The Chemical Age

FOL. LIV	TURDAY, FEBRUARY 23, 1946	6D. PER COPI POST FREE 8 l
No. 1391	EEGISTEMED 4 A \triangle NHWGPAPER	POST FREE 80.

 , $48 / 46 / 56$

HUNSLET, LEEDS $10 \mathrm{Tel}: 32521$ (3 lines) Grams: "Oxbros, Leeds"
London Office: WINCHESTER HOUSE, OLD BROAD STREET, LONDON, E.C. 2
'Grams: "Asbengpro, Stock, London"
Tel: London Wall 3731

T HE CASE OF THE INVISIBLE CLUE

Fangerr-prints - are often invisible until developed. This is especially true of prints on paper. 'But when these prints are exposed to iodine their secret is revealed.

Perhaps you think of iodine only as an antiseptic. Iodine plays a very important role in modern medicine, hut in industry and agriculture its uses are almost legion. It serves in the manufacture of such diverse products as polatoid, silver plate, colour films and catgut. Velerinary surgeons use it in the treatment of more than 150 animal diseases. In the laboratory, iodine makes it possible to weigh bacteria and among other purposes chemists use it as a catalyst and an analytical reagent.

Each year man's knowled ge of iodine grows. All the literature has been recorded and collated by the Iodine Educational Bureau to assist Medicine, Industry and Agriculture. The Bureall is ready to advise any institution or commercial undertaking. There is no charge.

Jodine Educational Bureau

1 .5. stone house, bishopscate, london, e.c. 2

- Antiboys." and other types

OXYGEN and OXYGEN + CO, Resusoltation Apparatus
"Novox," "Novita," and other types

BARBITONE BARBITONE SOLUBLE ALLOBARBITONE AND CYCLOBARBITONE FINEST QUALITY.

ACTUALLY MANUFACTURED AT BARNET PIERSON, MORRELL \& CO., LTD. (THE ORIGINAL BRITISH ASPIRIN MAKERS)
QUEEN'S ROAD - BARNET - HERTS
Phone : Barnet 0723
Grams : Pierson Morrell, Barnet

TOWERS" "LONGLIFE" CONDENSERS.

A new type of Laboratory Condenser which will outlive several of the usual type. The inner and outer tubes are fitted together by moulded rubber connectors which have brass side tubes eliminating breakage All parts are interchangeable.

Prices and full particulars on application.
J. W. TOWERS \& CO., LTD. MANCHESTER: 44 Chapel St., Salford 3

Head Office and Works: WIDNES.
LIVERPOOL: 134 Brownlow Hill

SWINTON (Manchester) \& LONDON Telephones: Swinton 2273 (4 lines)
London, Chancery 7823 (3 lines)
olso ot
GLASGOW - LEEDS • BIRMINGHAM
CARDIFF

This apparatus has been designed to supply the need for a robust, self-contained potentiometric titration apparatus which is sufficiently simple to be used in routine testing by unskilled operators, and is yet capable of meeting the requirements of the industrial research chemist.
The apparatus is operated from the 50 cycle supply mains and the end point is detected by a "Magic Eye" indicator. Thus there are no batteries to be replaced and no delicate galvanometer to be damaged by mechanical shocks or electrical overloads. A special circuit eliminates all possibility of drift during a titration, and changes of mains supply voltage do not give rise to any inaccuracies.

MULLARD WIRELESS SERVICE COMPANY LTD. CENTURY HOUSE, SHAFTESBURY AVE., W.C. 2

ATHOLE G. ALLEN (Stockton) LTD.

 STOCKTON-ON-TEES,Telephones: STOCKTON 6375 (3 lines)

CO., DURHAM

NON MEMBERS OF TRADE ASSOCIATIONS

> PRODUCERS OF

FERRIC CHLORIDE

(PERCHLORIDE OF IRON)
and
FERROUS CHLORIDE

PROMPT DELIVERY FOR HOME and EXPORT

THE KESTNER T.V. DRIER

RECENTLY DEVELOPED ESPECIALLY FOR DRYING FILTER PRESS CAKES AND SEMI-SOLIDS

Several years of research and development work in our plant laboratories, combined with extensive operational experience, enables us to offer the Kestner T.V. Drier as the most
satisfactory plant for handling damp materials and semi-solids.
Outstandingly successful results are being obtained in drying filter cakes, centrifuged materials and deposited sediments such as :-

Chalk, China Clay, Stearates, Boracic Acid, Coal Dust, Sand, Bicarbonate, certain Synthetic Resins, etc.
The process is based on fundamentally simple thermogravic and aerodynamic principles.

OUTSTANDING ADVANTAGES

I. SIMPLICITY. The only move ing parts are feeder and fans. The only controls are the supply of steam or fuel to the heater. and regulation of the rate of feed.
2. EFFICIENCY, The thermal efficiency is extremely high-no other drying system can show better results.
3. COMPACTNESS. The plant
takes up very little space.

Please write for Leaflet No. 265.
KESTNER'S

Chemical Engineers, 5, GROSVENOR GARDENS, LONDON, S.W.I

As a man is judged by the company he keeps, so the quality of an article is often assessed by its apparel-the Container. If your products are-or can bemarketed in Metal Containers, either Drums or Tins, it will cost you nothing and possibly profit you to get into touch with Reads of Liverpool.
General Drum Manufacturers since the 1860 's, for fourteen years Reads have specialized in full aperture Drums-liquid tight if required--together with many other special packages.
Reads can say with authority that they have handled some of the most difficult packaging problems in the country, especially where Metal Containers are designed to identify and enhance the quality of the product.

READS LIMITED, 21 BRIDGEWATER STREET, LIVERPOOL, I. ROYAL 3223 AND 227 GRAND BUILDINGS, TRAFALGAR SQUARE, LONDON, W.C.2. ABBEY 5351 ALSO AT GLASGOW, BELFAST, LEICESTER AND CORK

- and the sound way to cure scale is to prevent it -

Our experience in the treatment of boiler water includes both softening and final conditioning and our object has always been to recommend the very best treatment to meet individual water supplies and operating conditions. We are already responsible in this way for a very large aggregate saving of fuel in steam plants both large and small throughout the country.
We invite every steam user who has not yet given detailed attention to the exact treatment of his water supply for minimum fuel consumption to write, or telephone-

GREenwich 1600
and

Issued to HELP SAVE FUEL by Sofnol Ltd., Westcombe Hill, Greenwich, London, S.E. Io

A PICTURE WITH A

The unexpected is always liable to occur even in these days of prederermination, and it is still possible to get a bead frame when you ask for a calculator.
It is not suggested that such wide variations are likely to be encountered when buying fine chemicals, but industrial processes are generally very exacting and uniformity in the characteristics of any technical chemicals involved is essential. They simply must conform to the specifications laid down.

To ensure that $M \& B$ fine chemicals conform to the high standards for industrial and technical purposes, their manufacture is controlled at every stage by a large staff of analytical chemists. Complete reliance can therefore be placed in their uniformity and they can be used with every confidence.

If you are faced with technical problems of a chemical nature, the experience accumulated by the M \& B analytical and research laboratorics is at your disposal through our Technical Service Department.

MAY \& BAKER LTD.
DACENHAM

Manufactirers of

Telephone: ILFord 3060
Sales Depl. : Ext. 72 Technical Service Dept. : Exi. 71
T.C. 5001

FLUOR SPAR HIGH GRADE
 0 97/98\%
 Ca F_{2} CONTENT
 is now available

 from
GLEBE MINES LIMITED EYAM - DERBYSHIRE

Telephone : Eyam 241

A. J. RILEY \& SON, Lid. BATLEY, YORKS

Telegrams: "BOILERS, BATLEY."
Telephone: 657 BATLEY (3 lines)
ESTABLISHED I888
Makers of
MILD STEEL RIVETED AND WELDED VESSELS

JACKETED PANS COMPLETE WITH AGITATORS

SHEET LEAD OR HOMOGENEOUS LINED VESSELS

TAR, BENZOLE \& OIL STILLS
CONDENSERS, EVAPORATORS AND DISTILLING PLANTS

MILD STEEL PIPES ALL PRESSURES

LANCASHIRE, CORNISH
ECONOMIC \& W.T. BOILERS

SPECIAL REFRACTORY CRUCIBLES

We can now supply very highly refractory crucibles suitable for melting precious metals and for work at high temperatures, up to $1,800^{\circ} \mathrm{C}$., particularly where contamination due to silica must be reduced to a minimum. These FUSED ALUMINA and FUSED MAGNESIA crucibles are of the highest purity and without added siliceous bond. The largest vessel illustrated is $12 \mathrm{in} . \times 6 \mathrm{in}$. diameter.

We can also supply FUSED REFRACTORIES, silica (Vitreosil) Alumina and Magnesia in bulk for refractory linings.

THE THERMAL SYNDICATE, LTD.

Head Office: WALLSEND, NORTHUMBERLAND.
London Depot : 12-14, OLD PYE STREET, WESTMINSTER, S.W.1.

MULTITUBULAR DRIERS ROLLER FILM DRIERS

FLAKERS AND COOLERS

We offer accumulated experience of 50 years' specialization.
OUR WORKS, the largest in the United Kingdom devoted especially to DRYING MACHINERY, are laid out and equipped with the latest plant for this particular purpose.
MANY STANDARD SIZES including LABORATORY MODELS.

We have test plants on a commercial scale always available

RICHARD SIMON \& SONS, LTD.

 PHGENIX WORKS, BASFORD, NOTTINGHAMDOWSOV: ${ }^{2 \pi}$ MASOV
GAS PLANT CO.LTD.

MANCHESTER 19

Tel. No.: Heaton Moor 2261

Illustration shews M.S. Rubber Lined Tonk for Hydrochloric Acid
TANKS. CYLINDRICAL AND RECTANGULAR PUMPS AND FLOW METERS, ETC.

The A, R. Wilfley \& Sons Centrifugal Sand Pump
Arrangement for Belt Drive

A GLANDLESS SELF SEALING SAND PUMP

used in Plants throughout the World
All parts subject to attrition can be replaced in a few minutes

Tel : VIC. 0391-5

FOUNDED 1830

Old-established yet up-to-date in every detail, this organisation provides a specialised service for the chemical industry that ensures rapid delivery and low prices all the time

MANUFACTURERS AND PROPRIETORS OF "/NMCA DECOLOURISING PLUMBAGO CHARCOAL (Wood \& Animal) MANGANESE "MN C/A /I BITUMINOUS MATERIALS FOR ROAD CONSTRUCTION GRINDING With Improved mills, of chemical and other materials for the trade

THOMAS HILL-JONES, LTD.

MANUFACTURING CHEMISTS, INVICTA WORKS, BOW COMMON LANE, LONDON, E. 3 and at MEESON'S WHARF, BOW BRIDGE, E.IS : CONTRACTORS TO H.M. GOVERNMENT
Telephona: EAST 3285 (3 lines).
Telegrame: Hill-Jones Bochurch. London

HOMOGENEOUS
LEAD LINING

Specialists In the manufacture of Plane for the Chemical and Allied Trades.

Vessels and Tanks of all descriptions In Mild \& Stainless Steel and Aluminlum.
'Grams
Grazebrook, Dudley
DUDLEY WORCS
'Phone :
Dudiey, 2431

Intricate Shapes

Carbon is employed for a great variety of specialised purposes in mechanical, electrical and chemical engincering, often in applications where no other material has the requisite properties.
For meeting these requirements uce have developed methods whereby it can be shaped into practically any form.
The combined properties of carbon are unique. It is self-lubricating and
has a high thermal and electrical conductivity compared with other nonmetallic substances: it resists thermal shock, maintains its strength well at high temperatures, is chemically inert and has a low coefficient of expansion.

In your oun industry there may be something needed which would be the better for being made of carbon, or cannot be made without it.

The collaboration of our engineers is at your disposal.

> A IVIORGGAN product

THE MORGAN CRUCIBLE COMPANY, LTD., LONDON, S.IW. 11

This is an actual photograph of a section of Dunlop Flameproof Hose after it had been in a blow-lamp flame for ninety minutes at a temperature of $1,000^{\circ} \mathrm{C}$. and under pressure. No leakage occurred.
If you have any problems regarding flexible Hose Assemblies, write to our Technical Dept. (E), Foleshill, Coventry.

DUNLOP FLAMEPROOF HOSE ASSEMBLY

DUNLOP RUBBERCo. Ltd., FOLESHILL, COVENTRY

The NOTTINGHAM THERMOMETER
 FCO. LTD. $\overline{\text { PYROMETRIC EQUIPMENT }}$
 INDICATORS-Wall Type, Portable, Mulel-polnt, Panel Mounting.
 THERMO-COUPLES-Base \& Rare Metals. RESISTANCE THERMOMETERS.
 COMPENSATING CABLES.
 SHEATHS-Refractory, Steel, Alloy, etc.
 SPARES-Wires, Elements, Insulators, Thermo-Couple Heads, etc., etc.

 THERMOMETERS

 THERMOMETERS
 GLASS STEM DIVIDED-Ranges up to $550^{\circ} \mathrm{C}$. or $1,000^{\circ} \mathrm{F}$.
 GLASS IN VARIOUS METAL FITTINGSPipe Type, Jam, Varnish, Molten Metal, Quenching Bath, Bakers, Dyers, Flue Gas, etc.
 DIAL VAPOUR PRESSURE - Flexible Capillary and Rigid Stem Patterns, etc

— MANSEIELD ROAD
NOTTINGHAM, ENGLAND
Phone: 45915

ENSURE THE MAXIMUM OF EFFICIENCY TOGETHER WITH LONG LIFE UNDER ALL WORKING CONDITIONS
Also SAND CASTINGS IN ALL NON-FERROUS METALS INCLUDING HIGH TENSILE BRONZES \& ALUMINIUM Trionite Ltd., Cliffe Vale, Stoke-on-Trent PHONE, STOKE-ON-THENT QITI=Q

WATER-REPELLING POWDERS

The production of finely divided Calcium Carbonate with waterrepelling properties is now being undertaken by Derbyshire Stone Ltd.

Enquiries are invited from those interested in the supply of such powders. Samples and full information will be gladly provided. Problems investigated without
 obligation.

DERBYSHIRE STONE LTD. MATLOCK, Derbyshire

BAKELAQUE

Synthetic Resin Laminated Boards, Tubes, Rods, and Mouldings

BAKELAQUE

Resins, Varnishes and Moulding Powders

MICA and MICANITE

 in all formsVulcanised Fibre and Leatheroid

Varnished Cloth, Tape and Tubing

Presspahn, Fullerboard Ebonite and all
Insulating Material for Electrical Engineers

ATTWATER \& SONS L!

PRESTON
Estaulshel ise

RE-SURVEY OF SOLVENTS

acetone

Acetone (dimethyl ketone) is a colourless, stable liquid of pleasant odour and occupies an important position among industrial organic compounds. It is a 'ow-boiler of high solvent power.
Used in the making of both acetate and nitrocellulose lacquers and thinners, it is also an excellent solvent for various gums and so is valuable in the compounding of paint- and varnish-removing preparations.
Acetone has other applications in the artificial leather industry, in the 'bottling ' of acetylene, in the rubber industry, and in the making of plastics, smokeless powder and cordite, celluloid articles, perfumes, safety glass and photographic films.
The TP product is characterised by high chemical purity. We shall be glad to send full specifications on request or to collaborate in evolving new applications.

TECHNICAL PRODUCTS LTD
ST. HELEN'S COURT, GREAT ST. HELEN'S, LONDON, E.C. 3
TELEPHONE: AVENUE 4321

REFINING PLANTS

* FOR THE TREATMENT OF OILS AND FATS

HIGHEST GRADE OF PRODUCT • LOWEST REFINING LOSSES MAXIMUM CONTROL AND FLEXIBILITY IN OPERATION
COMPLETE FACTORY INSTALLATIONS FOR THE PROCESSING OF ANIMAL, VEGETABLE AND MARINE OILS \& FATS

BAMAG LIMITED
RICKETT STREET, LONDON, S.W. 6
Fulham 7761

The Chemical Age

A Weekly Journal Devoted to Industrial and Engineering Chemistry
BOUVERIE HOUSE, 154 FLEET STREET, LONDON, E.C. 4

Telegrams: ALLANGAS FLEET LONDON
GLASGOW: 116 Hope Street (Central 3970)

Telephone: CENTRAL 3212 (12 Haes) bIRMINGHAM: Dalmler House, Paradise Street (Midiand 0784-5)

THE CHEMICAL AGE offices are closed on Saturdays in accordance with the adoption of the fiveday week by Benn Brothers Limited
VOL. LIV
No. 1391.
February 23, I946 Annual Subscrition 29.

