ZESZYTY NAUKOWE POLITECHNIKI ŚLASKIEJ Seria: BUDOWNICTWO z. 109

Nr kol. 1735

Magdalena KOWALSKA^{*} Politechnika Śląska, Gliwice

METODA ŚCIEŻEK OBCIĄŻENIA W ASPEKCIE MOŻLIWOŚCI WSPÓŁCZESNYCH APARATÓW LABORATORYJNYCH

Streszczenie. W artykule przedstawiono problem realizacji trójwymiarowej ścieżki obciążenia w konwencjonalnym aparacie trójosiowego ściskania.

LOADING PATH METHOD IN ASPECT OF ABILITY OF THE MODERN LABORATORY APPARATUSES

Summary. A problem of execution of a 3D loading path in a conventional triaxial testing apparatus is presented.

1. Wstęp

Podstawą szacowania parametrów modeli konstytutywnych gruntów metodą ścieżek obciążenia, zgodnie z algorytmem prezentowanym w [4] i [5], jest dokładne odtworzenie na próbce o nienaruszonej strukturze (NNS) przebiegu obciążenia dla analizowanego przypadku posadowienia w wybranym punkcie podłoża gruntowego.

Najpowszechniej stosowanym w Polsce aparatem pozwalającym na sterowanie ścieżką obciążenia jest konwencjonalny aparat trójosiowego ściskania. Mimo swojej nazwy urządzenie to umożliwia jednak realizację badania tylko w osiowo symetrycznym stanie naprężenia i odkształcenia. Zakłada się wówczas, że maksymalna składowa naprężenia głównego działa wzdłuż osi próbki i jest równa pionowemu naprężeniu efektywnemu σ'_y , a naprężenia minimalne i średnie są sobie równe i stanowią uśrednioną wartość efektywnego naprężenia radialnego σ_r i obwodowego σ_{θ} .

Opiekun naukowy: Prof. zw. dr hab. inż. Maciej Gryczmański

$$\sigma'_1 = \sigma'_y, \quad \sigma'_2 = \sigma'_3 = \frac{\sigma_r + \sigma_\theta}{2}. \tag{1}$$

Stosując takie uproszczenie, pomija się wpływ zróżnicowania poziomych składowych naprężenia oraz fakt obrotu kierunków głównych naprężenia, co nie jest bez znaczenia w odkształceniowej odpowiedzi gruntu, [1], [6]. Do pełnego opisu stanu naprężenia w mechanice ośrodka ciągłego nie wystarczy bowiem podanie wartości naprężeń głównych, trzeba także określić orientację w przestrzeni odpowiadających płaszczyzn ortogonalnych. W przypadku badań w płaszczyznach głównych wygodnie jest operować trzema niezmiennikami stanu naprężenia I₁, I₂, I₃ bądź częściej stosowanymi w geotechnice: naprężeniem średnim p, intensywnością naprężenia q i kątem Lodego Θ (zapis Cambridge).

Stan naprężenia możliwy do osiągnięcia w konwencjonalnym aparacie trójosiowego ściskania występuje jedynie wtedy, gdy $\Theta = -\pi/6$. W innym przypadku dokładna symulacja ścieżki naprężenia jest w tym aparacie niemożliwa.

W artykule przedstawiono wyniki analizy ścieżek naprężenia w 6 punktach podłoża prostego fundamentu pod kątem możliwości zastosowania ich w aparacie trójosiowego ściskania. Zaprezentowano wybrane nowoczesne urządzenia laboratoryjne, w których problem osiowej symetrii został wyeliminowany.

