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ALGORYTM TABU SEARCH
DLA PEWNEJ KLASY PROBLEMOW SZEREGOWANIA

NA JEDNEJ MASZYNIE

Streszczenie: Rozwazany jest problem szeregowania zadan na jednej maszynie z
terminami gotowos$ci, terminami dostarczenia oraz kryterium minimalizacji maksymalnego
terminu  zakonczenia wykonywania zadahn. Zaproponowano nowy algorytm
aproksymacyjny dla tego problemu oparty na technice poszukiwania tabu. Przedstawiono

takze wyniki analizy eksperymentalnej algorytmu.

TABU SEARCH ALGORITHM
FOR A CLASS OF SINGLE-MACHINE SCHEDULING PROBLEMS

Summary: The problem of scheduling jobs with release times and delivery times on
a single machine is considered. The new approximation algorithm based on the tabu
search technique is presented. Results ofthe experimental analysis have also been devised.

AJirOPHTM nOHCKA C3AIIPEIHEHIIMM AJIfl KIIACCA 3A/JAH
COCTABJIEHHH PACNnHCAHHM HA O/fHOfil MAIHHHE

TeatOMe: B CTaTbe paccMaTpuBaeTca npoSneMa ynopsmoneHtia 3aaav Ha oahoh
MautHHe co cpoxaMH roTOBHOHOCTH, BpeMeHaMM nocTaBKH h KpnTepne.M
oKOHbHaitHB Bcex 3aAaq. TlpeflCTaBneH HOBbiii annpoKCHMaitHOHUbifl anropHTM,
ocHOBaH Ha MeToae noncica ¢ 3anpeutetHHMH. IIpHBeAeHbi TOBte pe3dyjibTaTbi
BKcnepriMeHTajibHoro aHajitna.

1. The problem

The considered problem can be briefly described as follows. A set ofjobsN={l,2,...,n}
should be processed on a single machine. The machine can process at most one job at a time
and preemption is not allowed. Each job j has a release time rj, a processing time pj >0, and a
delivery time gj. The job must begin processing on the machine sometime after its release

time, and its delivery begins immediately after processing has been completed. Alljobs may be



260 Czeslaw Smutnicki

simultaneously delivered. The objective is to find a sequence of jobs which minimizes the

time by which all jobs are delivered (denotation I|rj ,qj|Cmax).

The stated problem has been known in the literature for years as:

(i) that with release times, due dates instead of delivery times and maximum lateness
criterion (I|rj|L max>) [10],

(ii) with non-bottleneck machines instead of release times and delivery times, [13], Due to
the forward-backward symmetry, the model (ii) has been studied more frequently than
others.

The problem 1jrj ,qj|Cmax has received considerable attention in past twenty years and
has been employed among others in scheduling jobs the on critical machine ([13]), in
approximation algorithms for the job-shop problem ([1]), as a lower bound for the flow-shop

and job-shop problems ([3],[5]).

2. Background and definitions

Let 7t be a permutation on N. Denote by 7t(i) the elementof N which is in position i
of 7t. The permutation 7t defines a job processing order on the machine. The time by which all
jobs are delivered is given by Cniax(7c)=maxl<i<j<n(rJtQ + X ~, Pji(k)+ qgjt(j>
A permutation 7t* which minimizes Cmax(7t) over all permutations on N is optimal and let
C*=Cmax(7t). Each pair ofintegers (i,j), I<i<j<n is called a path in n. The path u=(a,b) which
maximizes the right hand of formulae on Cmax(7t) is called a critical path in n. The sequence

B=(7t(a), 7t(a+l),...,7t(b)) is called a block in n. Block B contains b-a+1 jobs.

3. Solution methods

It has been shown in [14] that the problem is NP-hard in the strong sense, however,
there exist polynomial algorithms for special cases [13], Enumerative methods for solving the
problem have been studied in [2],[16],[4],[9]. Results of computer tests pointed out Cartier's
algorithm [4] as the most promising approach, especially for problems of large size. Although
these algorithms have been tested on benchmarks up to 500 [6] and 1000 [4] jobs, their
practical application own some limitations. Already some authors reported the phenomenon of
explosion of calculations observed in Carlier’s algorithm used in Adams' [1] shifted-bottleneck
method.

