Abdel - Magid MOHAMED

REDUCED-ORDER OBSERVERS FOR DESCRIPTOR SYSTEMS*

Summary. In this paper, a reduced-order observer for descriptor system is considered. The given system is decomposed into slow and fast subsystem, and then observers are desingned for each subsystem. The singular value decomposition and the generalized inverses of matrices will be used to design the observers. Ilustrative numerical examples are also given.

OBSERWATORY ZREDUKOWANEGO RZĘDU DLA UK£ADÓW SINGULARNYCH

Streszczenie. W pracy rozpatrzono obserwatory zredukowanego rzędu dla układów singularnych. Dany układ dekomponowany jest na dwa podukłady, "wolny" i "szybki", a nastepnie dla kaz̀dego z nich projektowany jest oddrielny obserwator.

Przy projektowaniu obserwatorow wykorzystuje się uogolnione macierze odwrotne oraz dekompozycję macierzy z wykorzystaniem wartości singularnych. Podano równiez ilustracyjne przyklady numeryczne.

НАБЛЮДАТЕЛИ РЕДУЦИРОБАННОЙ СТЕПЕНИ ДЛІЯ СИНГУЛЯРНЫХ СИСТЕМ

Резюме. В равоте рассматриваются наблюдатели редуцированной степени для сингулярных систем. Данная система разбивается ма 2 отдельные подсистемы: "

[^0]"медленную" и "быструю". Для каждои из них отдельно проектируется наблюодатель. Во время проектирования используются обобщенные обратные матрицы и разбиение матриц с использованием сипгуляриых значений. Даны иллюстративные численные примеры.

1. INTRODUCTION

Consider the continuous-time descriptor system described by

$$
\begin{align*}
& E \dot{x}=A x+B u \tag{la}\\
& y=C x \tag{lb}
\end{align*}
$$

where $x \in \mathbf{R}^{\mathbf{n}}$ is the descriptor vector, $\mathbf{u} \in \mathbf{R}^{p}$ is the input vector, and $y \in \mathbf{R}^{\mathrm{m}}$ is the output vector. The matrices A, B and C are respectively dimensional and E is square and singular matrix.
Throughout we will assume that:
(a) System (1) is regular, i.e. $\operatorname{det}(s E-A) \neq 0$.
(b) System (1) is generalized observable, which means

$$
\operatorname{rank}\left[\begin{array}{c}
\mathrm{sE}-\mathrm{A} \tag{2a}\\
\mathrm{C}
\end{array}\right]=\mathrm{n}
$$

for all finite values of s, and

$$
\operatorname{rank}\left[\begin{array}{l}
E \tag{2b}\\
C
\end{array}\right]=n
$$

Descriptor (singular or generalized state space) systems have recently received considerable effort [see, e.g., 5, 6, 7, 9, 10, 14].

The observer design problem for system (1) has been studied by using several approaches [see, e.g. 3, 4, 11, 12, 13].

In this paper a simple method to design reduced-order observers for slow and fast subsystems of the given continuous descriptor system is considered. The suggested procedure does not presuppose the observer structure and is based on the singular value decomposition (SVD) and the generalized inverses of matrices.

2. OBSERVER CONSTRUCTION

Under the assumption of regularity, there exist two nonsingular matrices Y and T , such that system (1) is restricted system equivalent (rse) to [2]

$$
\begin{equation*}
\dot{\mathrm{x}}_{1}=\mathrm{A}_{1} \mathrm{x}_{1}+\mathrm{B}_{1} \mathrm{u} \tag{3a}
\end{equation*}
$$

$$
\begin{align*}
& y_{i}=C_{1} x_{1} \tag{3b}\\
& N \dot{x}_{2}=x_{2}+B_{2} u \tag{4a}\\
& y_{2}=C_{2} x_{2} \tag{4b}\\
& y=y_{1}+y_{2}
\end{align*}
$$