2. Analiza ścieżek naprężenia dla trzech modeli gruntów

Przebieg ścieżki naprężenia jest bezpośrednio zależny od przyjętego konstytutywnego modelu gruntu. Najbardziej wyróżniającą cechą modeli jest kształt powierzchni: plastyczności, ograniczającej i zniszczenia. Często ich definicja opiera się wyłącznie na dwóch pierwszych niezmiennikach p i q, pomijając kąt Θ, a zatem zakłada powierzchnie obrotowe. Do takich modeli możemy zaliczyć np. popularne modele teorii stanu krytycznego (TSK), takie jak: Modified Cam Clay, Schofielda, Roscoe-Hvorsleva, NAHOS oraz modele typu CAP. Tymczasem, jak dowodzą np. badania Kirkgarda i Lade'a [8] oraz Wonga i Mitchella [9], przekrój dewiatorowy zbliżony jest do gładkiej obwiedni sześcioboku zaproponowanego już w 1773 roku przez Coulomba.

W programie komputerowym wykorzystującym analizę MES (Z_SOIL.PC 2005) stworzono prosty model układu fundament żelbetowy - podłoże (Rys. 1). Wytypowano 6 punktów charakterystycznych, w których wykreślono ścieżki naprężenia dla trzech popularnych modeli gruntów: Coulomba – Mohra, Druckera-Pragera i Modified Cam Clay. Analizowano zadanie w płaskim stanie odkształcenia i zadanie w układzie osiowo symetrycznym. Symulowano obciążenie w następujących teoretycznych przedziałach czasowych: (1 - 2) - wykop, (2 - 3) - wykonanie fundamentu, (3 - 4) - obciążenie eksploatacyjne fundamentu do wartości 500 kPa. Wyniki analizy przedstawiono na rys. 2. do 7., przy czym po lewej stronie pokazano ścieżkę naprężenia w przestrzeni p-q, a po prawej zmienność kąta Θ w czasie.

Ścieżki naprężenia zakończono w momencie osiągnięcia stanu granicznego. Należy oczywiście pamiętać, że stanem granicznym dla modeli sprężysto – idealnie plastycznych jest już spełnienie kryterium plastyczności, a dla modelu TSK – dopiero stan zniszczenia.

Rys. 1. Model MES układu fundament - podłoże i legenda do rys. 2 - 7 Fig. 1. The foundation - subsoil FEM model and legend for Fig. 2 - 7

Rys. 2. Ścieżka naprężenia dla modelu Coulomba - Mohra, płaski stan odkształcenia, stan graniczny w punktach 27.2, 129.4, 155.3

Fig. 2. The stress path for Coulomb - Mohr model in plain strain conditions, limit state in points: 27.2, 129.4, 155.3

Rys. 3. Ścieżka naprężenia dla modelu Druckera - Pragera, płaski stan odkształcenia, stan graniczny w punktach 27.2, 129.4, 155.3, 3.3

Fig. 3. The stress path for Drucker - Prager model in plain strain conditions, limit state at points: 27.2, 129.4, 155.3, 3.3

Rys. 4. Ścieżka naprężenia dla modelu Modified Cam Clay, płaski stan odkształcenia, stan graniczny nieosiagnięty w żadnym punkcie

Fig. 4. The stress path for Modified Cam Clay model in plain strain conditions, limit state at any point

- Rys. 5. Ścieżka naprężenia dla modelu Coulomba Mohra, osiowo symetryczny stan odkształcenia, stan graniczny w punktach 27.2, 129.4, 155.3
- Fig. 5. The stress path for Coulomb Mohr model in axisymmetric conditions, limit state at points: 27.2, 129.4, 155.3

Rys. 6. Ścieżka naprężenia dla modelu Druckera - Pragera, osiowo symetryczny stan odkształcenia, stan graniczny we wszystkich punktach

Fig. 6. The stress path for Drucker - Prager model in axisymmetric conditions, limit state at all points

Rys. 7. Ścieżka naprężenia dla modelu Modified Cam Clay, osiowo symetryczny stan odkształcenia, stan graniczny nie osiągnięty w żadnym punkcie

Fig. 7. The stress path for Modified Cam Clay model in axisymmetric conditions, no limit state at any point

We wszystkich przypadkach zaobserwowano zależność kształtu i długości ścieżki od odległości analizowanego punktu od źródła obciążenia. Wyraźnie zarysowuje się wpływ odchylenia kierunków głównych przy porównaniu ścieżek wygenerowanych modelami Coulomba - Mohra i Druckera - Pragera. W pierwszym długość ścieżki zależy od kąta Θ , natomiast w drugim wszystkie ścieżki zostają "obcięte" w miejscu małej obwiedni odpowiadającej kątowi $\Theta = \pi/6$.

