Seria: ELEKTRYKA z. 137

Nr kol. 1244

Tomasz RUSEK

PROCEDURA OBLICZENIOWA WYMIAROWANIA IZOLATORÓW ODSTEPNIKOWYCH W GAZOSZCZELNYCH PRZEWODACH SZYNOWYCH

<u>Streszczenie.</u> Artykuł zawiera propozycję metody wymiarowania izolatorów odstępnikowych w wysokonapięciowych przewodach szynowych 123-420 kV, izolowanych SF₆. Wymiary geometryczne i kryteria doboru określono ze względu na wymagania elektryczne.

Opierając się na wynikach wielowariantowych obliczeń rozkładu pola elektrycznego zaproponowano algorytm obliczeń inżynierskich izolatorów odstępnikowych w przewodach szynowych izolowanych sprężonym SF_6 .

COMPUTATIONAL PROCEDURE FOR DIMENSIONING OF SPACES IN GAS-TIGHT BUSES

<u>Summary.</u> This paper presents the method of dimensioning of solid dielectric spacers in highvoltage buses of 123-420 kV, insulated with compressed SF_6 . Geometrical dimensions and criteria of spacer selection are defined with respect to the electric requirements.

Basing on multivariant calculation results relating to electric field distribution, the algorithm for engineer-like computation of spacers in SF_6 -insulated buses is proposed.

BERECHNUNGSVERFAHFEN DER DIMENSIONIERUNG VON DEN ABSTANDSISOLATOREN IN DEN GASISOLIERTEN STROMSCHIENEN

<u>Zusammenfassung.</u> Der Aufsatz enthielt einen Vorschlag von der Dimensionierung der Abstandsisolatoren in den SF₆-isolierten Hochspannungsstromschienen (123-420 kV). Geometrische Abmessungen waren nach elektrischen Anforderungen bestimmt.

Stützend sich auf die Ergebnisse vieler Berechnungsvarianten des Feldstärkeverlaufes wurde ein Algorithmus der Berechnungen von den Abstandsisolatoren in SF₆-isolierten Stromschienen vorgeschlagen.

1. WPROWADZENIE

Gazoszczelne przewody szynowe odznaczają się zdolnością przenoszenia znacznie większych mocy niż klasycznymi układami (linie kablowe). W obecnie stosowanych rozwiązaniach przeważają układy jednobiegunowe (każda faza w oddzielnej obudowie). Izolację główną stanowi czysty sześciofluorek siarki o ciśnieniu roboczym w granicach od 0,2 do 0,5 MPa (w temperaturze 20⁰ C).

Izolację stałą gazoszczelnych przewodów szynowych stanowią izolatory odstępnikowe. Izolatory te są newralgicznymi elementami składowymi układu elektroizolacyjnego przewodu.

Wymagania dużego bezpieczeństwa pracy i wysokiej niezawodności powodują wzrost wymagań stawianych izolacji gazoszczelnych przewodów szynowych.

Artykuł zawiera propozycję procedury obliczeniowej wspomagającej wymiarowanie izolatorów odstępnikowych w gazoszczelnych przewodach szynowych. Rozważania dotyczą tylko wymagań elektrycznych stawianych izolatorom w układach jednobiegunowych.

Podstawą rozważań są wyniki wielowariantowych obliczeń numerycznych rozkładu pola elektrycznego i wyznaczone na tej podstawie zależności przydatne do projektowania izolatorów odstępnikowych.

2. WYMAGANE WŁAŚCIWOŚCI ELEKTRYCZNE IZOLATORÓW ODSTĘPNIKOWYCH

Podstawowe wymagania techniczne i technologiczne związane z konstruowaniem izolatorów odstępnikowych sprowadzają się w zasadzie do:

- niedopuszczenia do powstania jakichkolwiek wyładowań niezupełnych,

- zapewnienia dostatecznej wytrzymałości elektrycznej skrośnej i powierzchniowej.

Wymagania te można spełnić poprzez: dobór odpowiedniego materiału izolacyjnego stałego, odpowiednie ukształtowanie geometryczne izolatorów i - niekiedy - stosowanie wewnętrznych lub zewnętrznych ekranów sterujących pole elektryczne.

