
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ
Seria: AUTOMATYKA z. 117

1996
Nr kol. 1337

Adam JANIAK, Krzysztof CHUDZIK, Marie-Claude PORTMANN
Politechnika Wrocławska; Ecole des Mines de Nancy

COM PARISON O F FOUR GENETIC ALGORITHMS ON TH E BASIS OF
SOM E FLO W -SH O P PROBLEM

Sum m ary. The paper is devoted to the comparison of four genetic algorithms on
the basis o f some flow-shop problem. It was assumed that models of job processing
times in this problem are convex functions of resources. In some of the constructed
algorithms there were used specific cross-over and mutation techniques which
employed the specific problem properties. There are given several experimental results
with proposed genetic algorithms together with their analysis.

PORÓ WN AN IE CZTERECH ALGORYTMÓW GENETYCZNYCH NA BAZIE
SEKW ENCYJNEGO PROBLEM U PRZEPŁYW OW EGO

Streszczenie. Praca jest poświęcona porównaniu czterech algorytmów
genetycznych na bazie problemu przepływowego. Przyjęto założenie, że modele
czasów trwania wykonywania zadań są wypukłymi funkcjami zasobów. W części
skonstruowanych algorytmów były użyte specyficzne techniki krzyżowania i mutacji,
które wykorzystywały specyficzne własności problemu. Podane zostały wyniki
eksperymentów numerycznych z zaproponowanymi algorytmami genetycznymi razem
z ich analizą.

1. In troduction . Problem formulation

The paper deals with the extension of a classical permutation flow-shop problem to the

case when processing times of jobs are not given, but they are convex decreasing functions of

locally and globally constrained resources. This kind o f problems appears in many

manufacturing processes. In [1] it was proved that the problem under consideration is NP-hard

even for the two machine case. The branch and bound algorithm for this problem was

constructed in [1]. It was able to solve optimaly problems with only about 100 operations. In

this paper we construct four genetic algorithms to solve it. The first (not fully successful)

attempts at using genetic approach in order to solve flow shop problem with some resource

constraints were made in [2,3] for linear models.

The problem may be formulated as follows.

There are n jobs (available for processing at time zero) which have to be

processed on m (continuously available) machines in that order. The processing

orders o f jobs on all machines are the same. Each machine A/„, v= 1 , 2 can handle at

most one job at a time. Job J j = 1 , 2 , . thus consists o f a sequence o f m operations

Oj],Oj2 , . . . , 0 JV,...,O j„ , where Ojv corresponds to the processing of job on machine M v

during an uninterrupted processing time pJv. It is assumed that the processing time p JV o f the

operation 0 jv depends on an amount o f resource uJ V, allotted to perform this operation in the

following way:

124__ A. Janiak. K. Chudzik. M .-C. Portmann

where /,„(•) are convex decreasing functions.

To avoid complicated notation, in the sequel it will be assumed that processing times o f

all the operations are dependent on a common resource, however, the results obtained in the

paper are also valid for the cases when the separate machines demand different resources for

realization o f operations (and the other do not require any additional resources - see the tested

examples in Section 3).

It will be assumed that a resource allocation r =[r),/'2, . . . , r v, . . . , r mj (where

rv = [rlv,...,r ,„ ,...,r„ ,,]) is feasible if the following constraints are satisfied:

a JV £ rjv <. PJV, j = 1,2 n\ v = 1,2,

n m

Z Z
j- \ v—\

where a JV, P)v are, respectively, the lower and the upper limits on the amount o f resource

allotted to a realization of the operation 0 J}/, / ;v(a / v) anc* > °) are

maximum (normal) and minimum (crash) durations of 0 jv , 0 ^ a jv <, Pjv <,R, and R is the

n rti
global amount o f resource allotted to a realization of all the jobs, R ^ Z Z a j« ■

l-i

The set o f all the feasible resource allocations will be denoted by R.

A processing order o f jobs will be represented by a permutation

K={n{\),7t{2)......7t(j),... ,tc(rtf) of the job indices 1,2 n , where k(j) denotes that index

of a job which is in the position j o f n. Let n denote the set o f all such permutations.

Moreover, for a permutation n e T l and a resource allocation r e R by

<-m «(7r' r) = fnax {<-ff(/)(7r>/‘)} ke denoted the maximum job completion time, where

r ,r) denotes the completion time ofjob (precisely, the operation 0 ^ m).

The problem is to find such a control, i.e. such a job processing order n e l l and such

a feasible resource allocation r ' e l? that the maximum job completion time is minimized.

