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Summary. A considerable attention has been passed recently to the flow shop
problem with the mean flow time criterion, chiefly due to its industrial applica-
tions. Most of the known approximation algorithms recommended for this problem
have the worst-case performance ratio equal the number ofjobs n or the number of
machines m. In this paper we propose an algorithm with this ratio equal \m/k~\pk,
where pk is the worst-case performance ratio of an algorithm which solves an aux-
iliary ¢-machine problem.

OSZACOWANIA NAJGORSZEGO PRZYPADKU DLA PEWNYCH
ALGORYTMOW SZEREGOWANIA

Streszczenie. Znaczny uwage zwrdcono ostatnio, gtdwnie ze wzgledu na liczne za-
stosowania przemystowe, na przeptywowy problem szeregowania z kryterium mini-
malizacji sredniego czasu przeptywu. Wigkszo$¢ znanych algorytméw aproksyma-
cyjnych dla tego problemu posiada wspélczynnnik najgorszego przypadku réwny
liczbie zadan n lub liczbie maszyn m. W pracy proponujemy nowy algorytm o
wspdtczynniku réwnym [Yn/fc]/))*, gdzie p* jest wspdlczynnikem najgorszego przy-
padku pewnego algorytmu rozwigzujacego pomocniczy problem ¢-maszynowy.

1. Introduction

A considerable attention has been passed recently to the flow shop problem with the
mean flow time criterion, chiefly due to its industrial applications. Since the problem is
/VP-hard for two and more than two machines, a lot of approximation algorithms have
been developed to provide a good solution in a quick time, see the bibliography.

Traditionally, approximation algorithms are ranked according to the running time
(or computational complexity) and the distance from a generated solution to the optimal
solution (an algorithm performance). Several measures of the algorithm performance have

been introduced. These measures can be investigated either experimentally (computer
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tests on random instances) or analytically (worst-case analysis, probabilistic analysis).
Experimental analysis is the most popular, easy to perform, however subjective method
of evaluation of an algorithm performance since results depend on a chosen sample of
instances. Alternatively, the worst-case and/or probabilistic analyses yield an objective,
instance independent evaluation of an algorithm performance. One can say that these
analyses provide another, more suitable, characteristics of the algorithm behavior.

The paper deals with the permutation flow-shop problem formulated as follows.
The set of n different jobs should be processed on m different machines. Each job j,
j 6 3 = {l,...,n} passes through the machines 1,2,...,m in that order and requires
uninterrupted time py for processing on machinei, i € M —{1,..,m}. Machinet, i 6 M,
can execute at most one job at a time and each machine processes the jobs is the same
order. We wish to find the optimal job processing order, represented by a permutation it

on the job set J, which minimizes the mean flow time

1
n J=I &
where
Ci- « 'S ' S , 4Py 2
is the completion time of job i\(j) on machinei,j = 1,..., n, t€ M.

The datan, m, (py, i € M, j € J), specify an instance Z of the problem. Denote by Il
the set of all permutations on J, by /*’(it; Z) the mean flow time for the job processing order
it and instance Z. The processing order it” 6 Il such that F(it’;Z) = min*£n F(v; Z)
is called the optimal processing order. Let it'4 £ Il denote a permutation generated
by an algorithm A. The worst-case performance ratio of the algorithm A is defined as
t = min{y : F(nA\Z)/F(it*; Z) <y, for each instance Z). In the sequel, the argument
Z will be omitted in F(it; Z) if it is not necessary.

We will use a simplified notation analysing Z. If the set J consists of 0 > 1 subsets
J\, Ji, e=+>Jo of identical jobs we assume that each job from a subset Jj is indexed by the
same index j, j —1,2,..., 0. In such case the job processing order will be considered as
a permutation with repetitions. Let it/ denote a permutation on a set/ C {1,2,..., 0}.

The symbol (it/), will denote the a—times concatenation of permutation it/.
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2. Existing algorithms

In this section we provide some new worst-case evaluations for few algorithms known
from the literature. The complete list of currently known evaluations is given in Table 1.

