ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

Seria: BUDOWNICTWO z. 112

Bożena ORLIK-KOŻDOŃ* Politechnika Śląska

BADANIE WPŁYWU PAROPRZEPUSZCZALNOŚCI STYROPIANU NA KINETYKĘ PROCESÓW TRANSPORTOWYCH W PRZEGRODZIE BUDOWLANEJ

Streszczenie. W referacie przedstawiono wyniki badań prowadzonych nad materiałem izolacyjnym o zmodyfikowanej strukturze. Przedstawiają one zmiany w rozkładzie wilgotności i temperatury w płaszczyznach ściany wielowarstwowej, izolowanej materiałem badawczym.

THE EXAMINATION OF THE INFLUENCE OF THE COMPONENT STRUCTURE DIFFERENTIATION ON THE KINETICS TRANSPORTING PROCESSES IN THE BUILDING PARTITION

Summary. The results of the further research on the insulating material with a modified structure are presented in this study. They show changes in the distribution of moisture and temperature in the layers of a multilayer wall insulated by the examinated material.

1. Wprowadzenie

Warstwowa budowa ściany, w niesprzyjających warunkach lub przy nieodpowiednim doborze materiałów, może powodować zawilgocenie konstrukcji przegrody. Dlatego tak ważny jest rodzaj zastosowanego materiału izolacyjnego. W artykule do izolacji cieplnej przegrody autorka proponuje materiał w postaci perforowanych płyt izolacyjnych o niskim współczynniku oporu dyfuzyjnego $\mu=8$ i współczynniku przewodności cieplnej (wartość deklarowana) $\lambda = 0,04$ [W/mK] [5]. W przegrodzie prowadzony był ciągły pomiar temperatury i wilgotności. Analiza pomierzonych wielkości pozwoli odpowiedzieć na pytanie

^{*} Opiekun naukowy: Dr hab. inż. Jan Ślusarek, prof. w Politechnice Śląskiej.

czy przyjęty sposób badań, w rzeczywistych warunkach pogodowych, prawidłowo odzwierciedla przebieg zjawisk transportowych w przegrodzie i jaki charakter mają one dla dwóch przegród o zróżnicowanej strukturze?

2. Wstępny model matematyczny transportu ciepła i wilgoci w przegrodzie budowlanej

W przegrodzie budowlanej może wystąpić strefa, gdzie para wodna staje się nasycona i następuje jej kondensacja objętościowa. Strefę tę nazywa się strefą wilgotną, a jej położenie i wielkość zależą od temperatur i wilgotności względnych powietrza, po obu stronach przegrody. Pozostałą część przegrody zajmują strefy suche, przy czym pomija się ich zawilgocenie, związane z adsorpcja рагу wodnej, jako pomijalnie małe w porównaniu z zawilgoceniem spowodowanym przez kondensującą w strefie wilgotnej nasyconą parę wodną (wyjątek stanowić mogą niektóre materiały, np. betony absorbujące znaczne ilości wilgoci). Kondensująca para wodna stanowi upust pary, źródło kondensatu i źródło ciepła, a procesy: dyfuzji pary wodnej, migracji wody i przepływu ciepła stają się sprzężone przez szybkość kondensacji [1]. Rozkład temperatury, koncentracji pary wodnej i wilgotności, w rozważanej przegrodzie, można otrzymać na drodze rozwiazania sprzężonego układu równań [2]:

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \nabla T) + LR \tag{1}$$

$$\rho_{w} \frac{\partial W}{\partial t} = \nabla \cdot (\rho_{w} D_{w} \nabla W) + R$$
⁽²⁾

$$\rho_a(\varepsilon - W) \frac{\partial C}{\partial t} = \nabla \cdot (\rho_a D_v \nabla C) - R, \qquad (3)$$

gdzie: T - temperatura [K], W - wilgotność materiału $[m^3/m^3]$, C - koncentracja pary wodnej [kg/kg], ρ - gęstość materiału [kg/m³], c - ciepło właściwe [J/(kgK)], λ - efektywny współczynnik przewodności cieplnej [W/mK], L - ciepło kondensacji pary wodnej [J/kg], R - prędkość koncentracji pary wodnej [kg/(m³s)], ρ_w - gęstość wody [kg/m³], D_w - współczynnik przepływu wilgoci [m²/s], ρ_q - gęstość powietrza [kg/m³], ϵ - porowatość materiału [m³/m³], D_v - efektywny współczynnik dyfuzji pary wodnej [m²/s].

