PRACE

 Instytutu Maszyn Matematycrnych PAN$$
\left.P .2230\right|_{\left.64\right|_{67}}
$$

Sprawozdania

Tom I
Nr 3
THE CHARGE $=$ CONTROL PARAMETERS OF ALLOY-DIFFUSED TRANSISTORS AND THEIR APPLICATION

by Tadeusz JANKOWSKI

PRACE
Instytutu Maszyn Matematycrnych
Polskiej Akademil Nauk

SPRAWOZDANIA
$P .2230 /\left.64\right|_{67}$

Tom I Nr 3

THE CHARGE-CONTROL PARAMETERS OF ALLOY-DIFFUSED TRANSISTORS
AND THEIR APPLICATION
by Tadeusz JANKOWSKI

Wyajaje
 INSTYTUT MASZYN MATEMATYCZMYCH PAN Warszawa, ul. Koszykowa 79

Wszelkie prawa zastrzezone

```
KOmitet Redakojjny
```

Leon EUKASZEWICZ/redakt or/, Antoni MAZURKIEWICZ, Tomasz PIETRZYKOWSKI/z-ca redaktora/, Dorota PRAWDZIC, ZdzIszaw WRZESZCZ
Redaktor dzialowf: Andrzej KOJEMSKI, Sekretarz redakoji: Romana NITKOWSKA,
Adres redakcj1: Warszawa, lil. Koszykowa 79, tel. 28-37-29

Aoknowledgements

The author wishes to thank Dr 1.R.Boothroyd of Imperial College of Soience and Teohnology, London, /Where this work was performed in 1962 as the part of D.I.C.Dissertatioa/ for his supervision and helpful remarks, and appreciates the value of discussions on this paper with Mr D.Luke, M.So. and Mr P.Bylaiiski, MoSc.

The author acknowledges the support of the Polish Aoademy of Soiences, and particulari.y that of Prof. Dr L. Eukaszewioz of the Institute of Mathematical Maohines, Warsaw, Whioh e:aabled the performance of this work.

b, B - base terminal or base region index c, C - collector terminal index, capacitance	
$\mathrm{C}_{\text {Tc }}$	- collector depletion lajer capacitance
$C_{T e}$ - emitter depletion layer capacitenoe	
D_{P} - diffusion constant of holes	
e, E - emitter terminal inde:-	
i - instantaneous value of orrrent	
I	- D.C. or steady state value of ourrent, inverse configuration
k	- factor
1 def	τ_{D}
	τ_{0}
m	- factor
n	- factor
N	- fan-out, normal configuration
Q_{B}	- charge associated with collector current
$0_{\text {Bs }}$	- excess charge in saturation
	- oharge assuciated with oharging $C_{T e}$
$Q_{R}{ }^{\text {def }}$ f	$Q_{B s}+Q_{B}$ - total recombining charge
Q_{V}	- charge associated with charging $C_{T 0}$
r, R	- resistance
$r_{b b}$,	- extrinsio base resistance
Iecs	- emitter-to-collector resistance for the saturated transistor
t	- time
V	- voltage
W	- base width
α_{0}	- ratio of collector ourrent to emitter current for active region
β_{0}	ratio of colleotor current to base current for active region.

β_{S} - "on demand" current gain
τ_{B} def ${ }^{Q_{R}} I_{B}$
$\tau_{\mathrm{Ba}}=\beta_{0} \tau_{\mathrm{c}}$
$\tau_{B s}=\frac{Q_{B s}+Q_{B}}{I_{B}}$
$\tau_{c}=\frac{Q_{B}}{I_{C}}$
$\tau_{C}=\tau_{C}+\tau_{E}$
$\tau_{D}{ }_{D} \frac{e^{f}}{} \frac{w^{2}}{2 D p}$
τ_{E} - emitter time constant/compare Appendix I/
τ_{ρ} - surface recombination time constant
τ_{p} - volume recombination time constant
τ_{s} - excess oharge time constant
ω_{α} - alpha angular cut-off frequency
ω_{T} - gain-bandwith product

THE CHARGE-CONTROL PARAMETERS
OF ALLOY-DIFFUSED TRANSISTORS AND THEIR APPLICATION
by Tadeusz JANKOWSKI Received December 1962

The alloy-diffused transistor feasibility of performing high speed operation is investigated in the paper. The charge-control parameters are considered the most suitable.

CONTENTS

Acknowledgenents 3
LIST OF PRINCIPAL SYMBCLS 4
INTRODUCTION 8

1. AN ATTEMPT AT EVALUATION OF CHARGE CONTROL PARAMETERZ - 8
1.1. Active region $-\tau_{c}$................. 8
1.2. Case of nonlinear operation 11
2. MEASUREMENTS ON THE OC170 •............. 17
2.1. General remarks 17
2.2. Measurements of Q_{B} and Q_{Y}.......... 18
2.3. The compris on between charge and current drive ... 21
2.4. The charge in saturation 24
2.5. "0n demand" current gain $\beta_{s}!.!!!:!.28$
3. SONE PROBLAMS OF BASIC COMPURER CIRCUITS 30
3.1. Introduction 30
3.2. Transistor operation :............ 30
3.3. Voltage-shifting for D.C. coupling. 33

APPENDI: I - The influence of Q_{G}. 33
APPミNDIX II - "On demand" current gain $\beta_{\mathrm{s}} \ldots . . .$.
References . 37

In the tests alloy-diffused transistors such as the $0<170$ and the ASZ20 were used. The charge control parameters are oonsidered the most suitable. Also, it is shown that saturated operation is not to be recommended for fast computer oircuits /using these transistors/. It is also worth emphasizing that the charge $s t o r e d$ in diodes/whose number in relevant oincuits usually exoeeds severel times the numter cf associated transistors/may greatly iniluance the pulss properties of the designed cirouits. This influence shows an additional advantage of cinarge control theory, being an approach that makes use of parameters which are uniform both for transistors and ciodes.

