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Summary. The paper deals with a flow line production/service system. It consists
of the sequence of processing centres, each center has a number of identical parallel
machines, and there are intermediate buffers between centers. An improvement
approximation algorithm for the problem of finding the schedule with minimum

makespan is presented.

SZEREGOWANIE ELASTYCZNYCH LINII PRZEPLYWOWYCH
I GNIAZD PRODUKCYJINYCH

Streszczenie. W pracy rozwazany jest system produkcyjny/obstugi z

linie,

przeplywowe. Linia ta sktada sie z ciegu centré6w obrébczych, przy czym kazde
centrum posiada pewne liczbe identycznych maszyn, a takze bufory o ograniczonej
pojemnosci posredniczece w przekazywaniu zlecen pomiedzy centrami. Dla tego
problemu, z kryterium minimalizacji maksymalnego terminu zakonczenia zadan,

proponowany jest pewien algorytm popraw.

1. Introduction

The paper deals chiefly with a problem {FP) derived from a hybrid combination of

two classic scheduling problems, namely the flow shop and parallel shop, and described

briefly as follows. There is a set of parts and a set of processing centers each of which has

a set of parallel identical machines. A part is associated with a sequence of operations

processed at successive centers, and all parts flow through centers in the same order.

At a

center, a part can be processed on any machine. Moreover there are buffers with limited

capacity that mediate in transferring parts between machines/centers. We want to find a

schedule that minimizes the makespan, one of the most frequently’ used criterion.

Architecture of automated manufacturing systems usually docs not allow to form

internal queues of parts (transported on pallets or in containers), or limits the length of

these queues due to buffer size. With respect to FP, the following problems (with an
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increasing description complexity) can be considered: (U) system has buffers with infinite
capacity or finite however large enough, (W) system works without buffers, (B) system
works with buffers of finite capacity. Buffers can be located in system B either before
machines (M) or before centers (C). If the capacity of a buffer is greater than one, we
should also consider the buffer service rule, e.g. arbitrary order (A), FIFO (F), LIFO (L).
Hence, each problem F P can be characterised by additional triple q|/3|7 where a refers
to the system type, f) to the buffer type, 7 to the buffer service rule.

FP creates the basic model for a broad class of problems called in the literature the
flexible flow line scheduling. These are pure problem FP or problems obtained directly
from FP by introducing a few specific additional assumptions, e.g. some parts can skip
one or more machines during the route, buffers have infinite capacity, there is a transport
time between centers, etc. A reach review of industrial applications, among others in
chemical branches, polymer and petroleum industry, computer systems, telecommunica-
tion networks, FMS, spaceship processing, etc., one can find in [4].

Although FP have quite simple formulation, it is troublesome from the algorithmic
point of view. Its A /3hardness essentially restricts the set of approaches which can be
applied to solve the problem. From the literature one can find exact algorithms based on
the branch-and-bound (B&B) [8] and mixed-integer programming (MIP), as well as a
variety of approximation methods, sec the review in [4]. Some of these procedures have
been designed for special cases, e.g. for the systems that have only two centers, the ones
where only one of the centers has parallel machines, etc.; see the newest paper in this area
[1]. Algorithms for FP have been also considered in [11, 15]. Research outcomes show
that B&.B algorithms become useless for more than 10 parts. Similarly, the size of MIP
models is impractically large even for a small number of parts and centers. Therefore,
more attention has been paid recently to the approximation methods. Currently, only a
few constructive algorithms applicable to FP are known, [2, 4, 11, 15]. Surprisingly, up to
now there is no improving algorithm, although many recent papers have recommended the

local search approach as the most promising for very hard optimization problems [3, 14],
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2. i/l]o|o system

The system has m machines located in ¢ machine centers, and let Ad = {1,..., m) be
the set of machines, C = {I,...,c} be the set of centers. The center | £ C has mi > 1
identical parallel machines, and let Ad; = {k/-fl,..., fc,-fm/} C Ad be the set of machines
in this center, where ki — £)i=Im,\ The set of e parts (elements, customer orders)
£ = {1,2,...,e} have to be processed in this system. Each part k £ £ corresponds to a
set of Ok operations Ok = {f*+ 1, + Ok) processed in that order, where Ik — E?=i °i%
and let O — UJU, Ok — {1, ---, o} be the set of all operations that have to be processed.