Government Planning in Industry

FOR good or ill we have entered a new industrial era. It is marked by the end of the go-as-you-please procedure of the first 150 years of the industrial revolution, and its replacement by organised planning in which the individual must partly or wholly subordinate his opinions and actions to the will of the Government. The success or failure of industry will clearly depend as much upon actions taken by the Government as upon the initiative and skill of the individual. While we are about it, we may as well plan to the best of our ability, and it is worth while considering here what should be the guiding principles.

The system of individual competition between firms great and small resulted in powerful influences towards efficiency and invention. Many fell by the wayside since they could not keep up the pace. Some, favoured by the presence in their ranks of men of genius. prospered exceedingly. But the writing has been on the wall for many years past. The events that took place in industry before the war of 1914-18 may have faded from memory, but we should remind ourselves that they comprised a serie: of trade depressions and booms that caused insecurity of employ. ment for the individual and considerable

On Other Pages

Progress in Drugs, Fine Chemicals, etc. during 1945-III ... 205
Glass Tubing
Indiuns' Farewall Lumcheon … 211
Antimalarial Research … 213
Parliamentary and Scientific Committee
illasticiser Prices 213
Rosin Prices 213
Rulin from Buckutheat 214
Fluorine Compounds 214
Spaiu's Chemical Industry ... 215
Lignite in South France ... 215
A Chemist's Bookshelf 216
Parliamentary Topics 217
Personal Notes 217
German Technical Reports 218
General Neurs from Week to Week 219
Commercial Intelligence ... 221
Stocks and Shares 222
British Chemical Prices … 2.3
anxiety for the employer. These influences were intensified after that war, and steps were taken to reduce the fluctuations. Those steps were the organisation of industry in cartels or other kinds of association with the purpose of avoiding forms of competition that could have no other result than price-cutting and disaster. Not everyone agrees that cartels were the right answer, and there are many to-day who strongly disapprove of cartels and price-fixing associations. So far as can be seen, however, there was nothing equally effective to put in their place. They served a useful purpose when properly conducted; but it may well be that the answer to the cartel is planning of a different type. It is certain that any form of cartel will in the inture be controlled by Governments so that it shall not operate injuriousl: to the consumer. This, however, is not enough. We must be sure that the cartel operates in such a way as to promote the best practice, technically and economically. The condition of national survival is industrial efficiency.

An example of bad cartelisation is provided by our war methods. Here the need was for high production over a short period. irrespective of costs. We wanted many things in large
quantity, and while some firms were equipped to produce them, others were not. Often the well-equipped firms could produce at prices that others could not touch. It was important to avoid inflation, and so the simple expedient of fixing prices sufficiently high to allow everyone to make a profit was ruled out. Instead, a method of cartelisation was introduced by which those who produced at high cost were subsidised by a levy extracted from the efficient low-cost producers. That procedure served its purpose during the war. It might even have been defensible as a temporary measure before the war. It will not serve us now.

What, then, must be our basic principle in plamning? Is not the self-evident answer that it must be to secure the best use of our resources by every means available? That answer, however, is not so simple as it seems at first sight. It means, of course, that industry must be technically efficient. Many British industries lag far behind their counterparts in the U.S.A. in production per man-hour. One of the basic conditions of our industrial recovery must be to raise productivity per man-hour to the levels secured by other nations. Labour is asking for shorter hours and higher wages. They can only be granted if production per man-hour justifies it. A task of the Goverument is to prepare the way for this by persuading Labour that the law of Adam still stands: In the sweat of thy brow shalt thon eat. To make the best use of our labour force is the first step towards industrial efficiency.

The second step must be to produce at the lowest cost. It has been pointed out recontly that there is great need for accurate data regarding costs and prices in industry, and that it must be a function of Government to produce those data. They must, however, be real data and not obscured by subsidies, taxation, and other influences which keep prices artificial. Where, for example, a subsidy reduces raw material prices, either generally or in a particular works or locality, this subsidy must itself be included as a cost. Without knowledge of basic undoctored economic data, it is impossible to make the right decisions. Let us see to it that we base our planning on the fullest and most open recognition of the real comparative costs of alternative enterprises, unconcealed by any protecting devices, however necessary these may be in themselves. We camot afford in the long run to keep up
unecomic enterprises for the sake of avoiding unemployment, or to maintain a population in a particular locality. Processes may change, demands for goods may change, new discoveries may render oldestablished enterprises out of date, and we must be prepared to change with the times. Industry naturally tends to be static; there are many who cannot view with equanimity the passing of the old order, but for the future industry must be dynamic. It must be prepared to site itself wherever the relation between costs, availability of raw materials, transport charges, and markets enables production to be conducted most cheaply-and the population must be prepared to move with industry.

That view of planning will not be popular, but it is a consequence of the new order thrown up by the war. As a writer has put it: "It is not the least task of public policy to-day to achieve security and stability without either conceding privileges to the old and established sectional interests or, as happened between the wars, attempting to provent fluctuations by restricting output or impeding change." Thus it has come about that the Government's task must be to guide industry to make the right decisions and to create the background against which those decisions can be taken with certainty and carried through ruthlessly. The nation has called for total employment, it has asked for social security; it cannot havthese under the old method of free com. petition.

Whether we shall be any better off is another matter, but clearly we are entering a new ora. The nationalisation move is only one of the symptoms of this new age. No longer is it considered right that a man slould take his own decisions and arrange his business as he thinks fit. The distribution of income and the total income itself are from now on considered to be the business of the nation. We should not blame the Labour Government for this change. In our view it is the incvitable accompaniment of our entry into the Age of Science. Scientific men have long argued-and rightly-that to use our natural resources wastefully, as we have done thronghout the whole of our industrial history, is wrong and indefensible. On every side we hear it declared that science is a good servant, but that we must not let it rule us. That is bunk. Science rules us now, and will continue to do so. whether we like it or not.

NOTES AND COMMENTS

The A.Sc.W. "Graduates "

REALLY the outstanding feature of the conference on Science and the Welfare of Mankind held at Beaver Hall, London, last week-end, was the emergence of the Association of Scientific Workers to overt recognition as one of the leading scientific institutions in Britain. In point of fact it has occupied a prominent position in the world of science for some years, but "olficial" acknuwledgment of its status may be said to have been finally given by the fact that the president of the Royal Society, the senior scientific body in Britain, took the chair at the opening session of the conference. Were further confirmation needed, it would have been supplied by the contribution of Professor A. V. Hill and Sir Alfred Egerton, two of the Royal Society's secretaries, to later sessions, not to mention the first speech un science made by Dr. Julian Huxley since his appointment as executive secretary to Unesco. The A.Sc. W. has advanced a long way since it was a struggling body of some 2000-3000 members, rather frowned upon by many established and orthodox scientists as being a turbulent left-wing body concerned with little more than securing higher wages for its members. Honest hard work and good organisation have removed this misconception, and there are fow scientists to day who are not ready to acknowledge that the Association, so far from being merely sectional, is working for the good of scientists and science as a whole.

Co-ordination the Keynote

THE keynote of the conference was set by the chairman, Sir Robert Robinson, who referred to the world-wide collaboration in research during war time, which had enabled tremendous advances to be made in the applications of penicillin, radar, and nuclear energy. He asked why scientific research in peace could not be similarly co-ordinated. Mr. Herbert Morrison urged that the world needed more widespread scientific thought among men in every field of human endeavour and said there was an urgent need of the help of scientists in industry. Close co. operation was likewise the theme of subsequent speakers, including Dr. T'U. Chang. Wang, who pointed out that the fact that it took him only five days to fly from China to England meant that spiritually
and physically the world had been closely lenit together by science into an organic whole. The primary object of the conference was not the formulation of policy, but to provide scientists and scientific workers with an opportunity of "thinking aloud." Altogether, the conference was :ll even greater success than the organisers hoped, so much so that they are now maderstood to be tumning their thoughts Io a further conference, on "Itducation."

A Lecturer with Humour

WHEN Mr. R. E. Threlfall delivered his lecture on glass tubing to the London Section of the B.A.C. last week (as reported elsewhere in this issue) he confessed it was the first occasion on which he had addressed a scientific body. We venture to prophesy, however, that it will not be the last, as Mr. Threlfall not only proved that he knew his subject thoroughly-he has been associated with the glass-tubing industry since the end of the 1914-18 war-but revealed himself as a man with a keen sense of humour, which made his lecture all the more acceptable. "The glassmaker," he asserted, "should be a cross between a pachyderm and an Admiral Crichton, with something of Faraday, something of Talleprand, much of the make-up of Gilbert's heavy dragoon, the persuasiveness of Pericles, and the thermal endurance of that ashestine trio, Shadrach, Meslech and Alrednego." In his concluding remarks, Mr. Threlfall expressed the hope that what he said had not been with out interest, "even though, in my efforts to avoid the Scylla of desiccation, I may have lost some point to the Charybdis of frivolity." He need have had no fears on that score, as the large audience was quick to demonstrate.

Debts of Honour

THERE is an mpleasant type of research student-happily not especially common-whom we have all met in our pil. grimage through the ways of science. We refer to the student who conceives that the public owes him a debt of gratitude for his intellectual achievements, and regards any scholarships, grants, etc., that he may amass, simply as payments on account towards the liquidation of that debt. Fortunately, a becoming modesty is a more usual attitude, while some students actually consider the grants they have re-
ceived as debts that they are in honour bound to repay if the opportunity arises. More especially is this so when the grants have no conditions attached to them beyond the requirement of honest work; and the Carnegie Trust for the Universities of Scotland las received an unexpected dividend, mainly as a result of its liberal policy of fostering "free and unfettered research so that the boundaries of knowledge shall be extended." Jord Normand, chairman of the Trust, speaking at the annual meeting in lidinburgh last week, announced that 94 fommer beneficiaries had refunded . 5169 during the year, this being the highest sum of the kind that the Trust had received since its inception. Some of the payments were from newly-qualified greduates; others from men well on in years who had awakened to a sense of gratitude for the Trust's efforts on their behalf in the past. We agree with the Provost of Dunfermline who remarked, later on in the proceedings, that he conld not subscribe to the view that grants to students should be regarded as debts; but we feel sympathetic with the generous impulse which leads a man, now on the road to success, to repay to the Trust the funds that put him on that road, so that it may the better lie able to assist those who follow on.

A Ceramic Record

CERAMITCS have always been a matter of interest to the chemical industries. We are glad, therefore, to welcome back to the scene of active publication the Doulton journal, Ceranics in Art and Industry, which has lately made its raappearance after an interval since 1940. Though the editor apologises for shortcomings in production due to paper restrictions, the lay-out is attractive and the illustrations excellent. As might have been expected, the current issue deals largely with events during the war, when Doultons had the dubious privilege of being the first pottery to be bombed, their Royal Doulton Works at Burslem having been hit early in October, 1940. This mischance made little difference to their production, however, and not only did the output of chemical and other ware continue unabated, but new products were also evolved as the result of continnous research. We have recorded from time to time such advances in chenical stoneware production as we were permitted to mention-even now there
are certain developments still on the secret list-but such details as the great quantities of stoneware shipped to Canada for nitrating plants, the use of similar material in the manufacture of our lethal gases, and the supplies sent to Turkey for explosive plant to take place of German ware-these are now officially revealed for the first time. Developments such as these are not being allowed to go to waste; and a chapter entitled " Looking to the Future" sketehes the opportunities that lie before the pottery industry in the period of reconstruction.

Simplifying Income Tax

INCOME tax is always a thorny subject, with employer and employee alike, except when some easing of the burden is announced, and we imagine manufacturers in the chemical industry would welcome. no less warmly than other business men, a measure of simplification. As things are, the manufacturer who can compute his income tax liability without having recourse to professional advice is indeed fortunate. True, a start was made by the powers-thatbe in the work of codifying and simplifying income tax, but the war brought about an interruption. Now, on behalf of 4000 manufacturers, the National Union of Manufacturers is urging the Chancellor of the Fxchequer to press for the pushing forward of this work, the importance of which grows with every fresh Income Tax Act or Finance Act. The Union goes a step further in expressing the hope that the Chancellor, in his forthcoming Budget, will relieve industry entirely of the burden of F.P.T. and N.D.C. These, they claim, moreover, should not be replaced by any new selective tax, such as a profits or turnover tax, for this, they contend, would obstruct revival of business activity, and would be based, in their opinion, on no equitable justification. The loss of revenue caused by the disappearance of E.P.T. and N.D.C. should, it is felt, be more than corered by economies in national expenditure.

In the campaign against silicosis, much is hoped for from experiments which are now being made for treating the coal-dust in mine roadways. Research is being undertaken to find a chemical form of treatment which will not only render the coal-dust nonexplosive, but also solidify it, and experiments on onc wetting agent have already shown great promise, says the Manchester (jurrdion mining correspondent.

Progress in Drugs, Fine Chemicals and Biological Products during 1945-III

by G. COLMAN GREEN, B.Sc., F.R.I.C., A.M.I.Chem.E.

(Contimued from The Chemical Age, February 16, 1946, p. 186)

THE status of tuberenlostatic and tuberculocidal substances at the end of 1944 was reviewed by the writer last year (this journal, 1945,52, p. 57), while the tuberculostatic action of streptomycin has been referred to above. Since that date Jennings has reported an explaration of helvolic acid, a metabolite of Aspergillus frmigntus (Nafure, 1945, 166, 633), from the point of view of its activity against Ilycobacterium fuberculosis. She points out that, as far back as 1913, Vaudremer fomed that M. tuberculosis inculated in the presence of a filtered culture fluid of A. fumiga tus lost its acid-fast staining properties and its virulence for anmals. The active principle was thermostable. Using helvolic act. .Jennings found that in slide cultures of homan red blood cells from citrated blood a concentration of the acid as low as 1 in 100,000 caused the development of sualler colonies, while at I in 1000 dilution multiplication was suppressed completely.

Phthioic Acid

Plthivic and tuberculostearic acids are characteristic of the liquid fatty acids from the lipoids of the tubercle bacillus, and Polgar and Robinson (I. Chem. Soc., 1945, 389) hare pointed out that there is evidence that phthioic acid is "the specific cellular sulsstance responsible for the tubercle, the characteristic lesion of tuberculosis." They also point out that analogous fatty acids are characteristic of other acid. fast bacteria, and draw attention to tho fact that Velick and Anderson (J. Biol. Chem. $1944,152,523$) find that extracts of the crowis gall, Phytomonas tumifaciens, which stimulates plants to abnormal cell growth resembling malignant animal neoplasia, also contain fatty acids similar in several respects to those found in the tubercle bacillus. These fatty acids are therefore of wide as well as fundamental biological interest. The nuthors have collected all available evidence as to the chemical and physical characterisations of these acids, and conclude from this together with their own experimental work that phthioic acid, $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{2}$, is most probably $3: 13: 10$-trimethyltricosanoic acid. The synthetic acid has properties corresponding with

$$
\underset{\sim}{\mathrm{CH}_{3}\left(\mathrm{CH}_{3}\right)_{3} \cdot \mathrm{CH} .\left(\mathrm{CH}_{5}\right)_{5} \cdot \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \cdot \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{COOH}}
$$

Bun-Hoii (Nature, 1945, 156, 392) shows that the attempt to find tuherculostatic
material based on an appronch from the antagonism principle lweaks down because, as far as is known, no "vitamin" of the p-amino-benzoic acid type of action, or any known other, is necessary for the metabolismi and growth of M. luberculosis. Bun-Hoii, therefore, develops an eptirely new appronch to the problem of antagonisu. He suggestis that there might be mantagonism betwen plastic constituents of the cell and some substance of closely related molecular structure which, if supplied to the organism, would be capable of being assimilated into the cellular framework without being able to exersise the vital function. Bun-Moii obtained from dead bacilli of a virulent stock of human origin a mixture of futty acids which he converted to the corresponding primary amines. He found that the mixture of amines was highly bacteriostatic towards M. tuberculosis, growing, on synthetic media, at a dilution of 1 in 10,100 . It is sugggested that the effect of the simple change of radical, while maintaining the molecular structure, bridges the gap between chemotherapy and immunology.

