.11) can be rearranged into a similar equation containing all the un-

knowns. Moreover, if surface temperatures are not known they can be found by

solving the heat conduction problem in the walls forming the enclosure assum-

ing no radiation contribution in appropriate boundary conditions. The solution

of heat radiation problem (A.11) yields then the radiative heat fluxes on the

walls. Using their values, corrected temperatures of the radiating boundaries

are produced by solving the heat conduction problem in the walls. Alternat-

ing solutions of radiation and conduction problems are continue until desired

accuracy is achieved.

⋆ ⋆ ⋆

The crucial and the most time consuming part of the S2S method is the

computation of view factors. According to equation (A.3), the calculation of

the view factor between any two surfaces needs an evaluation of four dimen-

sional integral, which is not a trivial task even for relatively simple geometries.

Additional difficulty is associated with the singular bahvior of the integrand

for the case of neighboring elements. A number of numerical methods can be

utilised for evaluation of view factors. An extensive review of available methods

is given in monographs [81, 108]. The methods include:

• Direct integration

– surface integration,

– contour integration,

• Monte Carlo sampling

• Special methods
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– view factor algebra,

– crossed-strings method (2D only),

– unit sphere method,

– inside sphere method.

The description of the S2S model was based under the assumption that the

surfaces are gray and diffuse. However, the model can be upgraded to include

spectral variations of surface parameters. This can be done by implementing

the model separately for each wavelength interval, for which the surface prop-

erties are assumed to be wavelength independent, and summing up the results.

Moreover, the model has an extension to incorporate the specular reflections

from surfaces. In this case, the solution is considerably more involved and time

consuming.
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Appendix B

Reciprocity equations

B.1 Absorbing and emitting medium without par-

ticles

This paragraph aims to derive the reciprocity equations (4.9 - 4.12) used in the

formulation from section 4.1.1. In the case of absorbing and emitting medium

without particles, there are four types of reciprocity equations for four different

pairs of elements (cf. Fig B.1):

• surface - surface,

• surface - volume,

• volume - surface,

• volume - volume.

For each pair of elements, irrespectively of their type, the net heat exchanged

between elements i and j due to radiation, Qr
i→j, is given by an equation

Qr
i→j = Er

ij −Er
ji. (B.1)

Using the definition of radiation distribution factor - equation (4.1) - yields:

Qr
i→j = Er

e,iDij −Er
e,jDji. (B.2)

Recall equation (4.2) for radiative energy emitted from surface and volume

elements:

Er
e =

{

ǫAeb, (surface),

4πκV Ib, (volume).
(B.3)
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Ai

Aj

ij

Eji

(a) Surface-Surface

Ai
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ij

Eji

(b) Surface-Volume

Vj

Vi

Eij

Eji

(c) Volume-Volume

Figure B.1: Radiative exchange between elements of different type.

Equation (B.1) should hold for every case. Therefore it should also be valid for

a special case, when the temperatures of both elements i and j are equal:

Ti = Tj . (B.4)

In this special case, due to the lack of temperature difference, there exists a

thermal equilibrium state between elements and the net heat exchanged due

to radiation Qr
i→j = 0. Therefore the following equation holds:

Er
e,iDij = Er

e,jDji. (B.5)

Expanding equation (B.5) with the help of (B.3) and keeping in mind that

eb,i = eb,j = σT 4
i = σT 4

j yields:

Surface-surface

ǫiAieb,iDij = ǫjAjeb,jDji, (B.6)

ǫiAiDij = ǫjAjDji, (B.7)

Volume-surface

4κiVieb,iDij = ǫjAjeb,jDji, (B.8)

4κiViDij = ǫjAjDji, (B.9)
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Surface-volume

ǫiAieb,iDij = 4κjVjeb,jDji, (B.10)

ǫiAiDij = 4κjVjDji, (B.11)

Volume-volume

ǫiAieb,iDij = 4κjVjeb,jDji, (B.12)

κiViDij = κjVjDji, (B.13)

where equations (B.7), (B.9), (B.11), (B.13) are called reciprocity equations.
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B.2 Absorbing and emitting medium with par-

ticles

The reciprocity equations for the case of absorbing and emitting medium with

the presence of particles are derived in the similar way, shown in section B.1.