Wytrzymałość elektryczna izolatorów odstępnikowych, wykonanych najczęściej z kompozycji żywic epoksydowych, zależy również od:

- jakości wykonania i montażu elementów konstrukcji,

- stanu powierzchni izolacyjnej,

- kształtu geometrycznego izolatorów odstępnikowych.

Kształt geometryczny izolatorów odstępnikowych jest uzależniony od rodzaju konstrukcji przewodu, poziomu napięcia roboczego i innych czynników. W praktyce stosuje się najczęściej izolatory dyskowe i kielichowe (rys. 1).

Ogólna zasada obowiązująca w zakresie optymalnego kształtowania izolatorów odstępnikowych polega na wyborze kombinacji ich odpowiednio skoordynowanych wymiarów geometrycznych (średnic, profili krawędzi bocznych, itd.) oraz - ewentualnie - wymiarów ekranów sterujących. Dobierając kształt izolatora ze względu na wymagania elektryczne należy stosować następujące kryteria:

 rozkład przestrzenny pola elektrycznego wewnątrz i wokół izolatora powinien być jak najmniej nierównomierny,

- 2) natężenie pola elektrycznego wewnątrz izolatora powinno być możliwie małe, a jego największa wartość nie może przekraczać poziomu uznawanego za dopuszczalny długotrwale (E_d ≈ 2,5 kV/mm),
- największe natężenie pola w dowolnym punkcie powierzchni izolatora nie może przekraczać największego natężenia pola w odstępie gazowym.

3. ANALIZA OBLICZEŃ NUMERYCZNYCH ROZKŁADU POLA ELEKTRYCZNEGO

Podstawą do rozważań są oryginalne programy obliczeniowe IZO_DYSK i IZO_KIEL (omówione w pracy [2]), umożliwiające wyznaczenie rozkładu pola elektrycznego przy powierzchni przewodów oraz na powierzchni dielektryku stałego. Programy te umożliwiają dokładne wyznaczenie rozkładu pola w całym układzie.

W aspekcie obliczeń inżynierskich nie jest istotna znajomość parametrów pola elektrycznego (składowe natężenia pola E oraz potencjał V) w każdym punkcie, lecz maksymalne wartości w rozpatrywanym układzie. Takie podejście umożliwia wyraźne skrócenie czasu obliczeń dla wybranego układu geometrycznego (pełny cykl obliczeń na komputerze klasy IBM 386DX wynosi kilka godzin), przy spełnieniu podstawowego warunku, tj. wystarczająco dokładnego wyznaczenia największych wartości parametrów pola elektrycznego w układzie.

Korzystając z pełnych obliczeń rozkładów pól dla różnych układów geometrycznych przewodów szynowych (tabl. 1) zaproponowano uproszczony sposób obliczeń polegający na zmniejszeniu liczb punktów podziału poszczególnych powierzchni (wybór punktów podziału w pracy [1]). Otrzymywane wyniki dla poszczególnych układów geometrycznych były weryfikowane pod względem zgodności wyznaczonych parametrów pola elektrycznego. Ostatecznie ograniczono liczbę punktów podziału powierzchni dielektryku, przewodu i osłony (ekranu)¹).

Uzyskiwane wyniki umożliwiają dostatecznie dokładne wyznaczenie największych wartości parametrów pola, a kilkakrotnie zmniejszony czas jednego cyklu obliczeń umożliwia przystosowanie programów do inżynierskich obliczeń projektowych.

Program IZO_KIEL dla izolatora kielichowego nie uwzględnia podziału powierzchni osłony (ekranu)

Tablica 1

Przykładowe pełne obliczenia rozkładu pola dla wybranego układu geometrycznego przewodu szynowego

Izolator dyskowy - dane			
		-	
Promień przewodu	R1	=	0.100m
Promień ekranu	R2	#	0.250m
Szerokość izolatora na powierzchni ekranu	A	=	0.030m
Napięcie fazowe przewodu względem ekranu	v	=	242.49kV
Przenikalność dielektryczna względna izolatora	Eps1	=	8.00
Przenikalność dielektryczna względna gazu	Eps2	=	1.00
Promień krzywizny izolatora dyskowego	Ro1	=	1.00m
Promienie wypustów sterujących	Ro2	=	0.026m
	Ro3	=	0.0053m
Położenie łuku RO2	D2	=	0.026m
Liczba punktów podziału powierzchni dielektryku	N	=	25
Liczba punktów podziału powierzchni przewodu	Np	=	30
Numery punktów zmiany gęstości podziału na pow.przewod.	Np1	=	10
	Np2	=	20
Liczba punktów podziału powierzchni ekranu	Ne	=	15
Numery punktów zmiany gęstości podziału na pow.ekranu	Ne1	=	5
tanker har and have have have been been been been been been been be	Ne2	=	12
			The second s