The complete specifications of two patents have been accepted during 1945, each of which refers to the manufacture of antibiotics. B.P. 569,844 (Levi, Terpessen, and I.C.I.) refers to the purification of penicillin involving a chromntographic type of separation. B.P. 572,818 (Birkenshaw. Michael, and Therap Res. Corp. of Git. Britain) protects the manufacture of pathlin which, as reported in our 1944 revies, has not satisfied hopes in connection with treatment of the common cold.

Mechanism of Racterial Action

Geiger and Conn (J.A.C.S., 1945, 67, 112) point out that many a- β-unsaturated ketones react with sulphydryl groups. Patulin and penicillic acid are examples of this class of compound which, further, are inactivated so far as their bacteriostatic properties are concerned by sulphydryl compound. They consider that the bacteriostatic activities of these compounds are due to interference with the normal metabolic functioning of sulphydryl groups by attachment of the RSH group across the double linnd. Challinor (Pharm. J., 1945, 154, 116) has pointed out that the mode of action of penicillin may be of a similar nature. The action of penicillin may be prevented by the amino acid cysteine ($\mathrm{CH}_{2} \mathrm{SH}_{\mathrm{Cl}}^{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$.$\mathrm{COOH})$ or its esters; but not br the
corresponding hydroxy amino acid or Snetlyyl crysteine. Geiger and Conn observe that the only grouping common to patulin an penicillic ncid is $-\mathrm{CH}-\mathrm{C}-\mathrm{C}=\mathrm{O}$, and proceed to consider the potentinlities of various synthetic $\alpha-\beta$-ansaturated compounds. Of a series examined only aerylophenone at all resembled patulin in its baeterinatatic and fungistatic properties.

$\mathrm{C}_{4} \mathrm{H}_{2} \stackrel{\mathrm{H}}{\mathrm{C}}_{\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}}^{\mathrm{C}}$

Acrylophenone

Cavallito and Haskell (J.A.C.S., 1945, 6i, 1991), investigating the mechanism of bacterial action, point out that patulin and penicillic acid are members of a wider group of antibiotic substances (including anemonine and $\Delta \alpha \beta$-hexeno-lactone) which are al lactones. The question arises as to the extent to which bacteriostatic action may be at function of this group. They find that several unsaturnted lactones react with cysteine and related aminothiols by the addition of the thiol group to the double bond, followed in some cases by reaction of the lactone group with the amino group with loss of water. Thus, antibiotics in this group may react with the sulphydryl groups and possibly the amino groups of enzyme proteins.

Any attempt lowards moderatanding the action of bacteriostatic substances must take into consideration the selective action exercised by many antibiotics between gram positive and gram-negative organisms. The knowledge to date of the biochemical differences between these two groupings is almost mon-existent. Henry and his co-workers had earlier turned their attention to the significance of gram-positiveness and its antithesis. Now they have isolated the material responsible for the stain in the cytoplasm of gram-positive organisms (Nature, 1945, 156, 720). They find it to be a high molecular complex between a reduced basis protein and magnesium ribonucleate. The pro. tein involved was found to be of a novel type and to differ from known protamines and histones. When the two organic parts of the complex are separated they do not separately take the gram stain. The gram-
positive nucleo-protein of Cl . welchii generally resembled that of yeast, but the two components of the former were more difficult to separate. Moreover, while the nucleoprotein of yeast contained ribonucleic acid (c. 25 per cent.) that from Cl. welchii contained desoxynucleic neid (c.3.5 per cent.) as well as ribonucleic acid (27.0 per cent.). A further difference was that the dissociated protein of yeast contained - SH groupings while that from the clostridium contained -S-S- groupings.
Protein-mucleates were also separated from gram-negative organisms, but only with difficulty, and these materialse took the stain only with difficulty, and in intensity of staining were not eomparable with those produced with gram-positive materials. Among the gram-negatives the ratio of desoxyribonucleic acid to ribonucleic acid was much higher than among the grampositives. The authors conclude that there is a fundamental difference between the basic protein of gram-positives and that of gram-negatives, and between their modes of combination with nucleic acid. They believe that a more complete study of these differences is necessary to an understanding of the mechanism of the selective attack of some antibiotics.

Sulphonamides

Among bacteriostatic substances other than antibiotics the pace of development has not been maintained as compared with the early days of the war. "The Medical Use of the Sulphonamides" (M.R.C. War Memorandum No. 10) has been issued in sh second edition during the past year. It. includes references to only three additional sulphonamides-sulphamerazine, phthalysulphathiazole, and marfanil-and has been somewhat recast to take stock of the new siluation created by the increasing availability of penicillin. The section on the toxic and harmful effects of sulphonamides las been brought in line with the most receut information with rlue emphasis on the risks of sensitisation.

Goldberg (J.C.S., 1945, 464) describes the? preparation of eompounds of the type $\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2} \mathrm{NH}-\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{NH} . \mathrm{R}$ in which the structure of sulphanilamide and taurinamide are each implicit. A feature of these compounds is the interpolation of methylene groups between the aryl nucleus and the sulphonamide residue. It will be recalled (this journal, 1945, January 13, p. 56) that, in contrast, marfanil (4-homosulphanil. amide) has a methylene group interposed between the aryl nucleus and the N^{4} amino group. Goldberg finds that alkyl and aryl aminoethaue-sulphonamides possess only slight in vitro antibacterial activity while the sulphanilamidoethane-sulphonarylamides possess considerable in vitro and in vivo
netivities and have toxicities of a very low order.

Short et. (1. (J.C.S., 1945, 240) describe the preparation of a marfanil-like series of compounds by condensing aceto-p-chlorosulphonylbenzylanilide (prepared by the chlorosulphomation of acetobenzanilide) with ammonia, 2 -aminopyridine, ete., The antibacterial activities have been examined, but reports are not to hand.
Bary and McNalty (Nature, 1945, 156. 48), have found that methyl half-esters of certain disubstituted succinic acids wre baeiericidal in vitro. They are strongly homo. lytic, are mutagonised by serum globulin, but are not excessively toxic to laboratory animals. The discovery is reported from America of a new class of compound, the members of which are bacteriostantically effective towards pathogenic organisms which are resistent to sulpha-rhugs. The most active member of the group is sulph-anilyl-dibromoanilide which lias been found effective in the treatment of puemmonia. tetanus, gas-gangrene, boils, spinal meningitis, and gonorrhea in laboratory animals.

Dewar and King (J.C.S., 1945, 114) lave examined the efficacy of substituted pyrazoles in the heterocyclic nitrogenous ring of sulphonamides. The only compound found to be more effective than sulphanilanide was p-aminobeuzenesulphonamido - 5 - amino-3-nethyl-pyrazole

Williams (Biochem, J., 1945, 39) has found that from 7 to 9 per cent. of the dose of sulphonamides fed to rabbits is excreted in the urine as 3-hydroxy-sthphanilamido which oxidation product was excreted as its ethereal sulphate. From 40 to 80 per cent. of the sulphanilamide was excreted in its actylated form while oaly a small amount was excreted conjugated as its glucuronide. 3-Hydroxysulphonamide has been detected spectroscopically in human sulphanilamide urine.

Steten and Fox (J. Hiol. Chem., 1945, 161, 333) have isolated a new heterocyclic amine-probably 2-hydroxy-5 : 6-diamino-pyrazine-from culture medium in which the normal growth of E. coli has been prevented by bacteriostatic concen-
 trations of a range of sulphonamides. The product does not arise directly from the sulphonamides and may be either a normal intermediate in some metabolic process blocked by the drug or an abnormal product formed under the influence of the drug.

German Developments

It has been reported that during the war years sulphadiazine and "globucid" (p -aminobenzene-sulphonamido-ethyl-thiodiazol) were dereloped in Germany. Globueid has
an unpleasint taste and is less effective than sulphadiazine. The higher homologues of

this substauce with isopropyl, butyl, etc., substituted for ethyl were more effective but had not been marketed.

Krebs and Speakman (Biochem. J., 1945, 39) show that the solubility of sulphonamides in bufter solutions of different plif may bo predicted from a knowledge of two coustants: the solubility of the undissociated sulphonamide and the acid dissociation constant. For physiological purposes most sulphonamides may be regarded as monobasic acids whose mudissociated form is sparingly soluble, but whose alkali salts are readily soluble. The non-ibsorption oi sulphatguanidine and sulphasaxidime appears to be cormected with the non-ionisntion of the sulphonamide nitrogen. In sulphagramidine both nitrogens are substiinted, while in sulphasuxidine the acidic properties are masked for physiological purposes by the introduction of another acidic group.

During 1944 Gulland and Farrar (Vafure, $944,15 \mathrm{~h}, 88$) reported cyclotelluropentane-3:5-dione, and especially its dimethyl derivalive, so have antibacterial activity. Bergel et al. (Niature, 1945, 156, 481) have pre. pared and sxamined its sulphur analogue
 which shows equivalent antibacterial activity with its dioxime derivative. Bergel produces arruments against the theory of Gulland and Farrav that the grouping
$-\mathrm{C} .\left(\mathrm{CH}_{2}\right) \cdot \mathrm{C}(\mathrm{OH}) \mathrm{C}-$
is specifically concerned with antibacterial activity and that the basis of the reaction is a substrate competition with pyridoxin.

Bios, the yeast growth factor of Wildiers, was for many years wrapped in mystery. In 1922 Fulmer and Nelson showed that $1 w o$ entities were involved and they were uamed Bios I and II respectively by Miller. Since that time both Bios I and II have been shown to be complex mixtures necording to the following scheme.

Biotin was the last member of the complex to yield to attempts to elucidate its structure; towards the end of 1944 its syn-
thesis was announced, but details were not available in time for inclusion in last year's review. The synthesis was accomplished bs Harris et al. (J.A.C.S., 1944, 66, 1756), starting with l-cystine which is reduced in liquid ammonis and coupled with chloracetic acid to give β-(carboxymethylmer-capto)-alanine. This substance was benzoylated and esterified and the renction product treated with sodium methoxide in methanol to give the sodium salt of 4-benzamido-3-ketotetrahydro-2-thiophene carboxylic acid methyl ester, racemisation taking place during the last step. This compound is hydrolysed and decarboxylated in aqueous acetic acid/hydrochloric acid mixture to give 4 - benzamido - 3-ketotetrahydrothiophene (I).

The valeric acid side-chain is introduced loy an aldehyde prepared from glutaric acid, the monomethyl ester of which is converted, thirough γ-carboxy-methoxybutyryl chloride, to methyl- γ-formyl butyrate by the Rosenmund reduction method. The aldehyde ester is condensed with (I), with piperidine acetate as catalyst, to give the methyl ester of 4-benzamido-3-keto- $\Delta^{2} \gamma_{\text {-tetrahydro- }}$ 2 -thiophene valeric acid, which is converted to the -3-oximino-derivative by treatment with hydroxylamine in pyridine.

Reduction with zine dust in acetic acid/ ncetic anhydride solution gives the methyl ester of acetoamido-4-benzamido-4:5-di-hydro-2-thiophene valeric acid. (II) and another compound. Hydrogenation of (II) over palladium followed by fractional erystallisation gives the corresponding tetrahydro compound which, on hydrolysis with barium hydroxide and treatment with sulphuric acid, gives the sulphate of 3:4-diamino-tetrahydro-2-thiophene valeric acid. Treatment of this compound with thiophene gives the two racemates of hexahydro2 -oxo-thiene (3:4)imidazole-4-valeric acid which are known as dl-biotin and dl-allobiotin. dl-Biotin is resolved through its esters with mandelic acid to give biotin, the laevo-form being physiologically inactive.

$\mathrm{l} \equiv \mathrm{S}=$ Biotin
$1 \Omega \equiv 0=$ Oxybiotin

So polent is biotin that its effect on yeastgrowth is detectable at a dilution of 1 in $10,000 \times 10^{6}$ parts.

Hoffman (J.A.C.S., 1945, 67, 1460) has announced the synthesis of dl-oxybiotin, which appears to be utilised by yeast without prior transformation to biotin, accord.
ing to Wimnick et al. (J. Biol. Chem., 1940, 161, 405). Thus, the sulphur atom is not essential to the metabolic acceptance of biotin. dl-Oxybiotin has, however, only half the activity of d-biotin which, as already pointed out, is the only activo isomer. If, similarly, when dl-oxybiotin las been resolved into its optical isomers the d-isomer alone proves active, then oxyhiotin and biotin may prove to be equally effective. The carboxyl group is of importance to the action of oxybiotin, since its substitution by a primary alcohol group reduces its activity to one-300th for S. cerevisia and L. arabinosus. Replacement of the valeric acid side-chain by a methyl group reduces the activity to one-millionth of that of biotin for the test organism. Hydrolysis of the urea ring in both d-biotin and $d l$ oxybiotin reduces the activity to about 10 per cent. in the case of the former and to about 1.5 per cent. in the case of the latter.

A form of dermatitis in rats fed on un. cooked egg-white was olsserved in 1927 by Boas-Fixsen, the development of which was prevented by a liver-extract fraction called "vitamin H" " by Szent-Gyorgi. In lumaus fed on raw egg-white a scaly dermatitis, ashen-grey pallor, numbness of the skin, and nausea develop; this condition can also be cured by the administration of biotin or its methyl ester. This condition, known as "egg-white injury," is now known to be due to inactivation of biotin by the formation of an inactive complex with "avidin," a protein-carbohydrate complex present in egg-white which has been prepared in erystalline form. Interestingly enough, oxybiotin, its methyl ester, and the primary alcohol group mentioned above, are inhibited by avidin, which suggests that the carboxyl group is not involved in combination with the inhibitor. The diamino-carboxylic acid produced by hydrolysis of the urea ring is not inhibited by avidin. Winnick and his co-workers find that avidin combines stoichiometrically with these growth-promoters.

Du Vigneaud and Wood (J.A.C.S.. 1945, 6\%̃, 216) have synthesised dl-desthiobiotin.

which has been found to be equally as effec. tive as biotin in supporting yeast growth. Tatum (J. Biol. Chem., 1945, 167, 455) brings evidence that desthiobiotin in probably a normal intermediary in the biosynthesis of biotin.

English et al. (J.A.C.S., 1945, 67, 295)
have synthesised two closely-related series, in one of which $R^{\prime \prime}$ in the annexed. formula is $-\left(\mathrm{CH}_{2}\right)_{n}$. COOH when R^{\prime} is H, while in the other $R^{\prime \prime}$ is H when R^{\prime} is $-\left(\mathrm{CH}_{2}\right)_{n}$.COOH. The carboxylic ring
might be benzene or cyclo-
 hexane to give a urylenobenzene and a cyclohexane system respectively. The compounds examined proved to be potent biotin antagonists with few exceptions when assayed with yeast or L. casei. In general, the cyclohexane derivatives were more potent than the corresponding benzene derivatives.
Dewar (Nature, 1945, 155, 141) proposes an unusual seven-membered ring structure in ring B of colchicine which is the potent mitotic poison responsible for the arrest of division at metaphase and for the experimental induction of polyploidy. The seven-

membered ring has been shown by Dewar (Nature, 1945, 155, 50) to be present also in the metabolic mould product, stipitatic acid. In each case Dewar claims that the seveu-membered ring has caused difficulty

in elucidating structure. Subject to confirmation of the above structure, he suggests that resonance is set up between I and II.

