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Abstract 
Purpose – Electric arc furnaces are very often modelled using combined models which cover separately 
deterministic and stochastic phenomena taking place in the furnace. The deterministic part is expressed by 
nonlinear differential equations. A closed form of the solution to one of the most popular nonlinear 
differential equations used for the AC electric arc modelling does not exist for some values of the 
parameters. The paper goal was to convert electric arc furnace equation for these parameters to the quadratic 
polynomial form which significantly simplifies solution.  
Design/methodology/approach – The solution has been obtained in the time domain by a sequence of 
transformations of the original nonlinear equation which lead to a system of quadratic equations, for which a 
periodic solution can be found easily using harmonic balance method (HBM). 
Findings – Quadratic polynomial form of electric arc furnace nonlinear equation in the case for which the 
solution to the nonlinear differential equation describing electric arc cannot be obtained in a closed form. 
Research limitations/implications – The complete model of the arc  requires extension of the deterministic 
solution obtained for the quadratic polynomial form using stochastic or chaotic component. 
Practical implications – The obtained results simplify determination of the arc voltage or radius time 
waveforms if a closed form solution does not exist. The arc model can be used to evaluate the impact of arc 
furnaces on power quality during the planning stage of new plants. The proposed approach facilitates 
calculation of the arc characteristic. 
Originality/value – In order to avoid problems occurring when a large number of harmonics is required or 
the system contains strong nonlinearities, a transformation of the original equation has been proposed. 
Nonlinearities present in the equation have been transformed into purely quadratic polynomial terms. It 
facilitates application of the classical HBM and allows to follow periodic solutions of the arc equation when 
its parameters are varied. It also enables better understanding of the phenomenon described by the equation 
and makes easier the extension of the arc model in order to cover the time-varying character of the arc 
waveforms. 
Keywords – electric arc furnace, nonlinear differential equations, quadratic polynomial form, nonlinear 
loads 
Paper type – Research paper 
 
 
1. Introduction 

Understanding properties of solutions of differential equations describing physical phenomena 
is fundamental for modern engineering. A differential equation describing the AC electric arc is just 
one of the examples. Electric arc furnaces are commonly used for melting metals in steel industry. 
Unfortunately, nonlinear characteristic of the arc furnace and its stochastic behavior are the cause of 
voltage flicker and waveform distortions in power systems (Manchur and Erven 1992; Alves et al., 
2010; Gomez et al., 2010). 

The stochastic nature of processes which take place in the furnace makes the development of a 
realistic arc model a challenging task. However, a reliable model is required to estimate the 
degradation of the power quality caused by the arc furnace and to take some actions which enable to 
overcome the mentioned above negative effects. 

During melting the arc extinguishes and starts again in a random way. In spite of the arc 
stochastic nature, its analysis usually starts using deterministic characteristic and the time-varying 
nature is taken into account in the second step. It is made with the aid of chaotic, stochastic or 
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modulated components which are added to the deterministic solution (Ozgun and Abur, 1999; 
Golkar and Meschi, 2008; Alves et al., 2010; Gomez et al., 2010).  

This paper is a continuation of other works (Grabowski and Walczak, 2011; Grabowski and 
Walczak, 2013) in which a closed form solution of one of the most popular deterministic nonlinear 
differential equations used for the arc modeling (Acha et al., 1990) has been developed for some arc 
parameters. It seems that a closed form solution for the other arc parameters does not exists 
(Zwillinger, 1997). However, in this case periodic solutions can be found by combining the 
harmonic balance method (HBM) and a continuation method (Cochelina and Vergez, 2009). A 
transformation of the nonlinearities present in the equation into purely quadratic polynomial terms 
has been proposed in the paper. It makes the determination of periodic solutions easier. 

The future task consists in considering some parameters of the arc as stochastic variables to 
obtain a realistic arc model. This task will be for sure easier to accomplish if the closed form 
solutions or periodic solutions are analyzed instead of using the numerical approach. 
  
2. Arc furnace model 
 

Deterministic and stochastic components can be observed in voltage-current (V-I) arc 
characteristics. The share of both  components depends on the phase of the melting process (Gomez 
et al., 2010).  