There are four types of reciprocity equations for four different pairs of

elements (cf. Fig. B.1):

• surface - surface,

• surface - volume,

• volume - surface,

• volume - volume.

Volume elements may include particles that also emit and absorb radiative

energy. For each pair of elements, irrespectively of their type, the net heat

exchanged between elements i and j due to radiation, Qr
i→j, is given by an

equation

Qr
i→j = Er

ij −Er
ji. (B.14)

Using the definition of radiation distribution factor - equation (4.20) - yields:

Qr
i→j = Er

e,iDij −Er
e,jDji. (B.15)

Recall equation (4.21) for radiative energy emitted from surface and volume

elements:

Er
e =

{

ǫAeb, (surface),

4πκV Ib + 4πV Ep, (volume).
(B.16)

Equation (B.14) should hold for every case. Therefore it should also be valid for

a special case, when the thermal equilibrium between i and j elements exists.

In this special case of thermal equilibrium, the net heat exchanged between

elements due to radiation Qr
i→j = 0 and

Er
e,iDij = Er

e,jDji. (B.17)

Due to the expansion of equation (B.17) with the help of (B.16):

Surface-surface

ǫiAieb,iDij = ǫjAjeb,jDji. (B.18)
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Since the thermal equilibrium between elements holds:

Ti = Tj, eb,i = eb,j, (B.19)

ǫiAiDij = ǫjAjDji. (B.20)

Volume-surface

(4κiVieb,i + 4πViEp,i)Dij = ǫjAjeb,jDji. (B.21)

It should be noted that the equilibrium state can be fulfilled by infinite number

of sets of temperatures Ti, Tp,i, Tj. It also should hold for the case when the

temperature of particles, gas and surface are equal:

Ti = Tp,i = Tj . (B.22)

Recall equation (4.22) which is

Ep,i =
M
∑

m=1

ǫp,mApc,m

σT 4
p,m

πVi
=

M
∑

m=1

ǫp,m
πd2p,m
4

σT 4
p,m

πVi
. (B.23)

It is assumed that the temperature of particles is uniform inside volume element

i and equal to Ti, the particle temperature can be moved outside the summation

over particles:

Ep,i =
σT 4

i

π

M
∑

m=1

ǫp,m
πd2p,m
4 Vi

. (B.24)

Now the so called particles equivalent absorption coefficient is defined as

κp,i =

M
∑

m=1

ǫp,m
πd2p,m
4 Vi

(B.25)

and used to give

Ep,i =
σT 4

i

π
κp,i =

eb,i
π
κp,i. (B.26)

Thus, equation (B.21) can be written as

(

4κiVieb,i + 4πVi
eb,i
π
κp,i

)

Dij = ǫjAjeb,jDji, (B.27)

4 (κi + κp,i)ViDij = ǫjAjDji. (B.28)
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Surface-volume

ǫiAiDij = 4 (κj + κp,j)VjDji. (B.29)

Volume-volume

(4κiVieb,i + 4πViEp,i)Dij = (4κjVjeb,j + 4πVjEp,j)Dji. (B.30)

It should be noted that the equilibrium state can be fulfilled by infinite number

of sets of temperatures Ti, Tp,i, Tj, Tp,j. It also should hold for the case when

the temperature of particles and gas are equal:

Ti = Tp,i = Tj = Tp,j. (B.31)

Using equation (B.25), with the assumption that particle temperatures in vol-

ume elements i and j are uniform, equation (B.30) can be written as

(

4κiVieb,i + 4πVi
eb,i
π
κp,i

)

Dij =
(

4κjVieb,j + 4πVj
eb,j
π
κp,j

)

Dji, (B.32)

(κi + κp,i)ViDij = (κj + κp,j) VjDji. (B.33)

The equations (B.20), (B.28), (B.29) and (B.33) are called reciprocity equa-

tions.
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Appendix C

NURBS curves and surfaces

The purpose of this section is to provide a brief description of parametric non-

uniform rational basis spline (NURBS) surfaces. More detailed information

can be found in textbooks by Farin [31] and Piegl [96] and in surveys [32, 95].