Mepacrine

Mepacrine, the manufacture of which has been developed in this country during the war, has attained the status of an antimalarial drug of major importance. Mepacrine is indicated in the same field of therapeuties as that occupied by quinine. There is little difference in toxicity and neither of these drugs prevents relapses in vivax malaria. The development of mepacrine as
a drug has occurred as a consequence of the loss of quinine supplies, and it remains to be seen to what extent mepacrine holds its place in the face of iucreasing availability of quinine. Mepacrine has some advantages over quinine, but it is doubtful whether they would have been sulficiently great to lave enabled mepacrine to make such deep inroads into the quinine market before the war. It is likely that it will con. tinue to be necessary for mepacrine to be administered under medical supervision, but the British Medical Journal has editorinlly expressed the view that quinine " may still be the safest drug for general employment with medical supervision." One thing is certain : the availability of mepacrine us an alternative drug will stabilise the price of quinine, and will serve to promote efficiency in the quinine industry. from the plantation to the extraction plant. The manufacture of mepacrine, principally for use by the armed forces, has been on a huge scale. One firm alono in this country is reported to hare produced in one year 100 tons, sufficient for 2000×10^{8} tablets.

From the point of view of relative toxicities the status of mepacrine may be improved by recent observations. Hammick and Chambers (Nature, 1945, 155, 141) have observed that when racemic mepacrine is administered to man, the l-form is excreted unchanged in the usine. Subsequently Gause (Nature, 1945, 156, 784) pointed out that the biological relations of the optically active isomeric mepacrinea have been investigated in Russia during the past few years. It has been found that while both isomers are effective in malaria the d-form is half as toxic as the l-form for mammals and birds. Further, the d-form is less toxic to man than the racemic form, while the antimalarial potency is the same in either case. Gause suggests that for these reasons the d-form may be expected to attract increasing attention in the therapeutic field.

Paludrine

Towards the end of 1945 the development of a new synthetic antimalarial called "paludrine" was announced, and particulars of its constitution have been made available recently. It is N^{\prime}-(p-chlorophenyl) - N^{5} - isopropyl - biguanidine. It is a simpler compound than any other known antimalarial, and it is reported to be easier to manufacture than mepacrine or pamaquin. It is said to be three
times more potent than mepacrine, and ten times more potent than quinine, but it appears to be no more effective than mepacrine or quinine in controlling benign tertian malaria. However, paludrine is said to be more efficient prophylactically as well as less toxic than mepacrime and quinine in use. The drug has not yet been fully explored therapeutically and, at present, all supplies are reserved for clinical invesijgation.

Paludrine
Paludrine has an advantage over mepacrine in that, unlike the latter, it does not stain the skin. It, is stated to be rapidly absorbed when administered per os (B.M.J., 1945, 653) and appropriate blood concentrations are built up by twice-daily $\frac{1}{2} \mathrm{gm}$. doses for 14 days. About one-third of the dose so administered is excreted in the urine, and the drug is well tolerated, although large doses have showed signs of causing gastro-intestinal irritation. Clinical trials appear not yet to have been sufficiently extensive to show whether or not. the drug is likely to cause agranulocytosis or nervous lesions, features which are often not developed until a drug has been introduced into widespread use.

An ingenious portable plant has heer developed by the U.S. War Department for the production of totaquine (the total alkaloids of the chinchona bark) at the seat of the harvest (Chem. Eng. Neus, 1945, 23, 1770 ; J. Amer. Pharm. Ass., 1945, 6, 234) which utilises it base-exchange technique. Plant weighing 1500 lb ., and capable of being transported by mules, can process $13,000 \mathrm{lb}$. of bark per month, using 1000 lh . of process chemicals. This $13,000 \mathrm{lb}$. of bark produces about 170 lb . of totaquige or about 120,000 ten-grain doses at a cost of $\$ 0.0038$ per dose, and 96 per cent. of the alknloids in the bark are recovered. The fresh bark is macerated with 1/10-normal sulphuric acid and the resulting solution is passed through ion-exchange material. The adsorbed alkaloids are freed as bases by passing caustic soda through the columns, and the bases are elutrinted with alcohol and recovered in a charcoal-fired portable still.

Tonkin and Werk (Nature, 1945, 156, 631) have found a non-alkalaidal constituent in the bark of Fraximus malacoplyylla and the root of Dichron febrifuga, spmples of which were collected by the scientific mission to China headed by Dr. Joseph Needham. The substance is effective against trophozoite-induced infection by P. gallinaceum in chicks, but the growth of
erythrocytic (exo-) forms was not prevented. No further information is available conceruing the nature of this valuable substance.

Antiseptics

Coming to the consideration of antiseplies, we find that the main developments have derived from the continued exploration of the aminoacridine series. Rubbo, Albert, nud Gledhill (Br.J. Exp. Path., 1945, 26, 160) report that l-methyl-5-aminoacridine is less toxic and more active than 5 -amino-acridine and also less toxio and more active than a large number of other derivatives of 5 -amino-acridine which were examined. Wien et al. (Lancet, 1945 , December 15), however, disagree; they find that while the l-methyl and 2 -methyl deriva. tives are less toxic than the parent 5 aminoacricline when administered by the parenteral route, the activities are nbout the same. They state that the two methyl delivatives are no less toxic towards leucoeytes than 5 -aminoacridine and cansequently offer no adrantages in topical administration. Albert and Gledhill give a convenient method of preparation of the 1 -methyl derivative (J.S.C.I., 1945, 1, 127) by the chlorination of 2-methyl-diphenylamine-2-carboxylic acid with phosphorous penta- or nxy-chloride to give . 1 -methyl-5-chloroacricline which is converted to the corresponding aminoacridine by ammonium carbonate.
Falk and Lederer (Pharm. J., 1945, 155, 208) have reported on the pharmacy of 1-methyl-5-aminoacridine which, they find, does not appreciably stain fabrics or skin, and they give a list of compatibilities. Its salts are, in particular, compatible with physiological saline, whereas the parent 5 aminoacridine precipitates in the presence of salts in excess of 0.45 per cent. The monolyydrate was found to be stable in ordinary atmospheric conditions, and a 1: 1000 solution had a pH of 6.0 ± 0.5.

Albert and Magrath (J.S.C.I., 1945, 6t. 30) give a synthesis for $1: 9$-dimethyl-proflavine and claim it as more effective than uny aninoacridine hitherto available Rgainst the gram-positive organisms S. aureus, Str. pyogenes, and Cl. welchii without any corresponding increase in toxicity towards mammals. The stain on the skin from the monohydrate is more orange than that produced by proflavine, but less intense. Unlike salts of proflavine, it has no bitter taste; it is more stable to light and more resistant to fungal growth. Proflavine hemisulphate, which is neutral in reaction, is now offered on the British market in place of the official sablt which is so acid as to be likely to cause necrosis of tissues.
(To be concluded)

Glass Tubing

Lecture by Mr. R. E. Threlfall to the B.A.C.

THERE was an attendance of well over 150 at a meeting of the London Scction of the British Association of Chemists at Gas Industry House, London, S.W., on February 13, when Mr. R. E. Threlfall gave : most interesting lecture entitled: \because Glass Tubing."

Mr. E. Leighton Hulmes, chairman of the section, presided, and the hon. secretary. Mr. Norman Sheldon, referred to the valuable work which Mr. Threlfall had done for the glass tulbing industry since he took up the fight against German competition after the war of 1914-18. There was no doubt, he said, that Mr. Threlfall's work lad ensured the winning of the war more easily than would have heen possible had his fuctory uot existed. Mr. Sheldon went in to warn the Government that unless they revised their idens of recruitment for the Forees and declared that skilled workers in the master key industries-including the glass tubing industry-were more important at their work than they would be in the Forces, then a major catastrophe could be anticipated.

Mr. Threlfall, in his opening remarks, referred to the manufacture of glass tubing in the Stourbridge district, which, he said, hegan in 1914-1918, when Belgian refugees passed on their skill in tube drawing to the youth of Worcestershire. He enumerated inriefly a small but astonishingly varied selection of uses to which glass tubing is put, reminding his andience that whether they were chemists or laymen, instrument makers or dairymen, politicians or hospital patients, they could not live to-day without the help of glass tubing.

Variety of Compositions

This variety of uses calls for a variety of compositions, for just as in metal an alu minium saucepan differs from an armourpiercing bullet, so the tubing used for a ghass electrode is very different from that used in micro-analysis. The vard "flass" often brings up a mental picture of a bottle or a window, but the range of glass com positions which exists to-day is ammous, and many are vastly different from either bottle or window glass, whish are mainly sand with lime and soda. Modern class may contain almost any known elcment and may have no silica or altermatively to allari.

The new optical glasses contain ncither silica nor alkali, but consist of boron, harimm, and rare earths, and have to be melted in platinum. One new glass, in which hydrofluoric acid conld be stored, was essentialy a metaplosphate. The slasses used for combustions in niero-
analysis have no alkali, nor has glass fibre from whish tape is made for the electrical industry. It is possible to choose the most suitable composition for almost any known purpose, but each must to some extent bo a compromise. As hand-drawn tubing is nsually made from glass melted in comparatively small mits, it is possible, if the need arises, to obtain supplies of cubing in a very wide range of composition, much wider than for botlles and other artiches requiting large-scale manufacture.

Special Requirements

Luboratory soft soda tubing mase not contain compounds which reduce when wromed in a gas flame. Glass for hypodermic syringes must have a coefficient of expmanion which lies between certain limits, so that fusible metal may mrip it, but not to hard. Glass for dolls' eyes must bang on to soft iron wire with litile or no ammealiag.

If chemists are not satistied with the chemical or physical properties of the glasses they use they should thot hesitate to make itquiries from and offer suggestions to the flassmakers. The average laboratory usually holds stocks of soft sodr and hard borusilicate glass tubing and rod, with some combustion tube and possible some lead glass. If it is a physical luboratory some special tungsten and molybdenum sealing glass may be necessary, but in the chemical laboratory an oceasional olatium seal is usually all that is wanted. The laboratory furnisher can supply all these needs, but the chemist must keep a careful watch on the activities of the buying department in the higger firms or justitutions who are inclined to buy on price and not on quality, with results that may be very disturbing in the laboratory.
Reference was made to lead glass which has fallen into disuse in most latioratories and among glass-blowers because of the backening which occurs owing to the reduciug action of the glass Ilame. If worked in the tip of the flame, or still hetter with a little oxygen, it will not blacken and has many useful properties. I: melts easily, has it long range of plasticity, ruguires little annealing, and is so elastic that it will hang on to other glasses of fairly wide difference of expansion. For this reason it can often le used for joining two kinds of glass together and for repairing apparatus.

The lecturer then described the marufacture of glass tubing. The luik of glass tulsing and rod made to-day is machinedrawn and is largely consumed by the medical services and in lamp making. The laboratory uses only a small prart of the
output, but its needs are varied and highly specialised and call for smaller quantities, which must often be hand-drawn. Machinedrawn tubing can be distinguished from hand-drawn by examining the striac. If they are parailel to the length of the tube it is hand-drawn, for the machine-drawing gives a twist which is never taken out.

Machine-Drawing Process

The method of machine-drawing used in the Danner process was described. The glass flows from the furnace over a revolving mandrel, around which it wraps itself until it spills over the end and is drawn off on rollers for perhaps 100 ft . Air is pumped down the mandrel and through un aperture at the end. The flow of glass, the speed of the pull, the revolutions, the diameter of the mandrel, and the temperature of working are adjusted to produce the desired size and wall-thickness.

In hand-drawing, the process is very different and needs the greatest possible skill. The ghassmaker gathers a ball of molten glass from the furnace or the glasshouse pot. He rolls this on a steel plate to shape it and puffs air into it to form the bore of the tube. When this operation is completed the gathering is reheated and another man ioins an iron tod to the other end of the ball and holds it while the first man walks backwards, drawing the tube out and blowing all the time to keep the wall from collapsing. A third man fans the tube, gauges it with a pair of callipers, and directs the speed of the drawer. The tube is then laid on a wooden ladder to cool before being cut up.

The skilled tube-drawer lins to work to one or two millimetres in diameter and entirely by eye. He must have a combination of qualities which are rare in one man. and for that reason he camot be trained in the course of any given war, a matter which Government departments do not easily realise. His physical qualities must include, in the words of the lecturer, delicate footwork, lungs capable of lowing the guts out of a trombone, and ability to work in continuous heat. The work is healthy and ginssmakers do not suffer from lung trouble. Most of them live to a good old age. Ther-inometer-tube drawing is probably the most difficult of all glassmaking operations. In the lens front clinical thermometer, the bore, which is only 0.04 mm ., must be in the correct position in relation to the lens, otherwise it is useless.

A Suggestion

Chemists and engineers were urged to visit glassworks and study the production methods in order that their metal-made ideas about tolerances might be corrected. This applies particularly to designers who
usually expect glass to be made to impossibly fine limits.
The lecturer then went on to give a large number of useful practical hints for storing, testing, cleaning and manipulating glass tuling. He advocated the storage of glass tubing horizontally, as vertical storuge means that pieces of glass fall down the tubes and scratch the bores-and the inside skin of a tube is far more delicate than the outside. Cotton wool should be placed lonsely in the ends when the tubes breathe with clanging temperatures. Racks should he slatted so that broken pieces fall through the slats and the bottom space should be left ligh enough to sweep under. A tube should never the pulled out until it had first been relieved of the weight of tubes on top of it ; similarly, a glass tube should never be pushed in tightly among others. Tubes should be stored, if possible, against a lighted background, so that differences of colour help to identify misplaced slocks.
The lecture was illustrated with drawings made for the purpose by Mr. C. Digly Lovell.

A discussion which followed was upened by Sir Robert Robertson, F.R.S., who eollgratulated Mr. Threlfall and said he hoped arrangements could be made for the lecture to be published in full. as a brochure. At the close Dr. F. W. Stoyle expressed thanks to the lecturer and stressed the importance of co-operation between manufacturers and consumers of glass tubing and other scientific equipment. The audience inspected a number of interesting exhibits.

INDIANS' FAREWELL LUNCHEON

At the farewell luncheon given at Grosvenor House on Monday to the Indian Chemieal Manufacturers' Association delegates on the eve of their return to India, Itr. K. A. Hamied, their leader, expressed the delegation's thanks to the leading men in the British chemical industry for their courtesy; sympathy, and goodwili. He sail they had found that American makers of plant and machinery were no better in the way of deliveries than were British firms Thongh fur peak production Britain could obviously never be equal to the Uinited States; yet with the natural resources and man-power of India, combined with the tecl:nical and scientific knowledge of Britain, it should be possible to compete both in quality and quantity with any country in the world.

Cordial goodwill and readiness to en operate were expressed in speeches made by Mr. L. P. O'Brien, president of the A.IB.C.M., Mr. Keith Fraser, chairman of the B.C.P.M.A., and Sir Frederick Bain. formerly the chairman of the Chemical Control Board

Antimalarial Research
 New American Compounds

AS a result of antimalarial research during the past four years, under the auspices of the U.S.A. Board for the Coordination of Malarial Studies, compounds considered superior to quinacrine (atabrine) have been developed.

Among thesc are several members of the t-aminoquinoline series, including SN7618, 7-chloro-4-(4-diethylamino - 1 - methylbutylamino) quinoline. An effective suppres. sive when administered no more frequently than once weekly in a well-tolerated dose, it canses an abrupt termination of the clinical attack of vivax malaria and cures falciparmm malaria when administered for only one or two days. It cloes not discolour the skin as does quinacrine, nor does it give the disagreeable gastrointestinal symptoms which are sometimes olserved with the administration of quinacrine. Several other compounds iu this same chemical series also appear to be superior to quinacrine.