Approximation algorithms have been studied in [23], [22] and [11], Schrage proposed
[23] an algorithm (S) which employs the following rule: whenever the machine is free and

one or more jobs are available for processing, schedule an available job with largest delivery
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time. In [15] it has been proved that algorithm S generates schedules not longer than 2 times
the length of the optimal schedule (2-approximation algorithm). An implementation of
algorithm S which runs in O(nlogn) time is provided in [4], Modifying the algorithm S, Potts
has obtained a 3/2-approximation algorithm (P) which runs in 0(n2logn) time [23], Hall and
Shmoys have proposed a modified version (HS) of Potts' algorithm which is a 4/3-
approximation algorithm and also runs in 0(n2 logn) time [11], This is the best approximation
algorithm yet known. Very recently a quick 3/2-approximation algorithm (H) which runs in
O(nlogn) time has been proposed in [18],

Approximation algorithms, beside conventional application, act also as auxiliary
algorithms. For example Carlier’s enumerative algorithm generates at every node of the search
tree a complete solution using the algorithm S. The solution is applied to upper bound
modification and tree generation (branching rule). Replacing S by other approximation
algorithms in order to get better upper bound could imply fastest convergence to the optimal

solution.
4. Tabu search

Tabu search (TS) is a metaheuristic designed for finding near-optimal solutions of
combinatorial optimization problems [7],[9], It belongs to the class of so-called improving
methods and is composed of several specific elements called the move, neighborhood,
searching strategy, tabu list, aspiration function, stopping rule. The move is a function which
transforms a solution into another solution. The neighborhood of a given solution is a subset of
solutions generated front this solution using moves. TS start from an initial solution. At each
step the neighborhood of a given solution is searched through in order to find a neighbor,
usually the best in the neighborhood. Next, the move which has conducted to the found
neighbor is performed and the obtained new solution is set as the primal for the next step. In
order to avoid cycling and become trapping in a local optimum there exists a circular tabu
list which determines which moves are forbidden. However we can perform a forbidden

move if the aspiration function evaluates its as profitable.

4.1. Moves and neighborhood

The neighborhood of 7t is generated by a set of moves. Among many types of moves
considered in the literature the following three have been applied commonly: (i) exchange
jobs placed at the a-th and the b-th position (we call it E-move), (ii) remove the job placed at
the a- th position and put it at b-position (I-move). Results obtained for problems with Cmax

criterion [24],[19],[20] showed that I-moves are better than E-moves from both efficiency
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and effectiveness of TS point of view. Therefore only this type of moves will be consider
further on.

Let v=(a,b) be a pair of positions a,be{l,...,n), a*b in the permutation 7t. We define the
new permutation 7tv obtained from 71 by removing the job rc(a) from the position a and
inserting it in position b as follows: 7tv=(7T(l),...,7t(a-1),7t(a+1),...,7t(b),7i(a),7t(b+1),.. ..tt(n))
ifa<b and 7tv=(7t(l), ..., 7t(b-1),7t(a),7t(b+1),...,7t(a-1),jt(a+l),...,7t(n)) if a>b. Each pair v=(a,b)
defines a move from n and let U be a set of such pairs. The neighborhood ofa permutation jt
generated by a move set U will be denoted by N(U,7t) = {n :veU}. The neighborhood
generated by the move set V={(a,b):be{a-l,a},a,be{l,2,...n}} is one of the biggest [25],
Note, that for a,b such that |a-b|=1 two moves v=(a,b) and v~b.a) vyield the same
permutations NnW="> (we call these moves equivalent). So, in order to avoid redundancy, V
contains exactly one from each pair of equivalent moves. N(V,7t) has (n-1)2 neighbors and
satisfies so-called connectivity property: for any 7t°en exists a finite sequence 7i°7tl,...,7tr
such that Jtr is an optimal processing order and 7ti+1eN(V,7i%), i=0,.,.,r-1.