Modeling of the deterministic V-I characteristic can be made with the help of nonlinear 
differential equations (Gomez et al., 2010; Ozgun and Abur, 1999; Acha et al., 1990), piece-wise 
linear approximations (Golkar and Meschi, 2008), mixed approximations using exponential and 
linear functions (Golkar and Meschi, 2008), approximations using shifted and amplified step 
function (Wang Yongning et al., 2004). The paper follows the first mentioned above approach. The 
following nonlinear differential equation describing a single-phase electric arc can be derived from 
the power balance equation (Acha et al., 1990): 
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where: 
 r(t) – the arc radius,  
i(t) – the arc current, 
kj – the proportionality constants, j = 1, 2, 3, 
n, m – the arc parameters, n = 0, 1, 2, m = 0, 1, 2. 

 
The current waveform i(t) is treated as an input data when analyzing the arc phenomenon. 

Equation (1) can be also used to get the characteristic of a three-phase electric arc (Gomez et al., 
2010). 

The general arc equation (1) is a first-order nonlinear differential equation. Unfortunately, 
there are no general analytical methods which allow to solve any nonlinear differential equation, 
even of the first-order. The general arc equation expressed by (1) is nor separable neither exact, so 
there is no simple way to find its solution in a closed form (Zwillinger, 1997).  

Application of a substitution given in (Grabowski and Walczak, 2013) allows to convert (1) 
into the following first-order differential equation: 
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For n = 2 and m = 0, 1 or 2 the coefficient k is equal to 1 and the linear first-order differential 
equation is obtained. A closed form solution of such equation is well known (Zwillinger, 1997). On 
the base of this solution the arc radius r(t) and subsequently the arc voltage u(t) and conductance 
g(t) can be determined (Acha et al., 1990):  
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For n = 0 and m = 0, 1, 2 the coefficient k is equal to 1/2, 3/5 and 2/3. For n = 1 and m = 0, 1 
or 2 it is equal to 3/4, 4/5 and 5/6. In both cases, the HBM may be applied to obtain a periodic 
solution with fundamental angular frequency ω0, which is equal to the angular frequency of the 
exciting term, i.e. the current i(t). This approach consists in decomposing the y(t) into a truncated 
Fourier series: 
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and substitution of the series into (2). The resultant system of algebraic equations enables to 
determine the amplitudes of all the harmonics, i.e. Y0, Yc,h and Ys,h, for h = 1,…, H, and thus the 
periodic solution y(t) expressed by (8). 

 
 

3. Example I 
  

Let us find the solution of (2) for n = 2, m = 1 and the arc current waveform i(t)  based on the 
exemplary arc current harmonic characteristic limited to the 2nd and 3rd higher harmonics –  Fig. 1 
(the number of harmonics is consistent with the one used later for the HBM). The percent of 
fundamental for these harmonics is equal to 8% and 7% (Gomez et al., 2010), respectively. The 
fundamental frequency is 50 Hz and its amplitude 70 kA. It must be stressed that it is only 
a simplification of an actual arc current characteristic which is very often used if the analysis is 
restricted to the deterministic case.  
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Fig. 1. Exemplary deterministic component of the arc current waveform 
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Fig. 2. Arc radius waveform for n = 2 and m = 1 
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Fig. 3. Arc voltage waveform for n = 2 and m = 1 

 



 

- 5 - 

 

© Emerald 2014 URL: https://doi.org/10.1108/COMPEL-11-2013-0357 
 
Grabowski D.: Quadratic polynomial form of electric arc furnace equation. COMPEL - The International Journal for 
Computation and Mathematics in Electrical and Electronic Engineering, vol. 33, no. 6, 2014, pp. 2030-2042. 