Parliamentary and Scientific Committee

Election of Officers

AI the anmual general meeting of the Parliamentary and Scientific Committee, held in London on Fehruary 12, Sir John Anderson was elected president by unanimous resolution, and Lord Bledisloe, Lord Brabazon, Dr. W. R. Wooldridge, and Professor 15. N. da C. Andrade were reelected vice-presidents. Mr. J. G. Bennett proposed that past presidents be officers of the committee, and, this proposal being carried unanimously, it was agreed that past presidents should have the rights of rice. presidents. Lord Dudley and Lord Samuel have served as presidents of the committec.
A ballot in elect officers for 1946 produced the following result: vice-chairman elected, Professor A. V. Hill; Dr. J. Vargas Eyre and Mr. J. G. Bemmett tied for the post of hon. treasurer; and Sir Wavell Wakefield, M.P.. and Mr. M. P. Price, M.P., tied for the position of clairman. In consequence, the election of officers to fill these last two posts was posiponed until the exccutive committee's meeting on February 26 nr later, as well us the consequential elections of a deputy-chairman, a joint hon. secretary, and two vice-presidents. As a result of the election of Professor Hill to the vice-chairmanship, there is a further vacancy for a rice-president from among the representatives of scientific organisations, and nominations are invited. Major Freeman, M.P., Dr. Clitherow, M.P., and Lord Halshury were elected members, but the election of the Institute of Welding and the Research

Committee of the Aluminimm Development Association was deferred to the next meeting.
Other proposals earried unanimonsly at the meeting were that a special Steering Committee should be set up to plan the activities of the executive committee, and that there should be two joint homorary secretaries instead of one. Major R. F. Maitland continues in one of these joint posts; election for the other will take place later, as already indiented. Commander C. Powell was re-elected sectetary to the committee for the coming year.

Plasticiser Prices

Increase Announced

FOLLOWING the withdrawal oll January 1 of the rebate of 50 . per proofgallon formerly paid to users of industrial alenhol, Britisi makers of phthalate plasticisers and of trieresyl phosphate amomes amended prices, operative fron February 1. the principal changes affecting the diethyl and dibutyl esters. The following are the present prices per lb. (carriage paid in I.K. in returnable containers).

Dimetley phthalate, from 1 s . Opd. for 10 ton lots to 1s. 3d. for 5 -gal. cans; diethyl phthatate, 1s. 1 ad., to is. $4 \frac{1}{2 d}$; dibutyl phthatate, 1s. Pi d. to Is. 61d.; dimuyl phthalate, 1s. fd. to 1s. 6 ad.; tricresy phosphate, 1 s . 6 ad. to Is. 912 d .
since the remoma of licensing from plathalate esters, ammomeerl last November (sue The Chemicac Age, 1945, December i, p. 506), consequent upon the cessation of Government demands, supplies of most of these esters are abundint. The litte-used diamy phthalate is in relatively short supply, since most of the home-produced amyl aleotol is required for penicillin manulacture via amy acetate. Tricresyl phinephate continues to be alse in short supply for the time being.

ROSIN PRICES

It is amomeed that on and nfter March 1 the selling prices per ewt. of gume and wood rosin soll throlng! the agents, the Lnited Kingdom Naval Stores Association, Ltd., 46 st. Mary Axe, London, E.C.? will be as follows:.
(iune Rosin: Medium Pale, Greck D.E., and Spanish B.D.E., 44., ; F/I K. \& M.. 47s. : N. \& W.G., 48s. 60.; W.W., 52s. 6d.; X.W.W. \& Y., 53s.; A.A., 3A. and 4.A, 53 s . 6id. ; Crystal, 54s.

Hood Rosin: 13.. 38.; F.F.. 43:-; K.. 45s.; Vinsol and Truline Binder, :3P.

For many months the prices have been standing at 42 s , to 45 s . per cwt. for rum rosin, and 30 s . Gel. to 40 s . for woonl rosin, according to grade.

Rutin from Buckwheat

Large-Scale Production in U.S.

THE U.S. Department of Agriculture has ammonced that full-scale production of rutin, a clrug of value in the treating of capillary frangibility arising from high blood-pressure, will begin shortly. Largeseale production of the drug is now possible through the discovery that the green buckwheat plant is an econmic somre. The drig is fomm chiefly in the leaves and blossomis of the plant. Huckwhent producers will be able to grow more than one crop a vear because the crop is harvested five weeks after the seed has sprouted, when the rutin yield is highest, instead of when the grain is ripe.

Rutin was first isolated over a century ago. It oceurs naturally in many plants: nie leaves (hence the name), tomato leaves, tobacen stems, Sophora japonica, ete. It is derived from the flavanol quercetin and the disaccharide rutinose- $\mathrm{C}_{12} \mathrm{H}_{92} \mathrm{O}_{20}$:

Its medicinal value. however, was not rerealed matil rescareh lecgan two years agn bey the Department's Bureato of Agriculture and Imelustrial Chemistry and clinical iests in the University of Pembsylmaia proved its worth.

Fesides the application of the drug in the troatment of weakened blood vessels, re. seareh has led tu the opinion that it may also be an aid in nutrition by contributanit (1) the growth and hardness of treth and bumes much in the manner of vitamin C. Dr. J'. A. Wells, director of the Eastera latoratory of the Burean of Agrientare and Industriai Chemistry, estimates that 10.(ok) lh . of ratin would be required for medital purposes in 1946. Eventually, he said. $1,3011,000 \mathrm{Hb}$. world be needed aminally (1) meet both medical and mutritiomal re quitements.

Fluorine Compounds

Recent Work in the U.S. and Germany

N$\because W L$ develuped flurine products desaribed in Chemical Imdustries (1945, 3 , 1084 itholute a rat proison and an incen chary meslitm.

The former, sudimm finoroacetate, has Inen investigated hy the Fish and Wild Life Survie of the U.S. Ministry of the lnterior. who discosered its effeacy as a rat poison.
sorely needed to replace strychnine and red squili during the war. The chemical is exceedingly toxic to man. The material is still in the ilevelopment stage, but Mr. I. N. Gabrielson, director of the Service, predicts that the material will be available for civilian use under regulations that will guarantee its rational and safe use.

Ethyl trifluoroacelate is being manufactured by Columbia Organic Chemicals Co.. South Carolina, according to Chem. Eng. Neus (1945, December 25, p, 2365). It is prepared by the oxidation of trifluorotri. chloropropylene, covered by a Du l'ont patent. The ester is a clear colomrless liquid with a pleasant odour and a density slightly greater than water. It is extremely volatile and has a boiling point of $61^{\circ} \mathrm{C}$. The company is also prodacing etlyy! difluoroncetate, trifluoroacetic acid, and sodinm trifluoroacetate.

Chlorine Trifluoride

Comverations of an American Technical team with mombers of the I.G. Farben shaff have clicited the information that chorine trifluoride. first described in 1930, was pro. chuced un a pilot-plant sale in Germany daring the war. Several tons of the material were made in a small pilot plant built by the Wehrmacht at Kummersdorf, abont 30 miles south of Berlin (see Report No. 166. li.S. Department of Commeres).

The material, a stable liquid hoiling at $12^{\circ} \mathrm{C}^{-}$, was fomd unstisfactory as a flomein. ating agent, but Wehrmacht officers expressed interest in its incendiny properties. It is believed that the German Army intended to use ClFs in shells against aireraft aud tanks. The properties of the substance would be peculiarly suitable in an attack, since organic matter would be immediately ignited, and glass an plastie wiadows would be promanently etched and rendererl opaque. Glass wool is said to burn with a flame in the presence of ClF_{3}, and the reation with water is so vigorous as to give off incaudescent frases.

The enmpound is made by heating proper proportions of the gasenits elements to $28\left(0^{\circ}{ }^{\prime}\right.$. in (intul)e. The vapours are condensed at $-80^{\circ} \mathrm{C}$. and run into iron cylinders which are vented several times to allow flamine, chlorine, and chlorine monofluoride to escape. The fluorine is produced hy electrolysis of potasium acid fluoride in a magnesium cell will carbon anodes, The metallic magnesimu vessel serves as the cathocle. The cell is operated at $100^{\circ} \mathrm{C}$. being charged continuously with anhydronis H.F. The evolved H_{2} and F_{2} are cooled in a coil immersed in dry ice, to remove $H F$, and are mixed with chlorine. A blue flame is sabl to result at the point of mixture

Spain's Chemical Industry

Need for Imported Supplies

IA spite of the considerable expansion that has taken place during the last few years in the Spanish chemical and pharmacentical industries, the country, lacking many raw and basic materials, is still dependent on imported supplies. The magnitude of this demand is apparent from the fuet that, in 1043, chemical and pharmaceutical goods occupied, with 678 million pesetas, or 20 per cent., the second place among import licences.

Imports of chemicals rose in value from 58 million gold pesetas in 1941 to over 90 miltion in 1942 and reached is record figure of $1: 32$ million in 1943 , equal to about 15 per cent. of total imports. In 194t, imports declined again to 90.8 million gold pesetas, not so much because of a decline in demand or an increase in local nutput, but essentially owing to the increasing difficulties in obtaining supplies, thanks to the war-time dislocation of transport throughout Europe. This assumption: appears to be sulstantiated by the fact that 63 million, or wer two. thirds of the $19+4$ imports, fell within the first six montlis. The following table presents an interesting picture of Spain's chief sources of supply (in million gold pesetas) :

			19.44	194:3
Germany			21.7	48.6
United States			15.1	12.0
Switzerland ...	\ldots	...	13.4	17.7
Great Britain	...	\ldots	12.3	16.0
Argentina	!		8.8	$\overline{7} .5$
Chile	..		8.6	5.0
France	\ldots	1.8	8.7

In both the years under review, Germany was the chief supplier, followed, in 1943 , by Switzerland and this country, while in the following year, the United States held the second place before Switzerland, Great Britain following.

Drug Imports Preponderate

As regards groups of products imported in 1944, pharmaceutical products, worth 53.9 million gold pesetas, occupied the first place, followed by coal-based products ralued at 16.8 milion. Imports of dye. stufts, colours, and lacquers were limited to 1.3 million. In the supply of insecticides and veterinary products, Switzerland held the leading position with 320,000 gold pesetas (nearly half the total shipments), and was the only source of calcium cyanamicle, valued at 1.64 million. As regards solvents, such as acetone, methyl alcohol, etc., Swiss manufacturers despatched products worth 820,000 pesetas, out of a total of 1.48 million.

The future potential capacity of the Spanish market to absorb chemical products must be considered as favourable, notwithstanding the strong tendency to establish a mational chemical industry. It is well
known that the francu régime has given great encouragement and support in these endeavours, and many new plants and laboratories have come into being during the war just ended. It appears that the largest mumber of new companies- $\overline{5 l}$ units with an aggregate capital of 65.6 million-. were formed in 1843. The total capital of companies in the chemical and pharmaceutical industry amounts, at present, to nearly 2.2 million gold pesetas. It camot be wenied that requirements for many products are now being met from domestic sources. and the number of pharmaceutical products made in Spain is stated to be 18,000 . Hossever, the comtry will, for some time, rely on the import of special products, raw materials, and intermediates.

Lignite in South France

Treatment for Removal of Sulphur

UP^{\prime} to the present, although the lignite: in the Paris basin have been exploited. nothing las been done with the similar deposits in the Var and Alpes-Maritimes. despite their high calorific value, because their high sulphur content made then useless, without further treatment, for eithor domestic or industrial parposes. A note in the Jannary issue of LIMdustrie Chimiqu. (P : 15), however, deplores the luck of enterprise displayed in thus tamely abandouning it source of great potential wealth-the deprosit is easily accessible and has a surface leugth of sonie 60 miles-and surgests a methord whereby it might be put to economic use.
The total sulphur content, averaging $5 \cdot 1$ per cent., is present in the form of iron prrites, which "ocurs in the lignite either in small nodules or, more usually, finely dispersed thronghout the mass." Screening, therefore, is of little value, but washing the material on gravity tables should give grond results, in view of the difference in density between prrites and lignite. In accordance with the proximate analysis of the lignite, it should be possible without difficulty to obtain, by this method of separation, two distinet products: (1) a normal conl contaiming 10 per cent. ash (as against 15 per cent. for the initial material); and (2) a prritifeiuus earth with a $30-35$ per cent. sulphur content, which could easily be raised to 45 per cent. by further concentration. Such separation by washing would not cause a prohibitive increase in the price of the lignite, since nowadavs there is no lignitemining concern which does not subject its product to preliminary veshing.

The "Rumianca", Industria Electrica. Chimica e Mincraria, Turin, has decided to increase its share capitial from $150,000,000$ lire to $200,000,000$ lire.

A CHEMIST'S BOOKSHELF

General and Inolganic Chemisthy fohe UNiversimy Studbets. By J. K . Partingtou. London: Macmillan. Pp. 916.36 s.

Professor Partington has undertaken the dilficult task of writing a book that shall be useful and intelligible both to pupils in the higher forms at sehool and to honours students at the muversities, taking in ordinary degree students in his stride. In schools where ehemistry is tamght seriously this plan may work, hut muless the higher forms are taking chemistry to a really high school standard, one feels that a book ol this character may frighten mather than encomage. There is moch to be said for the enrly introduction of a student to a comprehensive textbook in which he can learn to find lis way about, because exceph in the: esumimation room remembered knowledge is far less important than the recognition that hnowledge exists, with the ability to lay one's hand upon it when needed.
'lhis is not a book for the diletante; it is a book for serions students. For the juniors it should be read in conjunction with a course of lectures or under the ghidance of a good teacher. The teacher will explain and expand; the student will have the gist of the matter concentrated but clenrly expressed. The loonours student will hot find all hee needs in it. and must supplement it by further reading of specialist books. but the principles are here, and mothing move than an expansion 4F those principles is needed.

The book is divided into two mana sections. part 1, comprising 280 pp , is devoted to general and jlysical chemistry and in 10 chapters disensses atomic and moleculat weights, the kinetie theory, the phase rule and solutions, thermochemistry, clectrochemistry, mass action. electrolyte equilibria, the periodie law, modern atomie theory, the solid state, and the quantum theory of the atom. The only blemish on these chapters we have noticed is that the chapter on modern atomic theory was clearly written before the publication of Professov Sinyth's accome of the work which Ied to the atomic bomb. 'That is quite understandable, and we have un doubt that the author will wisle to make some revisions in the next dition. The bulk of the book is oceupied with the inorganic elemistry of most of the known elements. This follows the usual plan of a brief aceomit of the mamufacture if the element of compound with a moro extended acenunt of its chemistry. Tho industrial deseriptions are of uneven quality; for example, we notice an excellent iliustration of a very modern type of enke wen (though largely meaningless because there is 110 description of how it works.
nor would the normal lecturer in chemistry be able to supply one) with, in the same section, a fearful and wonderful " diagram of a coal gasworks." lhis, however, is a small matter.

To sum up, Professor Partington is to be congratulated on the production of a book that should loe of immense value to students and lecturers alike. We wish that we had had just such a book in our student dirys. We predict that it will be largely used in colleges and universities.
Plastics, Scientific and Technologicata (2nd Ed.). By H. Ronald Fleck. London: English Universities Press. Pp. 361. 30s.
The title of this book is well chosen, as it indientes its scope as a concisu texthook on the chemistry and techmology of plastics. That n second edition was called for so soon after the first is sufficient testimony both to the efficiency with which its aim has been attained and to the growing interest that industey is taking in plastics. Much new material has been included in the text of the new edition.

After a short exposition of the history of plasties, the theoretical principles of polymerisation are set out in detail, and the chemistry of raw materials and plastic materials is described. The following ehap. ters are devoted to the manufacture of plastie materials and of synthetie elastomers. The physicai properties of thomoplastic and thermosetting materials are denlt with and aderpuate data are provided on synthetic resins, synthetic fibres and textiles, ndhesives, plywood and impregnated wood. The potential user is provided with a description of the manufacture of dies and monlds as well as of plastic articles, and the book concludes with a survey of the chemical amalrsis of raw materials and the chemical. physical and electrical testing of plastics.

A notable feature is the wealth of 90 figures, while five appendices give general characteristies of the various plastics. References in arailable technieal literature are contained in the text and will be just as useful as the comprehensive name and sub)jeet index, which shows that even more plasties ure handed than those included in the "plastics" Properties Chart," recently publiwhod hy the Industrial Magazine Ser-. viee, 122 Fast 42 nd Street, New Tork, 17, and supposed to be fully up-to-date.

The book is a valuable contribution to the contemporary literature of plasties and shonld be in the hands of all those engaged in this field.

Production of DDT in the U.S. is now at the rate of $2,750,000 \mathrm{lb}$. a month, but available supplies are considered insufficient to meet demand.