Since the NURBS surfaces are represented as a cartesian product of NURBS

curves, the latter are described in the first place.

C.1 Curves

A NURBS curve is a parametric vector-valued piecewise rational polynomial

function of the form

C(u) =

n
∑

i=0

wiPiNi,p(u)

n
∑

i=0

wiNi,p(u)
, (C.1)

where u is a parameter, wi are weights, Pi are control points and Ni,p(u) are

the normalized B-spline basis functions of degree p and order p+1, defined by

Cox-de Boor recursion formula:

Ni,0(u) =

{

1 if ui 6 u 6 ui+1,

0 otherwise,

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u), (C.2)

where ui are knots, forming a knot vector

U = {u0, u1, ..., um}. (C.3)
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The degree, number of knots and number of control points are related by

m = n+ p+ 1. (C.4)

In the case of non-uniform and non-periodic B-splines, the knot vector is given

by

U = {α, α, ..., α, up+1, ..., um−p−1, β, β, ..., β}, (C.5)

where the knots at the end α and β are repeated with multiplicity p + 1. In

most practical problems α = 0 and β = 1. The basis functions, given by (C.2),

are defined over the parametric interval u ∈ [0, 1].

The curve from equation (C.1) can be expressed as

C(u) =
n
∑

i=0

PiRi,p(u),

Ri,p(u) =
wiNi,p(u)

n
∑

j=0

wjNj,p(u)
, (C.6)

where Ri,p(u) are called rational basis functions.

Using four-dimensional homogeneous coordinate system, equation (C.1)

can be rewritten as

Ch(u) =
n
∑

i=0

Ph
iNi,p(u), (C.7)

where superscript h denotes homogeneous coordinates system (x, y, z, w). The

fourth dimension w stores the weights of control points.

It can be noted, that in order to compute the coordinates of the point on

the NURBS curve from equation (C.1), the values of basis functions Ni,p(u)

have to firstly determined. A basis function of a given degree p depends on

basis functions of lower degree p − 1, with the exception for degree 0, which

takes values 0 or 1. Thus, the higher the degree of a curve, the more expensive

is its evaluation. The growing computational costs are better visible, when the

basis functions are grouped in a triangular pattern:

Ni,p

Ni,p−1 Ni+1,p−1

...

Ni,0 Ni+1,0 ... Ni+p−2,0 (C.8)
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In general, NURBS curve can be viewed as a parametric interpolation curve

created basing upon the control points. The influence of an individual control

point Pi on the shape of NURBS curve can be adjusted by modifying the

corresponding value of weight coefficient wi. Setting the value of weight to

0 causes the control point to have no influence on the curve. By increasing

the value of weight, the curve bends towards the control point. In theory it is

possible to set negative values to the weights, however it may introduce some

problems in the form of singularities, unpredictable curve shapes and convex

hull property can be lost. Thus, in practice, the weights values are always > 0.

In order to to derive formulas for the curve derivative, equation (C.1) is

rewritten to the form

C(u) =
n

d
, (C.9)

where n, d are nominator and denominator of equation (C.1). Using this nota-

tion, derivative of NURBS curve at a given point u is

C′(u) =
∂C(u)

∂u
=
n′d− nd′

d2
, (C.10)

where

n′ =

n
∑

i=0

wiPiN
′
i,p(u), (C.11)

d′ =

n
∑

i=0

wiN
′
i,p(u). (C.12)

The derivative of basis function are

N ′
i,p(u) =

Ni,p−1(u) + (u− ui)N
′
i,p−1(u)

ui+p−1 − ui
+
(ui+p − u)N ′

i+1,p−1(u)−Ni+1,p−1(u)

ui+p − ui+1

.

(C.13)

The derivatives of N ′
i,0(u) = 0 for all u.

