ZESZYTY NAUKOWE POLITECHNIKI SLASKIEJ

1996

Seria: AUTOMATYKA z. 117 Nr kol. 1337

Adam JANIAK, Krzysztof CHUDZIK, Marie-Claude PORTMANN
Politechnika Wroctawska; Ecole des Mines de Nancy

COMPARISON OF FOUR GENETIC ALGORITHMS ON THE BASIS OF
SOME FLOW-SHOP PROBLEM

Summary. The paper is devoted to the comparison of four genetic algorithms on

the basis of some flow-shop problem. It was assumed that models of job processing
times in this problem are convex functions of resources. In some of the constructed
algorithms there were used specific cross-over and mutation techniques which
employed the specific problem properties. There are given several experimental results
with proposed genetic algorithms together with their analysis.

POROWNANIE CZTERECH ALGORYTMOW GENETYCZNYCH NA BAZIE
SEKWENCYJIJNEGO PROBLEMU PRZEPLYWOWEGO

Streszczenie. Praca jest poswiecona poréwnaniu czterech algorytmow
genetycznych na bazie problemu przeptywowego. Przyjeto zatozenie, ze modele
czaséw trwania wykonywania zadan sg wypuktymi funkcjami zasobéw. W czesci
skonstruowanych algorytmdéw byty uzyte specyficzne techniki krzyzowania i mutacji,
ktére wykorzystywaty specyficzne wiasnosci problemu. Podane zostaty wyniki
eksperymentéw numerycznych z zaproponowanymi algorytmami genetycznymi razem
z ich analiza.

1. Introduction. Problem formulation

The paper deals with the extension of a classical permutation flow-shop problem to the

case when processing times ofjobs are not given, but they are convex decreasing functions of

locally and globally constrained resources. This kind of problems appears in many

manufacturing processes. In [1] it was proved that the problem under consideration is NP-hard

even for the two machine case. The branch and bound algorithm for this problem was

constructed in [1]. It was able to solve optimaly problems with only about 100 operations. In

this paper we construct four genetic algorithms to solve it. The first (not fully successful)

attempts at using genetic approach in order to solve flow shop problem with some resource

constraints were made in [2,3] for linear models.

The problem may be formulated as follows.

124 A. Janiak. K. Chudzik. M.-C. Portmann

There are n jobs (available for processing at time zero) which have to be
processed on m (continuously available) machines in that order. The processing
orders of jobs on all machines are the same. Each machine A/,,, v=1 , 2 can handle at

most one job at a time. Job J j =1, 2, . thus consists of a sequence of m operations
0j],0j2,...,0v,...,0j,,, where Ojv corresponds to the processing ofjob on machine Mv
during an uninterrupted processing time pJv. It is assumed that the processing time p JV of the
operation 0jv depends on an amount of resource uJV, allotted to perform this operation in the

following way:

where /,,,(¢) are convex decreasing functions.

To avoid complicated notation, in the sequel it will be assumed that processing times of
all the operations are dependent on a common resource, however, the results obtained in the
paper are also valid for the cases when the separate machines demand different resources for
realization of operations (and the other do not require any additional resources - see the tested

examples in Section 3).

It will be assumed that a resource allocation r=[r),/2,...,rv,...,rmj (where

rv={[rlv,...,r,,,,....1,,,,]) is feasible if the following constraints are satisfied:
alNErv<PlN j=12 n\v=12
n m
ZZ
J-\ v
where aJV, P)v are, respectively, the lower and the upper limits on the amount of resource

allotted to a realization of the operation 0JY/, / ;v(a/v) anc* >°) are

maximum (normal) and minimum (crash) durations of Ojv, 0* ajv <Pjv <,R, and R is the

n
global amount of resource allotted to a realization ofall thejobs, R*Z Z aj«m
I-i

The set of all the feasible resource allocations will be denoted by R.

Comparison of four genetic algorithms... 125

A processing order of jobs will be represented by a permutation

K={n{\),7t{2)......7t(j),..., eA(rtf) of thejob indices 1,2 n, where k{) denotes that index
ofajob which is in the positionj of n. Let n denote the set ofall such permutations.

Moreover, for a permutation neTl and a resource allocation reR by
<m«(7rr) = fnax{<ff(/)(7r+9} ke denoted the maximum job completion time, where

r,r) denotes the completion time ofjob (precisely, the operation 0 ~ m).

