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IZOTROPIC DAMAGE IN VISCOPLASTIC FLOW CONDITIONS

Summary. The damage mechanics is a very important branches o f  solid mechanics. 
Although it is still developing, it has already been applied to many engineering problems. 
This paper includes information about the viscoplastic type o f constitutive modeling, the 
presentation o f mechanical representation o f  damage by variable D, effective stress concept, 
equations o f the chosen damage model and the Chaboche viscoplastic constitutive model 
including damage effects. Also the identification procedure o f  damage parameters with 
practical example and MES applications in the commercial program MSC.Marc is presented.

IZOTROPOWE ZNISZCZENIE W WARUNKACH LEPKOPLASTYCZNEGO 
PŁYNIĘCIA

Streszczenie. Mechanika zniszczenia jest obecnie jedną z ważniejszych gałęzi mechaniki 
ciał stałych. Jest to cały czas rozwijająca się dziedzina nauki, która znalazła swoje 
zastosowania w problemach inżynierskich. W artykule zaprezentowano podstawowe 
informacje na temat lepkoplastyczności i jej zastosowania, koncepcję mechanicznej 
reprezentacji zniszczenia przez zmienną D, koncepcję naprężeń efektywnych, równania 
opisujące zniszczenie oraz lepkoplastyczny model Chaboche’a z uwzględnieniem zniszczenia. 
Ponadto, w artykule przedstawiono procedurę identyfikacji parametrów zniszczenia dla 
przyjętej koncepcji wraz z przykładem praktycznym oraz przykład prezentujący 
wykorzystanie przedstawionych praw w MES w programie MSC.Marc.

1. Viscoplastic modeling coupled with damage, basic information, 
applications

The viscoplastic theory describes rheological phenomenon, which depends on time and 

which effects does not vanish after reloading [1], For such materials as metals and alloys, 

which are the main subject o f  this paper, it corresponds to mechanisms linked to the 

movement o f  dislocations in grains witch superposed effects o f intercrystalline gliding. These
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mechanisms begin to arise as soon as the temperature is greater then one third o f absolute 

melting temperature.

Characteristic tests in viscoplastic problem domain are hardening, creep, relaxation and 

cyclic tests. The hardening test with a constant strain rate (Fig. 1 a) shows considerable 

influence o f  the strain rate on the test result, as the strain rate is higher, the plastic yield limit 

and maximum stress rise.

Fig. 1. a) Hardening test with different strain rates AU4G, 200°C [1]; b) creep curve and creep 
velocity curve at constant strain state [2]

Rys. 1. a) Test wzmocnienia przy różnych prędkościach odkształceń AU4G, 200°C [1]; b) krzywa 
pełzania i krzywa prędkości pełzania przy stałym obciążeniu [2]

The creep test (Fig. 1 b) shows substantial dependence deformation from time. We can 

divide such a test into three phases. The first, is one in which, strains are nonlinearly and the 

hardening o f a material leads to decrease o f  the creep rate, which is initially very high. In the 

second one, the rate o f  flow stabilizes and is almost constant, strain change linearly. During 

the last one the rate o f flow rises, the damage phenomenon occurs, strain accrues nonlinearly 

up to rapture. Among these three flow phases especially the third one is main object o f  this 

paper.

2. Mechanical representation of damage

Damage in metals is mainly the process o f the initiation and growth o f microcracks and 

cavities in material’s structure. The first, who introduce a continuous variable related to the 

density o f such defects is Kachanov in 1958 [3].

The variable D„ in any material point o f damaged body is defined by equation [4]:

a
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where S  is the overall cross-section area o f  undamaged material, defined by the normal n, SD 

is the effective area o f  the intersections o f  all microcracks or cavities, which interfere with 

analyzed section in damaged material. Assuming isotropy o f  damage, which means uniform 

distribution o f  cracks and cavities in all directions, D„ does not depend upon n and becomes to 

be a scalar value D.