Among constructive approximation algorithms provided for the stated problem one
can find a group of methods that refer to job waiting times, between jobs delays, gaps,
jobs matching, or jobs fitness, [9, 6, 20]. Such algorithms were designed for problems with
the makespan criterion as well as to those with the total (weighted) sum of completion
times. Five algorithms proposed in [9] also belong to this class. There are based on a
common scheme and create the permutation by adding step-by-step a new job to the
end of existed chain of jobs. Thus, the algorithm operates on sets of scheduled (S)
and unscheduled yet jobs (U = J\S). Jobs from the set S form a partial permutation
cr, and let C,fi{d) denote the completion time of the last job from S on the machine i,
i € M, d = |S|. Letj 6 U be ajob added to the end of cr, i.e. the new partial
permutation isaj. Then the earliest completion times of job j are equal C\j — C\,,(d) +Pij,
Cy - max{Cyv(d),Cf-iy}+ py, i = 2 The latest completion times of job j are
defined as follows £5j —C,y - D?l;+] p3, i 6 Af. If C.-yj) < Dy —py then we say that
there is a delay between jobs a(d) and j on machine i. Since the starting time of job j on
machine i can be chosen from the interval [Cy —py, Dy —Py]i then if Cy < D-j some of
these delays can be reduced. To this order define for job j two indices: aj is the smallest

index ¢,1 < i < m such that C,00y = Dy —py, whereas bj is the highest index i satysfying

this equality. Clearly aj < bj. The value JE°L]'(Ay ~ P*i ~ (<g) is called the total back
delay, which is reducible to the value ~ Pv ~ C«o(<i)) by appropriate selection
of starting times of j on machines 1,..., aj —1. The value D J=@+i(Cr} —p,] — ) is

the total front delay, which however cannot be reduced.

A job k to follow by o has been selected among those from U in the following manner.
First, for each job j £ U a priority value is calculated by using completion times of jobs
j in the sequence aj. Next job k € U with the least priority value is selected and ak
becomes the new sequence for the next iteration. The authors of [9] have proposed five

priority rules, called hereafter as algorithms KS1I,..., KS5:

KS\ \ (total front delay) A+]((7y - py - C,,M),
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ATS2 : (total between jobs delay) wfS2= £«,(CV, -p.j - C,,,")),

KS3 :(total back delay) wfS3 = ~ P>~ C,w),

ATS4  :(total weighted betweeen jobs delay) wf54 = E[i=j *(C.j -p«y -C,, (d)),
KSb :(maximum left shift savings) wjfss = —E E i (-Dgj —C,j)

To ensure better solution performance, each job is considered in turn as the first job in the
primal partial sequence, i.e. the algorithm is repeated n times, each time starting from
a = (j) for succesive j = I,...,n. Algorithms A'SI,..., KS5 have the computational
complexity 0(n3m). Note that algorithm RC', [20], is a special case of ATS2 since 1jKS2
can be also written as £J12

We begin analysis of algorithms KS 1,..., KS5 with an example.

Example 1. Letm > 2. The job set consists of two subsets J\ and Ji with cardinalities
1 and n —1, respectively. The processing times are equal to pmi = l,pm-i,i = pm-i2 =
Pm2 = e, where e is the sufficiently small number such that lim<otn2 = 0. All the
remaining (undefined above) processing times are equal to zero. O

Starting from a = (1) we have to generate job processing order itA = (1)i(2)n_!,
A 6 {/fS1,..., A"S5} since there are no other alternatives. In turn, starting from o= (2)
we can generate the job processing order itx = (2)i(l)i(2)n_2, A € {K51,..., KSb).
Indeed, if or = (2) we can schedule next the job from J\ or ajob from Jj. In both cases
delays between o and newly scheduled job are zero, so the partial processing order for the
next iteration can be a — (2)j(l)x, and this result does not depend on the selected priority
values I<SlI,...,KSb. Continuing, there are no other choices. Consegently, F(n'A) =
ifn+8en(n+1)] and F(itx) = *2c+ |c(n-2)(n- 1)+ (n-1)(1+ 2e)]. It can be verified
that the permutation it* = (2),,_i(l)i is optimal and F{it’) = M1+ ¢m(n—1) + 2ne —e)].
Clearly F (itx) < F(itM). Finally F(itx)/F(it*) tendston-1 ife-+ 0, A€ /(S,..., KS5.