where $x \in R^{n 1}, x \in R^{n 2}, n_{1}=\operatorname{deg}|s E-A|, n_{1}+n_{2}=n, x=T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$,
$\mathrm{YET}=\operatorname{diag}\left\{\mathrm{I}_{\mathrm{nl}}, \mathrm{N}\right\} ; \mathrm{YAT}=\operatorname{diag}\left\{\mathrm{A}_{1}, \mathrm{I}_{\mathrm{n} 2}\right\} ; \mathrm{YB}=\left[\begin{array}{l}\mathrm{B}_{1} \\ \mathrm{~B}_{2}\end{array}\right]$ and $\mathrm{CT}=\left[\mathrm{C}_{1}, \mathrm{C}_{2}\right]$.

2.1. Slow Subsystem Observer

Using the generalized matrix inverses [1], the general solution of (3b) is given by

$$
\begin{equation*}
x_{1}=C_{1}^{g} y_{1}+\left(I_{n 1}-C_{1}^{g} C_{1}\right) f \tag{5}
\end{equation*}
$$

with consistency condition

$$
\begin{equation*}
\left(I_{m}-C_{1} C_{1}^{g}\right) y_{1}=0 \tag{6}
\end{equation*}
$$

where C_{1}^{g} is an $n_{1} \times m$ generalized inverse of C_{1} and f is an $n_{1} \times 1$ vector whose elements are arbitrary functions of time. It should be noted that if C_{1} has a full row rank, then condition (6) is always satisfied. Let us take the SVD [8] od C_{1} which is

$$
\mathrm{C}_{1}=\mathrm{U}\left[\begin{array}{cc}
\sum_{\mathrm{d}} & 0 \\
0 & 0
\end{array}\right] \mathrm{V}^{\mathrm{T}} ; \text { then } \mathrm{C}_{1}^{\mathrm{g}}=\mathrm{V}\left[\begin{array}{cc}
\sum_{\mathrm{d}}^{-1} & 0 \\
0 & 0
\end{array}\right] \mathrm{U}^{\mathrm{T}}
$$

where Σ_{d} is a $\mathrm{d} \times \mathrm{d}$ nonsingular matrix, $\mathrm{d}=\operatorname{rankC}_{1}$, and U and V are square orthogonal matrices of order m and n_{1} respectively. Letting $V=\left[V_{1}, V 2\right]$, where V_{2} is an $n_{1} \times\left(n_{1}-d\right)$ full column rank matrix, then (5) becomes

$$
\begin{equation*}
x_{1}=C_{1}^{g} y_{1}+V_{2} h \tag{7}
\end{equation*}
$$

where $h=V_{2}^{T} f$ is an ($\left.n_{1}-d\right)$ vector. Substituting (7) into (3a), yields

$$
\begin{equation*}
V_{2} \dot{h}=A_{1} V_{2} h+A_{1} C_{1}^{g} y_{1}+B_{1} u-C_{1}^{g} \dot{y}_{1} \tag{8}
\end{equation*}
$$

So the generalized matrix inverses can be used to uniquely solve (8), since V_{2} has full column rank, and then by using the solution with its consistency condition, an observer may be constructed. However, in order to work with matrices of smaller dimensions which reduce and simplify the computational effort, the following manipulation is applied.

Since V_{2} has full column rank, there exists an $n_{1} \times n_{2}$ nonsingular matrix M such that $M V_{2}=\left[\begin{array}{c}M_{1} \\ 0\end{array}\right]$, where M_{1} is an $\left(n_{1}-d\right) x\left(n_{1}-d\right)$ nonsingular matrix. Premultiplying (8) by M, yields

$$
\left[\begin{array}{c}
\mathrm{M}_{1} \tag{9}\\
0
\end{array}\right] \dot{\mathrm{h}}=\left[\begin{array}{l}
\mathrm{A}_{11} \\
\mathrm{~A}_{12}
\end{array}\right] \mathrm{h}+\left[\begin{array}{l}
\mathrm{P}_{11} \\
\mathrm{P}_{12}
\end{array}\right] \mathrm{y}_{1}+\left[\begin{array}{l}
\mathrm{B}_{11} \\
\mathrm{~B}_{12}
\end{array}\right] \mathrm{u}-\left[\begin{array}{l}
\mathrm{D}_{11} \\
\mathrm{D}_{12}
\end{array}\right] \dot{\mathrm{y}}_{1}
$$