The author considers the three-dimensional ohsrge distribution as a prevailing faotor determining the trensistor behar iour in sotive regi on/wiggle effect/ and in saturation/the effective recumbination time oonstant. $\tau_{B s} /$. However, in saturation, the influence of the collector current levcl is stall to be solved.

It is assumed that the reader is familiar with basic charge contral theory /e.g. [2] or [6]/as well as with basic Ideas of Boolean Algebra /e.g. [11] / Basic computer cirouits and more complex circuits would demand a more detailed description.

1. AN ATTELSPT AT EVALUATION OF CTARGE CONTROI PARAMETERS.
1.1. Aotite x egion- τ_{0}.

The concept of charge control parameters, developed by Sparkes and Beaufoy $[1],[2],[3],[6]$ and others, has proved its usefulness. However, in spite of the rather logioal and elegant pioture presented, there are siill a few problems to be considered from the physical point of view as well as from that
of applications. Even if one assumes that the basic formula of charge control theory ${ }^{* /}$

$$
Q_{B}=\tau_{C} \cdot I_{O}
$$

/where: 1_{0} - instantaneous value of the collector current/ is immediately valid while switching */there still exist problems related to the so-called "wiggle effect" [5] as well as the relationship between charge control and "classical" small signail parameters leg. between time constants and cut-off irequencies/。

The wiggle effect suggests the possible lack of equality /2/

$$
\begin{equation*}
\frac{Q_{B}}{I_{C}} \neq \frac{d Q_{E}}{d_{C}} \tag{121}
\end{equation*}
$$

1.e. that $\tau_{c}(t)$ varies during a transient. A detailed study of the wiggle effect is not the task of this paper. Therefore, having considered the wiggle effect as the result of charge propagation inside the transistor ${ }^{* * * /}$ let us formally rewrite $\mid 1 /$ as:

$$
\begin{equation*}
Q_{B}=\frac{\tau_{D}}{I} 1_{C} \tag{131}
\end{equation*}
$$

where: $I=\frac{\tau_{D}}{\tau_{0}}=f(t)$

$$
\tau_{D}=\frac{W^{2}}{2} \frac{D_{p}}{D}=\text { oonst }
$$

*/Additionally Q_{E} and ${ }^{Q_{V}}$ must be talren into account. Un-
less otherwise
stated, **/For alloy transistors it is to be true for $t \geqslant 0.24 \frac{W^{2}}{25_{p}} \cong$
$\quad 0.24 \frac{1.22}{\omega_{\alpha}}[4],[6],[10]$.
**/ Some authors even say about "the charge in the bushes" refleeting three - dimensional propagation phenomena.

The formula $/ 3 /$ calls to mind the results of simplified onedimensional theory [5], [9]

$$
\begin{equation*}
Q_{1}=\tau_{D} i_{c} \tag{141}
\end{equation*}
$$

Let us consider the results of measurements and theory [6] showing disagreement between cutoff frequencies and the time constant τ_{c} :

$$
\frac{1}{\omega_{\alpha}}<\frac{1}{\omega_{\mathrm{T}}}<\tau_{0}
$$

It is common opinion that fast transients /at least for common base configuration/ are relatively well described by ω_{c}. Besides, formulas $/ 3 /$ and $/ 4 /$ can suggest the possibility that the effective charge influencing the collector current is smaller than the total Q_{B}. Eventually the question arises how can τ_{c} be used for predicting the transient behaviour of a transister if it differs from $\frac{1}{\omega_{\alpha}}$ and varies during the transpent.

The time constant τ_{c} for fast transients is expected to be smaller than that measured by the Sparkes' method [2]. It is quite possible than in order to switoh the transistor on, the knowledge of ω_{α} is needed. However, the charge stored and being removed while switching off, should be described by another "slow" τ_{0}.

Considering the recombination, let us study the semi-empirial formula /5 /where, for simplification, Q_{E} and Q_{V} are neglected in active region:

$$
\begin{equation*}
\frac{d Q_{B}}{d t}+\frac{Q_{B}}{C_{B}}=1_{b} \tag{151}
\end{equation*}
$$

Where: $\tau_{B}=\rho_{0} \tau_{0}$ - effective recombination time constant for active region [2], [3].

Assuming $\tau_{B}=$ const one obtains the general solution

$$
Q_{B}(t)=\left[Q_{0}+\int_{0}^{t} i_{0}(t) e^{\frac{t}{\tau_{B}}} d t\right] e^{\frac{-t}{\tau_{B}}}
$$

where: $Q_{0}=Q_{B}(0)$.
Th: above formula involves the well-known exponential velationships for transients [9] where, for instance, ω_{β} takes the place of $\quad \frac{1}{\tau_{B}}$. Unfortunately, it is highly probable that if the transistor exhibits the wiggle effect, the assumption that $\tau_{B}=$ const is not true.