Using the concept o f effective stress [5], the effective stress â  can be specified by the 

damage variable D :

According the hypothesis o f  strain equivalence [5] each constitutive equation o f a 

damaged material can be derived in the same way as for a undamaged material with replacing 

the stress components by their effective values.

3. Constitutive equations for isotropic damage

The constitutive equations o f  an isotropic material used in this paper are based on additive 

decomposition o f the strain rate into its elastic e E and plastic s '  parts:

where p  is density o f  a material, aijkl are components o f the elasticity tensor.

According to the strain equivalence principle the stress component can be calculated as:

(3)
The elastic part o f  the free energy function can be expressed as follows [4]:

(4)

(5)

The elastic strain components can be calculated by reversing Equation (5):

~r  v  ¡ 1  v  u kk J

E  1 - D  E l - D  r
(6)

The damage strain energy is defined as follows [4]:

(7)

(8)
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We = ^ \ - D ) a ijus y u , (9)

which helps establish the relation between the damage strain energy Y  and the density of 

elastic strain energy We:

W.
-Y  = -

1 - D
( 10)

w . .Splitting the density o f the elastic strain energy e into two parts: the shear energy part 

and the hydrostatic energy part finely we get the function Y  [4];

< j 2
_ Y  =  eq

2(1 - D f E

where v  is the Poisson’s ratio, E  is the Young’s modulus o f  undamaged material, a  is the

- ( l  + v )+ 3 ( l-2 v )
f  \ 2~

G on
V eci )

( 11)

Huber-Misses equivalent stress and <j h is the hydrostatic stress expressed as:

Vi

Through the constitutive equations my be derived from the dissipation function ^  :

d tp

*• da,..’ 8Y

( 12)

( 13)

4. Isotropic damage in Chaboche model

In the present study the isotropic damage model proposed by Lemaitre [6] is used. The 

dissipation function for ductile plastic damage is written as a power function o f  Y  and linear 

with respect to accumulated plastic strain rate p  :

CM)

where S  and s are the damage material parameters.

The damage function is derived from Equation (13):

rV

(15>
Among many viscoplastic constitutive models the Chaboche model has been chosen. In 

this model the inelastic strain rate has the following form [1]:

3 . <j ' - X '

D - 1 - I

. /  3 . < J - X '  ß —j
e = ~ P  — 7— ---------r , J(au ) =  J^aJau,2 J ( a ' - X ' )  ,J 3/2 «>

(16)
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where a '  and X '  are the deviatoric parts o f  the stress and kinematic hardening tensors, 

respectively.

The accumulated plastic strain rate is given by:

h j ^ - x y i X - D V - R - k  V  (17)
K

where k is the initial yield stress, K  and n are the viscous material parameters. The angle 

brackets (x) are referred to the McCauley brackets: (x) = i ( x  + |x|).

The kinematic hardening tensor X  and the isotropic hardening scalar R  are expressed as:

X  = ̂ a e ' - c X p ,  R = b(Ri - R ) p ,  (18)

where a ,b  ,R t are hardening material parameters.

5. Identification of damage material parameters

The easiest method o f damage material parameters identification is to carry out suitable 

quantity o f uniaxial tensile experiments. The single experiment consists o f a set o f constant

strain rate cycles with constant amplitude o f  strain to obtain a weakening o f the elastic

modulus. This method assumes homogeneous character o f  damage.

According to hypothesis o f  effective stress the elastic strain can be expressed as follows

[4]:

f £ = — - — . (19)
E ( l - D )

Using Equation (19) it is possible to obtain the effective elastic modulus E ;

E  = E ( l - D ) .  (20)
Reversing Equation (20) the damage variable, depending from initial and effective elastic

modulus emerges:

£> = 1 - - .  (21)
E

The next step o f identification is deriving the equations, which allow to calculate damage 

material parameters S  and 5.

As the result o f experiments, for each cycle, are recorded: elastic modulus, plastic strain 

and maximum value o f  the stress.