0.080 0.085 0.090 0.095 0.100
0

500

1000

1500

T ime, t HsL

A
rc

co
nd

uc
ta

nc
e

,g
HS
L

 
Fig. 4. Arc conductance waveform for n = 2 and m = 1 
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Fig. 5. V-I characteristic of the arc model for n = 2 and m = 1 

 
Let us assume that the constants in equation (1) take the following values: k1 = 3000, k2 = 1 

and k3 = 12.5 (Ozgun and Abur, 1999). The solution of (2) enables determination of the arc radius 
(5) shown in Fig. 2, the arc voltage (6) shown in Fig. 3, the arc conductance (7) shown in Fig. 4 and 
finally the V-I characteristic shown in Fig. 5.  

The V-I characteristics obtained on the base of the closed form solution for n = 2 and m = 0, 1 
or 2 are consistent with the numerical solutions and the measured characteristics (Gomez et al., 
2010; Ozgun and Abur, 1999; Acha et al., 1990). 

 
4. Quadratic Polynomial Form 
  

The application of the HBM becomes straightforward if a nonlinear equation is transformed to 
a quadratic form (Cochelina and Vergez, 2009): 

 ),()()()( zzqzlczm ++= tɺ , (9) 

where: 
m(⋅), l(⋅) – linear vector operators, 
q(⋅,⋅) – a quadratic vector operator, 
c(t) – a forcing and constant term vector. 
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The system of equations (9) can include differential (the dot stands for the derivative with 
respect to time) and algebraic equations. The vector z contains the original unknown variable y as 
well as variables introduced to obtain the quadratic form. 

 
The quadratic polynomial form of (2) for all the values of k has been determined and 

presented below.  
 
If k = 1/2 (i.e. n = 0, m = 0), then: 
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where z = [ y w]T. 
 
If k = 3/5 (i.e. n = 0, m = 1), then: 
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where z = [ y v x p w]T. 
 
If k = 2/3 (i.e. n = 0, m = 2), then: 

 

� � � �����

ɺ

ɺ ),(

2

2

)()()(

0

00

0

)(

0

0

zzqzlczm

wxy

wx

wtfy

t

−+
−
+α

+
+
+

=
=
=

 (12) 

where z = [ y x w]T. 
 
If k = 3/4 (i.e. n = 1, m = 0), then: 
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where z = [ y v x w]T. 
If k = 4/5 (i.e. n = 1, m = 1), then: 
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where z = [ y v x p w]T. 
 

If k = 5/6 (i.e. n = 1, m = 2), then: 

 

� � � ���

ɺ

ɺ ),(

2

2

2

2

)()()(

0

00

0

0

0

0

)(

0

0

0

0

0

zzqzlczm

xpys

x

w

v

y

p

x

s

v

wtfy

t

−+
−
−
−
−
+α

+
+
+
+
+
+

=
=
=
=
=
=

 (15) 

where z = [ y v s x p w]T. 
 
The results of application of the HBM to (9) obtained for the nonlinear differential equation 

describing the arc phenomenon have been presented below.  
 
5. Periodic Solution of the Arc Equation 

  
The HBM can be applied to all equations in the quadratic polynomial form obtained in the 

previous chapter. However, the following considerations have been limited to an exemplary case for 
which k = 1/2. For the other cases similar analysis can be carried out. 

If  k = 1/2, then the arc is described by (10) which can be written in a matrix form: 
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In this case the vector operators (see  (9)) are defined as follows:  
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The forcing term f (t), which is included in the vector c, as well as the unknown variables can 
be expressed with the help of the Fourier series: 
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In order to find a periodic solution of the arc equation the Fourier coefficients (26) have to be 
determined. So a new vector of unknown variables can be introduced: 
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Application of the Fourier series representation of the forcing term and the unknown auxiliary 
functions allows to convert the quadratic form (9) defined for the unknown vector z into a new one 
defined for the unknown vector U: 

 ( ) ( ) ( )UUQULCUM ,0 ++=ω , (28) 

where: 
M(⋅), L(⋅) – linear vector operators, 
Q(⋅,⋅) – a quadratic vector operator, 
C – a forcing and constant term vector. 

 
The system of equations expressed by (28) implements the harmonic balance method. 