C.2 Surfaces

A NURBS surface of degree p in u direction and degree q in v direction in a

bivariate vector-valued piecewise rational function of the form

S(u, v) =

n
∑

i=0

m
∑

j=0

wi,jPi,jNi,p(u)Nj,q(v)

n
∑

i=0

m
∑

j=0

wi,jNi,p(u)Nj,q(v)
, (C.14)
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where u, v are parameters, wi,j are the weights, Pi,j are control points forming

a control net, Ni,p(u), Nj,q(v) are the normalized B-splines of degree p and q in

the u and v directions respectively, defined over the knot vectors

U = {0, 0, ..., 0, up+1, ..., ur−p−1, 1, 1, ..., 1}, (C.15)

V = {0, 0, ..., 0, vq+1, ..., vs−q−1, 1, 1, ..., 1}, (C.16)

where the end knots have multiplicities p + 1 and q + 1 respectively and r =

n+ p+ 1 and s = m+ q + 1 hold.

An evaluation of surface derivatives is an important topic, since they are

frequently used in computation of surface normal vector and in the iterative

Newton’s procedure for finding ray-NURBS surface intersection. In practice,

first order derivatives are of interest and therefore the discussion is limited to

that case only. In the case of a surface defined in two dimensional parametric

space, the partial derivatives are required. The partial derivative of a NURBS

surface in u and v parametric directions are

Su =
∂S(u, v)

∂u
=
n

d

(

nu

n
− du

d

)

, (C.17)

Sv =
∂S(u, v)

∂v
=
n

d

(

nv

n
− dv

d

)

, (C.18)

where d, n denote denominator and nominator of equation (C.14) and

nu =

n
∑

i=0

m
∑

j=0

wi,jPi,jN
′
i,p(u)Nj,q(v), (C.19)

du =

n
∑

i=0

m
∑

j=0

wi,jN
′
i,p(u)Nj,q(v), (C.20)

nv =
n
∑

i=0

m
∑

j=0

wi,jPi,jNi,p(u)N
′
j,q(v), (C.21)

dv =

n
∑

i=0

m
∑

j=0

wi,jNi,p(u)N
′
j,q(v). (C.22)

The derivatives N ′ are computed using equation (C.13). The physical meaning

of directional derivatives Su,Sv is that they are tangent vectors to the under-

lying NURBS surface at a given point P0 = {u0, v0} (cf. Fig. C.1). The surface
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Figure C.1: NURBS surface tangent Su,Sv and normal N vectors at an arbi-
trary point P0 = {u0, v0}.

normal vector N and unit normal vector n can be determined from

N = Su × Sv, (C.23)

n =
N

|N| . (C.24)

⋆ ⋆ ⋆

NURBS curves and surfaces exhibit the following properties:

• All basis functions have values > 0.

• For any parameter u, the sum of all basis functions equals 1.

• The maximum order equals the number of control points in a given para-

metric direction.

• If the values of all weights are > 0, the curve or surface lies in the convex

hull, formed by the union of p+ 1 successive control points.

Convex hull property is one of the most important features of NURBS curves

and surfaces, since it guarantees that the curve or surface lies inside the region

bounded by control points.

C.3 Trimmed Surfaces

A Trimmed NURBS Surface is defined by underlying NURBS surface S(u, v)

(C.14) of parametric domain Ωp : {0 6 u 6 1; 0 6 v 6 1} and i sets of

trimming curves Ci that define restrictions for Ωp. Each set Ci is composed
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of curves Ci,j defined in u − v space that form a closed loop. The direction

of the loop is significant, since it defines which portion of the domain is to

be discarded and which retained. If the trimming curves from set Ci form a

countercolckwise loop (looking in the direction opposite to the surface nor-

mal vector n) the part of the parametric domain lying outside of the loop is

discarded and lying inside is retained (cf. Fig. C.2). The loops can be nested

but can not intersect each other and the outermost loop must be defined in a

counterclockwise direction.

v

u0 1

1

0

Figure C.2: NURBS Surface parametric domain trimmed by two sets of trim-
ming curves. The resulting valid domain is marked by colour.
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Appendix D

Newton’s method of ray - NURBS

surface intersection

The propagation of an energy bundle (ray) is described by a parametric vector

equation

r(t) = r0 + d · t, (D.1)

where r0 is origin vector, d is direction vector of the energy bundle, t is the

line parameter.