Among few drawbacks of N(V,7t), the too high computational complexity of a single
neighborhood searching seems to be dominant. This drawback can be eliminated using two
approaches: (1) evaluate neighbors by lower bounds and do not calculate makespans (it is
assumed that the computational complexity of a lower bound is essentially less than that of
ntakespan) [24], (2) reduce the neighborhood size and calculate the makespan for each
neighbor [19],[20], Employing the second approach we propose some reduced neighborhoods
based on so called block ofjobs properties [9],

Consider subsets W (7t),W(7t),W(7t)cV, which depend on 7t and u=(a,b), and are
defined as follows: W(7t)={(i.j): ije{l,....a-1}}, W(7t)={(i.,j): i,je{a+l,....b-1}},

W (7i)={(ij): ije{b+I,...,n)}. The neighborhood N (W (7t)uW (7t)uwW (n),7t) contains
max[0,a-1}2 + max{0,b-a-1 }2 +max{0,n-b}2 permutations obtained by I-moves limited to
positions 1,...,a-l, positions a+l,...,b-1 within block B (the internal part of the block),

and positions b+1,...,n . By [9] the following property holds.

Property 1. For any permutation PeNQV*jcjWiTtjuWiTtj.Tt) we have

CmaX(P) - Cmax(7t). O

In other words, moves from V\(W (K)uW (7t)uW (n)) are "more interesting” than those from

W (n)uW (7t)uW (71), taking into account only the immediate improvements point of view.
Consider another neighborhood generated by the move set Z(7t)cV\(W (7t)uW (jt)uW (tt))

defined as follows: Z(7t)=Z'(7t)uz"(7t), where Z'(7t)={(aj): a<j<b} and Z"(tt)={(j,b): a<j<b}.

The neighborhood N(Z(7t),7t) contains 2(b-a-l)+1 permutations obtained by some selected I-

moves. More precisely, each job 7t(j), j=a+l,...,b-1, is inserted only in two positions a and b in
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7t(some exceptions occur for jobs 7(a) and 7c(b)). By [9] the following property can be

proved.

Property 2.

(a) For any permutation [3eN(Z'(7),®) such that we have Cmax(P) £ Cmax(ji),
(b) For any permutation PeN (Z"(%),n) such that have Cmax(P)iC max(#). O

Note, that only a part of the neighborhood N (Z(7),7) is really interesting.

Now consider the neighborhood generated by the move set X(7)cZ () defined as
follows: X (n)=X'(t)uX" (1), where X’(x)={(a,j): a<j<b, r*Q <rn(a)} and X"(7t)~{(j,b): a<j<b,
qn0 < g”b))- The neighborhood N(X(n),71) contains at most 2(b-a-l)+| permutations from
N (Z(nt),7), excluding these satisfying Property 2.

The next (fourth) neighborhood is generated by the move set Y(#t)cX (), | Y(n) |=2,
defined as follows: Y(#t)=Y'(#t)uY "(7t), where Y'(n)={(a,k): r*k) =mina<jEb ra(j)} and
Y"(tt)={(k,b): gn(k)=m'na<j<b finQ)- The neighborhood N(Y(n),n) contains two
permutations selected among these from N (X(7),7).

Now we will give the detailed characteristics (redundancy, relations to others, size,

connectivity) ofthe proposed neighborhoods.

Property 3. For any permutation neJl we have
N (Y (7t,s),7) ¢ N(X(jte),t) ¢ N(Z(7c,s),t) ¢ N(V\(W () W (ji) W (7)),7t) ¢ N(V, 7). (J

Property 4. The neighborhood N(Z(7,e),n) satisfies connectivity property. O

The proofofProperty 4 can be done by analogy to that constructed for neighborhood NB of
Dell'’Amico and Trubian [6], Note that the connectivity property is desired but is not
obligatory. There are known methods based on neighborhoods without connectivity which

numerically behave excellent [19].

4.2. Tabu list

The tabu list is a mechanism of preventing cycling during the search. Among variety of
attributes stored in tabu list ([7]) we select, upon previous investigations [20], a pair ofjobs
as the most promising.