where A_{11}, B_{11}, D_{11} and P_{11} have $\left(n_{1}-d\right)$ rows and $\left(n_{1}-d\right), p,\left(n_{1}-d\right)$ and m columns, respectively. Let us denote

$$
\begin{equation*}
\mathrm{w}_{1}=\mathrm{M}_{1} \mathrm{~h}+\mathrm{D}_{11} \mathrm{y}_{1} \tag{10}
\end{equation*}
$$

Then (9) can be splitted into the follwing two equations

$$
\begin{align*}
& \dot{\mathrm{w}}_{1}=\mathrm{A}_{11} \mathrm{M}_{1}^{-1} \mathrm{w}_{1}+\left(\mathrm{P}_{11}-\mathrm{A}_{11} \mathrm{M}_{1}^{-1} \mathrm{D}_{11}\right) \mathrm{y}_{1}+\mathrm{B}_{11} \mathrm{u} \tag{11}\\
& \mathrm{~A}_{12} \mathrm{M}_{1}^{-1} \mathrm{w}_{1}=\left(\mathrm{A}_{12} \mathrm{M}_{1}^{-1} \mathrm{D}_{11}-\mathrm{P}_{12}\right) \mathrm{y}_{1}-\mathrm{B}_{12} \mathrm{u}+\mathrm{D}_{12} \dot{\mathrm{y}}_{1} \tag{12}
\end{align*}
$$

Equations (11) and (12) can ben interpreted as a dynamical system, where w_{1} is the state vector, $\left[\begin{array}{c}y_{1} \\ u\end{array}\right]$ is the input vector and the right hand side of (12) is the output vectore.

An observer of order ($\left.n_{1}-d\right)$ can be initially constructed for system (11) and (12) as follows

$$
\begin{align*}
& \dot{\bar{w}}_{1}=\left(A_{11} M_{1}^{-1}-K_{1} A_{12} M_{1}^{-1}\right) \bar{w}_{1}+ \\
& +\left(\mathrm{P}_{11}-\mathrm{A}_{11} \mathrm{M}_{1}^{-1} D_{11}+\mathrm{K}_{1} A_{12} M_{1}^{-1} D_{11}-K_{1} \mathrm{P}_{12}\right) \mathrm{y}_{1}+ \tag{13}\\
& +\left(\mathrm{B}_{11}-\mathrm{K}_{1} \mathrm{~B}_{12}\right) \mathrm{u}+\mathrm{K}_{1} \mathrm{D}_{12} \dot{\mathrm{y}}_{1}
\end{align*}
$$

where K_{1} is a $\left(n_{1}-d\right) x d$ arbitrary matrix which must be chosen such that the matrix $\left(\mathrm{A}_{11} \mathrm{M}_{1}^{-1}-\mathrm{K}_{1} \mathrm{~A}_{12} \mathrm{M}_{1}^{-1}\right)$ has arbitrarily specified eigenvalues. Clearly, this can be done if and only if the pair od matrices $\left(A_{12} M_{1}^{-1}, A_{11} M_{1}^{-1}\right)$ is observable [15]. Theorem 1: If system (1) satisfies observability condition (2a), then $\left(\mathrm{A}_{12} \mathrm{M}_{1}^{-1}, \mathrm{~A}_{11} \mathrm{M}_{1}^{-1}\right)$ is observable pair of matrices.
Proof: Using suitable matrix operation non (2a), yields

