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A COMPARISON OF TWO GRADIENT PLASTICITY FORMULA
TIONS AND ALGORITHMS FOR LOCALIZATION SIMULATIONS

Summary. The paper compares two formulations of the plastic flow theory regularized by 
the presence of higher-order gradients of an internal variable in the yield function. The com
putation is limited to small strains. The physical and theoretical background of the localiza
tion phenomena is briefly presented. The boundary value problem of gradient dependent plas
ticity is described. Two different solution algorithms are compared.

PORÓWNANIE DWÓCH SFORMUŁOWAŃ I ALGORYTMÓW GRADIEN
TOWEJ PLASTYCZNOŚCI DLA ANALIZY LOKALIZACJI

Streszczenie. W artykule porównano dwa sformułowania teorii plastyczności zregulary- 
zowanej przez gradient wyższego rzędu wewnętrznego parametru k  w  funkcji plastyczności. 
Rozważania prowadzone są przy założeniu małych odkształceń. W pracy krótko przedstawio
no fizyczne i teoretyczne aspekty zjawiska lokalizacji. Oba sformułowania opisane są za po
mocą problemu sprzężonego, w którym dyskretyzowane są dwie niezależne zmienne: prze
mieszczenie u i *:. W podejściu de Borsta i Miihlhausa [1] w funkcji plastyczności występu
je laplasjan zmiennej k  . Jego obecność wymaga przy dyskretyzacji użycia funkcji o klasie 
ciągłości C1. Poszukiwanie obszaru plastycznego odbywa się przez lokalne sprawdzenie wa
runku plastyczności w każdym punkcie numerycznego całkowania. W drugim z prezentowa
nych podejść, zaproponowanym przez Liebe i Steinmanna [3], dla określenia obszaru pla
stycznego sprawdzane są warunki obciążenia/odciążenia w formie słabej na poziomie wę
złów. Dzięki temu do dyskretyzacji zmiennej k  wykorzystywane są funkcje o ciągłości C°.

1. Motivation of gradient plasticity theory

Fig. 1. Tensile bar, load versus displacement diagram for a softening material
Rys. 1. Pręt rozciągany, wykres obciążenie-przemieszczenie dla materiału z osłabieniem

’ Opiekun naukowy: Dr inż. Jerzy Pamin
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Localization phenomena are often noticed in the mechanical behavior of materials. The 

localization is a specific type of deformation in which, starting from a certain moment in the 

loading history, the whole deformation is concentrated in one or more narrow bands. The 

place and direction in which these bands develop depend on the shape of the body, loading 

and boundary conditions, but the phenomenon itself is a result of the material properties. The 

localization phenomena can have different character depending on the examined material: in 

ductile and frictional materials (steel, polymers, soil) we observe necking, shear bands or slip 

planes, in brittle materials (concrete, ceramics) we observe fracture bands and discrete cracks.

The strain localization is a physical result of the heterogeneity (microstructure) of real ma

terials and is triggered at a place where the material is weaker or damaged. In macroscopic 

modeling such behavior is induced by unstable (softening) constitutive relation, see Figure 1. 

The classical models which express a hardening relation between average stresses and strains 

lead to smooth deformation and exclude strain localization.

The paper deals with the theoretical and algorithmic formulation of gradient plasticity. 

The aim is a reliable numerical simulation of localized plastic deformation. The gradient plas

ticity theory according to [3] is presented, and compared with the theory derived in [1], Linear 

kinematic relations are assumed.

The gradient plasticity formulation can be derived from the free Helmholtz energy incor

porating the gradient of an internal history variable [3], Since the model is based on the postu

late of maximum plastic dissipation, the associated flow rule is implied. In contrast to the al

gorithm derived in [1, 2], the algorithm proposed in [3] is based on a weak satisfaction of the 

loading-unloading conditions (at the nodal point level).

2. Strong form of the coupled boundary value problem

Fig. 2. Elastic-plastic body 
Rys. 2. Ciało sprężysto - plastyczne
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We assume that a body 5  is divided into elastic and plastic parts, see Figure 2. A dis

placement field ufx) and a history variable k (x) (which is in the considered case proportional 

to plastic multiplier A)  are parameterized in terms of placement x e B .  These two primary 

variables are governed by partial differential equations and a set of Kuhn-Tucker complemen

tarity conditions.

Firstly, the equilibrium subproblem is written as:

diva(u,ic)+b = 0 in B, (1)

where <7 is the stress tensor and b is the body force per unit volume in B. The total boundary 

dB of domain B is decomposed as follows: dB = dBu u  05,, 8BV n  dB, = 0 .  Dirichlet and 

Neumann boundary conditions are prescribed (n is an outer normal vector) on the boundary 

parts:

u = u p on dBu and n - a  = t_p on dB, (2)

When a part of the body in the loading process yields, the standard elastic-plastic con

stitutive equation relates the stress and strains rates. The constitutive subproblem is governed 

by the gradient-dependent yield condition:

F = <p(u, k ) - Y ( k ,V k )= 0  in5 , (3)

where (p(u,K) is an equivalent stress measure, the gradient enhanced yield strength 

Y{k , V k) = y (/c)-d iv //(*:), and H_ is the hardening flux, hi the special case when H_ = cWk 

with a constant coefficient c, we obtain Y(k , V v) = Y(k ) - cV 2k  .