Operation j corresponds to the processing of part ey 1at center cy during an uninterrupted
processing time py > 0 and can be performed on any machine from AdCj. Each machine
can execute at most one part at a time, each part can be processed on at most one
machine at a lime, and each part k flows through the system so that cy_, < cy for
j —1,2 £ Ok. A feasible schedule is defined by a couple of vectors (S,P), S — (Si,...,S0),
P = (P],...,P0), such that above constraints are satisfied, where operation j is started
on machine Pj £ Adg at time Sj > 0.

To provide a formal mathematical model of the problem we introduce some notions.
Let £/ = {/€ C?: cj = 1} be the set of operations that have to be processed at a center
| € C. Batchisasubset ofoperations processed on a separate machine at a center, however,
due to machine identity, it is not assigned to any particular machine. To determine
machine workload, each set C\ has to be partitioned into m/ batches N, C Ci, i £ Ad/,
and letn-= |A/),i € M\, I £ C. The batch processing order is prescribed by a permutation
of operations it; = (tv;(1),..., n;(n,)) £ P(A'i) from a batch A;, where its(A) denotes the
clement of Afi which is in position k in it;, and V(Mi) is the set of all permutations on
the set TV;. The overall processing order is defined by m-tuple it = (it],..., irm). All such
processing orders create the set il = {it = (it,,..., itm) : (it, € V(An), i £ Ad), ((A/;, i €
Ad/) is a partition of the set £/, | £ C)}.

Next, let us consider relations between it and a feasible schedule. Assume that it is
given. For each j £ O we define sequential predecessor/successor ;y,s, and technological
predecessor/successor tj,ij as follows: = it;(j —1) forj = 2,...,n; and &,(,) - o

(null); Srid) = n;(i + 1) forj = 1,...,n,- —1 and s,,.(n() = o; tj = j —1ifj >1 and

'ey = k for any j € Ok-
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Cj-i =eyand fy = ootherwise; iy = j + 1ifj <o and eJ+J = ey,and iy— ootherwise.
For thist,starting times Syand completion times Cy of operationshave to satisfy the

following clear constraints

G, <Sy, jeO; Li o, (1)
C* < Sy, j €0; syz*o, (2)
Cy=5y+W, jeO . (3)

These constraints lead to an obvious recursive formulae on starting times

Sy = max{S<" + pLj, S£ + pLj) 4

where S0 = 0 = p0, which allow us to find them in a time 0(o). Appropriate completion
times can be found by using (3). The makespan value associated with ivwill be denoted
by Cmax(”)i and thus 0 m&x(w) — maxygo tAm

To determine the feasible schedule from the given it 6 IT, we have to assign batches
Al;, i 6 A4/, to machines i £ Mi at center /, | £ C2 Since machines at a center are
identical, the assignment can be done in any way. Therefore, a feasible schedule (S,P)
one can obtain in the following manner: set Py = i forj £ A'i, and find Sy by using (4). It
is clear that any tv represents n?=i(m <) feasible schedules with the same makespan value
and various assignments of batches to machines. Finally, we can state our problem as
that of finding w 6 Tl which minimizes Cm«(Tt).

The analysis is based on an auxiliary graph model associated with a fixed it € II.
The graph C7(tv) = (0, A" U A(it)) has a set of nodes 0 and a set of arcs A" U -4(ic),
where A" = Uyeo-.i"0iUy-i)} and A(n) = Uyeo;ij?lo{(iy,i)}' Arcs from <4* proceed
from constraints (1), (3) and represent the route of parts through the centers; an arc

£ A’ has weight . Arcs from A{v) proceed from constraints (2), (3) and represent
the processing order in batches; each such arc has weight zero. Each nodej £ O represents
the operation j, event "starting” Sy of this operation, and has weight py. Starting time Sy
equal the length of the longest path to node j (without py) in 5 (tv), whereas completion
time Cj equal the length of the longest path to node j (including py) in this graph. The

makespan CmuUx(iv) equals the length of the longest path (critical path) in £/(iv).