Równanie (1) przedstawia zmiany temperatury materiału, spowodowane przepływem ciepła przez przewodzenie i wydzielanie ciepła w wyniku przemiany fazowej. Równanie (2) opisuje zmiany wilgotności materiału, spowodowane przepływem wilgoci pod wpływem sił kapilarnych i kondensacji pary wodnej. Równanie (3) wyraża zmiany koncentracji pary wodnej, spowodowane dyfuzją i kondensacją. Ograniczając powyższe równania do przypadku jednowymiarowego otrzymujemy [1],[2]:

$$\sigma c \frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} \left[\lambda \frac{\partial \theta}{\partial x} \right] + LR \tag{4}$$

$$\rho_{w} \frac{\partial W}{\partial t} = \frac{\partial}{\partial x} \left[\rho_{w} D_{w} \frac{\partial W}{\partial x} \right] + R$$
⁽⁵⁾

$$\rho_a \left[\varepsilon - W \right] \frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[\rho_a D_v \frac{\partial C}{\partial x} \right] - R, \qquad (6)$$

gdzie θ - temperatura materiału [°C].

Eliminując z równań (4-6) prędkość kondensacji pary wodnej oraz korzystając ze znanych zależności fizycznych, otrzymujemy ostateczną postać równań cząstkowych, opisujących przepływ ciepła i wilgoci w materiale porowatym:

$$\frac{\partial}{\partial x} \left[\lambda \frac{\partial \theta}{\partial x} \right] = \rho c \frac{\partial \theta}{\partial t} + L \left[(\varepsilon - W) D' \frac{\partial p}{\partial t} - \frac{\partial}{\partial x} \left(\frac{D'}{\mu} \frac{\partial p}{\partial x} \right) \right]$$
(7)

$$\frac{\partial}{\partial x} \left[\rho_w D_w \frac{\partial W}{\partial x} \right] + \frac{\partial}{\partial x} \left[\frac{D'}{\mu} \frac{\partial p}{\partial x} \right] = \rho_w \frac{\partial W}{\partial t} + (\varepsilon - W) D' \frac{\partial p}{\partial t}, \tag{8}$$

gdzie: p - ciśnienie cząstkowe pary wodnej [Pa], D'- współczynnik wyznaczony ze wzoru $D' = \frac{D}{R_v T}$, R_v- stała gazowa pary wodnej [J/(kgK)], μ - współczynnik oporu dyfuzyjnego [-]

Równanie (7) jest równaniem przewodnictwa cieplnego, uzupełnionym o człon źródłowy, uwzględniający zmiany temperatury materiału spowodowane przemianami fazowymi woda – para wodna. Równanie (8) uwzględnia fakt, że wilgoć jest transportowana w przegrodzie zarówno w postaci pary wodnej, jak i wody.

Przedstawiony wstępny model zjawisk transportowych w przegrodzie zweryfikowany zostanie przez pomiary w warunkach rzeczywistych: współczynników przepływowych, tj.: współczynnika dyfuzji pary wodnej, współczynnika przepływu wilgoci oraz współczynnika przewodności cieplnej, a także strumieni ciepła i wilgoci w analizowanej ścianie.

3. Stanowisko pomiarowe

Na rysunku nr 2 przedstawiono stanowisko badawcze w Laboratorium Utylizacji Energii Słonecznej. Budynek składa się z trzech odrębnych komór, jedna z nich (na potrzeby badania) została zmodernizowana, tj. na wybranej ścianie komory położono izolację z materiału badawczego, tj. pełnego i perforowanego. Perforacje w płycie styropianu 15EPS-070-040 wykonano na siatce 2 cm x 2 cm i o średnicy oczek 5 mm [4]. Zastosowano system pomiarowy pozwalający na rejestracje danych, tj. wilgotności względnej i rozkładu temperatury w poszczególnych płaszczyznach przegrody i w komorze. Dodatkowa aparatura pomiarowa, zainstalowana na budynku, pozwala na pomiar wielkości charakteryzujących środowisko zewnętrzne: prędkość wiatru, nasłonecznienie, ilość opadów, wilgotność względną i temperaturę powietrza zewnętrznego.