$$
\begin{aligned}
& n=n_{1}+n_{2}=\operatorname{rank}\left[\begin{array}{cc}
Y & O \\
O & I_{m}
\end{array}\right]\left[\begin{array}{c}
s E-A \\
C
\end{array}\right][T]=\operatorname{rank}\left[\begin{array}{cc}
s I_{n 1}-A_{1} & O \\
O & s N-I_{n 2} \\
C_{1} & C_{2}
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{ccc}
I_{n 1} & O & 0 \\
0 & I_{n 2} & O \\
O & O & U^{T}
\end{array}\right]\left[\begin{array}{cc}
s_{n 1}-A_{1} & O \\
O & s N-I_{n 2} \\
U\left[\begin{array}{cc}
\sum_{d} & 0 \\
O & 0
\end{array}\right] V^{T} & C_{2}
\end{array}\right]\left[\begin{array}{cc}
V & O \\
O & I_{n 2}
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{cc}
\left(\mathrm{sI}_{\mathrm{n} 1}-\mathrm{A}_{1}\right) \mathrm{V} & 0 \\
0 & \mathrm{sN}-\mathrm{I}_{\mathrm{n} 2} \\
{\left[\begin{array}{cc}
\sum_{\mathrm{d}} & 0 \\
\mathrm{O} & 0
\end{array}\right]} & \mathrm{C}_{2}
\end{array}\right]
\end{aligned}
$$

Notcing the fact that ($\mathrm{s} N-\mathrm{In} 2$) is invertible for any finite s ,
$\operatorname{rank}\left[\begin{array}{cc}\left(\operatorname{sI}_{n l}-A_{1}\right) V \\ {\left[\begin{array}{cc}\sum_{d} & 0\end{array}\right]}\end{array}\right]=n_{1}=\operatorname{rank}\left[\begin{array}{cc}\left(\mathrm{sI}_{\mathrm{nl}}-\mathrm{A}_{1}\right) V_{1} & \left(\mathrm{sI}_{\mathrm{nl}}-\mathrm{A}_{1}\right) V_{2} \\ \sum_{\mathrm{d}} & O\end{array}\right]$
Consequently,
$\operatorname{rank}\left(\operatorname{sI}_{\mathrm{n} 1}-A_{1}\right) V_{2}=n_{1}-d=\operatorname{rank}[M]\left(\mathrm{sI}_{\mathrm{n} 1}-A_{1}\right) V_{2}=\operatorname{rank}\left[\begin{array}{c}s \mathrm{M}_{1}-A_{11} \\ -A_{12}\end{array}\right]$
Then $\left(A_{11} M_{1}^{-1}, A_{12} M_{1}^{-1}\right)$ is observable pair of matrices.
Returning to (13), the derivative of y_{1}, can be eliminated by defining another new variable as follows

$$
\begin{equation*}
z_{1}=\bar{w}_{1}-K_{1} D_{12} Y_{1} \tag{14}
\end{equation*}
$$

and then the final form of (13) may be written as

$$
\begin{equation*}
\dot{z}_{1}=\mathrm{F}_{1} \mathrm{z}_{1}+\mathrm{G}_{1} \mathrm{y}_{\mathrm{i}}+\mathrm{S}_{1} \mathrm{u} \tag{15}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathrm{F}_{1}=A_{11} M_{1}^{-1}-K_{1} A_{12} M_{1}^{-1} \\
G_{1}=P_{11}-A_{11} M_{1}^{-1} D_{11}-K_{1} P_{12}+K_{1} A_{12} M_{1}^{-1} K_{1} D_{12}-K_{1} A_{12} M_{1}^{-1} K_{1} D_{12} \\
S_{1}=B_{11}-K_{1} B_{12}
\end{gathered}
$$

Also, the estimated state \hat{x}_{1} can be obtained by using (7), (10), and (14) as follows

$$
\begin{equation*}
\hat{x}_{1}=V_{2} M_{1}^{-1} z_{1}+\bar{R}_{1} y_{1} \tag{16}
\end{equation*}
$$

where $\bar{R}_{1}=\left(C_{1}^{g}-V_{2} M_{1}^{-1} D_{11}+V_{2} M_{1}^{-1} K_{1} D_{12}\right)$
This completes the observer construction for the slow subsystem.