Izolator dyskowy - natężenie pola przy powierzchni przewodu				
R	Z	V	En	
[m]	(m)	[kV]	[kV/m]	
0.1000	0.0000	241.977	2205.672	
0.1000	0.0029	241.982	2201.013	
0.1000	0.0058	241.989	2194.387	
0.1000	0.0088	242.001	2183.189	
0.1000	0.0117	242.018	2162.322	
0.1000	0.0146	242.046	2135.189	
0.1000	0.0175	242.086	2097.368	
0.1000	0.0205	242.149	2044.070	
0.1000	0.0234	242.230	2045.895	
0.1000	0.0263	242.231	2054.827	
0.1000	0.0289	242.121	2041.251	
0.1000	0.0316	242.030	2129.341	
0.1000	0.0342	241.970	2192.494	
0.1000	0.0368	241.926	2253.658	
0.1000	0.0395	241.889	2280.054	
0.1000	0.0421	241.858	2312.611	
0.1000	0.0447	241.834	2341.005	
0.1000	0.0474	241.815	2364.296	
0.1000	0.0500	241.802	2386.062	
0.1000	0.0526	241.799	2403.599	
0.1000	0.0553	241.827	2417.456	
0.1000	0.0579	241.981	2420.830	
0.1000	0.0954	242.105	2516.586	
0.1000	0.1329	242.075	2538.182	
-0.1000	0.1704	242.032 2530.57		
0.1000	0.2079	241.934 2514.397		
0.1000	0.2454	241.703	2503.619	

Tablica 1 - ciąg dalszy

Izolator dyskowy – składowa styczna i normalna natężenia pola na powierzchni dielektryku							
R	Z	V	Es	ENw	ENz	EMw	EMz
[m]	[m]	[kV]	[kV/m]	[kV/m]	[kV/m]	[kV/m]	[kV/m]
0.1057	0.0255	232.451	1897.83	72.50	580.03	1899.21	1984.49
0.1115	0.0246	221.263	1944.13	68.31	546.46	1945.50	2029.79
0.1172	0.0231	198.938	1894.55	66.18	529.46	1895.70	1967.14
0.1287	0.0224	188.088	1849.38	64.06	512.47	1850.49	1919.07
0.1344	0.0217	167.066	1776.39	59.21	473.71	1777.38	1838.47
0.1402	0.0204	156.879	1744.69	56.60	452.82	1745.60	1802.49
0.1517	0.0198	146.892	1706.69	53.84	430.73	1707.54	1760.20
0.1575	0.0188	127.481	1645.44	47.89	383.09	1646.14	1689.45
0.1690	0.0183	118.040	1612.59	44.73	357.85	1613.21	1651.82
0.1748	0.0174	99.656	1561.30	38.15	305.17	1561.77	1590.85
0.1806	0.0170	90.704	1531.41	34.76	278.11	1531.81	1556.46
0.1921	0.0167	81.909	1503.27	31.45	251.56	1503.60	1524.18
0.1979	0.0161	64.784	1450.36	24.57	196.54	1450.57	1463.62
0.2095	0.0158	56.454	1424.06	21.13	169.03	1424.22	1434.06
0.2153	0.0156	48.282	1398.84	14.30	1141.61	1370.98	1375.67
0.2210	0.0153	32.431	1340.80	10.73	85.81	1340.85	1343.55
0.2326	0.0152	24.779	1302.99	7.62	60.93 34 15	1303.02	1304.42
0.2384	0.0150	10.332	1153.21	0.84	6.69	1153.21	1153.22

Kolejnym etapem był wybór fragmentu układu dotyczącego izolatora odstępnikowego. Programy IZO_DYSK i IZO_KIEL wyznaczają rozkład pola elektrycznego w układzie ograniczonym powierzchniami szyny prądowej i osłony (ekranu), natomiast przedstawione wcześniej wymagania elektryczne dotyczą tylko izolacji stałej przewodu szynowego. W rozpatrywanym układzie należy zatem pominąć ten fragment, który dotyczy izolacji gazowej. Na tej podstawie z całego układu przewodu szynowego wyodrębniono punkty znajdujące się wewnątrz i na powierzchni izolatora odstępnikowego.