Moreover, the corresponding Kuhn-Tucker complementarity conditions hold:

F  < 0, k  > 0, kF  = 0 , (4)

The boundary of the plastic subdomain is decomposed into external part 8Bpm and internal 

one 8Bpt and the following conditions hold: 8BP = 8BP, u  8BPX, , 05'', n  8Bpa  = 0 .

The constitutive subproblem is supplemented by Dirichlet and Neumann boundary 

conditions in terms of the internal variable k  on 8Bpt and the hardening flux H  on 8Bpa, :

r  = 0 on 8Bpt and n ■ H{K) = 0 on 05£,. (5)

The Kuhn-Tucker complementarity condition kF = 0 can alternatively be postulated by a 

decomposition of the total domain into a subdomain of elastic or inactive states and a subdo

main of plastic (active) states, respectively:
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B‘ = { x e 5 : f < 0 ,x -  = 0}and B p = {xe  B : F  = 0 ,k  > O}, (6)

with additional requirements: B = B‘ u  dBp, B‘ r \ B p = 0 .

3. Weak form of the coupled boundary value problem

In order to solve the coupled boundary value problem using a finite element discretization, 

the above equations are reformulated into a weak form.

In a first step, which is standard and common for both approaches, the equilibrium equa

tion (1) and corresponding Neumann boundary condition n-& = t_p are tested by a virtual

displacement Su. As a result, the virtual work expression can be written as:

G* = \8u-t_p& A + § 8 u b -V 8 u \q \dK = 0 (7)
dB‘ B

where A and V denote the surface and volume of body B, respectively.

3.1. Approach of de Borst and Miihlhaus

Secondly, the yield condition is tested by Sic and an integral over the plastic part of the 

solution domain gives the following equation [1,2]:

G f = \SkF{^_,k ,V 2k )i V =  ¡Sic[<p(u,k ) - Y { k )+ cV 2ic}i V = 0. (g)
B p B r

The decomposition of the solution domain into elastic and plastic subdomains is as specified 

in eq. (6). The yield condition (3) is invoked locally to decide whether a point is in an elastic 

or plastic state.

3.2. Approach of Liebe and Steinmann

In the second approach the Kuhn-Tucker condition F  < 0 and Neumann boundary condi

tion n -H_ = 0 are tested by 8k (5k  > 0) and additionally the condition k  > 0 is tested by S F .

Finally, we obtain their weak forms:

G f = \{8k [(p{u, k ) -  Y{k )] -V 5 k  ■ H{k )]AV < 0, (9)

G* = jSFkdV > 0.
B

(10)

Equation (9) can be interpreted as a weak form of the yield condition and eq. (10) assures 

positive increments of internal variable k  .
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The global definitions of inactive and active subdomains are written as:

B ‘ = \ x e B : G F < 0 ,G r = 0  V<fo-,<5F > oj; (11)

B p = { x e B : G F = 0 ,6 *  > 0  \ /Sk , S F > o\  (12)

4. Time and space discretization of the problem

The above sets of governing equations (7), (8) or (7), (9), (10) have to be discretized in 

time and space. In order to compute n„+1 and x:n+1 at the end of time step ( n + 1) the discrete 

equilibrium equation is written as:

G „ \, =  f[<y«-ft„+1 - v < y n : o : „ +1] d F  =  0 . ( 1 3 )

SB' B

Next, the equation is discretized in space. The standard Bubnov-Galerkin finite element 

method is applied and domain B is decomposed into finite elements Be. Using shape functions 

N k for nodes k in an element we write:

u h = N kuu k e H '(B ) ,  (14)

where summation over k  is performed and H1 denotes the Sobolev function space. The dis

crete representation of strains c h = V suh, where is a suitable linear differential operator,

can be written as:

£  = V X « t . (1 5 )

We define the set of all nodes in the discretized domain as B = : K  = l,n„p}, where n„p is

the total number of nodal points. The discrete equilibrium equation written for each node K  is:

- w :  -CTntl]dF = 0, (16)
6  dBe B,

where A denotes the assembly operator adding contributions of all finite elements, i.e.
e

eq. (16) represents the assembly of respective element residuals R“K = AR"k .

4.1. Approach of de Borst and Miihlhaus

The time discretization of the weak form of the yield condition in eq. (8) gives:

G ..1 =  (?Zn+l > K n*\ ’ ̂  (1 7 )
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The decomposition of the solution domain into elastic and plastic parts is obtained by writing 

eqs (6) for time step ( n +1).