Warto zwrócić uwagę, jak bardzo kształt powyższych ścieżek odbiega od ścieżek modelu Modified Cam Clay. Fakt ten potwierdza konieczność stosowania w analizie MES kalibrowanego modelu gruntu, a w wypadku jego braku w programie komputerowym – modelu najbardziej zbliżonego teoretycznie do kalibrowanego. W czasie eksploatacji (czas: 3-4) warunki zbliżone do tych w aparacie trójosiowym ($\Theta =$ const = - $\pi/6$) występują wyłącznie w wypadku zadania w stanie osiowo symetrycznym w punktach położonych pod środkiem fundamentu kołowego (129.4 i 3.3), niezależnie od modelu. W każdym innym punkcie kąt Θ zmienia się krzywoliniowo wraz ze zwiększaniem się obciążenia.

Przy zmianie kierunku obciążenia (czas: 2 - koniec wykopu / początek budowy fundamentu), w punktach w bezpośrednim sąsiedztwie fundamentu (27.2 i 3.3) funkcja zmiany kąta Θ wykazuje wyraźne ekstremum przy niewielkich zmianach wartości niezmienników naprężenia p i q.

Można zatem wnioskować, że prawidłowa symulacja ścieżki naprężenia, zgodnej z kalibrowanym modelem gruntu, jest możliwa w konwencjonalnym aparacie trójosiowego ściskania tylko dla punktów leżących dokładnie w osi fundamentu kołowego, pod warunkiem że obciążeniem w modelu MES jest przykładane do fundamentu naprężenie, a nie zmiana geometrii układu.

3. Współczesna aparatura

Ograniczenia aparatu trójosiowego ściskania w zadawaniu naprężeń zróżnicowanych w trzech kierunkach oraz ich konsekwencje w odkształceniowej odpowiedzi gruntu stały się bodźcem dla konstruktorów do poszukiwania innych rozwiązań urządzeń laboratoryjnych.

Pierwszym z nich jest tzw. "prawdziwy aparat trójosiowego ściskania" [1]. Pozwala on na zadawanie ścieżek naprężenia i odkształcenia różnych we wszystkich kierunkach: $\sigma'_1 \neq \sigma'_2 \neq$ σ'_3 , $\epsilon'_1 \neq \epsilon'_2 \neq \epsilon'_3$. W zależności od konstrukcji aparatu obciążenia mogą być zadawane w różny sposób, zawsze na prostopadłościennych próbkach:

- a) odrębne komory wodne z membraną, przekazujące różne ciśnienie na każdą parę ścianek (Ko i Scott),
- b) układ ruchomych sztywnych wzajemnie prostopadłych płytek (Pearce, Goldscheider i Gudehus),
- c) ciśnienie wody wywierane na całą próbkę oraz dodatkowo niejednakowe naciski na dwie sąsiednie pary ścianek (Green, Yong i Mc Kyes, Lade i Duncan) lub inna kombinacja ścianek sztywnych i membran (Hoyos).

W zależności od konstrukcji aparatu kontrolowany może być zatem stan naprężenia (a), stan odkształcenia (b) bądź zadawane warunki mieszane (c). Najwygodniejsze w proponowanym algorytmie wydają się wersje (a) i (b) z uwagi na łatwość implementacji równań konstytutywnych w analizie odwrotnej. Zaawansowane aparaty tego typu pozwalają na badania próbek nienasyconych z kontrolą ciśnienia wody i powietrza w porach, [3], co jest istotne w badaniu próbek NNS. Niestety, aparat ten nie pozwala jeszcze na sterowanie kierunkami naprężeń głównych.