For $t \ll \tau_{B}$ /neglecting recombination/ $e^{\overline{\tau_{B}}}$ is approximateIf equal to 1 and therefore

$$
Q_{B}(t) \cong Q_{0}+\int_{0}^{i} I_{b}(t) d t
$$

1.2. Caseofonlinearoperation.

Let us define nonlinear operation as switching from cutoff to saturation and/or vice versa. This kind of operation is typical of two-value logic or ristahle circuits. There are two major phenomena which must. be taken into account in addition to the small-signal active-region operation, namely the influence of depletion-layen banacitancies /especially imperthant for alloy-diffuse transistors with small τ_{c} of $1-2 \mathrm{nsec} /$ and time-constant deperience on charge distribution. Resides, the charge distribution depends on both, region of operation and injection level; though solved ing active region [7], [15] is not jet sufficiently known for saturation.
A. Switching from off to the active region.

The charge Q_{E} associated with charging the emitter depletion layer capacitance is the prevalent factor while performing the discussed operation, as $\Delta I_{C} /$ involving $Q_{B} /$ and ΔV_{C} /involving $Q_{V} /$ are considered small; Q_{E} can be treated as the charge needed to change voltage across the emit-ter-base junction. This charge is equivalent to modified time constant $\tau_{C}=\tau_{C}+\tau_{E}$ /compare Appendix I/ but, while going from the off state, τ_{E} varies and the picture is more complicated.

Let us assume the following relationship/see fig. 1/

$$
Q_{E}=C_{T e} \cdot \Delta V_{e b},
$$

While switching, the input voltage $V_{e b}$ changes from the reverse value somewhat lower than $0.5 \mathrm{~V} /$ because of the limiting values for the 0C170 and ASZ2.0/up to the forward voltage somewhere between 0.2 V and 0.4 V . It is difficult to estimate ${ }^{* /} C_{T e}$ because of the change of sign of voltage across the emitter-base diode and eventually direct measurements of Q_{E} are mo ne convenient than its predicting from $/ 8 /$.

Fig. 1. Equivalent circuit for switching from the off state. The propagation phenomena are not yet taken into account.

The proposed equivalent circuit/fig. 1/ is similar to that from [1] and has been confirmed by the measurements below/sec$\operatorname{tion} 2.3 /$.
B. Crossing the active region.

In this case $Q_{V}=C_{T c} \cdot \Delta V_{C b}$ is needed besides Q_{B} which is described by $/ 1 / . Q_{\mathrm{E}}$ is then much less important as $\Delta V_{e b}$, is very small. One can predict Q_{V} following $[6]$ by:

$$
c_{\mathrm{To}}=c_{\mathrm{tc} 1} \frac{2\left[-\Phi-\nabla_{\mathrm{cb1}}-\sqrt{\left(\Phi+V_{\mathrm{cb} 1}\right)\left(\Phi+\nabla_{\mathrm{cb} 2}\right)}\right]}{\nabla_{\mathrm{ob} 1}-\nabla_{\mathrm{ob} 2}}
$$

Where

$$
\Delta V_{\mathrm{cb}} \cong \nabla_{\mathrm{ob} 1}-\nabla_{\mathrm{ob} 2}
$$

but, at least for the sake of uniformity of parameters, the direct measurements of Q_{∇} would be recommended.
C. Charge in saturation.

Let us define saturation as the state in which the total recombining charge Q_{R} is greater than Q_{B} 1.e.:

$$
Q_{R}{ }^{\operatorname{def}^{\prime}} \theta_{B s}+\theta_{B}>\theta_{B}
$$

It can be easily shown that the introduction of Sparikes" and Beauloy's time constant τ_{s} for the excess charge $Q_{B s}$ from / $10 /$ is synonymous with the following equation

$$
\frac{Q_{B s}}{\tau_{S}}+\frac{Q_{B}}{B_{0} \tau_{c}}=I_{B}
$$

Equation / $11 /$, having assumed a superposition of "normal" and "inverse" excess charge, does not describe physically the influence of charge recombination and distribution. Therefore, as the next approach, let us consider the steady state relationship extrapolated from equation /5/

$$
\frac{Q_{\mathrm{R}}}{\tau_{\mathrm{Bs}}}=I_{B}
$$

Equation /12/ giving an "extrinsic" view of the transistor, describes the effeotive reconination 1.e. the relationship between the total base current and charge. The time constant $\tau_{\text {Bs }}$ can be expressed by means of the time constant of volume recombination $\tau_{p} /$ this is for base region; however, there is possibly a component due to the recombination in the oollector region/, the time constant of surface recombination τ_{f} and the factor of oherge distribution k

$$
\tau_{B s}=\frac{\tau_{p}}{k+(1-k) \frac{\tau_{p}}{\tau_{f}}}
$$

where

$$
k=\frac{Q_{1}}{Q_{R}}<1
$$

Q_{1} is an equivalent to that from / / /

$$
\begin{align*}
& Q_{2}=Q_{R}-Q_{1} . \\
& \quad \frac{Q_{1}}{\tau_{p}}+\frac{Q_{2}}{\tau_{P}}=I_{B}
\end{align*}
$$

And finally, before proceeding, let us consider the results obtained by the simple comparison of $/ 11 /$ and $/ 12 /$

$$
\tau_{B s}=\tau_{s}+\frac{I_{c}}{\beta_{0} I_{B}}\left(\beta_{0} \tau_{c}-\tau_{s}\right)
$$