2.2. Fast Subsystem Observer

Here, the above procedure will be repeated with some differences to desing the observer. Using again, the generalized matrix inverses, the general solution of (4b) is given by

$$
\begin{equation*}
\mathrm{x}_{2}=\mathrm{C}_{2}^{\mathrm{g}} \mathrm{y}_{2}\left(\mathrm{I}_{\mathrm{n} 2}-\mathrm{C}_{2}^{\mathrm{g}} \mathrm{C}_{2}\right) \gamma \tag{17}
\end{equation*}
$$

with consistency condition

$$
\begin{equation*}
\left(I_{m}-C_{2} C_{2}^{g}\right) y_{2}=0 \tag{18}
\end{equation*}
$$

where C_{2}^{g} is an $n_{2} \times m$ generalized inverse of C_{2} and γ is an $n_{2} \times I$ arbitrary vector. Let us take the SVD of C_{2} which is

$$
\mathrm{C}_{2}=\mathrm{P}\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right] \mathrm{Q}^{\mathrm{T}} \text {; then } \mathrm{C}_{2}^{\mathrm{g}}=\mathrm{Q}\left[\begin{array}{cc}
\Sigma_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] \mathrm{P}^{\mathrm{T}}
$$

where $1=$ rank C_{2}. Letting $Q=\left[Q_{1}, Q_{2}\right]$ where Q_{2} is an $n_{2} \times\left(n_{2}-1\right)$ full column rank matrix, then (17) becomes

$$
\begin{equation*}
x_{2}=C_{2}^{g} y_{2}+Q_{2} \sigma \tag{19}
\end{equation*}
$$

where $\sigma=Q_{2}^{T} \gamma$ is an ($\left.n_{2}-1\right) x$ vector. Substituting of (19) into (4a), yields

$$
\begin{equation*}
\mathrm{NQ}_{2} \dot{\sigma}=\mathrm{Q}_{2} \sigma+\mathrm{C}_{2}^{\mathrm{g}} \mathrm{y}_{2}+\mathrm{B}_{2} \mathrm{u}-\mathrm{NC}_{2}^{\mathrm{g}} \dot{\mathrm{y}}_{2} \tag{20}
\end{equation*}
$$

Equation (20) can be uniquely solved for $\dot{\sigma}$ if and only if the matrix NQ_{2} has full column rank.

Theorem 2: If system (1) satisfies condition (2b), then the matrix NQ_{2} has full column rank equal to ($\mathrm{n}_{2}-1$).
Proof: Using suitable matrix operations on (2b), we get

$$
\begin{aligned}
& \mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}=\operatorname{rank}\left[\begin{array}{l}
\mathrm{E} \\
\mathrm{C}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
\mathrm{Y} & \mathrm{O} \\
\mathrm{O} & \mathrm{I}_{\mathrm{M}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{E} \\
\mathrm{O}
\end{array}\right][\mathrm{T}]= \\
& =\operatorname{rank}\left[\begin{array}{ccc}
\mathrm{I}_{\mathrm{n}_{1}} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{I}_{\mathrm{n}_{2}} & \mathrm{O} \\
-\mathrm{C}_{1} & \mathrm{O} & \mathrm{I}_{\mathrm{m}}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{I}_{\mathrm{n} 1} & 0 \\
\mathrm{O} & \mathrm{~N} \\
\mathrm{C}_{1} & \mathrm{C}_{2}
\end{array}\right]=\mathrm{n}_{1}+\operatorname{rank}\left[\begin{array}{c}
\mathrm{N} \\
\mathrm{C}_{2}
\end{array}\right]
\end{aligned}
$$

