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W O R S T -C A S E  P E R F O R M A N C E  E V A L U A T IO N S  F O R  S O M E  
S C H E D U L IN G  A L G O R IT H M S

S u m m a ry . A considerable attention  has been passed recently to the  flow shop 
problem  w ith the mean flow tim e criterion, chiefly due to its industrial applica
tions. Most of the known approximation algorithms recommended for this problem 
have th e  worst-case performance ratio equal the num ber of jobs n  or the num ber of 
machines m.  In this paper we propose an algorithm with this ratio  equal \m/k~\pk, 
where pk is the worst-case performance ratio of an algorithm which solves an aux
iliary ¿-machine problem.

O S Z A C O W A N IA  N A JG O R S Z E G O  P R Z Y P A D K U  D L A  P E W N Y C H  
A L G O R Y T M Ó W  S Z E R E G O W A N IA

S tre sz c z e n ie . Znaczny uwagę zwrócono ostatnio, głównie ze względu na liczne za
stosowania przemysłowe, na przepływowy problem szeregowania z kryterium  m ini
malizacji średniego czasu przepływu. Większość znanych algorytmów aproksym a
cyjnych dla tego problemu posiada wspólczynnnik najgorszego przypadku równy 
liczbie zadań n  lub liczbie maszyn m.  W  pracy proponujemy nowy algorytm  o 
współczynniku równym [Yn/fc]/)*, gdzie p* jest wspólczynnikem najgorszego przy
padku pewnego algorytmu rozwiązującego pomocniczy problem ¿-maszynowy.

1. I n t ro d u c t io n

A considerable attention has been passed recently to the flow shop problem w ith the 

m ean flow tim e criterion, chiefly due to its industrial applications. Since the problem is 

/VP-hard for two and more than two machines, a  lot of approxim ation algorithms have 

been developed to  provide a good solution in a quick time, see the bibliography.

Traditionally, approximation algorithms are ranked according to  the running tim e 

(or com putational complexity) and the distance from a generated solution to  the  optim al 

solution (an algorithm  performance). Several measures of the algorithm perform ance have 

been introduced. These measures can be investigated either experim entally (com puter
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tests on random  instances) or analytically (worst-case analysis, probabilistic analysis). 

Experim ental analysis is the most popular, easy to perform, however subjective m ethod 

of evaluation of an algorithm performance since results depend on a chosen sample of 

instances. Alternatively, the worst-case and/or probabilistic analyses yield an objective, 

instance independent evaluation of an algorithm performance. One can say th a t these 

analyses provide another, more suitable, characteristics of the algorithm behavior.

The paper deals with the perm utation flow-shop problem formulated as follows. 

The set of n  different jobs should be processed on m  different machines. Each job  j ,  

j  6  J  = { l , . . . , n }  passes through the machines 1, 2, . . . , m  in th a t order and requires 

uninterrupted tim e py  for processing on machine i, i € M  — {1, ..,m }. M achine t, i 6 M , 

can execute a t most one job a t a time and each machine processes the jobs is the same 

order. We wish to find the optim al job processing order, represented by a perm utation  it 

on the job set J ,  which minimizes the mean flow tim e

(1)
n J=l

where

Ci - « ' S ' S , , P     (2)i — I l—J/ —1

is the completion tim e of job i\ ( j )  on machine i, j  =  1, . . . ,  n, t €  M .

T he d a ta  n , m, (py,  i € M , j  € J ) ,  specify an instance Z  of the problem. Denote by II 

the set of all perm utations on J,  by /•’(it; Z ) the mean flow tim e for the job processing order 

it and instance Z.  The processing order it’ 6 II such tha t F( it’; Z)  =  min*£n F(v;  Z)  

is called the optim al processing order. Let it'4 £ II denote a perm utation generated 

by an algorithm A. The worst-case performance ratio of the algorithm A is defined as 

t =  min{y : F ( n A\ Z ) / F ( it*; Z)  < y, for each instance Z ) .  In the sequel, the argum ent 

Z  will be om itted in F(it; Z)  if it is not necessary.

We will use a  simplified notation analysing Z.  If the set J  consists of o >  1 subsets 

J\ ,  Ji ,  • • • > Jo of identical jobs we assume that each job from a subset Jj  is indexed by the 

sam e index j ,  j  — 1, 2 , . . . ,  o. In such case the job processing order will be considered as 

a  perm utation  with repetitions. Let it/ denote a perm utation on a  set /  C { 1 ,2 , . . . ,  o}. 