2Batch allow us to reduce tire number of considered feasible schedules.



Scheduling of flexible flow lines and work centres lia

Let us consider a critical path in S(t) interpreted as a sequence of nodes (operations)
U= («i,..., «,), Uy O. We define block Babas a maximal subsequence of successive op-
erations (u0,..., uj) from U such that P = ... = P,,4 We also denote U = {uj,..., ti,},
Bab= {n0) mmm, u&), and for any j g O we define Xj so that itp,{xj) = j.

The proposed solution algorithm is based on tabu search approach, which is a modern,
useful technique for constructing approximation algorithms of various hard optimization
problems, [3]. The basic idea of this approach applied to our problem consists in starting
from an initial solution (father) and searching through its descendants (the set of solutions
called neighborhood generated in a specific way from father) for a solution with the lowest
makespan. Then the search repeats from the the best one, as a new father solution, and the
process is continued. The father’s neighborhood is generated by moves; a move changes the
positions of a number of elements in father solution. In order to avoid cycling, becoming
trapped to a local optimum, and more general to guide the search to "good regions” of the
solution space, a memory of the search history is introduced. Among many classes of this
memory, we refer only to the tabu list which recorded, for a chosen span of time, selected
attributes of subsequently visited solutions and/or performed moves, treated them as a
form of prohibition for the future moves.

Based on conclusions from [5, 6], we consider only so called insertion moves. In our
case this type of moves is associated with it and can be defined by a triple (j,i,y), such
that operation j is removed from batch A/p, and then inserted in A/) in position y in
the permutation tt; (y becomes new position of j in it,)). Clearly, it has to be i E M cj,
1 V<ir-+ 1ifijpPj, 1<y<n;ift= Pj.

The neighborhood of it consists of orders it,, generated by moves v from a given set. By
using natural, simple approach one can propose the insertion neighborhood {tt,, : 56 V(ir)}

generated by the move set

V®) = u U v, (%)
JEO  Mr,

where VJt(ir) = QyLV {(j>bl)} 'f*7s Pi a,ltl Vy,-(it) = UyLi*-i*yjdrj-i0'.bJ/)} if *= Py
The condition Xj —1~ y ~ xj is added to prevent redundancy of moves 3. The set Vj;(ir)
contains moves such that operation j is deleted from the permutation irp, and inserted in

all possible positions in the permutation 4t- One can verify that the number of moves in

3Moves are redundant if provide the same solutions.
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V (it) equals approximately oe.

Final quality ofthe tabu search algorithm depends among others on the computational
complexity of the single neighborhood search and on the neighborhood size. Our previous
research show that such the algorithm behaves much better if we evaluate descendants
directly by the criterion value, [5, 6, 7], Therefore V(n) should be given up as expensively
time-consuming, and we propose next a reduced neighborhood.

The main idea of the reduction consists in eliminating some moves from V(n) for which
it is known a priori (without computing the makespan) that they will not immediately
improve C,na,(Tt). By employing certain graph property ”if there exists in a path
containing all nodes from U, where U is found for S(n), we have Cnl!Ix(iT,,) > Cmax(ir)” we
propose the following reduced set of moves

w(it) = u U (6)

icu

where Wij;(ir) C Vj,(n) are defined only forj G Bat C U in the following manner. If
a = b, we put W;lI(it) = 0. Ifi yf Pj and a ~ b then TV, (w) = V,i(n). In the remain
cases, i.e. ifi = Pj and a b, we set: kV,;(ir) = V,,(ir) \ Xj[xW + —1) ifj €
B,,b\ {wa,W(}, where Xj(k,t) = \j[=k{[i>Pj,y)}', Wij-(ir) = V,-tv) \Xj(I,Xj) ifj = u,;
W, (ir) = \ Xj(xj,m) ifj = ut,. A strongest reduction is possible for i = Pj and
agbb: ifa= 1and j yt u& we can set Wj,(n) = Vj,(n) \ Xj(I, xWb—1); by symmetry if
b=wandj ” ua, we can set = V,,(ir) \ Xj(xu, +1,n,).