Comparison o f four genetic algorithms...__ 125

2. Problem properties

By r'x will be denoted the optimal resource allocation for a permutation n, i.e. a

resource allocation for which = rnmCm„ (w ,r) . The optimum resource allocation

r ‘ e /? for each rreTI may be obtained by the known algorithms of the convex programming

and for the case with linear models of operations is obtained by applying the algorithm o f

Harnacher and Tufekci with some modifications (see [1] for description).

It is easy to notice that the following equation holds:

J) , . m - i 1,

Z A (r)i L(jf)i) + X Z
J \ i . IM“ 1 Jy ^ ! « W ̂ j \

Z / ^ i ^ r Z Z A Wv (^) v) + t Z (i)

This equation follows from the fact, that the maximum job completion time Cmxx {/i,rx)

is equal to the duration time between the beginning moment o f the realization o f the first job

/„(i) in n on the first machine and the completion moment o f the last job J ^ on the last

machine. It is easy to notice that this duration time, in turn, is equal to the sum of the

processing times of operations from operation sequence of the form (1) for which realization

of each operation starts immediately after the completion of the preceding operation from this

sequence. In other words, there is no inserted idle time between the realization o f the

succeeding operations o f this operation sequence. This kind o f operation sequence is called

critical path and positions j v j,„-{ for which

126 A. Janiak. K. Chudzik. M.-C. Portmann

C m ix r7T) ~ 2 A (*) l (r/r (t) l) + X 2 A (t) v (r»(*)v) + 2 f x (k) , n [r n (k)m] (2)
*-1 v=2 *=/,_, =̂Jm~l

are called the critical path positions.

A subsequence o f the consecutive jobs from the permutation j e i l between succeeding

(different) critical path positions of all the critical paths in r r e l l (under r ’ s R) is called a

section (see [1] for precise definition).

It was proved in [1] that:

Properly 1

It is not possible to obtain better solution (i.e. a permutation with the smaller value of

Cmax) by the interchanging the jobs inside each section. The improvement o f CmBX is possible

only by moving the jobs outside of the sections.

The precise formulation of this property is in [1], This property will be applied in some

genetic algorithms in the next section.

3. O utline of the genetic algorithms

There were constructed four different genetic algorithms to solve the problem under

consideration. The general scheme [4] of them is as follows:

N := 0,

A) Initial Phase,

B) Survival Phase,

C) Cross-over Phase,

N := N + \,

D) Mutation Phase,

E) If (no Stop Test) then go to B.

In initial phase of all the algorithms the initial populations were obtained by

approximate algorithms o f Dannenbring, Campbell, Dudek, Smith and Nawaz which were

generalized [1] to the case with resource.

In cross-over phases were used classical cross-over technique [4] or specific cross-over

technique [3] in which Property 1 was employed. The mutation phase was constructed in the

similar way.

Comparison oFfour genetic algorithms. 121

Finally we considered the following four implementations of genetic algorithm (GA):

GA1 - G.A. with specific cross-over and with specific mutation;

GA2 - G.A. with classical cross-over and with specific mutation;

GA3 - G.A. with specific cross-over and with classical mutation;

GA4 - G.A. with classical cross-over and with classical mutation.

The examples on which the above mentioned genetic algorithms were tested were

described in [3],

4. P resentation of results

4.1. Comparison o f quality o f solutions

Fig. 1. Average value o f the best value of criterion function obtained in all time o f computation
normalised by the best value of criterion in initial population

R ys.l. Średnia wartość najlepszej wartości funkcji kryterialnej otrzymana w całym czasie
obliczeń normalizowana przez najlepszą wartość kryterium w populacji inicjującej

The above results show that the algorithm with the best efficiency of criterion value

improvement is GA3, i.e. the one with specific cross-over and classical mutation.

Fig. I and 2 presented the ratios obtained after considered iterations (N = 0, ..., 50)

from the beginning. Now in Fig. 3, 4, 5 and 6 some criterion value ratios calculated in separate

iterations will be presented.

Fig. 3 shows that the algorithms GA2 and GA4 lost the best solutions, whereas the

algorithms GA1 and GA2 improve them. At the same time the worst solutions were preserved

better by the algorithms GA1 and GA2 (see Fig. 5) and the algorithms GA3 and GA4 reduced

them the best.