The question arises which time constant is most representafive and suitable from the point of view of both measurements and applications. The best proof of the complexity of this question is the comparison of the time constants used by diffferent authors for the computation of the same storage time t_{s} :

1. Moll $[9]-\frac{\omega_{N}+\omega_{I}}{\omega_{N} \omega_{I}\left(1-x_{N} \alpha_{I}\right)}$
2. Le $\operatorname{Can}[5]-\frac{1 / \omega_{N}+1 / \omega_{I}}{1 / \beta_{N}+1 / \beta_{I}}$

Where index "N" means normal configuration and index "In means inverse configuration.
3. Beaufoy $[3]$
/for the total time $t_{o f f} /$
4. from eq. /12/
assuming $\tau_{B s}=$ canst $\tau_{\text {Bs }}$
5. from eq. /11/
assuming $\tau_{s}=$ cons $\uparrow \quad \tau_{s}$
The author would suggest $\tau_{\text {Bs }}$ but the oorreotness of this opinion probably depends on the partioular type of the transistor used.

Having assumed $\tau_{s}=$ const one can expect that $\tau_{B s}$ varies as a function of I_{B} and I_{C}. However, this assumption has not jet been justified and τ_{s} can exhibit dependence on collector current /compare $[16] /$ as well as $\tau_{\text {Bs }}$ defined by /12/. The factor k of $/ 13 a /$ suggests that $\tau_{\text {Bs }}$ varies only as far as the charge distribution depends on the collector current level.
D. "On demand" ourrent gain β_{s}.
"On demand" current gain β_{s} is to be considered when a transient collector current is required and the transistor is in saturation [2].

$\beta_{s}^{\text {def }} \frac{\text { AVailable transient collector }}{\text { current }}$

The charge present in the base must be sufficient to satisfy the demands of a larger oolleotor current and since generalif $\tau_{\text {Bs }}$ can be either smaller or greater than the active regin value of $\tau_{B}=\beta_{0} \tau_{c}$, usually $\beta_{s} \neq \beta_{0}$.

If $\tau_{B s}<\beta_{0} \tau_{0}$, having switched the transistor from saturatin to active region, one obtains an increasing oharge due to the increased recombination time constant and the giver constent base current. Therefore ρ_{3} is to be defined for the instant of switching, since later on the transistor will be able to deliver a greater collector current.

But if $\tau_{B S}>\beta_{o} \tau_{c}$, the charge in active region is deoreasing due to the decreased recombination time constant and β_{s} must be defined for the worst case i.e. for the longest time t_{n} needed. The general expression for β_{s} has been complied in Appendix II.

$$
\beta_{s}=\beta_{0}+\left[\frac{\tau_{B s}}{\tau_{0}}-\beta_{0}\right] e^{\frac{-t_{n}}{\beta_{0} \tau_{c}}}
$$

> For $\tau_{s}{ }^{t_{n}}=0$ and $\tau_{B s}=\tau_{s}$ one obtains the known relation$\operatorname{ship} \tau_{0}[2],[3] . \quad{ }_{\text {If }} \tau_{B s}=\beta_{0} \tau_{0}, \beta_{s}$ is equal to β_{0}.
2. MEASUREMENTS ON THE OC170*/
2.1. General remarks.

The prinoiple of measurement has been based on the Sparks, method [2] but, mainly because of the lack of good variable aapacitors and resistors, fixed components were used and input pulse voltages varied. Therefore, the most useful equations are /ing. $2 /$.

$$
Q_{I N}=c_{B 1} \cdot \nabla_{1 C} \quad \mid 16 a /
$$

and

$$
\Delta \mathrm{I}_{\mathrm{C}}=\frac{\Delta \mathrm{V}_{\mathrm{C}}}{-\mathrm{L}}
$$

Pig. 2. The principle of measurement.
*/Some similar data on the ASZ20 are contained in [12]. The results obtained on $\Pi 403 \mathrm{~A}$ and $\Pi 416 \mathrm{~A}$ are of the same order.

Cextain precautions were needed because of the limited maximum reverse emitter-base voltage $/ 0.5 \mathrm{y}$ for $0 C 170 /$ and emiter reverse ourrent $/ 1 \mathrm{~mA} /$ as well as because of the appaxently limited forward base current. Therefore, a $1 \mathrm{k} \Omega$ resistor was sometimes introduced in series with $C_{B 1}$; this was needed when using $V_{1 C}$ of the order of 10 V .

A Tektronix $545 / N^{0} 11337 /$ oscilloscope with a Type L plug--in unit $/ \mathbb{N}^{\circ} 100534 /$ was used. The total rise time of this instrument is of 12 nsec , the accuracy of the time base being not worse than 3% and the accuracy of the voltage measurements not worse than 5\%.

The input voltage was obtained from an EMI Pulse Generator type $1 /$ Serial $N^{0} 101 /$ with a rise time of less than 10 nsec. A pulse width of $0.9 \mu \mathrm{~s}$ was obtained using an external delay line. Both positive and negative pulses with respect to ground were available. Unfortunately the top of the pulse was found to drop by 10%.
2.2. Measurements of Q_{B} and Q_{V}.