Pełną kontrolę wartości i kierunków składowych naprężenia głównego można osiągnąć dopiero w aparacie do badania próbek w kształcie wydrążonego cylindra (hollow cylinder apparatus), [1], [2], [7]. Aparat jest powszechnie stosowany na świecie do badania wpływu anizotropii pierwotnej, głównego naprężenia średniego i obrotu kierunków głównych na odpowiedź gruntu. Naprężenia główne nie są zadawane wprost, ale poprzez kombinację pionowej siły osiowej, momentu obrotowego oraz ciśnienia wewnątrz i na zewnątrz cylindra. Warunkiem zastosowania wydrążonego cylindra w algorytmie szacowania parametrów modeli gruntów jest posiadanie systemu, pozwalającego na automatyczną kontrolę naprężenia; sterowanie manualne w tym wypadku byłoby już zbyt skomplikowane. Wadą aparatu jest brak możliwości sterowania ścieżką odkształcenia. Dodatkową zaletą natomiast – możliwość rekonsolidacji do rzeczywistych anizotropowych warunków początkowych w podłożu gruntowym.

W obu wymienionych urządzeniach niezbędne jest zastosowanie wewnętrznych czujników mikroprzemieszczeń.

4. Podsumowanie

Dokładna kontrola dowolnego trójosiowego stanu naprężenia i odkształcenia jest niemożliwa w konwencjonalnym aparacie trójosiowego ściskania. Jego możliwości ograniczają się wyłącznie do symulacji warunków eksploatacyjnych w osi fundamentu kołowego. Szersze możliwości dają zaawansowane aparaty prawdziwego trójosiowego ściskania oraz aparat do badania próbek w kształcie wydrążonego cylindra.

Niestety koszty tych urządzeń znacznie przewyższają fundusze większości polskich ośrodków naukowych, dlatego żaden z nich nie jest dostępny w kraju. Sprawdzenie w Polsce wpływu kierunków naprężeń głównych na wartości parametrów modeli pozostanie więc chyba jeszcze jakiś czas w sferze planów.

LITERATURA

- Gryczmański M.: Wprowadzenie do opisu sprężysto plastycznych modeli gruntów. IKE, Warszawa 1995.
- Hight D.W., Gens A., Symes M.J.: The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils Geotechnique, 33, 4, 1983, p. 355-383.
- Hoyos L.R., Laikram A., Puppala A.J.: A novel true triaxial apparatus for testing unsaturated soils under suction-controlled multi-axial stress states. Proc. of 16th ICSMGE, Osaka 2005, p. 387-390.
- Kowalska M., Gryczmański M.: Miejsce metody ścieżek naprężenia we współczesnym rozpoznaniu geotechnicznym dla potrzeb budownictwa, Zeszyty Naukowe Politechniki Białostockiej, Budownictwo – Zeszyt 28, Wydawnictwo Politechniki Białostockiej, Białystok 2006, s. 163-172.
- Kowalska M.: Kalibrowanie modeli gruntów metodą ścieżek naprężenia. Zeszyty Naukowe Politechniki Śląskiej, Budownictwo z. 104, Wydawnictwo Politechniki Śląskiej, Gliwice 2005, s. 195-202.
- 6. Symes M. J. P. R., Gens A., Hight D.W.: Undrained anisotropy and principal stress rotation in saturated sand. Geotechnique 34, No. 1, s. 11-27.
- Symes M.J., Gens A., Hight D.W.: Undrained anisotropy and principal stress rotation in saturated sand. Geotechnique 34, 1, 1984, p. 11-27.
- Kirkgard M.M., Lade P.V.: Anisotropic three-dimensional behaviour of normally consolidated clay. Can. Geotech. J., 30, 1993, p. 848-858.
- 9. Wong P.K.K., Mitchell R.J.: Yielding and plastic flow of sensitive cemented clay. Geotechnique, 25, 4, 1975, p. 763-782.

Recenzent: Prof. dr hab. Zbigniew Sikora