The problem is to find such a control, i.e. such a job processing order n ell and such

a feasible resource allocation r' el? that the maximum job completion time is minimized.

2. Problem properties

By rx will be denoted the optimal resource allocation for a permutation n, ie. a

resource allocation for which =rnmCm,(w,r). The optimum resource allocation

r‘ e/? for each rreT| may be obtained by the known algorithms of the convex programming
and for the case with linear models of operations is obtained by applying the algorithm of
Harnacher and Tufekci with some modifications (see [1] for description).

It is easy to notice that the following equation holds:

1y i N mei yn « wa j \

ZA(D)i iLGHD ZX Z AWV (~)v)+tZ (1)

This equation follows from the fact, that the maximum job completion time Cmxx{/i,rx)

is equal to the duration time between the beginning moment of the realization of the firstjob

/(i) in n on the first machine and the completion moment of the last job J ~ on the last

machine. It is easy to notice that this duration time, in turn, is equal to the sum of the
processing times of operations from operation sequence of the form (1) for which realization
of each operation starts immediately after the completion of the preceding operation from this
sequence. In other words, there is no inserted idle time between the realization of the
succeeding operations of this operation sequence. This kind of operation sequence is called

critical path and positions jv Jm-{ for which

126 A. Janiak. K. Chudzik. M.-C. Portmann

—

Cmix M ~2 A/l + X 2 A()Vv(r»(*)v) + 2 fx(k),n[rn(k)m] (2)
*1 V2 =

are called the critical path positions.

A subsequence of the consecutive jobs from the permutation je il between succeeding
(different) critical path positions of all the critical paths in rrell (under r’ s R) is called a
section (see [1] for precise definition).

It was proved in [1] that:

Properly 1

It is not possible to obtain better solution (i.e. a permutation with the smaller value of
Cmex) by the interchanging the jobs inside each section. The improvement of CnBXis possible
only by moving the jobs outside of the sections.

The precise formulation of this property is in [1], This property will be applied in some

genetic algorithms in the next section.

3. Outline of the genetic algorithms

There were constructed four different genetic algorithms to solve the problem under

consideration. The general scheme [4] of them is as follows:
N:=0,

A) Initial Phase,

B) Survival Phase,

C) Cross-over Phase,
N:=N +\,

D) Mutation Phase,

E) If(no Stop Test) then go to B.

In initial phase of all the algorithms the initial populations were obtained by
approximate algorithms of Dannenbring, Campbell, Dudek, Smith and Nawaz which were
generalized [1] to the case with resource.

In cross-over phases were used classical cross-over technique [4] or specific cross-over
technique [3] in which Property 1was employed. The mutation phase was constructed in the

similar way.

Comparison oFfour genetic algorithms. 121

Finally we considered the following four implementations of genetic algorithm (GA):
GAl - G.A. with specific cross-over and with specific mutation;
GA2 - G.A. with classical cross-over and with specific mutation;
GA3 - G.A. with specific cross-over and with classical mutation;
GA4 - G.A. with classical cross-over and with classical mutation.
The examples on which the above mentioned genetic algorithms were tested were

described in [3],

4. Presentation of results

4.1. Comparison ofquality ofsolutions

0.097 0.9969

0.996
0.996
0.994
0.993
0.992
0.991

0.99
0.989
0.988

Fig. 1. Average value of the best value of criterion function obtained in all time of computation
normalised by the best value of criterion in initial population
Rys.l. Srednia warto$¢ najlepszej wartosci funkcji kryterialnej otrzymana w catym czasie
obliczen normalizowana przez najlepsza warto$¢ kryterium w populacji inicjujacej

The above results show that the algorithm with the best efficiency of criterion value
improvement is GA3, i.e. the one with specific cross-over and classical mutation.

Fig. | and 2 presented the ratios obtained after considered iterations (N = 0, ..., 50)
from the beginning. Now in Fig. 3, 4, 5 and 6 some criterion value ratios calculated in separate
iterations will be presented.

Fig. 3 shows that the algorithms GA2 and GA4 lost the best solutions, whereas the
algorithms GA1 and GA2 improve them. At the same time the worst solutions were preserved
better by the algorithms GA1 and GA2 (see Fig. 5) and the algorithms GA3 and GA4 reduced
them the best.