The practioal circuit shown in fig. 3 had no adjustment of the D.C. pulse base current, as it was estimated that only a comparison between input voltage and the peak value of output waveform was needed. In other words, it was considered that the proportionality between the delivered charge and the oollector ourrent was "instantly" valid within the accuraoy of Tektronix $545 / 1 . e$. after approx. $12 \mathrm{nsec} /$ and that reoombination oculd be neglected for periods less than oa 50 nseo /compare 11g. 4/.

Table 1 shows some representative results for different onditions of measurements. First of all the collector current increment $\Delta I_{C}=\frac{\Delta V C}{R_{I}}$ was varied and later on the initial col. leotor ourrent, I_{C} /including the case of a reverse biased emitter-base junction/.

For all the measurements the colleotor voltage inorement ΔV_{C} was kept constant and equal to 5 V .

Pig. 3. The practical circuit for measurements of Q_{E}, Q_{B}, and Q_{V}.

FIg. 4. Input and output waveforms.

The measurements of Q_{E}, Q_{B} and Q_{V}

conclusions
I. The comparis on of B. and C. /table $1 /$ shows that the charge needed to increase the collector current in the active region is relatively small for a fixed ΔV_{C}. Indeed, approxirately the average value of

$$
\tau_{c}=\frac{Q_{I N}(C)-Q_{I N}(B)}{\Delta I_{C}(C)}=\frac{I I}{C(B)}=1.2-1.4 \mathrm{nsec}
$$

which for $\Delta I_{C}=10 \mathrm{~mA}$ corresponds to $Q_{B}=12-14 \mathrm{pC}$.
II. The comparis on of B. and D. /having in mind $C_{0} /$ suggests that because of a very slight dependence on the initial collector current, the major input charge is needed to charge the capacitor $C_{T c} / Q_{V} /$ and that Q_{E} may be neglected in the active region.

$$
Q_{V}=Q_{I N(C)}-\Delta I_{C(0)} \tau_{c}=C_{T c} \cdot \Delta V_{C}=17-20 \mathrm{pC}
$$

III. The comparison of A. and C. Indicates the presence of the important charge Q_{E} needed for switching the transistor from the off state. \cup_{E} can be estimated as the result of subtraction of Q^{Q} IN (C) from $Q_{\text {IN (}}$ (

$$
Q_{C} \cong Q_{I N}(A)-Q_{I N}(C)=13-15 \mathrm{pC}
$$

2.3. The comparis on between charge and current drive

In practical circuit the charge drive involves high, but iinite base current $1_{b}(t)$ exponentially decreasing with a time constant which is much smaller than the recombination time constank τ_{B}. The charge delivered $Q_{\text {IN }}$ equals

$$
\int_{0}^{t} i_{b}(t) d t
$$

and it is quite probable that for $t \ll \tau_{B}$ the waveform of $i_{b}(t)$ is not so important. In particular it can just as well be a step function, providing the proper quantity of charge is delivered.

This is synonymous with common emitter current drive and from eq. $/ 7 /$ one can obtain the formal approach for $t \ll{ }^{\prime} C_{B}$

$$
\frac{Q_{I N}}{\tau_{c}} \cong \frac{I_{B}}{\bar{\tau}_{c}} t=I_{c}(t)
$$

Fig. 5 shows the circuit for the ourrent drive measurements while table 2 contains comprehensive results both for current and charge /i.e. that of fig. 3/ drive for the same transistor.

For the current drive the input pulse width was limited to 110 nsec . The collector current increased linearly after the characteristic delay while switching from the cut off state. It is considered that this delay was due to the time needed to charge the capacitor $C_{T e}\left(Q_{\mathrm{E}}\right)$ i.e. to the time needed to switch on the emitter-base junction/see fig. 1/. Almost the same delaj was obtained for the relatively nslow" alloy transistors 0044 and V6/R8.

Plg. 5. Current drive measurements.

*/ for the same transistor
**/ exhibits the wiggle effect
?/ difficulties of switching occured.

The measurements show good agreement/with small exceptions/ for different kinds of drive as well as for switching on and off /oases 4. and 13., 8. and $14 . /$ and partial drive/oases 5., 6. and 7. or 8., 9 and 11/. Certain difficulties occurred only for "pure" charge drive.

The Q_{E} whioh is almost equal to $Q_{I N}$ for oases 1 and 2 , differs from that of table 1.

The comparison of cases 7 and 10 gives the approximate value of $\tau_{0}=1.15 \mathrm{nsec}$ and $C_{T C}=2.6-3 \mathrm{pF}$. For purposes of computation a constant τ_{0} was assumed and Q_{E} negleoted.
2.4. The oharge in saturation

The oharge in saturation was measured for different bse and collector currents. Two cases were considered: a/ crossing the boundary between the saturation and active regi on/remoring of $Q_{B S}$ / and $b /$ the total oharge $Q_{O F F}$ needed to switoh the transistor off. The latter also inoluded Q_{V} and Q_{E}. Table 3 contains the results obtained for a single transistor but similar data were obtained for two others. The results for the case $I_{B}=60 \mu \mathrm{~A}, I_{C} \approx 0$ were in good agreement with those obtained by the method [17] of measuring

Fig. 6. Mossuremonts of the oharge in gaturation.