Next, eq. (17) is discretized in space. Due to the presence of the second order gradient 

of the internal variable we have to introduce (^-continuous shape functions N* for this field:

Kh =N*Kk e H 2{B\ (18)

where H2 denotes the relevant Sobolev space. The discrete representation of the Laplacian of

internal variable k  can be written as:

V2*r = VJtf**-t . (19)

The discretized yield condition (17) is:

Rk = A \F (u n̂ ,K n+x,V 2K„+̂ )NkK&V = 0, (20)
‘ b;

where K  is the number of a node in the subset of B which contains only the points in plastic 
state.

4.2. Approach of Liebe and Steinmann

The time discretization is performed in a similar way as in the previous subsection. The 

algorithmic Kuhn-Tucker complementarity conditions are:

G L  = J M p G w O -  )}dV < 0, (21)
B

a g ;+1 = \s f {k„+x - k „)a v > o. (22)
B

The algorithmic form of elastic-inactive and active subdomains is obtained by writing 

eqs (11) and (12) for time step (n+1).

The set of equations is now discretized in space. The displacement field u and the in

ternal variable k  are now interpolated using similar shape functions N* according to

eq. (14), and N k as follows:

Kh - N k'K k e H '{ B \  (23)

The discrete representation of plastic strain gradient Kh = Vxr* can be written as:

Kh = V N kKk. (24)

Finally, the discretized set of integral equations is composed of eq. (16) and the fol

lowing two:
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K  = A < o, (25)
*  B’

M' k = A  ¡ N ^ - k^ V Z O ,  (26)
* b;

where K  is a node number in the subset o f B which contains only the points which exhibit 

plasticity.

5. Comparison of solution algorithms

In the incremental-iterative solution algorithm the task is as follows: given u1̂ , at™ at all 

nodes and er<0) in all elements at the end of previous time step («), compute the updated val

ues u K , k k  ,q_  at time ( n + 1 ) .  The comparison of the algorithms for the two discussed versions 

of the gradient plasticity theory is given in Figure 3.

The Newton algorithm is employed, which requires consistent linearization and computation 

of the tangent operator K. In Figure 3 the symbol ‘ A ’ denotes the total increment of a quan

tity within an incremental step of external load A F „ ,, and ‘ d  ’ denotes an iterative correction 

of a quantity. The elastic stiffness tensor is denoted by D. Moreover, K^i denotes the block of 

the element tangent matrix related to nodes k and /, while A[kl denotes the block of the global 

tangent matrix related to nodes K  and L.

The algorithm for the gradient plasticity formula

tion of de Borst and Muhlhaus [1,2]:

Structural level (for each node):

1. Compute R uk - AF a , ,

2. Solve for d u K,dKK update Auk ,A k k

Element level (for each integration point):

3. Constitutive update 

Ae  = V sN * A u k,

A k  =  N kKAKk, 

k  =  *r0 +  A a t ,

VJ/c = V2N*A/ct ,

<t,  As,

The algorithm for the gradient plasticity 

formulation of Liebe and Steinmann [3]: 

Structural level (for each node):

1. Compute R “k = A F an

2. Solve for d u K,dKK update

Auk ,A/ck

If Ak k < 0 then A k k = 0 

Element level (for each integration 

point):

3. Constitutive update

A£ = V X A u * ,

AK = N*AKt ,

K — Kq + A k ,
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If F{a1,/c,V2ic)>Q, 

then plastic state

ęr = a ,  -  Ak D  :
9F
5cr

a ,  = cr0 +D-A£,  

dF
a  = a ,  - A k D:

da

else elastic state, a  = a ,.

4. Compute R"k,R k , K U 

Structural level (for each node)

5. Assemble R“k ,R fk , K kl

6. Check global convergence criteria, if  not 

satisfied go back to 2.

4. Compute R “k, R [ , K U 

Structural level (for each node)

5. Assemble R “K,R hK, K K,

If node K  is elastic and R£ > 0 

then mark K  as plastic 

If node K  is plastic, R% < 0  and 

A k k = 0 then mark K  as unloading

6. Check global convergence criteria, 

if not satisfied go back to 2.

Fig. 3. Comparison of solution algorithms 
Rys. 3. Porównanie dwóch algorytmów

6. Conclusions

In the paper two theoretical and algorithmic formulations of gradient plasticity, de
signed for the simulations of localized deformations, have been compared. In both the consid
ered approaches the coupled boundary value problem is discretized using two independent 
primary variables u and k  . In the approach of de Borst and Muhlhaus [1,2] the yield condi
tion is invoked locally, i.e. at each integration point the verification is performed whether the 
constitutive equations of elasticity of plasticity are satisfied. The presence of the Laplacian of 
internal variable k  in the yield condition sets the requirement of C7-continuity of the shape 
functions for k  . This means that only a limited set of finite elements can be applied in one- 
and two-dimensional problems, and three-dimensional ones are practically intractable. In the 
concept of Liebe and Steinmann [3] the algorithm involves a weak satisfaction of the loading- 
unloading condition (at the nodal point level). As a result, C^-continuous shape functions are 
sufficient for the discretization of internal variable k  . Standard Lagrange interpolation (e.g. 
quadratic) can be used for both u  and k  , and three-dimensional problems can be solved.
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