T he symbol (it/) , will denote the a—times concatenation of perm utation it/.
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2 . E x is t in g  a lg o r i th m s

2S7

In this section we provide some new worst-case evaluations for few algorithms known 

from the literature. The complete list of currently known evaluations is given in Table 1.

Among constructive approximation algorithms provided for the stated problem one 

can find a  group of m ethods th a t refer to job waiting times, between jobs delays, gaps, 

jobs matching, or jobs fitness, [9, 6, 20]. Such algorithms were designed for problems with 

the makespan criterion as well as to those with the total (weighted) sum of completion 

tim es. Five algorithms proposed in [9] also belong to this class. There are based on a 

common scheme and create the perm utation by adding step-by-step a new job to the 

end of existed chain of jobs. Thus, the algorithm operates on sets of scheduled (S ) 

and unscheduled yet jobs (U =  J \ S ) .  Jobs from the set S  form a partial perm utation 

cr, and let C,ff(d) denote the completion time of the last job from S  on the machine i, 

i € M ,  d =  |S | . Let j  6 U be a job added to the end of cr, i.e. the new partial 

perm utation  is a j .  Then the earliest completion times of job j  are equal C\j — C\„(d) + P ij, 

Cy - max{ C,v(d), C f-i y } +  py, i =  2 The latest completion times of job j  are

defined as follows £>;j — C„y -  D ?l;+] p3j,  i 6 Af. If C.-yj) <  Dy — py then we say tha t 

there is a  delay between jobs a(d)  and j  on machine i. Since the starting  tim e of job j  on 

machine i can be chosen from the interval [Cy — py, D y — Py]i then if Cy < D-,j some of 

these delays can be reduced. To this order define for job j  two indices: aj is the smallest 

index ¿,1 <  i  <  m such tha t C,0(,y =  Dy — py, whereas bj is the highest index i satysfying 

this equality. Clearly aj < bj. The value ]£°L]'(A y ~  P*i ~  (<q) is called the total back

delay, which is reducible to the value ~  Pv ~  C«o(<i)) by appropriate selection

of sta rting  tim es of j  on machines 1 , . . . ,  aj — 1. The value D ’J=6J+i(Cr,J- — p,j — ) is

the total front delay, which however cannot be reduced.

A job k  to  follow by o has been selected among those from U in the following manner. 

F irst, for each job j  £  U a priority value is calculated by using completion tim es of jobs 

j  in the sequence a j .  Next job k € U with the least priority value is selected and ak  

becomes the new sequence for the next iteration. The authors of [9] have proposed five 

priority rules, called hereafter as algorithms K S I , . . . ,  K S 5:

K S \  \ ( to ta l  f ro n t d e lay ) ^ +]((7y -  py  -  C ,„M ),
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ATS2 : ( to ta l  b e tw e e n  jo b s  d e lay ) w f S2 =  £ « ,(C V , - p . j  -  C,„^)),

K S 3  : ( to ta l  b ac k  d e lay ) w fS3 =  ~  P>> ~  C „ w ) ,

ATS4 : ( to ta l  w e ig h ted  b e tw e ee n  jo b s  d e lay ) w f54 =  E[i=j * (C .j -p«y  - C „ ( d)),

K S b  : (m a x im u m  le ft sh if t sav ings) wjfss =  — E E i  (-D«j — C, j )

To ensure b e tte r solution performance, each job is considered in tu rn  as the first job in the

prim al partia l sequence, i.e. the algorithm is repeated n times, each tim e sta rting  from 

cr =  ( j)  for succesive j  =  l , . . . , n .  Algorithms A 'S l , . . . ,  K S 5  have the com putational 

com plexity 0 ( n 3m ). Note th a t algorithm RC' ,  [20], is a special case of ATS2 since ljKS2 

can be also w ritten as £ J 12

We begin analysis of algorithms K S  1, . . . ,  K S 5 with an example.