$\mathrm{I}_{\mathrm{B}}[\mu \mathrm{A}]$	$I_{C}[\mathrm{~mA}]$	$\mathrm{v}_{\mathrm{CC}}[\mathrm{v}]$	$\mathrm{R}_{L}[\Omega]$	$V_{10 s}[\mathrm{~V}]$	$\begin{aligned} & Q_{\mathrm{Bs}}=\mathrm{V}_{1 C s^{\circ}} \\ & -19 \mathrm{pF}[\mathrm{pC}] \end{aligned}$	$\mathrm{v}_{1 \mathrm{COFF}}[\mathrm{V}]$	$\begin{aligned} & Q_{\mathrm{OFF}}=\mathrm{V}_{1 \mathrm{COFF}} \\ & \cdot 19 \mathrm{pF}[\mathrm{pC}] \end{aligned}$	$\begin{aligned} & \tau_{\mathrm{Bs}}=\frac{\mathrm{OFF}_{\mathrm{F}}}{\mathrm{I}_{\mathrm{B}}} \\ & {[\mu \mathrm{~s}]} \end{aligned}$
100	10	approx. 5	500	15	285	16	305	3.05
80	1	1.2	1000	2	38	3.1	59	0.74
	10	approx. 6	500	8.4	160	11	209	2.6
	0.1		500	-	-	1.4	26.5	0.44
	1	1.2	$\begin{gathered} 500 \\ / 1000 / \end{gathered}$	1.6	30	2.35	45	0.75
	2		500	3.2	61	3.8	72	1.2
	4		500	6.4	122	7.4	140	2.33
60	6		500	7.5	142	9	171	2.85
	8		500	7.5	142	9	171	2.85
	10	approx. 6	500	6.5	124	8	152	2.54
	12		500	5.8	110	7.2	137	2.28
	14		500	4.9	93	6.8	129	2.15
	16		500	4.4	83	6.4	122	2.02
	20		buo	4.4	83	7	133	2.22
40	1	1.2	1000	1	19	1.8	34	0.85
20	1	1.2	1000	0.5	9.5	1.2	23	1.15
10	1	1.2	1000	-	-	0.74	14	1.4

The plot of Q versus I_{C} for $I_{B}=60 \mu A$ is shown in fig. 7. Two relevant values for ASz20 are enclosed

Fig. 7.

The most important point emerging from the above desoribed is the dependence of the saturation time constant $\tau_{B s}$ on the colleotor currant. /Dependenoe on the base ourrent is smaller and rather more understandable/. First of all one learns that $\tau_{B s}$ is greater than the active region value $\beta_{0} \tau_{c}$ which oorresponds to the oatalogue data $\beta_{\text {typ }}=100 /$ usually $\beta_{0} \leqslant 300 /$ and $\tau_{c}=1.2-1.4 \mathrm{nsec}$. This is easily explained if one oonsiders the transistor model with two time constants τ_{p} and τ_{p}-eq. $113 /$. The alloy-diffused type transistor, like the 0C170, has an unsymmetrioal geometry with its huge collectorbase junction area and collector body. Therefore, in saturation the facior $k=\frac{Q_{1}}{Q_{R}}$ increases rapidly, and equation $/ 14 /$ shows that it is the equivalent to $\tau_{B s}>\tau_{B a}=\beta_{0} \tau_{0}$. It means that the part plajed by volume recombination τ_{p} can be much greater in saturation than in the active region and, since $\tau_{p} \gg \tau_{\rho,}$ the effective time constant $\tau_{\text {Bs }}$ should be greater than that corresponding to the active region.

The variation of $\tau_{\text {Bs }}$ with collector current is much more diffioult to be explained and would probably demand a comprehensive consideration of the charge distribution when treating the transistor as a device with distributed yarameters ior the particular geometry involved. Besides, it is easy to find out that the variability of

$$
\tau_{s}=\frac{Q_{B s}}{I_{B}-\frac{I_{C}}{B_{0}}}
$$

is of the same order.
Anyway, as $Q_{O F F} /$ table $3 / 1 s$ much greater than $Q_{I N} /$ ta ble $2 /$, operation in saturation cannot be recommended unless it is pulse operation/short periods in saturation/ or operation under very low collector ourrents.
2.5. "on demand" ourrent gain β_{g}.

The main purpose of this section is the veriiloation of equatron / $15 /$. The measurements were performed for the same transistor as in sea. 2.4. Whence some of the data used for computetion were derived. The oirouit and relevant waveforms are shown In fig. 8. According to definition, "on demand" colleotor our rent was regarded as that for which the transistor emerges from saturation.

OW

Fig. 8. "On - demand" measurements.

Table 4 contains the results; possible errors may be due to the variability of β_{0} and β_{s} as functions of time and tempperature.
"On demand" measurements
Table 4

Finally let us compare results for $I_{B}=20 \mu \mathrm{~A} \quad I_{0}=1 \mathrm{~mA}$ and $=0,9 \mu \mathrm{~s}$ for some sampled 0C170 transistors:

Sample	1	2	3	4	5	6
β_{s}	300	750	150	450	450	80

3. SOME PROBLEMS OF BASIC COMPUIER CIRCUITS
3.1. Introduction.

Although the application of transistors in contemporary computers is widespread, the designer still meets considerable difficulties due to numerous and often conflicting demands which notably include:
a/ good reliability over a wide range of ambient temperalure;
b/ large tolerances of the components used;
c/ low cost of the circuitry as well as of power supplies and clocks;
d/ high speed;
e/ simple rules of interconnections between outputs and inputs;
f/ simplicity of packaging;
$\mathrm{g} /$ ease of fault-finding and marginal oheoking and others, as for instance, the threshold for noise etc.
The problems mentioned above are sometimes hardly measurable and to a certain extent evaluated qualitatively, expecially when the most suitable technique and the most flexible set of the elementary "bricks" are considered.