Rys.1. Stanowisko badawcze w Laboratorium Utylizacji Energii Słonecznej Fig.1. The research area in the Laboratory of Solar Energy Utilization

Rys. 2. Schemat umieszczenia czujników w przegrodzie Fig. 2. The scheme of detectors location in the wall

4. Wyniki badań

Badania prowadzone były od 15.03.2007 r. Do analizy wzięto pod uwagę tydzień pomiarowy 19.04-25.04.2007 r. W pomieszczeniu panowały zmienne warunki cieplno – wilgotnościowe, na zewnątrz temperatura była w granicach od 5-20°C. Nie prowadzono nawilżania powietrza wewnętrznego i ogrzewania komory. Celem badania były pomiary parametrów: temperatury i wilgotności w przegrodzie, w naturalnych warunkach. Analiza pomierzonych wielkości pozwoli odpowiedzieć na pytanie: jaki wpływ ma zastosowana modyfikacja mechaniczna płyt styropianowych, w odniesieniu do materiału pełnego, na procesy transportowe w przegrodzie? Poniżej prezentowane są wyniki rejestrowane co 1 godzinę, w 7-dobowych cyklach badawczych: wykres zmienności wilgotności i temperatury w poszczególnych warstwach przegrody, izolowanej materiałem pełnym i perforowanym.

Rys. 4. Zmiana wilgotności na styku styropian-warstwa elewacyjna Fig. 4. The change of dampness on the edge of polystyrene-elevation layer

Rys. 7. Zmiana temperatury na styku pustak-styropian Fig. 7. The change of temperature on the edge of hollow trick-polystyrene

Badanie wpływu paroprzepuszczalności...

Rys. 8. Zmiana temperatury na styku styropian-warstwa elewacyjna Fig. 8. The change of temperature on the edge of polystyrene-elevation layers

5. Podsumowanie

Na podstawie badań stwierdzono, że istnieje znaczna różnica w rozkładzie wilgotności między przegrodą izolowaną materiałem pełnym i perforowanym, tzn. perforacje materiału powodują wzrost dyfuzji wilgoci w stosunku do materiału pełnego. Podobnych rozbieżności nie stwierdzono w przypadku rozkładu temperatury, co może potwierdzać tezę, że perforacje nie wpływają negatywnie na przepływ ciepła przez przegrodę, a tym samym nie zwiększają strat ciepła. Ponadto, widoczne na wykresach przesunięcia wahań w dobowym rozkładzie wilgotności (rys. 5, 6) dowodzą, iż w przypadku zastosowania materiału perforowanego mamy do czynienia ze wzrostem jego paroprzepuszczalności [5], co eliminuje ryzyko niebezpiecznego zjawiska kondensacji pary wodnej, która może prowadzić do destrukcji materiału przegrody i przemarzania ściany.

Na podstawie analizy badań wstępnych wynika, że przyjęta metoda badawcza w sposób prawidłowy odzwierciedla przebieg zjawisk transportowych w przegrodzie. W dalszym etapie badań, w komorze wytworzone zostaną kontrolowane, niekorzystne warunki wilgotnościowe, co pozwoli na rzeczywiste sprawdzenie czy perforacja w styropianie spełnia swoją rolę.

199

LITERATURA

- Wyrwał J.: Ruch wilgoci w porowatych materiałach i przegrodach budowlanych, Wyższa Szkoła Inżynierska w Opolu, Studia i Monografie, z.31, Opole 1989.
- Wyrwał J., Świrska J.: Problemy zawilgocenia przegród budowlanych, PAN, Komitet Inżynierii Lądowej i Wodnej, Instytut Podstawowych Problemów Techniki, Studia z zakresu inżynierii, nr 44, Warszawa 1998.
- 3. PN-B 20130: Wyroby do izolacji cieplnej w budownictwie, Płyty styropianowe PS-E.
- Orlik-Kożdoń B.: Wpływ zróżnicowania struktury materiału izolacyjnego na jego wybrane parametry cieplno-wilgotnościowe, Fizyka budowli w teorii i praktyce, Łódź 2007.

Recenzent: Dr hab. inż. Dariusz Gawlin, prof. Politechniki Łódzkiej