Then, $n_{2}=\operatorname{rank}\left[\begin{array}{c}N \\ C_{2}\end{array}\right]=$
$=\operatorname{rank}\left[\begin{array}{cc}I_{n_{2}} & 0 \\ 0 & P^{T}\end{array}\right]\left[P\left[\begin{array}{cc}\Sigma_{1} & \mathrm{O} \\ \mathrm{O} & \mathrm{O}\end{array}\right] \mathrm{Q}^{\mathrm{T}}\right][\mathrm{Q}]=\operatorname{rank}\left[\begin{array}{cc}\mathrm{NQ}_{1} & \mathrm{NQ}_{2} \\ \Sigma_{1} & \mathrm{O}\end{array}\right]$
Obviously, rank $\mathrm{NQ}_{2}=\mathrm{n}_{2}-\mathrm{I}$, which completes the proof.
Since NQ_{2} has full column rank matrix, then there exists a nonsingular $\mathrm{n}_{2} \mathrm{xn}_{2}$ matrix H such that $\mathrm{HNQ}_{2}=\left[\begin{array}{c}\mathrm{H}_{1} \\ 0\end{array}\right]$ where H_{1} is an $\left(\mathrm{n}_{2}-1\right) \mathrm{x}\left(\mathrm{n}_{2}-1\right)$ nonsingular matrix. Premultiplying (20) by H and letting $\mathrm{HQ}_{2}=\left[\begin{array}{l}\mathrm{A}_{21} \\ \mathrm{~A}_{22}\end{array}\right], \mathrm{HB}_{2}=\left[\begin{array}{l}\mathrm{B}_{21} \\ \mathrm{~B}_{22}\end{array}\right]$, $\mathrm{HC}_{2}^{\mathrm{g}}=\left[\begin{array}{l}\mathrm{P}_{21} \\ \mathrm{P}_{22}\end{array}\right]$, and $\mathrm{HNC}_{2}^{\mathrm{g}}=\left[\begin{array}{l}\mathrm{D}_{21} \\ \mathrm{D}_{22}\end{array}\right]$, where $\mathrm{A}_{21}, \mathrm{~B}_{21}, \mathrm{D}_{21}$ and P_{21} have $\left(\mathrm{H}_{2}-1\right)$ rows and appropriate number of colums, then the following observer can be obtained after direct substitutions

$$
\begin{equation*}
\dot{z}_{2}=\mathrm{F}_{2} \mathrm{z}_{2}+\mathrm{G}_{2} \mathrm{y}_{2}+\mathrm{S}_{2} \mathrm{u} \tag{21}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathrm{F}_{2}=\mathrm{A}_{21} \mathrm{H}_{1}^{-1}-\mathrm{K}_{2} \mathrm{~A}_{22} \mathrm{H}_{1}^{-1} \\
\mathrm{G}_{2}=\mathrm{P}_{21}-\mathrm{A}_{21} \mathrm{H}_{1}^{-1} \mathrm{D}_{21}-\mathrm{K}_{2} \mathrm{P}_{22}+\mathrm{K}_{2} \mathrm{~A}_{22} \mathrm{H}_{1}^{-1} \mathrm{D}_{21}+ \\
+\mathrm{A}_{21} \mathrm{H}_{1}^{-1} \mathrm{~K}_{2} \mathrm{D}_{22}-\mathrm{K}_{2} \mathrm{~A}_{22} \mathrm{H}_{1}^{-1} \mathrm{~K}_{2} \mathrm{D}_{22}
\end{gathered}
$$

$$
S_{2}=B_{21}-K_{2} B_{22}
$$

Here K_{2} is an $\left(\mathrm{n}_{2}-1\right) \mathrm{xl}$ arbitrary matrix and can be selected such that the matrix F_{2} has arbitrarily specified eigenvalues. Clearly, this can be done if and only if $\left(\mathrm{A}_{22} \mathrm{H}_{1}^{-1}, \mathrm{~A}_{21} \mathrm{H}_{1}^{-1}\right)$ is observable pair of matrices. This can be easily proved. Also the estimated vector $\hat{\mathrm{x}}_{2}$ can be found as