E x a m p le  1. Let m >  2. The job set consists of two subsets J\ and Ji  with cardinalities 

1 and n — 1, respectively. The processing times are equal to  pmi =  l ,p m- i,i  =  pm- i ,2 =  

Pm2 =  e, where e is the sufficiently small num ber such tha t lim<_o t n2 =  0. All the 

rem aining (undefined above) processing times are equal to zero. O

S tarting  from a  =  (1) we have to generate job processing order it'A =  ( l ) i ( 2)n_!, 

A  6  { / f S l , . . . ,  A"S5} since there are no other alternatives. In turn , starting  from cr =  (2) 

we can generate the job processing order itx =  (2) i ( l ) i ( 2)n_2, A  €  { K 5 1 , . . . ,  K S b ) .  

Indeed, if cr =  (2) we can schedule next the job from J\  or a job from Jj.  In both cases 

delays between cr and newly scheduled job are zero, so the partial processing order for the 

next iteration can be a  — (2) j(l)x , and this result does not depend on the selected priority 

values I < S l , . . . , K S b .  Continuing, there are no other choices. Conseqently, F(n 'A) =  

i [ n + § e n ( n + l ) ]  and F (itx ) =  ^[2c +  | c ( n - 2 ) ( n -  1) +  ( n - 1)(1 +  2e)]. It can be verified 

th a t the perm utation it* =  (2 )„_ i(l)i is optim al and F{ it’ ) =  -̂[1 +  ¿ m ( n — 1) +  2ne — e)]. 

Clearly F ( i tx ) < F(i tM). Finally F (itx )/F (it* ) tends to n - 1  if e -+ 0, A € / ( S I , . . . ,  KS 5 .  

■

In [3] it has been shown th a t the algorithm producing random perm utation  has the 

worst-case perform ance ratio equal to n. In the above context, the precise proof yielding 

value of r)A, A 'S l, . . . , I < S b  seems to be of little im portance and will be om itted.
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3. N ew  a lg o r i th m s

In this section we propose a family of algorithms, called T k ,  which are based on an 

approxim ation of m-machine problem by some ¿-machine flow shop problem for ¿ <  m. 

Let m i , . . . ,  m* be a  sequence of integers such th a t m , >  1, s =  1 , . . . ,  ¿ , ¡T)*=1 m 3 =  m , for 

some k < m.  We define /,■ =  f =  1 , . . . ,  ¿, and /q =  0. T he auxiliary ¿-m achine

flow shop problem has processing times defined as follows

<i
Hi =  E  P>i- (3)

Athough the la tte r problem is univocally defined by the sequence ( m i , . . . ,  rrik), however 

for the sake of notation simplicity we will identify it by k. Since this problem for k > 

1 is still N P - hard, we assume tha t it is solved by an approxim ation algorithm w ith 

th e  worst-case performance ratio p*. Clearly, the proposed algorithm  T k  generates a  

perm utation  71™ by solving, with the worst-case bound pk, the ¿-m achine flow shop 

problem  w ith processing times defined by (3). We will show tha t there exists in this family 

an algorithm  with the worst-case performance ratio  less than \ m / 2]. Let us denote this 

¿-m achine instance by Z k, and appropriate job completion times by Ci j (Z )  and C i j (Z k). 

We sta rt the  analysis from some auxiliary properties.

P r o p e r ty  1. For any it, any Z , any j  G N,  and any ( m , , . . .  , m*), we have

C mMj)( Z )  < Ck„0 )( Z k). a  (4)

P ro o f . Let 1 <  uo <  u\ <  . . .  < um < j  be the sequence of integers minimizing the

right-hand side of formula (2) for i =  m . Then, we obtain

Oml,(j)(Z )  =  E P « ( 0  = E E E P * * ( 0  - E E E P * * ( t)
J = 1  r = l  -hi r = l  5=fr_i -f 1

=  E  E  E  £  E  p « w
r = l  i=U|r_, , =fr_ , + l  r_ ,  t =v (_,r_ 1 + ,

-  u -  -  —  r — 1 t— u r_i

which completes the proof. ■
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P r o p e r ty  2 . For any t v ,  any Z,  any j  S N,  and any ( m i , . . .  we have

Cr*(j)(Zk) m maxCmr(i){Z), (5)

where

™m*x — max to,-. □ (6)

P ro o f . Employing (2) for i — m we obtain the following sequence of inequalities