A rough analysis of neighborhood sizes shows clear advantage since [V (n)|/ [VV(it)] ~
o/w and w < 0. Assuming uniform distribution of machines over centers and uniform
distribution of parts over batches, we have o/w ~ m. The proposed neighborhood pos-
sesses also a connectivity property which provides for tabu search possibility of finding
optimal solution, however without assurance that it will be discovered, [7]. The skipped

part of the neighborhood is "less interesting” due to Property 1.

Property 1. For any processing order Tt,, v € V (n)\W (n), we have (7max(ir,) > (7max(ir).

3. VPloJo and B\M\P systems

The production system has mathematical model from Section 2 with an additional

constraints that each buffer Q, to the machine i has capacity’' < > 0, e.g. can store at
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most < parts at a time. It means that each part completed on some machine and directed
to a machine i can be stored in the buffer &; if it is not fulfilled, otherwise remains on
the primal machine (blocks this machine) until it can be transferred to a buffer. Due to
buffer service rule, jobs pass through the buffer Qi in the order given by irt

First, we consider relations between a processing order it 6 Il and a feasible schedule
(5, P). Let Cjdenote the time of releasing the machine Py aftercompletingoperation

j. Foragiven itappropriate feasible schedule have to satisfy constraints (1), (3) and

additionally
Ci<Cj,jeo, @)
Clt <Sj, j€0; sj+o. ®)
To set buffering constraints let us consider events associated with operation j — it,(x) for
some 1< x < n-, i = Pj, such that tj yf o. There are two disjoin cases.

(a) If the buffer Qj contains at most g — 1 (q, > 1) parts associated with recently
performed operations it,(x —¢,+ 1),..., n,(x —1), then part e(j = ey can be passed to the

buffer Qj immediately after completion of operation tj, i.e. Cx = C\ . It means that all

parts associated with operations ir,(1),..., Hi(x —qi) must be taken from buffer Q,- before
time moment Cj , therefore, since S (v) < we have
NCA, X—5i"l,. . mUIm (ff)

(b) If the buffer Q, contains exactly I, (<> 0) parts associated with recently performed
operations ir,(x —</,*),.. .,it;(x — 1), then part ey will be passed to the buffer Qi after
completion of operation tj in a time moment when a successive part from Q, will be taken

for processing, i.e.
Cj. = mills’i(r_ , (x)} = S.(x-,)) (10)

Clearly, (10) can be replaced by more general constraint (9). To eliminate variables Cj

from constraints (7)-(9), we introduce notion of b-se.quent.ial predecessor/successor ry, ry

of operation j defined as follows: r,i(j) = ir,(y —x) forj = 7+ 1,... ,n,-, and L*i(j) = o for
j=1 r,(y) = n»(i+?i) forj = 1,... ,«j-9,,and 7ll(j) = oforj = n.+g.+1,... ,n{
Consequently, (9) can be written as Sij < . Next, from (8) we have Cj < Ssj if sy yt 0.

This allow us to eliminate Cj and to express constraint (9) as follows

sZ < s% (1)
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which holds for j G O such that rj oo o, tj o, sM o. Finally we obtain a recursive

formulae on starting times
Sj=max”" +pt,S,. +p}sSr ) (12)

where r» = 0, a0 = 0, Sa= 0 = pa. Similarly as (4) all Sy can be calculated in 0(6) time.

An appropriate auxiliary graph model can be formulated as follows f?(it) = (OtA *U
*4(h) U ./4.(it)), where 0, A' and A(ir) are defined in Section 2. The set of arcs -/ (it) =
Uj'eO;r>go0;ij7to;j,~o{ (I1ji\)} represent buffering constraints (11); an arc (ty,?”") 6 -4'(t0
has weight minus pr.. Notions 5y, Cy, and have the same interpretation as in
Section 2.