128 A. Janiak. K. Chudzik. M.-C. Portmann

Fig.2. Average value ofthe best value of criterion obtained from the beginning of computation
to iteration which is shown on x-axis normalised by the best value of criterion in initial
population in all time of computation
Rys.2. Srednia warto$¢ najlepszej wartosci kryterium otrzymana od rozpoczecia obliczeri do
iteracji pokazanej na osi X normalizowana przez najlepsza warto$¢ kryterium w populacji
inicjujacej

Fig.3. Average value ofthe best value of criterion in population in each iteration normalised by
the best value of criterion in initial population
Rys.3. Srednia warto$¢ najlepszej wartosci kryterium w populacji w kazdej iteracji
normalizowana przez najlepszg warto$¢ kryterium w populacji inicjujacej

Comparison o f four genetic algorithms. 123

Fig.4.Average value of average value of criterion in population in each iteration normalised
by the best value of criterion in initial population
Rys.4. Srednia warto$¢ $redniej wartosci kryterium w populacji w kazdej iteracji
normalizowana przez najlepszg wartos¢ kryterium w populacji inicjujacej

Fig.5. Average value of the worst value of criterion in population in each iteration normalised
by the best value of criterion in initial population
Rys.5. Wartosc¢ $rednia najgorszej wartosci kryterium w populacji w kazdej iteracji
normalizowana przez najlepsza warto$¢ kryterium w populacji inicjujacej

130 A. Janiak, K. Chudzik. M.-C. Portmann

Fig.6. Average value ofsize of population in iteration
Rys.6. Srednia warto$¢ licznoéci populacji w danej iteracji

4.2. Comparison ofsolution times

8000
7576

7500 WEELtt~
00 mm — e am
650° HB -
6000 41 LIS R— 1
s500 1 L] . -

GAI CA2 G A3 CAL

Fig.7. Average value of total time computation in seconds (on PC IBM 486)
Rys.7. Srednia warto$¢ catkowitego czasu obliczeri w sekundach (dla PC IBM 486)

46
44
42
40
38
36
34
32

GAI GA2 GA3 CA4

Fig.8. Average value of time of initial phase in seconds (on PC IBM 486)
Rys.8. Srednia warto$¢ czasu fazy inicjacji w sekundach (dla PC IBM 486)

Comparison of four genetic algorithms. 131

300 & 2*«r-

2800 =7 HBR~
7 MVVM

2600 -pBMM— BB B --------------- HM -

2400 —HH — _H -

2 flw i Mypml I

2000 J8Mw B BiHmil y BillM
GAI GA2 GA3 GA4

Fig. 9. Average value oftime of first 20 iterations in seconds (on PC IBM 486).
Rys.9. Srednia warto$é czasu obliczen pierwszych 20 iteracji (dla PC IBM 486)

It is easy to notice that the algorithm with the shortest solutions time is GA3, i.e. the

one with the best efficiency of criterion value improvement.

4.3. Comparison ofcross-over operators

The results of comparison are given in Fig. 10, 11, 12 and 13. ("Partial" means that

results were calculated for each five succeeding iteration of algorithm.)

15 20 25 30
Iterations

Fig. 10. Average Value of Partial PErcentage of Children that are Strictly Better than Both
Parents
Rys. 10. Srednia warto$é odsetka dzieci $cisle lepszych od obojga rodzicéw (liczona co 5
iteracji)

132 A. Janiak. K. Chudzik. M -C. Portmann

45
40

g > i—-i T

thO

; % — ¢ —GAl

t o« — m— GA2

< i» — Ar—GA3
6 — X — GA4
0 | S— S

10 15 20 26 30 36 40 45

Iteration

Fig. 11. Average Value of Partial PErcentage of Children that are Better or Equivalent to
Both Parents
Rys. 11. Srednia warto$¢ odsetka dzieci lepszych lub réwnowaznych obojgu rodzicom (liczona
co 5 iteracji)

58

g % [—
& « fr7
m
3@\)
L o48 .52 _____ i h— n
e cAL ro-i— i i— "
— m—GA2
— Ai— CA3
w r

10 15 20 25 30 35 40 45
Iteration

Fig. 12. Average Value of Partial PErcentage of Children that are Strictly Better than One of
their Parents
Rys. 12. Srednia warto$¢ odsetka dzieci $ciéle lepszych od jednego z rodzicéw (liczona co 5

iteracji)
»
H how Fi
. 84 M
X h
<r&
ad T
E «' < s -sk
@ometli— A — A— GA1l
J- 78 — B— GA2
7 — A — GA3
7 — X — GA4