$$
\begin{equation*}
\hat{\mathrm{x}}_{2}=\mathrm{Q}_{2} \mathrm{H}_{1}^{-1} \mathrm{z}_{2}+\overline{\mathrm{R}}_{2} \mathrm{y}_{2} \tag{22}
\end{equation*}
$$

where $\overline{\mathrm{R}}_{2}=\left(\mathrm{C}_{2}^{\mathrm{g}}-\mathrm{Q}_{2} \mathrm{H}_{1}^{-1} \mathrm{D}_{21}+\mathrm{Q}_{2} \mathrm{H}_{1}^{-1} \mathrm{~K}_{2} \mathrm{D}_{22}\right)$
This completes the observer construction for the fast subsystem.

3. ILLUSTRATIVE EXAMPLES

Example 1

Consider the follwing descriptor system [11]

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-1 & - & -1 & 1 \\
0 & -1 & -1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] x+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0 \\
1 & 0
\end{array}\right] u ;} \\
y=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] x
\end{gathered}
$$

Using the method of [5], we get

$$
\dot{x}_{1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 0 \\
0 & -1 & -1
\end{array}\right] x_{1}+\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & 0
\end{array}\right] u ; \quad y_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] x_{1}
$$

and

$$
0=x_{2}\left[\begin{array}{ll}
1 & 0
\end{array}\right] u ; y_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathrm{x}_{2}
$$

Letting, $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], x_{2}=-u_{1}$, and $y_{1}=y-y_{2}$ are known.
Thus, in this system observer only for slow subsystem is necessary. Its output equation can take the following form

$$
y_{11}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x_{1}
$$

with $y_{1}=\left[\begin{array}{ll}y_{11} & y_{12}\end{array}\right]^{T}$ and $y_{11}=y_{12}$.
The direct calculation gives

$$
\begin{gathered}
\mathrm{V}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right] ; \mathrm{M}_{1}=\mathrm{I}_{2} ; \mathrm{A}_{11}=\left[\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right] ; \quad \mathrm{A}_{12}=\left[\begin{array}{ll}
-1 & 0
\end{array}\right] ; \quad \mathrm{B}_{11}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right] \\
\mathrm{B}_{12}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] ; \quad \mathrm{D}_{11}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] ; \mathrm{D}_{12}=1 ; \mathrm{P}_{11}=-\left[\begin{array}{l}
0 \\
0
\end{array}\right] ; \mathrm{P}_{12}=-1 .
\end{gathered}
$$

Assuming that the required observer eigenvalues are -3 and -4 , then

$$
\mathrm{F}_{1}=\left[\begin{array}{cc}
-6 & -1 \\
6 & -1
\end{array}\right] ; \mathrm{K}_{1}=\left[\begin{array}{c}
-6 \\
5
\end{array}\right]
$$

The other observer parameters are as folows

$$
\mathrm{G}_{1}=\left[\begin{array}{c}
25 \\
-36
\end{array}\right] ; \mathrm{S}_{1}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right] ; \overline{\mathrm{R}}_{1}=\left[\begin{array}{c}
5 \\
-6 \\
1
\end{array}\right]
$$

Example 2

Consider the following descriptor system [5]

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & -1 & 1 \\
-1 & 1 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{ccc}
2 & -2 & 0 \\
2 & -1 & 0 \\
-2 & 2 & 1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] u ; y=\left[\begin{array}{lll}
2 & -1 & 1
\end{array}\right] x
$$

The slow and fast subsystems are as follows [5]

$$
\dot{x}_{1}=2 \mathrm{x}_{1}+\mathrm{u} ; \quad \mathrm{y}_{1}=2 \mathrm{x}_{1}
$$

and

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \dot{x}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] x_{2}+\left[\begin{array}{c}
-1 \\
3
\end{array}\right] ; y_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x_{2}
$$