Parliamentary Topics

Imports from the U.S.A.

LAST week in the House of Commons, the Chancellor of the Exchequer, in reply to questions from several Members, gave figures of the ralue of imports from the United States both for the year 1945 and for the last quarter of that year. The following itens were included (value in $£^{\prime} 000$; figures in brackets refer to the last quarter) : Crude petroleun, 1539 (293); refined petroleum, 115,798 (10,085); paraffiu wax. 1154 (269); other manufactured oils, fats, and resins, 2555 (712); synthetic rubber 6143 (1342); celluloid, 1632 (493); iron and isteel, 2460 (1); electrolytic copper, 1345 (88); other non-ferrous metals, 906 (95); carl)on blacks from natural gas, 1606 (563) ; all other chemicals, drugs, dyes and colours, $562 \overline{7}$ (605).

Preference on U.K. Oils

Colonel Erroll asked the Chancellor of the Exchequer what the present effective preference was on light oils manufactured in the United Kingdon from indligenous materials; and on heary oils so manufactured and used as road fuel in the Lnited Kingdon; and for how long, and at what rate, the guaranteed preference would contme to operate.

Mr. Dalton: Ninepence a gallon in both cases. A preference of 8d. a gallon is guaranteed until 1950, subject to the comblitions set ollt in the Finange Act, 1938.

Tin Industry

Mr. Jamer asked the Secretary for the Colmies whether, in view of the jiberation of Malaya and the imminent relabilitation of the Mahyan tin industry, he would give his approval to the 1943 scheme of the Intermatiomal Tin Research Institute, mider which it was proposed that the tin miners shondd spend approximately $£ 300,000$ a year on tin rescarch and which was reduced, at the reguest of his Department, to a lent porary lasis of $£ 100,000$ a year:

Mr. George Hall said that, in view of the ancertainty as to the long-term position ui the tin industry, the International Tin Research and Development Council, whicl: controls the 'in Institute, had agreed, suhject to confimation by the Govermments emacemed, to work oin the basis of an aitural budget of $£ 100,000$ up to 1950 .

Ground-Nut Crop

Answering Mr. Turton, the Secretary for Whe Colonies stated that the latest report from Nigeria indicated that the current seasim's ground nut crop would be highty setisfactory, representing an increase of nearls 100,006 tons over the $1943-44$ crop. in the Giambia this year's target was set iit last year's figure of 40,000 tons.

Personal Notes

Mr. IV. Jenkins Gibson las been appointed a director of Hadfields, Lid.
Sim Fredertck Bain, a deputy-chairman of I.C.I., was, at the meeting of the F.B.I. Grand Comecil on February 13, appointed deputy-president of the Federation.

Lte-Col. F. J. Brwater las become a director of the South Metropolitan Gas Co., filling the racancy caused by the deatlo of Dr. E. F. Armstrong.

The homorary degree of D.Sc. is to be conferred on phorfssoie E. K. Rideal and Sif alexinder Fleming by the University of Dublin.

Did. C. L. Pansons has retired from the position of secretary and business manager of the American Chemical Society after 39 rears' service. He has been a member of ilse society since 1893.

Mr. H. W. Camere has accepted an invitation of the committee of the Privy Council for Scientific and Industrial Research to be charman of the Water Pollution Research Beard.

Professon IV. E. S. Tulnels, who retired from the Chair of Glass Techmology at Sheffield University on December 31 list. is to receive from the Council of the Eniversity the title of Emeritus Professor.

Mr. and Mrs. Einest Law, of Castleton, Lancs., celebrated their golden wedding on Febrtary 5. Mr, Law entored the manufacturing chemist's business of his father at Castleton in 1896, and ultimately took control of the concern, which was sold later, and is now carried on at Smallbridge under the title of James Law (Chemiculs), Lid.

Mr. Grohge Schicht has resigned from the boards of Lever Bras, \& Unilever, Lttl., and Lever Bros. \& Unilever, N.V., after 4\% years with those companics and their predecessors in business. Ho was at one time prominently associated with the Schicht soap and cattle concern at Aussig in Czechuslovakia.

Major Juliax Day has been appointed chairman of the Council of the Association of Gas Corporations; Cor. R. H. Stud holme beemes vice-chairman; and Mr. H. A. Piohin sueceeds Mr. J. R. W. Alexander as hon. secretary, the latter haring resigned on his appointment as general manager of the British Gas Council.

Mr. T. Harry Hewtett, chairman of the Anchor Chemical Co., Ltd., of Manchester. who emmpleted 50 years service with the company on Junuary 27, has received suitably inscribed menentoes of the occasion-a silver sulver from his fellow-directors and it leather writiog compendinu from the stuff.

Dr. W. Voce, M.Sc., Ph.D., who has been appointed metallurgist to the Copper Development Association, joined the stafl of the British Non-Ferrous Metals Research Association in 1930. All his major investigations have been concerned with copper and its ailoys. During the war, he carried oul Ω long series of investigations on copper for shell bands on behalf of the Ministry of Supply.

Mr. F. A. Lesser has been appointed joint managing director of Borax Consoli. dated, Ltd., at the comparatively young age of 44, after being on the board since May, 1943, and liaving first joined the company in 1922. Educated in England and the U.S.A., he has had long and varied experience both here and overseas, which, added to his fluent knowledge of foreign languages and extensive travel, has proved of the greatest value to the company. Mr. A. J. somprs has been appointed to a seat on the boad of the sume company.

Obituary

Sir Harm speakmax, who died at Leigh, Lanes, on February 16, aged 80, was a member of the executive committee of the Federation of Britisls Industries, and a director of Manchester Collieries, Ltd. He was a past president of the Lancashire and Cheshire Conl Association and of the Manchester Geological and Mining Society, and had served on the executive committee of the Mining Association of Great Britain.

German Technical Reports

Further Material Available

THE latest list follows of reports of the British Intelligence Objectives SubCommittee (BIOS) and the Combined Intelligence Objectives Sub)-Committee (CIOS). CIOS XIX-3. Chemical plant, Luduigshaven (15.).
CIOS XIX-4. Hydroyen peroride pro. duction through 2 -ethyl anthraquinone (1s.). CIOS XXHI-18. Bai Lailterberg (Harz) : Production of concentrated hydrogen peroxide solutions (3s.).

CIOS XXII-21. I.G. Farben, Lema: Nitrogen fixation plant (1s.).

CIOS XXH-2i. I.G. Farben, Eiber feld and Leverkusen: Miscellaneons chemicals 14s. 6d.).

CIO. NXIV-19. Anorgana G.m.b.II. Werke, Gondorf: Miscellaneous ehemicals (3s. (id.).

CIOS XXI-44. Electro - Chemische iVerle, Hollriegelskreuth: Hydrogen peroxide (ls. 6d.).

Cros XNT-52. I.G. Farben. Bitterfeld: Manufacture and fabrication of polyvinyl chloride (1s.).

Cios XXVI-53. I.g. Farben, Lemna-
werke, Merseburg: Manufucture of caprolactam (6d.1.
CIOS XXIT-76. I.G. Farben, oppau: Manufacture of polyisobutylene (bud.).
CIOS XXIH-16. I.G. Farben, Wolfen: Fabrication of plastics (1s.).

CIOS XXIII-18. Oxo Plant, Ruhrchemie Oberhuusen-Holden: Olefines production process (oid.).

CIOS XXVII-73. Dentsche Sprenystoffe. Aschau and Ebenhausen: Manufacture of nitrocellulose (1s.).
(!IOS XXIH-80. I.C. Farben, Uerdin-yen:- Miscellaneous chemicals (2s. (id.!.

CIOS XXVII-92. German caride, cyanamide, and cyanide industry (5s.). CIOS XXVIII-18. Gesellschaft zur Verrertung Fauthscher G.m.b.H., W'iesbaden: Oilseed processing and oil refining (1s.).
CIOS XXVIII-23. A.G. Sachsische Wrerke, Espenhain: Fuels and lubricants fron-trown coal (2s.).
Clos XXi'II-36. H. Koppers G.m.b.1l. Assscn: Low temperature carbonisation of cout, syuthesis mas producion (1s.).

CIOS XXFIII-62. Glossary of some names for chemical products (2s. Gol.).

CIOS XXIX-3. I.G. Farben, Biller. feld and akem: Production and fabriention of magnesiun alloys (1 s .6 d. .).

CIOS XXIX-5. Dessumer Werke fiir Vucker und Chemische Industrie A.G.: Production of wond sugar from soft woods, fermentation, and scparation of yeasi (6d.). CIOS XXIX-14. I.G. Farben, Lever kusen: Miscellaneous chemicals (6s. ficl.). CIOS XXIX-19. Vereinigte Lluminium Werke A.G., Grevenbroich: Aluminium reduction and scrap recovery (1s.).

CIOS XNX-5. Synthetic lubricating oils (Gul.)
Clos XNX-6. Preparation of "Alliazid" M and DIK (0d.).

CIOS XXX—10. I.G. Farben, Hocehst (1s.). C'lOS XXX-18. Oil recovery frome W'̈̈rttemberg shale (3s. Gd.).
CIOS XXX-102. Scholven Hydroyena-lion-Plant (ts.).
(i) CIOS XXX-104. Botrop - Welheim Mydrogenation Plant (3s.).

CIOS XXX-105. Gelsenberg Hydrogenation Plant (4s. 6d.).
BIOS 86. Oils and Fats Industry (5̃s.). BIOS 107. Production of a iphosphat. fertiliser by sintering phosphate rock with sodium sulphate and lignite (1s. bd.).
HIOS 118. Munich Technical High School: Fuels and lubricants (6s. 6d.).

BIOS 131. Treibstoff Werke Rheinpreussen Moers, nr. Duisberg: Production of alcohols and ketones from olefines (2s.).
RIOS 143. German Porous Ceramic Industry (25.). IHOS 158. Degussa Plants: Production of beryllia and berylium (2s.).

General News

The G.P.O. announces that the normal telegraph service with the United States has now been restored.

The headquarters of the Association of Scientific Worlies have been moved from 73 Higl Holborn, W.C.1, to 15 Half Noon Street, W.1. (Tel: GliOsvenor 2424).

Our attention has been called to the fact that the numbers of the British Standards for ligh-purity zinc are B.S. 1003 and 1001, and not as stated in our issuc of Jamuary 26 (p. 116).

A new Trading with the Enemy (Amendment) Order-No. 14 -contains about 60 additions to the previous lists, and about 100 deletions. It incluales the Instituto Bioquimico Miguel Servet, S.L., Vigo, Spain (S.R. \& O. 1946, No. 183).

The Control of Talc and Pyropliyllite (No. 2) (Revocation) Order, 1916 (S. R. \& O.. 1046, No. 210), has been made revoking the Control of Tale and Pyrophyllite (No. 1) Order, 1943, which regulated the acquisition and disposal of those materials. It came into force on February 18.

The board of Lever Brothers and Unilever N.V. is to convene an extraordinary general mecting at which authority will be sought to enter into a now equalisation agrement with Lever Brothers and Unilever, ILtd. It is hoped also, at an ordinary meeting for 1946, to recommend dividends on the ordinary shares in respect of the war years.

A new handbook, especially valuable to the recent entrant into chemical industry, is The B.A.C. To-day, just issued by the British Association of. Chemists, 175 Piccadilly, London, W.1. It presents a concise, objective, and compreliensive picture of the activities and achievements of the Association.

The Science Museum, South Kensington, was partially opened last weck. Among the new exhibits on view is a group illustrating the relcase of atomic encrgy, including specimens of uranium minerals and an ingol of uranium metal; another relating to the application of X-rays in commerce and war: and the quartz-crystal clock which can measure tince to within $1 / 1000 \mathrm{sec}$. per day.

At a conference held in Iondon, the President of the Board of Trade met representalives of the Industrial Salvage and Recovery Morement, representing about 10,000 leading industrial firms who co-operate through local groups in stimulating the recovery of industrial waste materials and their best utilisa. tion in the mational economy. At the conference a National Council was formed, of which Mr. H. G. Judd, C.B.E., was appointed president.

From Week to Week

Foreign News

The Polish Association of Applierl Chemistry is reported to have repaired the Pelikan ink and dyestult plant in Danzig. as well as a give factory in Otaw, Silesia.
The Celanese Corporation of America has ucquired now plant at Belvidere, New Jersey, to produce chenuicals, plasties and related products.

A phosphate rock deposit near Bartow, Florida, is heing purchased by International Minerals and Chemical Corportion, who plan large-scale operations.

Canada expects to get as its share of German reparations some Nazi platus whicl were used in the mannfacture of rocket fuel. Two of these plants produced hydrogen peroxide and hydrazine hydrate.

The glass plant at St. Inglevert, Belgium. has resumed prodnction. Daily output totals 15,000 square metres, and already about 200,000 square metres have up 10 date: bean delivered to France.

The foreign copper purchase propramme conducted by the U.S. Othice of Metals Reserve until October, 19%, is being reestablished. The oftice plans to purchase copper during the first half of 1940 at the rate of 20,000 tons per monlh.

Solutions of hyoscine hydrobromide in water, or in water containing a small proportion of free acid, have been found by Danish experimenters to stand autoclaving at $120^{\circ} \mathrm{C}$. for 20 minutes without any demonstrable change.

Imports of coal and coke into Sweden in 19.45 amounted to 439,000 tons. In December the figuice was 88,212 tons. made up as follows: Irom Poland, 24,778 torss of coal. 3,190 lans of coke: from the U.S., 19,632 tons of coal and 24,482 tons of coke; from Holland, 16,130 tons of coke only.

Great interest has been aroused by the official Chilean amouncement that oil has been discovered near Punta Arenas at a depth of $7,500 \mathrm{ft}$. Press reports lave been optimistic, bul some time must clapse before it can be established that the oil is suit. able in quality and quantity for commercial development.

Tetranitrocarbazol has been used as an insecticide in Germany for several years, according to a member of an American mission who went to that country to study wartime chemical development. It is distilled from coal-tar by a process which produces equal amounts of tetranitrocarbazol and anthracene.

A German engineer, Alphonse Kuhncl, interned at the Melnik camp, has placed at the disposal of the Czech Government a Hew process for the production of synthetic rubber. of which be is the inventor.

In the Alma-Ata region of the Soviet Union, a plant for the manufacture of phosphate fertiliser is .nearing completion. It will supply, in the main, cotton and rubber yrowers in Central Asia.
U.S.A. Civilian Production Administration is warning chemical, paint and tetra-ethyl lead manufacturers to conserve supplies. A similar warning to battery manufacturers. to conserve lead supplies, is made in view of an estimated deficii of 180,000 tons for 1946 .

The production of titanium in the Cameroons is to be increased by improvements made to the hitherto rudimentary plants in operation. Output for 1916 is estimated at 350 n tons of ilmenite and 10,000 tons of mixed ores.

The Ethyl-Dow Company closed its bromine-from-seawater plant at Kure Beach, North Carolina, at the end of $19: 15$. Extraction of bromine has been practised there since 1933, and it is reported that the closure is only temporary.

In Belgium the Verreries des Hanendes have just re-lit if furnace in their Merxem division for the production of green bottles: a delivery of fifty tons of bottles has just beerl made to Laxembourg. About 30,000 $\mathrm{sq} . \mathrm{m}$. of helgian window-glass have arrived in Holland.

The following amendments to the list of chemicals made in Camada have been notified by the Sentor Trade Commissioner, Ottawa: additions, tetrametlys thiuram inonosulplide, zince.resinate (zinced rosin); deletions, tetramelhyl thiuram disulphite; zine dimethyl dithiocurbamate.

The U.S. authorities in the American zone of occupation in Germany have decided to blow up the lippoldsberg chemical plants near Kassel, which cost about $£ 1,500,000$ to orect. Machinery and equipment are stated to have already been dismantled in purshance of the reparation policy.

A new catalogue (1966) of their teelnical and scientific books has been issued by the Chemical Publishing Co., Inc., 26 Court Street. Brooklyn 2, N.Y.. U.S.A. It includes the amouncement, for May this year, of a Hew Chemical and Technical Dictionary by H. Rennett, editor of The Chenical Fiormulary.