0 .9 9 7
0 .9 9 6

0 .9 9 6

0 .9 9 4

0 .9 9 3

0 .9 9 2

0 .9 9 1
0 .9 9

0 .9 8 9

0 .9 8 8

0 .9 9 6 9

128 A. Janiak. K. Chudzik. M.-C. Portmann

Fig.2. Average value o f the best value of criterion obtained from the beginning of computation
to iteration which is shown on x-axis normalised by the best value of criterion in initial

population in all time of computation
Rys.2. Średnia wartość najlepszej wartości kryterium otrzymana od rozpoczęcia obliczeń do

iteracji pokazanej na osi X normalizowana przez najlepszą wartość kryterium w populacji
inicjującej

Fig.3. Average value o f the best value of criterion in population in each iteration normalised by
the best value of criterion in initial population

Rys.3. Średnia wartość najlepszej wartości kryterium w populacji w każdej iteracji
normalizowana przez najlepszą wartość kryterium w populacji inicjującej

Comparison o f four genetic algorithms. 1 2 3

Fig.5. Average value of the worst value o f criterion in population in each iteration normalised
by the best value of criterion in initial population

Rys.5. Wartość średnia najgorszej wartości kryterium w populacji w każdej iteracji
normalizowana przez najlepszą wartość kryterium w populacji inicjującej

Fig.4. Average value o f average value of criterion in population in each iteration normalised
by the best value of criterion in initial population

Rys.4. Średnia wartość średniej wartości kryterium w populacji w każdej iteracji
normalizowana przez najlepszą wartość kryterium w populacji inicjującej

130 A. Janiak, K. Chudzik. M.-C. Portmann

Fig.6. Average value o f size o f population in iteration
Rys.6. Średnia wartość liczności populacji w danej iteracji

4.2. Comparison o f solution times

8000 ---
7576

7500 --WÊÊtt~
6974 7085

7000 m m — ffi!ÆÜ------------- a m
650° H B -

6000 4 - ^ —

5500
G A I C A 2 G A 3 C A 4

Fig.7. Average value of total time computation in seconds (on PC IBM 486)
Rys.7. Średnia wartość całkowitego czasu obliczeń w sekundach (dla PC IBM 486)

46

44

42

40

38

36

34

32

30
G A I G A 2 G A3 C A 4

7576

« 7 4 J 2 *

1 ■ i -------- l

1 ■ ■ ■
G A I C A 2 G A 3 C A 4

Fig.8. Average value of time of initial phase in seconds (on PC IBM 486)
Rys.8. Średnia wartość czasu fazy inicjacji w sekundach (dla PC IBM 486)

Comparison of four genetic algorithms. 131

3000 1------------------------------------- 2*«r-
2800--------------- 27TJ4---------------- H B R ~

2617 MMMM
2600 -pBmm— B B B ---------------H M -

2400 — H H — — H -
220° f w i — w B m —
2ooo 1 B M W i BIHmlł , B i l lM ,

G A I G A 2 G A 3 G A 4

Fig. 9. Average value of time of first 20 iterations in seconds (on PC IBM 486).
Rys.9. Średnia wartość czasu obliczeń pierwszych 20 iteracji (dla PC IBM 486)

It is easy to notice that the algorithm with the shortest solutions time is GA3, i.e. the

one with the best efficiency o f criterion value improvement.

""27114

—
I ■ I I
I ■ I I

G A I C A 2 G A 3 G A 4

4.3. Comparison o f cross-over operators

The results o f comparison are given in Fig. 10, 11, 12 and 13. ("Partial" means that

results were calculated for each five succeeding iteration of algorithm.)

15 20 25 30
Iterations

Fig. 10. Average Value of Partial PErcentage o f Children that are Strictly Better than Both
Parents

Rys. 10. Średnia wartość odsetka dzieci ściśle lepszych od obojga rodziców (liczona co 5
iteracji)

132 A. Janiak. K. Chudzik. M -C. Portmann

45
40

g 35
q_ 30 m
a 25
a 20
t «
< i»

6
0

i — - i T

— ♦ --- GA1
— ■ — GA2

— A r— G A3
— X — G A4

J-------1-------
10 15 20 26 30 36 40 45

Iteration

Fig. 11. Average Value of Partial PErcentage of Children that are Better or Equivalent to
Both Parents

Rys. 11. Średnia wartość odsetka dzieci lepszych lub równoważnych obojgu rodzicom (liczona
co 5 iteracji)

58

66

g 84
& « m
3 60
Ł 48

f " 7

p ____

\
fi----- ----- i — r h— n

-
— • — c A1

■*5t— —H
r - i— i i— ^

— ■ --- G A2
A3— Ai— C

___W r

10 15 20 25 30 35 40 45

Iteration

Fig. 12. Average Value o f Partial PErcentage of Children that are Strictly Better than One o f
their Parents

Rys. 12. Średnia wartość odsetka dzieci ściśle lepszych od jednego z rodziców (liczona co 5
iteracji)