Clearly, the observer of order one is necessary only for fast subsystem. Then by direct calculation, we get $\mathrm{Q}_{2}=\left[\begin{array}{c}-0,7071 \\ 0,7071\end{array}\right] ; \mathrm{H}_{1}=0.7071 ; \mathrm{A}_{21}=-0.7071 ; \mathrm{A}_{22}=0.7071$: $\mathrm{B}_{21}=-1 ; \mathrm{B}_{22}=3 ; \mathrm{D}_{21}=0.5 ; \mathrm{D}_{22}=0.5 ; \mathrm{P}_{21}=0,5 ; \mathrm{P}_{22}=0$.
Letting that the observer eigenvalue is -3 , the observer para,eters are as follows

$$
\mathrm{K}_{2}=2 ; \quad \mathrm{G}_{2}=1 ; \quad \mathrm{S}_{2}=-7 ; \quad \overline{\mathrm{R}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

4. CONCLUSIONS

A straightforward method to design reduced-order observers for slow and fast subsystems of the descriptor system is presented. The method is based on the singular value decomposition and the generalized inverses of matrices and does not presuppose the observer structure. It should be noted that, from theoretical point of view, under this decomposition, it is easily to desing reduced-order observers for the slow and fast subsystems and the sum of the observer order $\left[\left(n_{1}-\mathrm{d}\right)+\left(\mathrm{n}_{2}-1\right)\right]$ may be lower than that of one observer (n-rank C) [11]. However, from practical point of view, as in example 2, the calculation of the slow and fast subsystem outputs, y_{1} and y_{2} independently in terms of y, is sometimes very difficult. This problem may be overcommed by assuming a relation between $\mathrm{y}, \mathrm{y}_{1}$ and y_{2}. This point need more investigation.

REFERENCES

[1] S. Barnett, Matrices in Control Theory with Application to Linear Programming (Van Nostrand Reinhold, London 1971).
[2] L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, Spring-Verlog, Berlin 1989.
[3] M. El-Tohami, V. Lovass-Nagy and R. Mukundan, On the desing of observers for generalized state space systems using singular value decomposition, Internat. J. Control 38 (1983) 673-683.
[4] M.M. Fahmy and J. O'Reilly, Observers for descriptor systems, Internat. J. Control 49 (1989) 2013-2028.
[5] T. Kaczorek, Different forms of the description of generalized linear systems, Proceeding of 15 -th Seminar on Fundamentals of Electrotechnics and Circuit Theory, Wisła, Poland, May (1992) 13-29.
[6] T. Kaczorck, Linear Control Systems, Vol. 1 entitled "Analysis of Multivariable Systems", John Wilcy and Sons Inc., New York 1992.
[7] T. Kaczorek, Theory of Control and Systems, PWN, Warszawa 1993. (in Polish).
[8] V.G. Klema and A. J. Laub, The singular value decomposition: Its computation and some applications, IEEE Trans. Automat. Control 25 (1980) 164-176.
[9] F. L. Lewis, A survey of linear singular systems, Circuits Systems Signala Process, 5 (1986) 3-36.
[10] D.G. Lunberger, Dynamic equations in descriptor from, IEEE Trans. Automat. Control, 22 (1977) 312-321.
[11] A.M. Mohamed, Observer design for descriptor systems, Foundation of Computing and Decision Sciences, 15 (1991) 173-180.
[12] B. Shafai and R.L. Caroll, Desing of minimal order observers for singular systems, Internat. J. Control 45 (1987) 1075-1081.
[13] D.N. Shields, Observers for descriptor systems, Interant. J. Control 55 (1992) 249 - 256.
[14] G.C. Verghese, B.C. Levy and T. Kailath, A generalized state-space for singular systems, IEEE Trans. Automat. Control 26 (1981) 811-831.
[15] W.H. Wonham, On pole assignment in multi-input controllable linear systems, IEEE Trans. Automat. Control 12 (1967) 660-665.

[^0]: This research has been supported by Komitet Badan Naukowych under Grant 7108291 / "Optimal control of multidimensional discrete systems".