In [3] it has been shown that the algorithm producing random permutation has the
worst-case performance ratio equal to n. In the above context, the precise proof yielding

value of nA, A'SI, ..., 1<Sb seems to be of little importance and will be omitted.
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3. New algorithms

In this section we propose a family of algorithms, called Tk, which are based on an
approximation of m-machine problem by some ;-machine flow shop problem for ; < m.
Let mi,..., m* be a sequence of integers such thatm, > 1,s = 1,..., ¢, i1 m3 = m, for
some k < m. We define /m= f=1,...,¢, and /g= 0. The auxiliary ¢-machine

flow shop problem has processing times defined as follows

<
Hi= E P €)
Athough the latter problem is univocally defined by the sequence (mi,..., rrik), however

for the sake of notation simplicity we will identify it by k. Since this problem for k >
1 is still NP-hard, we assume that it is solved by an approximation algorithm with
the worst-case performance ratio p*. Clearly, the proposed algorithm Tk generates a
permutation 71™ by solving, with the worst-case bound pk, the ¢-machine flow shop
problem with processing times defined by (3). We will show that there exists in this family
an algorithm with the worst-case performance ratio less than \m/2]. Let us denote this
¢-machine instance by Zk, and appropriate job completion times by Cij(Z) and Cij(Zk).

We start the analysis from some auxiliary properties.

Property 1. For any it, any Z,any j GN, and any (m,,... ,m*), we have
cmMj)(Z) < Ck,0)(Zk). a (4)
Proof. Let 1 < uo < u\ < ... < um < j be the sequenceofintegers minimizing the

right-hand side of formula (2) for i = m. Then, we obtain

oml,(j)(2) - Ee=E E E+ww-E E E o

J=1 r=1 5=Fr_i -f1

= E E £ E p«w
r=1 i=Ulr_, ,=fr_,+1 r_, t=v C,r_1+,
- u- - - r-1tur_i

which completes the proof. =
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Property 2. For any «, any Z, any j S N, and any (mi,... we have
Cr*(j)(Zk) mmaxCmr(i){2), (5)
where
™m*x — max to,-. O (6)
Proof. Employing (2) for i —m we obtain the following sequence of inequalities
TTJrnox Tn 3$
‘mar'—‘mxu)(z): E < E E pP«w
Tl fr J* rtmai A (1
LI r=1 j=/r_1+1 L"o)2: g S </'<l:ﬁ ’i:J?s<r,~|ft

where xr- = min{/r_i + i, /,}. Note that for any fixed i we have zr-i,i < xr Next note

that for fixed i maximization can be done over indices vr = xr;, then we can continue as

follows
Tllm ax k Vr k vr Tim ax
= -y. max cy y pXfic(o)> max E E (E Firr«)
k vr mr k vr tr
> max y vy (yp Trrtt\) — max E E ( E TMo)
fo Vr
- - - “ r=1 i=vr_j

The final inequality uses the well-known claim ” j§i maxjga a,j > maxjeB J2ieA aijm =

By using introduced properties we can derive evaluations on the worst-case perfor-

mance ratio for algorithms TK.
Theorem. For any algorithm Tk defined by the sequence (mi,..., m*) we have
V. ~ mmnr Pk 7 @)
Proof. Applying (4) for iv= w* in the definition (1), we obtain
F(ir*;Z)<F(iv*;Z*).

Next, by the definition of px we have F(tv*; Zk)/F(iv*; Zk) < px, where iv* is the optimal
permutation of the fc-machine flow-shop problem. Next applying the formulae (5) for

ft=it" in the definition (1), we obtain

1m
mmo* \Z) = mmar (@)
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> 'oi. Chx'(j)(ZK) = F(*-; Zk) > F{*k-ZK) > F(It*:Z2*).
nj=i PK

Combining these results we get
F{AZ) < M™morpkF{r-,z)

which yields the upper bound on rTk. To complete the proof we will provide an example
showing that this bound is tight.