TTJrnox Tn 3$

‘ m a r  ' - 'm x u)(z ) =  E  <• E  E  p « w

TTlmox fr J* ntrnai  ̂ -̂*r i

■  £  ' ,," o )2 : S  . < » »  “ < / - < / £ ,  2  f t  .t = l  - - - - -  r = l  j = / r_ 1 + l  t=l -  r = l  i=  Jxr,•— l

where x rt- =  m in{/r_i +  i, /,}. Note tha t for any fixed i we have z r-i,i <  x r Next  note 

th a t for fixed i maximization can be done over indices vr =  x r;, then we can continue as 

follows
771 m a x  k  Vr k  Vr  771 m a x

=  - y .  m ax c y  y  pXrfi<(o)> max E  E  ( E  Fir**«))

k  v r m r  k  Vr  tr

> max y  y  ( y p Tr-rtt\) — max E  E  ( E  TMo)

fc  V r

- - -  “  “  r = 1  i = v r_j

T he final inequality uses the well-known claim ^ ¡ £yi maxjga a,j >  m axjeB J2ieA aij■ ■

By using introduced properties we can derive evaluations on the worst-case perfor

m ance ratio  for algorithms Tk .

T h e o re m . For any algorithm T k  defined by the sequence ( m i , . . . ,  m*) we have

V ~  m mnr Pk' ^  (7)

P ro o f . Applying (4) for iv =  tv* in the definition (1), we obtain

F (ir* ;Z )< F (iv * ;Z * ).

N ext, by the  definition of p k  we have F(tv*; Z k) / F(iv'*; Z k) < p k ,  where iv'* is the optim al 

perm utation  of the fc-machine flow-shop problem. Next applying the formulae (5) for 

*rc =  it" in the definition (1), we obtain

1 m
m mo* \ Z)  =  m mar ^  (^ )
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> ' - i .  Chx'(j)(Zk) =  F (* -; Z k) >  F { * k- Z k) >  F (lt*;Z *) .
n  j=i Pk

Combining these results we get

F { A Z )  < THmor pkF { r - , z )

which yields the upper bound on r]Tk. To complete the proof we will provide an example 

showing th a t this bound is tight.

E x a m p le  2. Let m  > 2. W ithout losing generality we can assume th a t tnmax — rrij. 

To simplify notation we set c =  m max. The job set J  consists of c subsets J u . .. , J C with 

cardinalities w  each, where w is an integer. The processing times are equal p„ — 1, i =

1 .2 . . . . ,  c. All the remaining (undefined above) processing times are equal zero. Thus, we 

have n  =  cie jobs. O

For this instance we have ijiy =  ^ ¡ =1 pt] =  1 and =  0, i =  2, . . . , k ,  for all j  =

1 .2 . . . .  ,c. Due to special structure, the auxilary problem can be solved to  optim al using 

well-known S P T  rule. Therefore pk =  1 and algorithm T k  can generate the perm utation 

KTk =  (l)u)(2)u,. . .  (c)w. Consequently n F ( n rk ) = (l/2)[u>2c ( c -  1) +  wc(w +  1)]. One can 

verify th a t the the optim al job processing order is v '  = (c ,c  — 1, . . .  l ) u and nF(iv*) =  

(l/2)crn(u; +  1). In consequence F(nTk) / F ( r m) — ( c — l ) ^ y  +  1 which tends to  c =  m max 

if w —* oo. ■

The Theorem  provides the following surprising theoretical result.

C o ro lla ry . There exists algorithm T k  such tha t

ilTk < [m /k ]Pk. a  (8)

For k = 1 we obtain well-known result pT1 =  m, [3], since in this case T 1 is equivalent 

to  S P T  and p\ =  1. For k =  2 we get evaluation r/Ti =  \ m / i \ p i , th a t had been found 

previously for other algorithms, see Table 1. In practice, solving the two- or three-m achine 

case is usually easier than general m-machine problem. Therefore fc =  2,3 can be recom

mended for applications. For example, assuming m  =  9, k =  3, m i =  m j =  m 3 =  3, and 

p3 =  1 (i.e. the auxiliary three-machine problem is solved to optim al), we obtain tjT3 — 3, 

whereas the best known up to now result refers to r)Tl =  9 or rjT2 =  fm /2] =  5. It is clear 

th a t A lgorithm  T k  will provide better results if and only if there exists an approxim ation
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algorithm  for the fc-machine problem with the worst-case performance ratio sufficiently 

good. The existence of such the algorithm remains a  problem in question.
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A b s tr a c t