The Italian Ministry of Commerce and Industry, which, for some time, has been madeavorring to sceure sufficient raw materials for Italy's fertiliser industry. has sliscessfully negotiated with a number of French companies for 80,000 tons of phosphates from Tunisia against delivery of 100.000 tons of prrites.

Butyl crotonate, a colourless iiquid with a pleasant odour, is now manufactured on a pilot-plant scale by Shawinigan Chemicals. Letd., in Canada. It is soluble in alcolol and ether, and slighly soluble in water. The uses of crotonic esters have not been fully explored, but they would probably be most suitably employed as plasticisers.
According to ofllial Swiss statistics, the Federation exported, in 1915, chemical and pharmaceutical products worth 198.2 million trancs, comprising pharmaceutical and allied products to the value of 98.2 million francs, industrial chemicals worth 15.6 million francs, and dyes amounting to 94.4 million francs. There has been no deeline in exports since the end of the war.

According to the Bulletin of the Netherlauds Central Statistical Bureau, the production index for benzol products $(1938=100)$ rose from 44 last August to 69 in October, that of coal-tar from 27 to 40 , while the index for ammonium sulphate rose from 5 to 6 . The index for rolled iron and steel products ($1940=100$) showed a sharp rise from nil in september to 16 in Octoser and 50 in November, 1915.

Exports of phosphates from Morocco in 1945 amounted to $1,6.47,951$ tons, compared with $1,463,000$ tons in 194.t. Mecting's of the Phosphates de Constantine have approved accounts for 1942, 1943 and 1944; a dividend of 26.875 fr., wholly absorbed by the beares share tax, was declared for 1944. Produc-- tion by the company, however, is rapidly increasing and amounted to 100,000 tons in 1945, against 241,000 tons in 1041. 141,600 in 1943, and about 500,000 tons a yar before the war.

A plant ior the manufacture of cyanide, mainly to cover the requirements of the Soutli African gold-miniug industry, is to be erected within a few montlis br African Explosives and Chemieal Industries, Lud., in close co operation with I.C.I., Lde, at the Kilipsprait sewage disposal works, on the outskirts of Johannesburg. Methane gas will be used in the manufacture of cyanide and the ammonia required in the process will be supplied from the companys synthetic ammonia plant at Modderfontein.

A plant for the treatment of phosplate rock by sodium sulphate is to be erected shortly in Tunisia by the local machanical construction industry. The plant, equipped with electric furnaces, will be ablo to produce 15.000 tons a day in 1947. Plans are also being prepared for the eatension of local saltworks. the extension of the Djebel-Djebellonl cement works to a capacity of 120,000 tons a year, the crection of a second cement works with a similar eapacity, the cstablishment of new lime works. an extension of the plaster industry and the improvement and development of brickworks.
A. new steel plant is under construction near Concepcion. Chile, with a capacity of 180.000 tons yearly, and Bessemer, Sieniens, and electrically-smelted steel will be producerl. As a by-product, gas will be piped to Santiaro. Iron-ore is to be supplied by the mines at El T'ofo (near Cognimbo), and eoul produced in the neighbourhood of Concepcion is to be nsed for making coke. The tolal cost is estimated at over 1500 million pesor.

The processing of bauxite at Surinam, lnteh Guiana, is planned by a U.S. company. says Chem. Met. Eng. (Dec., 1945), and the calcined ore is to be sold to abrasive: manufacturers. In this comection it is interesting to note that Surinam bauxite. used as a dehydrogenation catalyst in styrene prorluction, gate ath over-all yied of 40 per cent. strene at a constant temperature of 12040 F . for 50 hiss. continuous operation, it 3 - $\overline{5}$ per cent. advantage over threc other natural bauxites tested (see Ind. Eng. ('hem. December, 1945, p. 1149).

Forthcoming Events

February 25. Royal Society for the Prevention of Accidents (Tondon Industrial (roups). Caxton Hall, Westminster, S.W.I, $10 \mathrm{it} . \mathrm{m}$. to 4 p.im. Conference on the Prevention of Industrial Accidents.

February 26. Society of Instrument Technology. Lecture Theatre. London School of Tropical Medicine, Gower Street. W.C.1, 7 p.m. Mr. T. E. O'Breen: " The Effect of Design of Boiler Auxiliaries on the Choice and Performance of Antomatic Control.'

February 27. Institute of Fuel (Midland Section). James Watt Memgrial Institute, Eirmingham, 2.30 p.m. Sir Alfred Egerton: - Prodaction and Utilisalion of Melhane.'

February 27. Textile Institute. Technical College, Ashby Road. Irougliborough. 6.45 p.m. Dr. F. C. Wood: "Synthetic Finishes for Textiles.'
February 27. The Chemical Society, Jingincers' Club, Albert Square, Manchester F p.m. Dr. C. J. T. Cronshaw: "" What Industry expects from the Chemist."
February 27. Institute of Welding. Instituion of Civil Engineers, St. George Street, Westminster. S.W.1, 6 p.m. Mr. R. F. Tylecute: "The Pressure Wielding of Isight Alloys."
February 27. Institute of Welding (Wolverhampton Branch). Victoria Hotel, Wolverhampton, 7 p.m. R. G. Braithwaite: The Costing of Welding.'
February 28. Royal Institution of Great Eritain. 21 Albemarle Strect, "London, W.C.1, 5.15 p.in. Sir Henry Dale: "Chemical Transmitters of the Effects of Nervous Hapulses."

February 28. British Association of Chemists (Notts and Derby Section). School of Art, Green Lane, Derby, 7 p.m. Professor J. B. Speakman: "Some Methods of Making Wool Unshrinkable."
March 1. Institute of Welding (Sonth London Branch). Borough Polytechnic. Borough Road, S.E.1. Major L. F. Denaro: "Welding of Amour."
March 4. Society of Chemical Industry (London Section). Chemical Society's Rooms, Burlington House, Piccadilly, W.1. Dr. G. Newton Friend : "The Rare Earths."

March 5. Association of British Chemical Manufacturers. Lecture l'heatre, Gcolorical Socicty, Burlington Housc, Piccadilly. W.1. $2.30 \mathrm{p} . \mathrm{m}$. Fuel brains trust. (Messrs. F. F. Hatl, T. F. Hurley, O. Lyle, J. B. M. Mason and J. S. Merry, with H. M. Pracock as question master.
March 5. Hull Chemical and Engineering Society. Regal Cinema, Ferensway, Hull. 7.30 p.m. Mr. I. Bellamy: "Aspects of the Commercial Litisation of Electricty.

March 5. The Chemical Society. Leceds University, 6.30 p.m. Dr. Kathleen Jonsidale: "Grystal Analysis as a Clue to Chumical Problems.'

March 5. Chadwick Public Lecture. Sheftield tiniversity, 4.30. P.m. Dr. S. A. Henry: "Medical Service in Industry."

March 5. Electrodepositors' Technical Society. James Watt Menorial Just tute. Great Charles Street, Birmingham, 6,30 p.m. Open discussion: " Electroplatine and the Automobile Industry."

Commercial Intelligence

Ihe following are taken from phnted reports, but we cannot be reaponalble for errora that may occur.

Mortgages and Charges

(Note.-The Companies Consolidntion Act of ro3 provides that every Mortgage or Charge, as described thereln, shall be registered within 21 daya after its creation, otherwise It shall be vold agalnat the liquildator and any creditor. The Act also provides that every company ahall, in making lta Annual Summary, specils the total amount of debt due from the company in reapect of all Mortgagea or Charges. The following Mortgages and Chargea have been so rextstered. In ench case the cotal debt, as apecified in the last avallable Annual Summary, is also given-marked with an -followed by the date of the Surmary, but such total may ha se been reduced.)

MOLDOPLAST, LTD., London, W. manufacturers of plastic materials. (M., 23/2/46.) Jannary 26, 8360 5s. dehenture, to Robert Wyler, Ltd.; general charge.
DIXON PLASTICS, LIDD.. Earls Barton. (M., 23/2/46.) Tamary 25., mortgage, to Midland Bank, Ltd., secuting all moneys due or to become due to the Bank; charged on factory and premises, The Square. Earls Barton, with machincry, fixhures, ete. *Sil. Jannary 4, 1946.

BHONTIEX CHEMICALS, LTD. Newpore (Mon.) (M., 23/2/46.) January 28, £1904 debenture, to J. A. Sparkes, Seven Kings; general charge.

CLEVELAND PRODUCT CO., LTD., Middlesbrough, gluc, ete., manufacturers. (M., 23/2/46.) January 21, mortgage, to Martins Bank, Ltd., sceuring all moneys due or to become due to the Bank; charged on land and property at Middesblongh, and known at one time as Yorkshire Tube Works, together with plant, machinery, ete. *Nil. July 3, 194.4.

Satisfactions

GLASSO PAINT PRODUCTS, LTD. (formerly BRITISH GLASURIT, LTD.), Perivale (Middesex), varnish and enamel manufacturers. (M.S., 23/2/46.) Satisfaction January 29, of mortgage registered May 12, 1938.

LONDON ALUMINIUM CO., LTD. (formerly L. X. C., LTD.), London, W. (M.S. 23/2/46.) Satisfaction February 1 E40.000, registered August 11, 1933.
mRITISH CBLANESE, LTD., London, W. (M.S., 23/2/16.) Satisfaction Jamury 29 , of debenture stock registered October 2, 1943, to the extent of $£ 37,65 \%$.

Notice of Dividend

BRENNAN, John Patrick, 20, Westholm Gardens, Ruislip, chemist, lately carrying on business at B. B.-Tcchnical Laboratories, Bideford Road, Perivale, Middesex. First dividend, 5 s . per £, payable February 19, at the office of 3 rr. Percy Phillips, 76 New Cavendish Street. London, W.I.

Company News

Fisons, Ltd., Harvest House, Ipswich. have increased their nominal capital beyond the registered capital of $22,000,000$.

The Anchor Chemical Co., Ltd., is paying a final dividend of 20 per cent., less tax. making 30 per cent. (27t per cent.) for twelve months ended Nov. 30 last. Net trading profit was $£ 53,831$.

British Industrial Plastles, Ltd., report a net profit for the year amounting to $\$ 23,516$ $(£ 21,705)$ and have declared a dividend of 8 per cent. (same). Forward, $£ 12,594$ (. $£ 10,164$).

New Companies Registered

Varndell Plastics, Ltd. ($40.1,656$).-Trivate company. Capital, $£ 1,500$ in $£ 1$ shares. Manufacturers of and dealers in plastics, chemical and other substances, etc Directors: N. Noskeau; J. Noskeau. Registered office: 16 Hampstead Road. N.W.1.

Milton Therapeutics Export, Ltd. (404,631).
--Private company. Capital, $£ 50,000$ in $£ 1$
shares. Manufacturing, wholesale and retail consulting and analytical druggists and chemists, etc. Subscribers: A. I'. Johnston; D. MeCarthy. Registered office: 10 and 11 Brewery Road, N. 7.

Fermelin Products, Ltd. (401,361) Private company. Capital $£ 500$ in $£ 1$ shares. Exporters, importers and mannfacturers of and dealers in glacs, chemical. industrial and other preparations, etc. Subscribers: C. Ridge (first director), Eleanor Hess. Secretary: H. Fraustaedter, 2 (lements linn, Loirlon. W.C. 2.

British Geon, Ltd. (404,347).-Private company. Cupitul, $£ 500,000$ in 275,000 ordinary and 225,0005 per cent. cumaliative preference shares of $\& 1$ each. To adoph an agreement between the Distillers (.1. Ltd., B. F'. Goodrich Chemical C'o., oi Clevco land, Ohio, and to carry on the business of manufacturers of and dealers in resins for varnishes, lacquers, etc., and moulding powders and plastic materials, and articles made from plastic materials, maumfalturers and refiners of and dealers in acids. salts, alkalis, chemical, industrial and other preparations, etc. First directors: C. (G. (i) Hayman; L. A. Elgood; II. Woolveridge; C. J. P' ball (nominated by Distillets Co.) ; Sir Walrond Sinclair; J. L .Collyer: IV. S. Richardson (nominated by R. F. Goodrich Chemical Co.).

Chemical and Allied Stocks and Shares

MOST sections of stock markets re atained firm. With dividend amomeements continuing to include a good propor tion of increases, industrial shares showerl individual fentures and sentiment remained under the influence of hopes that the next Budget may reduce tixution.

Chemical and kindred shares tembed to move higher, with Imperial Chemical 40s. 9d., Turner \& Newall 84s. 3d., British Aluminiun 39s., and General Flectris 93 s . 6d. Dunlop Rubber further strength ened to jus. 6d. on the company's New \%ealand developments. Partly on the hatent news of the plastics interests of the twi, groups, the units of the Distillers Co. rose to 121 s ., and De La Rue to $£ 10 \quad 3 / 16$. Lancashire Dynamo were 5 甭 ex rights to the new shares, which were 21 s . premium. Hopes of future bonus possibilities and attention drawn to the diversified interests of the two companies adranced United Molasses to 51 s . 3d., and Thomyeroft it ifis. 3d. Lever \& Unilever were also good with a sharp adrance to bls. on the statement at the meeting called to agree to the proposals for continuing the dividend guarantee agreement with Lever N.V.

Iron and steels were well maintained
with Stewarts \& Lloyds 57s. Gd.. 'I'ube Investments fit, and Colvilles 25s. $7 \frac{1}{2} d$. United Steel eased to $25 s$, but, awniting the fimancial results, Dorman Long kept steady at 27s. 3d., with the proferred ordinary shares bls. Bd. Aided by a mumber of higher dividends, the colliery section was tirm with Bolsorer 46s. xd, Powell Duffryn 21s. 3d., Staveley 44s. Od., and Shipley 27s. 9d. Allied 1ronfounders were 56s. 3d. ex rights th the new slares, the latter being at 8s. Gd. premium. A big rise to 60s. in Stiper Oil Seals 5s, shares followed mainrenance of 40 per cent. dividend and the share-splitting and fortheoming new issue proposals.
There was again a quiet trend in textiles, Bradford Dyers 26s. $1 \frac{1}{2} d$. Calico Printers 20 s .11 d ., aud Bleachers 13 s . 6d. showing linle movement on balance. Courtaulds at j5s. $7 \frac{1}{2} \mathrm{~d}$. were better on the possibility of higher earnings, l3ritish Celanese again changed hands around 35 s ., while there was a sharp rise to 25s. in British Enka. Awaiting results, British Plaster Bpard at 34s., and Forax Consolidated deferred at 49 s., stowed steadiness. Naim \& Greenwich moved higher at 85s., and Barry \& Stanes Were firm at ifs. 9d., but Wall Paper Manufacturers deferred receded to 41s. 6d. Paint shares held firm, and Blundell Spence 10 se $10.34 \mathrm{~s}, 9 \mathrm{~d}$. on the higher distribution. British Oxygen eased to 83 s . 3 d. , but 1 mperial Smelting shares rallied to 17 s . 3 d . Busi ness around 25 s. was recorded in Burt Boutton; Cellon 5s. ordinary were 28s. ; British Drug Houses 48s. Gd.; and Erans Medical Supplies 6s. 8d. shares were again quoted at 15 s . At 14 s . $4 \frac{1}{2} \mathrm{ll}$., British Glues 4 s. urdinary held their recent good rise. as did Dlythe Colour Works at ?Os.

Joots Drus showed firmuess at $\mathbf{6 7}$ s., and Timothy Whites strengthened to 47 s . Gd. Sungers were 3ls. 3cl, Griffiths Honses 53s. $1 \frac{1}{2} \mathrm{~d}$., and beechams deferred rose to W2: Canning Jown Glass 5 s , ordinary eontimued around 12s. 3d. on higher dividend hopes, and United Glass Bottle were firm at 75s. Triplex Glias at 41s. 6d. held their recent rise. Oil shares eased, but Mexican lagle remained active, and sharp gains were recerded hy Trinidad Leaseholds and Trinidat Petrolemm Development.