10 1S 20 25 30 35
Iteration

40 45 50

Fig. 13. Average Value of Partial PErcentage of Children that are Better or Equivalent to One

of their Parents

Rys. 13. Srednia warto$¢ odsetka dzieci lepszych lub réwnowaznych jednemu z rodzicéw

(liczona co 5 iteracji)

Comparison of four aenetic algorithms

It is easy to notice in Fig. 10 and 12 that the algorithms GAl and GA3, i.e. the
algorithms with specific cross-over give the best results. It means that the best cross-over
operator is the specific one. Using this operator it was possible to obtain 10% children strictly
better than both parents. It is also interesting that the classical operator obtains the percentage
of children that are better or equivalent to one or both parents, which is better than the specific
one. It follows from the above that the classical cross-over operator generates a lot of solutions
which do not change the criterion value. Thus, it easy to notice that a utilisation of specific

problem properties in cross-over operator can improve the algorithm work.

4.4, Comparison ofmutation operators

Iteration

Fig. 14. Average Value of Partial PErcentage of Mutants that are Strictly Better than the
Original Chromosome

Rys. 14. Srednia warto$¢ odsetka mutantéw $cisle lepszych od oryginalnego chromosomu
(liczona co 5 iteracji)

iteration

Fig. 15. Average Value of Partial PEercentage of Mutants that are Better or Equivalent to the
Original Chromosome

Rys. 15. Srednia warto$¢ odsetka mutantow lepszych lub réwnowaznych jednemu z rodzicéw
(liczona co 5 iteracji)

134 A. Janiak. K. Chudzik. M.-C. Portmann

Analysing Fig. 14 and 15 it is not easy to say which of mutation operators is better since
the results are similar for all of them. However it should be stressed on the fact that the
mutation operators are more efficient than the best (i.e. specific) cross-over operator since the
last one can obtain about 10% solutions better than their parents and the mutation operators

can obtain about 20% solutions better than their predecessor.

5. Conclusion remarks

It follows from the above comparison of four genetic algorithms, that the algorithm
GA3 with specific (i.e. employing some problem elimination properties) cross-over and the
classical mutation operator has the best efficiency of criterion value improvement. This
algorithm has also the shortest solution time. Comparison of cross-over operators shows that
the specific cross-over operator is better than classical one, however it was able to obtain only
about 10% children strictly better than both parents. On the other hand, comparison of
mutation operators show that it is not easy to say which mutation operator is better since the
results are similar. It is also interesting that the mutation operators are more efficient in finding
better solutions than the best cross-over (i.e. specific) operator, since they can find about 10%

more better solutions than the best cross-over operator.

REFERENCE

1. Janiak A.: Exact and Approximate Algorithms of Job Sequencing and Resource Allocation
in Discrete Manufacturing Processes. Monograph published by Technical University of
Wroclaw, No 87/20, 1991 (in Polish).

2. Janiak A., Kobylanski P.: Genetic algorithm for the permutation flow-shop problem with
resource. Zeszyty Naukowe Politechniki Slaskiej, Seria Automatyka, z. 114, 1994,
pp. 99-109 (in Polish).

3. Janiak A., Portmann M.-C., Plaskowicki P.: Some results of experiments with genetic
algorithm on the basis of flow-shop problem with transferable resources. Elektrotechnika,
Wyd. AGH, T. 14, Z. 13, 1995, pp. 247-255.

4. Whitley D., Starkweather T.: GENITOII: a distributed genetic algorithm. J. Expt. Theor.
Artif. Intell., 1990.

Recenzent: Dr hab. inz Konrad Wala, prof. AGH
Whptyneto do Redakcji do 30.06.1996 r.

Comparison of four genetic algorithms. 135

Abstract

In the paper we make a comparison of four genetic algorithms on the basis of flow type
manufacturing problem. It was assumed that models ofjob processing times in this problem are
not given (constant) but they are convex functions of some limited recources. There were
considered two different cross-over and mutation phases. One cross-over and one mutation
phase was classical one and other cross-over and mutation phase was specific one with
employed some specific elimination properties of the problem. The combination of these
phases yield the considered four genetic algorithms. There are given several experimental
results with proposed genetic algorithms together with their analysis. It follows from this
analysis that the best algorithm is one with specific cross-over phase and classical mutation one.
It is also interesting that the mutation operators are more efficient in finding better solutions
than the best cross-over (i.e. specific) operator since they can find about 10% more better
solutions than the best cross-over operator.