First of all three points should be considered in detail:
1/ Fan - in
2/ Fan - out
3/ Delay per unit limiting the speed.
Moreover, the choice of transistor is influenced by its cost and delivery terms.
3.2. Transistor operation.
t The main problem is to decrease $Q_{\text {IN }}$, since $Q_{\text {IN }}$ equals $\int_{0} i_{b} d t$ and determines both the switching times/delay per stage/ and the input currents of the majomty of transistorized
oircuits /i.e. indireotiy it determines fan-out/. Let us oonsider the switohing-on prooess when $Q_{I N}=Q_{E}+Q_{B}+Q_{V}$. To a first approximation the input current

$$
I_{I N}=m \frac{Q_{I N}}{t_{d}}
$$

/where: $m=a$ factor greafer than unity, $t_{d}=$ switohing timel, and the output current $I_{0 U T}=\frac{Q_{B}}{\tau_{0}} /$ where $n=a$ factor less then unity/.

Therefore the fan-out faotor can be written 9.8 :

$$
N=\frac{I_{O U N}}{I_{I N}}=\frac{n t_{a}}{m \sigma_{0}}\left(\frac{1}{\frac{Q_{E}}{Q_{B}}+1+\frac{Q_{V}}{Q_{B}}}\right)
$$

In formula $/ 17 /,{ }^{t}$ a and t_{0} are fixed for the assumed apeed and the transistor used, the deoreasing of Q_{V} is Iimited by the required output voltage swing, and the maximum Q_{B} is definea by the limitation of the collector ourrent. Finally real progress can be achieved only by decreasing Q_{E} which flays almost the main role for the 0C170/oompare seotions 2.2 . and 2.31 .

Fig. 9 shows the solution proposed by Miles [12] Where the transistor is held either slightly conduoting or heavily conduoting and is never switohed off. Since the emitter-base junotion is still forward biased, Q_{E} is reduoed to a small fraotion of Q_{B} and, besides, there is no question of the reverse emitter-base break-down. The initial current I_{K} can be of the order of $0.1-0.3 \mathrm{~ms}$ compared With an emitter current of 6-10 mA. Using current-steering technique the defined ourrent I_{E} flows in either the transistor $T H$ or an additional transistor /ar diode/ acoording to the input roltage levels.

Acoording to seotion 2.4. operation in saturation would be aroided by means of a clamping diode [11]. This implies a collector ourrent well defined by the transistor. Otherwise, the traisistor could be damaged, since out of saturation the exter
nal circuit does not limit the collector current. Therefore, the emitter current I_{E} would be established, as fig. 9 suggests, because for well defined I_{B} the spreading and variability of $\beta_{0}=\frac{I_{C}}{I_{B}}$ can cause undesirable effects.

Fig. 9. Reduction of Q_{E} by means
of the initial current I_{K}

The nonlinear negative feedback can be employed instead of well-defined emitter current. This is shown in fig. 10 where, having obtained the collector current needed, the diode D1 is switched on and cuts down further increase of base current. The voltage drop across the diode D2 is introduced in order to avoid saturation.

Fig. 10. The nonlinear negative feedback.
3.3. Voltage-shifting for D.C. ooupling.
D.C. coupling is to be assumed because of mark-space ratio close to $0.5 /$ which is likely for a high-speed computer, and nonlinear operation expected. For an alternative A.C. coupling the energy stored either in the electrostatic field of the series capzoitors, or in the magnetic field of the output transformers, can at least cause lack of reasonable fan-out.

However, there is one great disadvantage of D.C. coupling: the input D.C. voltage level must be restored at the output /or complemented to another allowed Uinary value/ and this creates the need for voltage-shifting networks. The cost is more sophisticated circuits and often much closer tolerances of voltages and of components. The usual arrangement of voltage levels can be realized for instance by means of complementary $n-p-n$ transistors or Zener diodes $[11],[13]$; an interesting method is proposed by lurphy [14] who uses transistors which maintain high-sped response even for slightly positive collector-base voltage. iloweve, these miethods inconveniently ircrease the variety of semiconducto: i.əvices needed. Therefore, the ordinary resistive potentiai-divider is to be used /fig. 11/, although it also demands a relatively careful design。

INPUT

Fig. 11. The voltage-shifting principle.

It is worth to emphasize that from the point of view of volt-age-shifilng and tolerances, saturated circuits are the best /fec Further discussion refer for instance to $[18] /$. From the same noint of Jew the circuits operating definily in active region are the worst in spite of the fact that they have achiered the highest speed. Therefore, ionsaturated operation wit? minimum voltage-shifting provided by nonlinear negative feedback ie expected by the author to be the most reasonable compromise

APPENDIX I - The influence of Q_{E}.