According to [61, 76] the ray equation can be rewritten as an intersection

of two planes π1 and π2 (Fig. D.1)

πi : P
h
i · (ni, di) = 0, i = 1, 2. (D.2)

Figure D.1: A ray of origin r0 and direction d described by means of two
arbitrary planes π1, π2 of normal vectors n1 and n2 respectively.

Vectors Ph
1 , P

h
2 are defined in homogeneous coordinate system by arbitrary,

perpendicular unit vectors n1, n2 and distances from the coordinate system
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origin d1, d2:

Ph
i = {nx,i, ny,i, nz,i, di}, i = 1, 2, (D.3)

where

di = −ni · r0, i = 1, 2, (D.4)

Ray-surface intersection point can be expressed by

Ph
i · (S(u, v), di) = 0, i = 1, 2. (D.5)

Inserting equation (D.3) to (D.5) yields a system of equations

F(u, v) =

(

n1 · S(u, v) + d1

n2 · S(u, v) + d2

)

, (D.6)

in which the parameters of the intersection point u∗, v∗ are unknown. Newton’s

method uses truncated Taylor expansion for the function

(

un+1

vn+1

)

=

(

un

vn

)

− J−1(un, vn) · F(un, vn), (D.7)

where J is Jacobi matrix of system of equations F and is defined by

J = (Fu,Fv) =

(

n1 · Su(u, v)

n2 · Sv(u, v)

)

. (D.8)

Vectors Su, Sv are directional derivatives in u, v directions of parametric sur-

face S(u, v), defined by equations (C.17) and (C.18). The exit conditions for

Newton’s iteration are

1. Convergence

||F(un, vn)|| < ǫ, (D.9)

where ǫ is user specified threshold,

2. Divergence

||F(un+1, vn+1)|| > ||F(un, vn)||, (D.10)

3. Exceeding maximum number of iterations nmax

n > nmax. (D.11)
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According to [76] there is one more exit condition for Newton’s iteration, i.e.

when the solution is outside the valid parametric domain u /∈ [umin, umax), v /∈
[vmin, vmax). This condition was not taken into account, because the intersec-

tion point is subjected to further tests, described in section 4.5 which are more

strict. In theory it can happen that the Jacobian is close to zero and its inverse

tends to infinity. In this case either the surface is not regular or the ray is par-

allel to a tangent vector at this point. In such case authors of reference [76]

suggest performing a jittered perturbation of the parametric point and initiate

the next iteration. The model presented in this paper does not check for the

singularity of Jacobian because of a few reasons. During the tests of the model

the situation of singularity of Jacobian has never been encountered. Moreover,

the aim is to make Newton’s iteration as fast and simple as possible by remov-

ing unnecessary operations. Since the ray tracing procedure involves testing

millions of rays against possible intersection with surfaces, the computational

costs of addition of a new checking condition can be much higher than simply

trace a new ray. The condition for checking the singularity of Jacobian was

also omitted in the works of Abert [1, 2]. Finally, if the Jacobian is singular,

the computed point is rejected or not found and a new ray is traced.
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Abstract

The main objective of the thesis was to develop Monte Carlo Ray Tracing method able

of sloving conjugate heat transfer problems in domains of arbitrary shapes, in the presence of

non-gray gases and solid particles. The model uses coarse hierarchical ortho-Cartesian mesh

with NURBS surfaces for boundary description, which is created based on CFD mesh. Ortho-

Cartesian and CFD meshes exchange data. Thus, parameters of walls, medium and particles

are averaged and serve as an input for radiation model solved on ortho-Cartesian mesh. The

results being radiative heat flux and radiative heat source/sink are interpolated back onto CFD

mesh. The code of the model is written in C++, uses multi-threading for parallelization and is

designed to be an add-on to open-source CFD package OpenFoam.

It was shown that computational time of ray tracing on coarse ortho-Cartesian mesh and

NURBS surfaces as boundaries can be 100 times faster than done on dense CFD mesh.

First part of the development consisted of model verification. The model has been sucessfully

verified for a number of test cases including non-participating and participating medium wit

gray gray and non-gray properties.