By analysing C?(ir) one can detect possibility of cycle existence. Note, this has not be
possible in system C/|olo. Clearly, in such case no feasible schedule (S, P) can be obtained.
Hence, we will consider further on only feasible overall processing ordersit GnF C n, i.e.
orders without a cycle in appropriate graph Q(A).

Thus, for a given re G n F, the feasible schedule (5, P) can be found in the same manner
as in Section 2, however using (12) instead of (4) for calculating S.

Let us define the critical path U and blocks Bat in 5(ir) the same way as in Section
2. Unfortunately, Property 1, fundamental for the use of move set W (rr), is not true in
this case. Therefore, equally the block notion and reduced set of moves are useless. To
restore all advantageous properties we have to introduce some new notions. The extended
critical sequence U" — (u\,..., it")is a sequence obtained from U by inserting between any
successive operations u*_i and u* such that (ufc_i,ut) G »4*(it) an additional element sUk
Note, U' need not beany path in Q(n). Next, we define an extended block ZJ’j as a maximal
subsequence of successive operations (u*,...,«J) from U’ such that Pu- = ... = Pu-. For
convenience of notations we set U* — {ttj,..., t<*}, = (u",...,uj}. For each extended
block B*b, an anti-block Bb is defined as Bb = () (empty) if b=z or (u>»uM-i) » A , and
Bb = (ju mmm i, +i) such thatj, = ub, jk+, = sy* for k = 1, i = Pj,, otherwise. By
the definition of >I'(iv) such sequence always exists and = fy,. Denote by Bb the set
of elements from the sequence Bb, and let U° = Uo”cw $?¢« We propose the following set
of moves for tabu search method

W (*)= U U Wy (rr) (13)
jeu’Ut' 'em.
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Sets VVji(ir) C Vj,(it) are defined depending on extended blocks and anti-blocks, only for
j GB*bUtSb C U' (JU°. Ifj G B ksuch that Bb = 0 we define VVjj(it) in exactly the same
way as W ji(ir), see Section 2, however with respect to extended block B ‘b. Ifj G BAUBg,
Bb~ 0, and i yt Pj, we set VVj,(it) = ~i(n). In remain cases, i.e. ifi = Pj,a/ 6,Bbyf0
we set: VV,(ir) = ifj = uj; VVj,(it) = VJ,(ir)\A";(xu. +1,iuj-1) ifJ G

rijii-K) = Vji(ir) \ Xj(xul + 1, - 1) ifj GBB\ K ,r,;} WAntec) = VArr) \ * (1, xj) if
j = u"; VV0) = V; (it) \ Xj(xj,n;) ifj = fuj.

Property 2. For any processing order it,,, v G V(x) \ VV(u), we have either ir, IIF or

Cmhx{?v) ci f'max(l')-

Thus, solution method from Section 2 is applicable to these systems as well.

4. Comments and conclusions

The proposed approach can be extended to more general cases which cover most of the
practical applications in flexible flow lines scheduling problems and also in scheduling parts
in a flexible cell production (work centers). One can note that the following constraints
can be modelled without essential complication of the model: there is a job transport
time between centers, jobs are arrived in various time moments, machines are available
after its ready time, jobs must be finished before the given due date, jobs must be finished
just in time, machines are non uniform, etc.

The remain components of the proposed algorithm (not discussed here) are presented
in detail in [7] and have been selected among many alternative constructions that were
tested and examined in a few recent papers, [5, 6, 7). Excellent computational results
obtained for all problems from cited papers can be obtained also in all considered cases.

Further research should be lead to examine the remain types of buffers mentioned in
Section 1. Primal results of analysis of the system B|C|o show useless of models based
on batch processing orders. Instead of them the models based on center processing order

should be used with quite another definition of moves.
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A bstract

The paper deals with a fundamental problem considered in flexible flow line scheduling.
A number of parts should be performed in a sequence of processing centers, where each
center has a number of identical parallel machines, and there are intermediate buffers
between centers. An improvement approximation algorithm for this problem of finding
the schedule with minimum nrakespan is presented. This algorithm is based on tabu
search approach with reduced neighborhood which employs the notions of a critical path
and blocks of operations.