Neglecting Q_{V} one obtains the formula for the required charge:

$$
Q_{I N}=\int_{0}^{t} i_{0}(t) d t=Q_{E}+Q_{B}+\int_{0}^{t} \varepsilon_{B} Q_{B} d t
$$

Or, bering assumed that $\frac{Q_{B}}{i_{c}}=\sigma_{c}=$ const, after differentiation:

$$
i_{b}(t)=\frac{d Q_{B}}{d t}+\tau_{c} \frac{d 1_{c}}{d t}+\frac{Q_{B}}{\tau_{B}}
$$

Now, putting $\frac{d i_{C}}{d Q_{E}} \cdot \frac{d Q_{E}}{d I_{C}}=\frac{d i_{C}}{d t} \tau_{E}$ /where $\tau_{E}=\frac{d C_{E}}{d I_{C}}$ / instead of $\frac{d Q_{E}}{d t}$, one has instead of $/ 5 /$:

$$
I_{b}(t)=\frac{d L_{C}}{d t}\left(\tau_{0}+\tau_{E}\right)+\frac{Q_{B}}{\tau_{B}}
$$

The time constant τ_{E} can be expressed in terms of small signal equivalent circuit/active region/ if one can put

$$
Q_{\mathrm{E}}=\mathrm{C}_{\mathrm{Te}} \cdot \Delta \mathrm{~V}_{\mathrm{eb}}
$$

Where:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{Te}}=\mathrm{cons} \mathrm{c} \\
& \frac{\mathrm{~d}_{\mathrm{V}} \mathrm{~V}_{\mathrm{eb}}}{\mathrm{dI}_{\mathrm{c}}}=r
\end{aligned}
$$

Then $\tau_{E}=C_{\text {Te }} \cdot r$ which is similar to the corresponding expression in [7].

APPENDIX II - "On demand" current gain $\beta_{\text {s }}$

Let us consider the equation describing the recombination of charge

$$
\frac{d Q}{d t}+\frac{Q}{\tau_{B}}=i_{b}
$$

The general solution for $\tau_{B}=$ const is/compare eq. $/ 6 / /$

$$
Q(t)=\left[Q_{0}+\int_{0}^{t} i_{b}(t) e^{\frac{t}{\tau_{B}}} d t\right] e^{-\frac{t}{\tau_{B}}}
$$

and in saturation $Q_{0}=Q(0)=I_{B} \tau_{B}=I_{B} \tau_{D S}$

According to definition, "on demand" collector current is that current for which the transistor emerges from the saturaion region and therefore one should substitute $\beta_{0} \tau_{0}$ instead of the other τ_{B} s. Finally, at the assumed time $t=t_{n}$ for $I_{b}=I_{B}=$ cons one obtains*/

$$
\beta_{S}=\frac{I_{C}}{I_{B}}=\beta_{0}+\left[\frac{\tau_{B S}}{\tau_{C}}-\beta_{0}\right] e^{-\frac{t_{n}}{\beta_{0} \tau_{c}}}
$$

References

1. SPARKES J.J., BEAUFOY R0: The Junction Transistor as a Charge Controlled Device, Proc.IRE, December 1957:45, 1740-42.
2. SPARKES J.J.: The Measurement of Transistor Transient SwitchIng Parameters, Proo.IEE pt.B, May 1959:106, 15, 562-67.
3. BEAUFOY R.: Transistor Switohing-Cirouit Design Using the Charge Control Parameters, Proo.IEE pt.B, May 1959:106, 17, 1085-91.
4. KRUITHOF Ac: Transient Response of Junction Transistors and Its Graphical Representation, Proa. IEE pt.B, May 1959: 106. 17,1092-1101.
5. LE CAN: Transient Behaviour and Fundamental Transistor Parameters, Electronic Apple. /Philips/: 1959-1960:20,2, 56-83.
6. SPARKES J.J.: A Study of the Charge Control Parameters of Transistors, Proc.IRE, October 1960:1696-1705.
7. DAS M. B., BOOTHROYD A.R.: Determination of Physical Parameters of Diffusion and Drift Transistors, IRE Transaction ED-8, January 1961:15-30.
8. WINDSOR R.C.: Measurement of Transistor Charge - Control Parameters by Integration of Stored Charge, ATE Journail, July 1961:17,3,95-108.
9. MOIL J.L.: Large Signal Transient Response of Junction Transistors, Proc. IRE, December 1954.
$* Q\left(t_{n}\right)=I_{c} \tau_{c}$
10. CRIPPS InGo: Transistor High-Frequenoy Parameter f_{1}, Eleo tronio and Radio Engineer, September 1959:341.
11. PRESSMAN A.J.: Design of Transistorized Cirouits for Digital Computers, JoF.Rider Publish, New York 1959.
12. MILES R.J.: High-Speed Logic Cirouits Using Diode Logioal Networks and Current--Switohing Amplifiers, Mullard Teohnical Communications, March 1961:47, 285-94.
13. MILES R.J.: Output-Coupling Networks for Use with Logioal Cirouits of the Emitter-Current Switohing Type, Mullard Teohnical Communications, Maroh 1961:47, 295-300.
14. MURPHY D.W.: High-Speed Non-Saturating Switohing Circuits Using a Novel Coupling Teohnique, International SolidStaie Conference, Digest of Teohnioal Papers, 1962.
15. IINDMAYER J., WRIGLEY C.: The High Injeotion-Lu el Operation of Drift Transistors, Solid-State Eleutronios, Pergamon Press, 1961:2, 79-84.
16. BARRY J.N.: Switohing Transistors Operation in the Saturation Region, Eleotronio Technology, June 1962:206-211.
17. SIMMONS C.D.: Hole Storage Delay Time anả its Prediction, Semiconductor Products, September, October, November 1960.
18. GOLDSTICK G.H.: Comparis on of Saturated and Nonsaturated Switching Cirouit Teohniques, IRE Trans. on El.Comp., June 1960:161-175.