The paper deals with NP-hard flow shop scheduling problem with the mean flow tim e 
criterion which has received recently a considerable attention  due to industrial applica
tions. M ost of the known approximation algorithms recommended for this problem have
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the  worst-case performance ratio equal the number of jobs n or the num ber of machines 
m.  In this paper we propose an algorithm with this ratio equal \m lk \pk ,  where pk is the 
worst-case perform ance ratio of an algorithm which solves the auxiliary ¿-machine prob
lem. A current sta te  of art in the worst-case analysis for perm utation flow-shop problems 
with various scheduling criteria has been also presented.

Tab lica  1

L o w e r  ly* a n d  u p p e r  fjA b o u n d s  ( p r o v i d e d  i n  E )  o n  t h e  w o r s t - c a s e  p e r f o r m a n c e  a s  r a t i o  

ij* o f  a n  a l g o r i t h m  A ( d e v e l o p e d  in  B )  f o r  v a r i o u s  s c h e d u l i n g  c r i t e r i a  K

A B K 1 A r,A £

G S (3 ) c u , m m [31

R [ 2 1 ] f-'rn a x \rn/2] i m / 2 1 [ 2 1 ]

C D S |1] O m « f m / 2 ' ] f n i / 2 ] [ 1 3 ]

RA [2 ] f o i l « m / \ / 2  +  0 ( l / m ) m / v / 2  +  0 ( l / m ) [ 1 4 ]

R A C S , R A E S 12] Cti i « m / % / 2  +  0 ( l / m ) m / i / 2  +  0 ( l / m ) [ 1 5 ]

P [ 1 8 ] c „ , „ m /y/2  +  0 ( l / m ) m / i / 2  +  0 ( l / m ) [ 1 5 ]

N E H [ 1 2 ] f-niAK \Jm /  2  +  0 ( l / m ) 3 + (O [ 1 5 ]

H R (S I f^ iu «» m/y/ 2  +  0 ( 1  / m ) m / \ / 2  +  0 ( l / m ) [ 1 0 ]

G H I t - n i i * m  — 1 m — 1 [ 1 6 ]

T G [ 1 0 ] C„ u x ( m  +  l ) / 2 ( m + l ) / 2 [ 1 0 ]

I E ,  M [ 1 7 ] c m „ m m [ 1 0 ]

K S \ ,I < S 2 [91 Cn*X m 771 [ 1 0 ]

C D S  +  H C [6 ] C,nxx m / 2 f r n / 2 1 [ 2 3 ]

G S [3 ] F i i n [3 ]

S P T [31 F n i m [3 ]

R C o [ 1 9 ] F 2 m / 3  +  1 / 3 m [ 2 2 ]

R C o ,m  =  2 [ 1 9 ] F 1 . 9 0 8 2 [ 2 2 ]

R C ', R C " [ 2 0 ] F n n [ 2 2 ]

R C "' [ 2 0 ] F 2 m / 3  +  l / ( 3 m ) n [ 2 2 ]

R C "', m  =  2 [ 2 0 ] F 1 . 5 7 7 n [ 2 2 ]

C D S ,C D S  + I I C [61 F n Tl [ 2 2 ]

H K ,m  =  2 [21 F 2  6 / ( o  +  fc) 2 b /(a  +  6 ) [7 ]

5 * [ 2 2 ] F < | ? - * |  +  ? ) f t [ 2 2 ]

K S \ , . . . ,  KSS [91 F n  — 1 n

T k F f r r a / L - lp * [m / k ]p t

G S [31 C 1 +  ( n  -  1 ) (T U /r o ) l  +  ( n  -  i ) ( r o / s a ) [ 2 3 ]

C D S  +  H C ,G  +  H C ,

P  +  H C , RA  +  H C [6 ] C 1 +  ( n  -  1 ) ( c r / u i ) 1 +  ( n  -  l ) ( T O / l n ) [ 2 3 ]

F [ 2 3 ] c m m [ 2 3 ]

Q /X [ 2 3 ] c [m /2 ] p3 f m / 2 ] p , [ 2 3 ]