»
86

„ 84
X
< r82
a 80
E «

1 76 < 74

72

70

h

h - «
M

------ F i

i — <
7 ^ r -

S— - s k
«-------^!r— A — A — GA1

— B — GA2

— A — GA3

— X — G A4

10 1S 20 25 30 35 40 45 50

Iteration

Fig. 13. Average Value of Partial PErcentage of Children that are Better or Equivalent to One
of their Parents

Rys. 13. Średnia wartość odsetka dzieci lepszych lub równoważnych jednemu z rodziców
(liczona co 5 iteracji)

Comparison o f four aenetic algorithms

It is easy to notice in Fig. 10 and 12 that the algorithms GA1 and GA3, i.e. the

algorithms with specific cross-over give the best results. It means that the best cross-over

operator is the specific one. Using this operator it was possible to obtain 10% children strictly

better than both parents. It is also interesting that the classical operator obtains the percentage

of children that are better or equivalent to one or both parents, which is better than the specific

one. It follows from the above that the classical cross-over operator generates a lot o f solutions

which do not change the criterion value. Thus, it easy to notice that a utilisation o f specific

problem properties in cross-over operator can improve the algorithm work.

4.4. Comparison o f mutation operators

Iteration

Fig. 14. Average Value of Partial PErcentage o f Mutants that are Strictly Better than the
Original Chromosome

Rys. 14. Średnia wartość odsetka mutantów ściśle lepszych od oryginalnego chromosomu
(liczona co 5 iteracji)

iteration

Fig. 15. Average Value of Partial PEercentage of Mutants that are Better or Equivalent to the
Original Chromosome

Rys. 15. Średnia wartość odsetka mutantów lepszych lub równoważnych jednemu z rodziców
(liczona co 5 iteracji)

134 A. Janiak. K. Chudzik. M.-C. Portmann

Analysing Fig. 14 and 15 it is not easy to say which o f mutation operators is better since

the results are similar for all o f them. However it should be stressed on the fact that the

mutation operators are more efficient than the best (i.e. specific) cross-over operator since the

last one can obtain about 10% solutions better than their parents and the mutation operators

can obtain about 20% solutions better than their predecessor.

5. Conclusion rem arks

It follows from the above comparison of four genetic algorithms, that the algorithm

GA3 with specific (i.e. employing some problem elimination properties) cross-over and the

classical mutation operator has the best efficiency of criterion value improvement. This

algorithm has also the shortest solution time. Comparison of cross-over operators shows that

the specific cross-over operator is better than classical one, however it was able to obtain only

about 10% children strictly better than both parents. On the other hand, comparison of

mutation operators show that it is not easy to say which mutation operator is better since the

results are similar. It is also interesting that the mutation operators are more efficient in finding

better solutions than the best cross-over (i.e. specific) operator, since they can find about 10%

more better solutions than the best cross-over operator.

REFERENCE

1. Janiak A.: Exact and Approximate Algorithms o f Job Sequencing and Resource Allocation
in Discrete Manufacturing Processes. Monograph published by Technical University of
Wroclaw, No 87/20, 1991 (in Polish).

2. Janiak A., Kobylański P.: Genetic algorithm for the permutation flow-shop problem with
resource. Zeszyty Naukowe Politechniki Śląskiej, Seria Automatyka, z. 114, 1994,
pp. 99-109 (in Polish).

3. Janiak A., Portmann M.-C., Plaskowicki P.: Some results of experiments with genetic
algorithm on the basis o f flow-shop problem with transferable resources. Elektrotechnika,
Wyd. AGH, T. 14, Z. 13, 1995, pp. 247-255.

4. Whitley D., Starkweather T.: GENITOII: a distributed genetic algorithm. J. Expt. Theor.
Artif. Intell., 1990.

Recenzent: Dr hab. inż Konrad Wala, prof. AGH
Wpłynęło do Redakcji do 30.06.1996 r.

Comparison o f four genetic algorithms. 135

A bstract

In the paper we make a comparison of four genetic algorithms on the basis o f flow type
manufacturing problem. It was assumed that models o f job processing times in this problem are
not given (constant) but they are convex functions of some limited recources. There were
considered two different cross-over and mutation phases. One cross-over and one mutation
phase was classical one and other cross-over and mutation phase was specific one with
employed some specific elimination properties o f the problem. The combination o f these
phases yield the considered four genetic algorithms. There are given several experimental
results with proposed genetic algorithms together with their analysis. It follows from this
analysis that the best algorithm is one with specific cross-over phase and classical mutation one.
It is also interesting that the mutation operators are more efficient in finding better solutions
than the best cross-over (i.e. specific) operator since they can find about 10% more better
solutions than the best cross-over operator.