Example 2. Let m > 2. Without losing generality we can assume that tnmax — rrij.
To simplify notation we set ¢ = mmax. The job set J consists of ¢ subsets Ju ... ,JCwith
cardinalities w each, where w is an integer. The processing times are equal p,, — 1,i =
1.2...., c. All the remaining (undefined above) processing times are equal zero. Thus, we
have n = cie jobs. O

For this instance we have ijiy = ~j=lpf] = 1 and =0,i=2,...,k, forallj =
1.2....,c. Due to special structure, the auxilary problem can be solved to optimal using
well-known SPT rule. Therefore pk = 1 and algorithm Tk can generate the permutation
KTk = (u)(2)u,... (c)w. Consequently nF(nrk) = (I/2)[u>2c(c- 1) + wc(w + 1)]. One can
verify that the the optimal job processing order is v' = (c,c —1,... I)u and nF(iv*) =
(I/2)crn(u; + 1). In consequence F(nTk)/F(rm — (c—I)*y + 1which tends to ¢ = m max

ifw—*00. m
The Theorem provides the following surprising theoretical result.

Corollary. There exists algorithm Tk such that

iITk < [m/k]Pk.a (8)

For k = 1 we obtain well-known result pT1 = m, [3], since in this case T 1 is equivalent
to SPT and p\ = 1. For k = 2 we get evaluation ¢/Ti = \m/i\pi, that had been found
previously for other algorithms, see Table 1. In practice, solving the two- or three-machine
case is usually easier than general m-machine problem. Therefore ft= 2,3 can be recom-
mended for applications. For example, assumingm =9, k = 3, mi = mj = m3= 3, and
p3= 1 (i.e. the auxiliary three-machine problem is solved to optimal), we obtain 4T3 — 3,
whereas the best known up to now result refers to Tl = 9 or T2 = fm/2] = 5. It is clear

that Algorithm Tk will provide better results if and only if there exists an approximation
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algorithm for the fc-machine problem with the worst-case performance ratio sufficiently

good. The existence of such the algorithm remains a problem in question.
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Abstract

The paper deals with NP-hard flow shop scheduling problem with the mean flow time
criterion which has received recently a considerable attention due to industrial applica-
tions. Most of the known approximation algorithms recommended for this problem have
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the worst-case performance ratio equal the number of jobs n or the number of machines
m. In this paper we propose an algorithm with this ratio equal \mlk\pk, where pk is the
worst-case performance ratio of an algorithm which solves the auxiliary ¢-machine prob-
lem. A current state of art in the worst-case analysis for permutation flow-shop problems
with various scheduling criteria has been also presented.

Tablica 1
Lower |y* and upper fjAbounds (provided in E) on the worst-case performance as ratio

ij* of an algorithm A (developed in B) for various scheduling criteria K

A B K 1A rA £
Gs @ cu. m m 131
R [21]  f-rnax \rn/2] im /21 211
CDS 1 om« fm /2] fni/2] [131
RA 21 foilc mi/N/2 + 0(1/m ) mviz + 0(l/m ) [14]
RACS, RAES 12] Ctii« m/%/2 + 0(l/m ) m /i/2 + 0(1/m ) [15]
P (181 c. .. m/y/2 + o(iim) m/i/2 + 0(l/m) [15]
NEH [12]  f-niAK \Im/z2 + o(1/m ) » . 2 [15]
HR (1 friuo m/lyr2 + o(1/m) mN/2+ 0 (1/m ) [10]
G HI t-nii* m — 1 m—i [16]
TG (to]  Cux (m + 1)/2 (m +1)/2 [10]
IE, M [171 ¢ m, m m [1o0]
K S\, 1<S2 {91 Cn*X m n [10]
CDS + HC (6] C,nxx m /2 frn/21 [23]
GS 3] F i n ]
SPT 31 F ni m 3]
RCo o] F 2m /3 + 1/3 m [22]
RCo,m = 2 ey F 1.908 2 [22]
RC', RC" 207 F n n [22]
RC™ 201 F 2m /3 + 1/(3m) n [22]
RC"'\m = 2 2o F 1.577 n [22]
CDS,CDS +1IC (61 F n | [22]
HK,m =2 1 F 26/(0 + fo) 2b/(a + 6) 71
5% 1221 F Clr-xl o+ 2)ft [22]
K S\,..., KSS [o1 F n—1 n

Tk F frra/L-lp* [m/Kk]pt

GS 131 C 1+ (n - 1)(TU/ro) I+ (n - i)(ro/sa) [231
CDS + HC,G + HC,

P+ HC, RA+ HC (6] C 1+ (n - 1)(criui) 1+ (n - 1)(TO/In) [23]
F [23] C m m [23]
Q/X [23] C [m/2]p3 fm/21p, [23]