280 Ł. Pyrzowski

The damage function (15) and the damage strain energy function (11) in uniaxial loading 

conditions are expressed as:

D-- T T  \ P =

1
2: (1 + v)a l■ +3( 1-2  v ) a 2H

2 ( l - D ) E \ 3  
then substituting Equation (23) to Equation (22):

2(1 - D f E

D  =
dD
dt 2 E ( l - D ) 2S

d £p,
dt

and reducing dt the following formula is given:

dD
de_

(22)

(23)

(24)

(25)
2 E ( \ - D f S

In the following step the function, which will approximate the functionD (spl) is selected:

D i£Pi ) = D0+ a ( l -  exp (-bep, )) (26)

and then, on the basis o f experiments data, using the least squares method, the a and 

b parameters are calculated.

Fig. 2. Daudonet’s cyclic tension test-stress vs. strain-Aluminium A12017 B [7]
Rys. 2. Próba cyklicznego rozciągania Daudonet’a -  wykres naprężeń do odkształceń -  Aluminium 

A12017B [7]

Table 1
Setting up experiments results and calculation o f  the damage variable D

A12017 początkowy cykl 1 cykl 2 cykl 3 cykl 4
Moduł Younga E [GPa] 71,5 67 60,4 55,6 52

Odkształcenia plastyczne H 0,0154 0,0541 0,0933 0,1327
Naprężenia (MPa] 335,18 387,1 406,8 415,07
D 0 0,06294 0,15524 0,22238 0,27273
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The last step o f  identification is comparison o f the derivative function (26) with inelastic 

strain with formula (25) and using the least squares method for approximation o f the damage 

material parameters S  and s:

d D { e . )

d£p,
= abexp(-be  p,) =

(J
2 E ( \ - D f S

(27)

The approximation o f  the function D{spl) gives: a= 0,3876; b= 8,0726, that leads to: 

dD(e ,)
 —  = 3,1289exp(-8 ,0726 •£ ;) .  Finally, using formula (27) the damage material

de„
parameters, which were sought, are: S = 2,9230; s = -0,877.

6. Practical example of isotropic damage implementation in MES

Numerical calculations presented in this paper has been performed using MSC.Marc 

system, which great advantage is possibility user subroutines application. The viscoplastic 

Chaboche model with damage has been applied to the program using UVSCPL subroutine.

In the presented example a hinged square plate o f  5 m length and initial thickness 0,01 m 

is considered. The plate is loaded by uniformly distributed pressure increasing linearly from 0 

to /w = l,5 M P a  during 0,01 s, then the loading remains on the surface o f the plate. In 

calculation the symmetry o f  the plate has been used.

■ssmc

Fig. 3. Vertical displacement of plate (t| = 7.2-10'3s, t2 = 9.52-10'2s, t3= 1.05-10''s, tt=  1.15-10's) 
Rys. 3. Przemieszczenia pionowe płyty (ti = 7.2-10'3s, t2 = 9.52-10'2s, t3= 1.05-10 's, ti=  1.15-10 's)
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The following material parameters were taken (INCO alloy in temp. 627°C) for the 

Chaboche model [7]: £=162GPa, n=0.3, ¿=501 MPa, ¿=15, /i/=165.4MPa, a=80GPa, c=200, 

«=2.4, K =12790(M Pas)1/", 5=4.48MPa, 5=3 and the mass density r=7900kg/m3.

As the results, screenshots o f  vertical displacement for the plate’s quarter in four time 

moments are presented in Fig. 3.

In calculations the four-node thin-shell elements (Element 139) divided into five layers 

were used. Dynamic, geometrically non-linear analysis using the Newmark integration 

algorithm (a time step dt =  2,66-10'4s) has been performed. Additionally, the re-meshing 

feature with the equivalent plastic strain criteria (the value o f 0,05) to subdivide elements into 

four parts and deactivation o f elements, which has been performed if  the value o f damage 

parameter D  at all integration points o f  the element is greater than 0,5 were used.
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