Subsequently, the model was employed to simulate the nitriding process of metal shaft in

the pit furnace. The analysis allowed to determine the radiative power of electric heaters and

temperature across the funace. The results showed excellent agreement with Ansys Fluent S2S

model, proving applicability of MCRT to problems with non-participating medium.

MCRT model was also applied for simulation of non-isothermal chamber filled with gray

gas. It was found that MC, contrary to DO, is not prone to false scattering and ray effects. It

was also estimated that MC computing time can be comparable to that of DO for conjugate

heat transfer problems, provided the radiative properties of walls and medium are temperature

independent. The functionality of ortho-Cartesian mesh hierarchy was confirmed.

The final application of MCRT was simulation of conjugate heat transfer of pulverized

coal combustion in air and oxygen-enriched atmospheres in the test rig of 500 kW maximum

thermal input installed in Institute of Power Engineering in Warsaw. The results agreed very

well with rig measurements for both air and oxy atmospheres. The results were also confronted

with Fluent DO model and proven the capability of MCRT to solve problems with particles

suspended in the medium and non-gray medium properties.
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Streszczenie

Głównym celem pracy było rozwinięcie modelu Śledzenia Promieni Monte Carlo, zdolnego

do rozwiązywania sprzężonych zagadnień wymiany ciepła w obszarach o dowolnych kształtach,

obecności gazów nieszarych oraz cząstek. Model używa rzadkiej hierarchicznej siatki ortokartez-

jańskiej z powierzchniami NURBS do opisu brzegów, która jest tworzona na podstawie siatki

CFD. Pomiędzy siatkami zapewniono niezbędną wymianę informacji. Parametry ścian, ośrodka

oraz cząstek są uśredniane i służą jako wartości wsadowe do modelu radiacji używającego siatkę

ortokartezjańską. Wyniki, będące radiacyjnymi strumieniami ciepła na ścianach oraz radia-

cyjnymi objętościowymi źródłami energii są interpolowane na siatkę CFD. Kod napisany jest

w C++, wykorzystuje wielowątkowość do zrównoleglenia obliczeń i jest zaprojektowany jako

dodatek do pakietu OpenFoam z otwartym kodem źródłowym.

W pracy udowodniono, że czas śledzenia promieni na siatce ortokartezjańskiej z powierzch-

niami NURBS, może być 100 razy mniejszy niż na gęstej siatce CFD.

Pierwszą część w procesie rozwoju modelu była weryfikacja. Model został pozytywnie zw-

eryfikowany na kilku przypadkach testowych włączając w nie ośrodki przezroczyste i aktywne

z szarymi i nieszarymi własnościami gazów.

W kolejnej częsci pracy model zastosowano w symulacji procesu azotowania metalowego

wału w piecu wgłębnym. Analiza pozwoliła określić radiacyjną moc elektrycznych grzałek oraz

temperaturę w piecu. Wyniki wykazały bardzo dobrą zgodność z modelem S2S Ansys Fluent,

potwierdzając możliwość zastosowania modelu MC do problemów w ośrodkach przezroczystych.

Model MC użyto w symulacji nieizotermicznej komory wypełnionej gazem szarym. Wykazano,

że rozwiązanie MC, w przeciwieństwie do DO, nie jest narażone na efekty promienia oraz fałszy-

wego rozpraszania. Oszacowano, że czas obliczeń MC możę być zbliżony do DO dla sprzężonych

problemów wymiany ciepła, przy założeniu że własności radiacyjne ścian oraz ośrodka są nieza-

leżne od temperatury. Potwierdzono działanie hierarchiczności siatki ortokartezjańskiej.

W ostatnim przykładzie model MC użyto w symulacji spalania pyłu węglowego w atmosfer-

ach powietrznej oraz wzbogaconej tlenem na stanowisku testowym 500 kW Instytutu Energetyki

w Warszawie. Wyniki wykazały bardzo dobrą zgodność z pomiarami dla obydwu atmosfer. Pon-

adto, wyniki były porównane z modelem DO Fluent i wykazały możliwość zastosowania MC

do zagadnień sprzężonej wymiany ciepła z cząstkami oraz gazem nieszarym.
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