Let T=(Ti Tmaxt) be the tabu list of a fixed length maxt, where Tj=(g,h) is a pair of
jobs. The tabu list is initiated by zero elements Tj =(0,0), j=I,...,maxt. Let v=<a,b) be a move

performed from 7. This move receives status tabu and will be add to T (denotation TS>v) in the
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following way. we shift to the left list setting Tj:=Tj+j, j=I,....maxt-1 and add at the end
Tmaxt:=(7t(a),7t(a+1)) a<b anc® Tmaxt:= (7t(a-1),7t(a)) otherwise. We assume that a move
v=(a,b) from the permutation P cannot be performed (has status tabu) if: (i) a<b and at least
one pair (P(j),P(a)), j=a+l,...,b is in T, (ii) a>b and at least one pair (P(a),P(j)), j= b,...,a-l is
inT.

4.3. Searching strategy and aspiration function

Similarly as in [19] moves are classified into three categories: unforbidden (UF),
forbidden but profitable (FP), forbidden and nonprofitable (FN). A forbidden move v from 7t is
profitable if leads to the makespan less than the value A(Cmax(7iv)), where A is so called
aspiration function, [7], Among many types of aspirations we choose the basic form defined in
current iteration t by the function A(x)= mini<i<tCrnax(jt), where nlis the permutation which
generates the neighborhood in the i-th iteration of the algorithm, i=1,2,....,t. The move to be
performed is selected among UF- and FP- moves.

Beside conventional searching strategy, we employ also a specific strategy (called
SFU), fixed upon experimental investigations, and based on the step-wise selection of moves
from the move set X(7t). At the first the move set Y (jt) is tested, whether it contains an UF-
move. |If so then we select the move v'eY (it) such that Cmax(7iv>)=minv 6 Y (jI)C max(7tv).
This can be done in O(n) time. I1f Y (k) do not contain any UF-moves then we check the move
set X(7t)\Y(7t) and select the first UF-move. This also can be done in O(n) time. If none
UF-move has been selected (very rare situation) then the move set X(t) is scanning for
possible existence FP-moves, among which the best (with minimal Cmax(7tv)) is chosen. Ifall

moves in X(n) are FN we add to tabu the zero element (0,0), until a UF-move can be chosen.

5. Experimental analysis

The experimental analysis of the algorithm TS with relation to FIS were carried out.
Test instances were generated n the way described by Carlier [4], For each n=50,100,150,,.
..,1000 and F=16,17,18,...,25 a sample of 20 instances were obtained; values rj,Pj,qj were
chosen with uniform distribution between 1 and rj**Pfpa”~q, "™, respectively. We set
Pmax=50, rmax=clmax=nF- Thus, 4000 instances were tested. The instances with F=18,19,20
were reported by Carlier as the hardest one. At the beginning, some tests were performed in
order to select the best configuration of the tabu search method. Finally, Algorithm TS were
run with maxt=8, maxiter=n/2 (the limit of the total number of iterations), neighborhood N (Z(
7t),7t), aspiration function A, searching strategy SFU, & as the starting solution. For all tested
instances (100%) TS provides the best result (CTS<C”"£>), whereas only for 0.2% of cases
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provides strictly better result (CTS<CHS). Note that in the tested configuration TS has 0(n2),
whereas HS has original 0(n2logn) computational complexity. It means that for instances with
n=50,...,1000 TS runs 5... 10 times faster than HS. The real speed up is higher due to the
special technique of implementation. Algorithm TS essentially improves k$ in 96.5% of

cases.
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Streszczenie

Rozwazany jest problem szeregowania zadan na jednej maszynie z terminami
gotowos$ci, terminami dostarczenia oraz kryterium minimalizacji maksymalnego terminu
zakonczenia wykonywania zadan. Zaproponowano nowy algorytm aproksymacyjny dla tego
problemu oparty na technice poszukiwania tabu. Opisano szczegétowo podstawowe elementy
metody: ruch, sasiedztwo, liste tabu, funkcje aspiracji. Pokazano takze pewne wtasnosci
zaproponowanych sasiedztw. W wyniku zastosowania zredukowanego sgsiedztwa opartego na
pojeciu $ciezki krytycznej i tzw. eliminacyjnych wtasnos$ciach bloku zadahA zaproponowany
algorytm dziata znacznie szybciej od innych algorytméw stosowanych do tej pory do
rozwigzywania postawionego problemu. Przedstawiono takze wyniki analizy eksperymentalnej

alorytmu na przyktadach losowych do 1,000 zadan.