Tak przygotowane programy stanowiły bazę do wykonania wielowariantowych obliczeń w celu wyznaczenia zależności przydatnych do projektowania izolatorów odstępnikowych dla modelu przewodu szynowego 420 kV o zadanych wymiarach poprzecznych i parametrach materiałowych ($\epsilon_1 = 4 \dots 8$). Są to zależności między natężeniami pola E_i i E_s a następującymi parametrami geometrycznymi¹).

- największą względną grubością ścianki izolatora dyskowego (A1/A2),

 względną krzywizną zewnętrznej powierzchni bocznej izolatora kielichowego (Gmax/R02).

¹⁾ Oznaczenia literowe elementów izolatora są takie, jak w artykule [4].

Przeprowadzone obliczenia (tablica 1) umożliwiły określenie zbiorów wartości parametrów geometrycznych przydatnych do projektowania izolatorów danego typu (dyskowych lub kielichowych).

Tablica 2

Przykładowe uproszczone obliczenia dla wybranego układu geometrycznego przewodu szynowego (program DYSK 400)

Izolator dyskowy - dane			
Promień przewodu	R1 = 0.100m		
Promień ekranu	R2 = 0.250m		
Szerokość izolatora na powierzchni ekranu	A = 0.030m		
Napięcie fazowe przewodu względem ekranu	V = 242.49 kV		
Przenikalność dielektryczna względna izolatora	Eps1= 8.00		
Przenikalność dielektryczna względna gazu	Eps2= 1.00		
Promień krzywizny izolatora dyskowego	Rol = 1.00m		
Promienie wypustów sterujacych	Ro2 = 0.026m		
and the second	Ro3 = 0.0053m		
Położenie łuku RO2	D2 = 0.026m		

*** NAJWIĘKSZA WARTOŚĆ NATĘŻENIA POLA DLA IZOLATORA ***

* Natężenie pola na powierzchni przewodu

(Edop <= 2500 kV/m) R : 0.100 m Z : 0.000 m V : 241.64 kV

En : 2255.48 kV/m

Dla izolatorów odstępnikowych o napięciu 420 kV, wykonanych z materiału izolacyjnego stałego o przenikalności elektrycznej względnej $\epsilon_1 = 4...8$, parametry te wynoszą:

- izolatory dyskowe: $R_{01} = 0,5...1,5m$, $R_1 = 0,1...0,15m$, $R_2 = 0,25...0,35m$;

- izolatory kielichowe: $R_2 = 0,25...0,35m$.

Podobne rozważania przeprowadzono również dla izolatora dyskowego o napięciu 123 kV, jednak otrzymane wartości natężeń pola E_i i E_s nie przekraczają zadanych wartości dopuszczalnych (maksymalne wartości stanowią 70% wartości E_d). Mimo braku ograniczeń przyjęto pewien zbiór wartości wykorzystywanych do projektowania izolatorów tego typu, a mianowicie: $\epsilon_1 = 4...8$, $R_{01} = 0,3...0,75m$, $R_1 = 0,04...0,05m$, $R_2 = 0,1...0,15m$.

4. PROPOZYCJA PROCEDURY OBLICZENIOWEJ WYMIAROWANIA IZOLATORÓW ODSTĘPNIKOWYCH

Efektem przeprowadzonych rozważań jest stworzenie, na bazie programów IZO_DYSK i IZO_KIEL, wersji roboczych programów komputerowych do celów projektowych. Programy dotyczą poszczególnych typów izolatorów o określonym poziomie napięcia roboczego (DYSK400, DYSK100 i KIEL400).

Uwzględniając zadane kryteria wytrzymałości elektrycznej i wybrane zbiory wartości przydatnych do projektowania izolatorów danego typu można zaproponować algorytm obliczeń projektowych (inżynierskich).