British Chemical Prices

Market Reports

AVERY firm lone continues to be maintained in the I,ondon industrial chemieals markel and reports from nearly all sectouns judieate a stendy demand. T'locre has been a gond flow of inquiry for new business. lont actual bookings have been restricsed in some directions by the supply positum. Chborate of soda, hyposulphite of
soda, nitate of soda, and caustic soda are active items and the demand for most of the potash compounds continnes on stearly lines. Among miscellaneous chemicals lead oxides are firm at unchanged rates. Arsenic is a goud market and a brisk inquiry is reported for British-made formaldehyle. The conltar products market remains steady, sup)plies in many cases falling short of the de mand from home and overseas murlsels. Pitch is in good request and the muphilatlene posilion remains tight.

Manchester.- Fresh inquiry for a fairly wide range of heavy chemical products on export account has again been reported on the Manchester market during the past week and fresh bookings hase been made. There has been little change in the position of home trade business. Chemicals for the textile and allied trades are being taken up steadily against contracts and a good movement of supplies is going forward week by week to the other leading users, with replacement business coming through as the need arises. The fertiliser trade is developing satisfactorily and an outlet for almost evervthing that beenmes available seems assured.

Glasgow.-Considerable activity was experiened in the Scottish heavy chemical market during the past week, including a lively demand for acids, alkalis, and minerals. Supplies are still very short in most classes of chemicals and it is not possible to meet the demand. lexport inguiries are numerous, covering all grades of light and heavy chemicals. Prices remuin steady, with no tendeney to fall.

For service and STIISARCIIDIL Let us quote for COM. PLETETARPLANTS: NEW STILIS OR REPAIRS; RIVETED OR WELDED, Benzol Stills, Tanks, Jacketed Pass and all types of

STEEL
PLATE
WORE
for chemical processes.
LEEDS \& BRADFORD
BOILER CO, LTD.
STANNINGLEY. near LEEDS

CHEMICAL LEADWORK

TANKS VATS - COILS - PIPEWORK
W. G. JENKINSON, Ltd. Tederohone

156-160, ARUNDEL STREET, SHEFFIELD

EDUCATIONAL
 Great Possiblities for

QUALIFIED CHEMICAL ENGINEERS

vAS'L and far-renching devclopments in the range of pencetime productions and markets of the Chemical Industry mean that the profession of Chemical Englneering will be of great importance in the future and one whith will offer the ambitions man a career of nut-日tanding interest niml high status. The T.I.G.B. offers a first-class training to candluates for the Chemlcal Engincering profession.
Enrol with the T.I.G.II. for the A.M.I.Chem. F. Examinalions in which home-xtudy students of the TII.G. A. have goined a record total of passey inclusing-

THREE " MACNAB " PASSES and
 THREE FIRST PLACES

Write to diay for the " Engineers' Gulde to Surcess "-tree-contalulag the world's whlest chalce of Engineering courses-over 200-the Department of Chentical Technology, incliding Clemical IEnglneering Processes, Plant Construction, WYorks Desgig and Operation, and Organisation and Management-and which nlone gives the Revulations for A.M.1.Chem.E., A.M.I.Mech.E., A.M.I.E. S., C. A. G. B.Sc.. ctc.

THE TEGHNOLOGICAL INSTITUTE
of Great britain
219. Temple Bar House, London, E.C. 4

SITUATIONS VACANT

CHEMIST required by large firm near London, to carry ont development work on Aclheslyes based on matural and synthetic products. Write, giving fill details, age, qualititcations and sulary refuired, to Box No. 2208, The Chimical AGE, 154, Fleet Street, Iondon, 5.c.4.

OPENING for Yound, Enerret ic man, with chemical trajning and knowledge Yorkshiro textlles-Intermedlates, dyes, whe drawing, ete. to represent established sulphurie acid manafacturers. State age, experlence, etc. John Xicholson_e Sons, Hunslet Chemical Works, Iecds.

WANTED: Qualified Chemist exrerieneed in Textile Prodicts for Oil Works-Traflord Park distriet. State age and salary: lieply Box No. 2264, The Chmical Age, liju, lileet street, London, D.C.4.
W onks shift superintentent required. Experience in gas liquefaction, gas engheering or petroleum technology desirable. Apply, stating age, qualitications, experience and salary reguired, to Box No. 2203, The Chimeal Age, lja, Fleet Street, London, B.C.4.

SERVICING

GRINDING, Drying, Screening and Grading of materials undertaken for the trade. Also Suppllerg of Ground Silica and Fillers, etc. Jayfs Kent, Litd., Millers, Fenton, Staffordshife. Telegrams: Keumil, Stoke-on-Trent. Telephone: 4253 and 4254, Stoke-onTrent (2 lines).
GRINDING of every description of cheraical and other maierlais for the trade with Improved mills.Tbos. Hill-Jones, Ltd.. " Invicta " yhlie, Bow Ccmmon Lane, Landon, E. T'eleqrams: " Hill-Jodeg, Bochurch, London." Telephone: 32s5 Exst

MONOMARKS. Permanent London address. Letters redirected. Confidential. 5s. p.a. Royal patronnge. Write Monomark BMI MONO:S, W.C. 1 .
Polvelising and grading of raw materials. DOH31.JD., 107, Victoria Street. London. S.W.I.

AllCTIONEERS, VAlUERS, Etc. E waril rusiton, SON AND KENYON (Eytablished 1855).
A uctloneers' Valuers and Firo Lass Assessors of
CHEMICAL WOHKS, PLANT AN゙D MACHINERY.
York House, 12 York Street, Manchester.
Telephone: 1937 (2 lines) Ceatral, Manchester.

FOR SALE

FILTER PRESSES

for sale.

TWVO IIorizontal Cast Iron FILTER PRESSES, circular recessed plate type with 26 chambers forming cakes 24 in. dia. by 1 in. thick; centre feed $2 \frac{1}{5}$ In. din. bottom outlet to each plate
Horizontal Recessed Plate FILTER PRESS by G. H. Remmers, with 12 timber plates 25 in. square forming cakes $15 \frac{3}{3} \mathrm{in}$. by 1 in . thick, centre feed 2 in . individual discharge.
Horizontal I'imber Recess Plate FILTER PRESS by Dehne, with 26 recess timber plates forming cakes 22 In. square by \ddagger in. thick, ceutre feed Individual slde bottom discharge.
Horizontal Cast Iron Recessed Plate FiLLTER PRESS by the British Filter Press Co., having 38 recessed plates. Forming 39 cakes each 26 in. square by $\frac{\mathrm{in}}{} \mathrm{in}$. thick; enclosed centre feed tudividual discharge.
Horjzontal Plate type FILTER PRESS by lose, Downs \& 'thompson, having 35 circular plates 18 in. din. ribled filtering surface, centre ieed and in discharge to each plate.
Horizontal Recessed Ilate FILTER PRESS lyys. II. Johnson, with 40 C.L. pates joining ti cates 33 in. square by $\frac{3}{4}$ in. thick ; centre feed + in. dan. individual fan discharge.
Lorizontal Itcessed l'late IILL'TER PRESS by s. If. Johnson, 34 circular C.I. plates 36 in. din. ribbed surface 4 in . centres feed, individual tap discharge ; Gorms \ddagger in. cakes.

GEORGE COHEN, SONS \& CO., LTD. STANNINGLEY, near LEEEDS and WOOD LANE, LONDON, W.12.

CHARCOAL, ANIMAL, and YEGECABLE, hortlcultural, burning, alteling, dialnfecting, medlcinal, Insulating: also lumps cround and granulated; established 1830; contractors to II.M. Fovernment.-Trios. Hicl-Jones, Ltiv., " Invleta '" Iljlls, Bow Common Lade, London, E. Telegratne, " Hill-Jones, Bochurch, Londun." Telaphane: 3285 E.nst.
TACKINED PANS 1 Copper 36 in . dia. by 30 in . deep.
1 C.I. $\quad 36 \mathrm{in}$ din. by 36 in . deep.
1 M.S. 48 in. dla. by 36 in . deep THOMPSON \& SON (MILLWALL), L'1D.,
60; MATCIAM ROAD, OLD KEN'L ROAD, S.E. 15. 2 Aluminium Jucketed lans by Aluminium Plant \& Yessel Co., 48 gallons, tested 80 lbs- pressure with Lide: also Eigg Sinded Riveted Tank, 44 ft. Iang hy 5 ft dia. to hold 11,500 gallons. Also lectangular Tank ? 2 ft . by 9 ft . by 7 ft . welded steel, for oil storage. 1 box No. 2967, THE CHMMICAL AGF, 154, Fleet Street, Laraton. E.C. 4.

100
HYDRO EXTRACTORS by leading makers from 18 la. upwards, with Sitety Covers. Jacketted Steam Copper and Iroo lian. CalorinersWashlag Machines-Gilled lipes, etc. List rent on request. Kandalls, Engineers, Barnes. Tel.: RIv. vi36. 1000 SCIKOYG SEW WATEILPROOF APRONS. To-dny's value 5s. each. Clearing at 30s. dozen. Alaolarge gusdity Filter Clotha, cheap. Whil. sons, Sprlavileld Milla Preston, Lanes. Yhonn 2198. 'lhone 98 Stalnes.
250 atd 500 Gall. Alumininm Tanks: 500 Gall. Fivporator and Condenser; 0 ft Cast Iron Fifect Itunner. Vncum Mixer 4 ft. by is ft . by 3 ft .6 in .: C.I. Jacketed Tippin? P'an 40 galls.

HARRY H. GARDAM \& CO. LTD,
STALNES

WANTED

MANGROVE EXTRACT (Borneo Cutch) winted Cwt. packages. State quantity, price and markings. Box No. 2966, The Chemical Age, 134, Fleet Street, London, E.C.4.
WANTEU.-Supplles of Nitre Cake In ten ton lots. Box No. 212R, THR CHEMICAL ARR, IEH, Fleet Straet F.G. 4.
WلATTED: 2 Powder Mixers, 1 and 2 ton, Gardnes or similar. Hyglenfe Chemical (o., Itta., Duplex Works, Kimmerton Street, Iondon, S. W. 1.

WORKING NOTICE

HYDROMETER or Specille Gravity Fstintating $\mathrm{H}_{\text {Apparatus. British Patent } \mathrm{No} \text {. } 404,501 \text {. The Owner }}$ of this Patent desires to grant licences to manufacture thereunder on reasonable terms or will sell the entire Iritish Patent Rights. Apply Biomhead ic Co. Chartered P'atent Agents, of $19-2 ; 3$ Ludgate Hill, London, E.C.4.
THe Proprictors of the Pntent Nos. 513,604 for " Improvenents in or relating to Aloying Molybdenum with Ferrous Metals," and Xo. 513,853 for - Improvenients in or relating to Alloying Tungsten with Ferrous Metals," are desirous of entering into arrangements by way of licence and otherwise on rensonable terms for the purpose of exploiting the same and ensuring their full development and practical working in this country. All communications should be addressed in the first instance to Haseltine Lake \& Co., 28, Southampton luildings, .Chancery Lane, Iondon, w.c.2.

JOHN GIFFORD PUBLIGATIONS

BENEFITS OF WAR

by Professor A. M. LOW 7s. 6d.
Prof. Low here breaks new ground.

> GERMANY-LAND OF SUBSTITUTES
> by OLAF NISSEN 7 s. od.

The true picture of Nazi internal economy.
From the Publishers :
JOHN GIFFORD LTD.
125 CHARING CROSS ROAD, LONDON, W.C. 2
OR ANY BOOKSELLERS

WE WANT TO BUY:

MAGNESIUM CHLORIDE and
TITANIUM DIOXIDE
Please submit offers to
WALTER MOESCH \& Co.

- importers of chemicals -
__ZURICH - SWITZERLAND _-

Specialists in
Carboys, Demijohns, Winchesters JOHN KILNER \& SONS (I927) LTD. Tel. WAKEFIELD 2042 Estoblished 1867

TRIBASIC PHOSPHATE OF SODA
Free Running White Powder
Price and sample on application to:
PERRY \& HOPE, LIMITED, NitshIII, Glasgow

LARGE DEPT. FOR SGIENTIFIC BOOKS

New and secondhand Books on all branches of Chemistry and every other subject. stock of nearly three million volumes. Books bought.

QUICK POSTAL SERVICE
119-125 CHARING CROSS ROAD, LONDON, W.G. 2
Telephone: Gerrard 5660 (16 lines)
Open 9 -6 (including Saturday)

DISCOVERY

keeps you informed on everyday science with popular artlcles and news by leading outhoritles $1 / 6$ MONTHLY
19/-annual subseriptian
EMPIRE PRESS
NORWICH

STEAM TRAPS

FOR ALL PRESSURES AND DUTIES
 WE SPECIALISE
IN ENGINEER'S
REQUIREMENTS FOR
THE CHEMICAL AND ALLIED TRADES
British Steam
Specialties Lto
WHARFST. LEICESTER
Stocks at: Londan, Liverpool, Bristal,
Whiston, Glasgow, Manchester, \& Newcastle-on-Tyre

TANTIRON

The original and still the best acid resisting high silicon iron alloy! Sole Manufacturers:

CNnOX Foundry Co. Ltd. Glenville Grove, London, S.E. 8

BELTING AND

ENDLESS VEEROPES
Superlative Quality Large Stocks - Prompt Despatch FRANCIS W. HARRIS \& Co. Ltd.

BURSLEM - Stoke-on-Trent
'Phone: Stoke-on-Trent 7181.
-Grams: Belting, Bursiem

We are actual producers of COPPER ACETATE, ARSENATE, ARSENITE, ACETO-ARSENITE, CARBONATE, CHLORIDE, OXYCHLORIDE, OXIDES, SULPHATES, and Special

COMPOUNDS

METALLURGICAL CHEMISTS LIMITED TOWER BRIDGE CHEMICAL WORKS, 159-161, Tower Bridge Rd., London, S.E.I

COTTON BAGS

AND
LINERS for SACKS, BARRELS and BOXES
WALTER H. FELTHAM \& SON., LTD.
Imperial Works, Tower Brldge Road, London, S.E.I

LACTIC ACID

SULPHONATED OILS TANNERS' MATERIALS

Bowmans (Warrington), LTi) chemical manufacturers Moss Bank Works : : : Near WIDNES

KEEBUSH
Keebush is an acid-resisting construetional materlal used for the manufatiure of ranks, pumps, plpes, valves, fans etc. It is completely Inert to most commerclal acids ; is unaffected by temperatures up to $130^{\circ} \mathrm{C}$; possesses a relatively high mechanlcal strengsh, and is unafficted by thermal shock. It is belng used In most Industrles where acids are also being used. Write for partleulars to-

5 Grosvenor Gardens, London, S.W.I

"LION BRAND" METALS AND ALLOYS

 MINERALS AND ORES RUTILE, ILMENITE, ZIRCON, MONAZITE, MANGANESE, Etc.BLACKWELL'S metallurgical works ltd. GARSTON, LIVERPOOL, 19 ESTABLISHED 1869

FLOORS - CHANNELS
TANKS (storage \& process) DRAINAGE - NEUTRALISING CHIMNEY \& TOWER LININGS (chemical)
jijonctijlij

HEAD OFFICE : EAGLE WORKS. WEDNESBURY, STAFFS. (Telephone : 0284 (5 lines)
LONDON OFFICE: ARTILLERY HOUSE, ARTILLERY ROW, S.W.I. (Teiephone : (547-8 Abbey)

Ch e ENGINEERING CO., HASLAM ST., CASTLE BOULEVARD, NOTTINGHAM
 Telephone: NOTTINGHAM 46068 (3 lines) Telegrams . CAPSTAN, NOTTINGHAM
 ON AIR MINISTRY, ADMIRALTY \& WAR OFFICE LISTS
 REPETITION WORK IN ALL METALS

"STILL LEADING"

For CHEMICAL 8 ALLIED TRADES ACID RESISTING CEMENTS \& LININGS Eag PICKLING TANKS, FLOORS, DIGESTERS, KIERS, STONE, CONCRETE, BRICK, WOOD AND IRON VESSELS

[^0]
[^0]: Printed in Great Britaln by THy Press at Coombxiaside, London and Addiestone, and published by
 Clase Matter at the Now York, U.S.A., Post Once.