Projektant powinien mieć możliwość swobodnego wyboru parametrów geometrycznych izolatorów odstępnikowych w zakresie wartości dopuszczalnych. Wartości maksymalne parametrów pola elektrycznego należy wyznaczać na podstawie dokładnego rozkładu pola w przewodzie szynowym.

Obliczenia projektowe nie powinny się ograniczać do jednego wariantu dopuszczalnego, dlatego algorytm musi umożliwiać powtarzanie obliczeń i gromadzenie wyników dla wariantów dopuszczalnych. Takie podejście pozwoli projektantowi na wybór rozwiązania i w miarę potrzeby uwzględnienie innych kryteriów, np. kryterium ekonomicznego.

Propozycję algorytmu obliczeń inżynierskich izolatorów odstępnikowych w przewodach szynowych izolowanych SF₆, wykonywanych ze względu na wymagania w zakresie ich wytrzymałości elektrycznej, przedstawia rys. 2.

5. PODSUMOWANIE

Zaproponowany algorytm obliczeń może być podstawą do opracowania komputerowego programu obliczeniowego, będącego narzędziem przydatnym zarówno w pracach projektowych, jak i szerszych analizach studialnych dotyczących jednobiegunowych gazoszczelnych przewodów szynowych wysokiego napięcia.

Opracowanie programu komputerowgo umożliwi wykonywanie obliczeń inżynierskich wykorzystujących skomplikowany algorytm obliczeń parametrów pola elektrycznego oparty na metodzie równań całkowo-brzegowych, co w zasadniczy sposób ułatwi obliczenia projektowe.

Proponowany tryb postępowania przy projektowaniu izolatorów odstępnikowych może być podstawą do opracowania systemu wspomagania obliczeń projektowych izolacji stałej uwzględniającego wymagania elektryczne, cieplne i mechaniczne stawiane gazoszczelnym przewodom szynowym.

- Rys. 2. Propozycja algorytmu obliczeń inżynierskich izolatorów odstępnikowych w przewodach szynowych izolowanych SF₆
- Fig. 2. Proposal of the algorithm for engineering-like computation of spacers in SF₆-insulated buses

LITERATURA

- Baron B.: Modelowanie matematyczne pola elektrycznego w przewodach szynowych. CPBP 02.18. Zadanie 1.4.3.3. Sprawozdanie z realizacji zadania badawczego w 1989 r.
- Baron B., Gacek Z., Kiś W.: Obliczanie rozkładu pola elektrycznego, wymiarowanie układów izolacyjnych i wyznaczanie temperatur w przewodach szynowych izolowanych SF₆. ZN Pol. Śl. "Elektryka", z. 131, Gliwice 1993.
- Gacek Z.: Wymiarowanie izolacji gazowej hermetyzowanych przewodów szynowych 123-420 kV. ZN Pol. Śl. "Elektryka", z. 124, Gliwice 1991.
- 4. Gacek Z.: Wymiarowanie izolatorów odstępnikowych w gazoszczelnych przewodach szynowych. ZN Pol. Śl. "Elektryka", z. 127, Gliwice 1992.

Recenzent: Prof. dr hab. inż. Zbigniew Pohl

Wpłynęło do Redakcji dnia 23 marca 1994 r.

Abstract

The object of the paper is dimensioning of solid insulation within gas-tight buses. Basic technical and technological requirements related to construction of spacers are presented. Geometrical dimensions (Fig. 1) and criteria of spacer selection have been determined in respect to the electric requirements.

The cause for consideration are numerical computation results of electric field distribution in the whole gas-tight bus system obtained by means of original computer programs IZO_DYSK and IZO_KIEL (presented in the article [2]).

Basing on the analyse, a fragment of bus system is separated for the further consideration. This fragment refers to bus solid insulation system. Using the full calculations of electric field distribution for bus systems different in respect of geometrical shape (Table 1), a simplified method evaluation of the extreme parameter values is proposed (Table 2).

The multivariant calculations enable one to evaluate of set of geometrical parameter values used to design of insulators of the given type.

Taking into account the given electric strength criteria and chosen set of values used to design given type of insulators, the algorithm for engineering-like computation of spacers in SF_6 -insulated buses can be worked up. The proposal of the algorithm is presented in Fig. 2.