The operators L and M are defined on the base of the operators l (17) and m (18), the vector C is 
derived from the vector c: 
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In order to define the operator Q it is convenient to express q1 (21) and q2 (22) by means of 
the Fourier series: 
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Finally, the operator Q is given by: 
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where: 

 ∑∑
==

−−−=
H

h
hs

H

h
hc WWWQ

1

2
,

1

2
,

2
020 2

1

2

1 , (35) 

 ( ) ( ),2

12
12

12,,12,,

32

1
1

12,,12,,12,012,2 ∑∑
≠−
+=

+−+−

−

≠
=

−−−−−− +−−−−=
H

Hh
hj

hjsjshjcjc

h

h
j

jhsjsjhcjchchc WWWWWWWWWWQ   

(36) 



 

- 11 - 

 

© Emerald 2014 URL: https://doi.org/10.1108/COMPEL-11-2013-0357 
 
Grabowski D.: Quadratic polynomial form of electric arc furnace equation. COMPEL - The International Journal for 
Computation and Mathematics in Electrical and Electronic Engineering, vol. 33, no. 6, 2014, pp. 2030-2042. 

 

( ) ( ) ,
2

1

2

1
2 2

,
2
,

2
22

2,,2,,

22

1
1

2,,2,,2,02,2 hshc

H

Hh
hj

hjsjshjcjc

h

h
j

jhsjsjhcjchchc WWWWWWWWWWWWQ +−+−−−−= ∑∑
≠

+=
−−

−

≠
=

−−

(37) 

 ( ) ( ).2
1

,,,,

1

1
1

,,,,,0,2 ∑∑
≠

+=
−−

−

≠
=

−− −−+−−=
H

Hh
hj

jchjsjshjc

h

h
j

jhcjsjhsjchshs WWWWWWWWWWQ  (38) 

The vector (34) has been obtained assuming that the Fourier series (32) and (33) are truncated 
and include only the H harmonics. Substituting (29), (30), (31) and (34) into (28) and solving it 
allows to determine the periodic solution y(t) of the arc equation (2) for k = 1/2. 

 
6. Example II 

Let us assume that the arc current harmonic values as well as the constants in (1) take the 
same values as in Example I. Solving (28) enables among others determination of the harmonics for 
the unknown function y(t) (see (27)), which allows to calculate  the arc radius and voltage on the 
base of (5) and (6), respectively. As in the previous chapter, the case of k = 1/2 (i.e. n = 0 and m = 0) 
has been considered in the example. The system of equations defined by (28) after canceling any 
harmonics higher than the assumed maximum index H = 3 has been solved. The harmonic content 
of the periodic solution y(t) has been presented in Tab. I (for solutions from #1 to #4 the RMS value 
of the first harmonic has been used as the reference value, for solution #5 it has been the RMS value 
of the second harmonic, because the first one is not present in the spectrum). 

  
TABLE I 

HBM RESULTS - HARMONIC PERCENTAGE 

Solution 
Harmonic 

h=1 h=2 h=3 
YC,1 YS,1 YC,2 YS,2 YC,3 YS,3 

#1 48.6% 87.4% 26.4% 20.7% 53.9% 2.6% 
#2 55.6% 83.1% 80.6% 45.3% 52.9% 10.6% 
#3 59.4% 80.4% 29.8% 2.1% 19.4% 6.9% 
#4 62.1% 78.4% 43.7% 5.9% 18.6% 8.8% 
#5 0.0% 0.0% 0.0% 100% 0.0% 0.0% 

 
If the analysis is limited to harmonics of order 3 or less, then there are five real solutions 

which have been found using the HBM. The more deep discussion of results will be possible after 
finishing a dedicated software program which enables finding periodic solutions for k ∈[0.5;1] and 
for varying parameter α. 

 
 

7. Conclusions 
 

The nonlinear differential equation used to model the electric arc furnace has been 
transformed to the quadratic polynomial form. Since the nonlinearities are quadratic, the HBM can 
be easily applied to the transformed equation, even with a large number of harmonics. In order to 
follow periodic solutions of the arc equation when its parameters are varied a continuation method 
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can be applied in the next step. The computational results obtained so far agree with existing 
numerical solutions and measurements. 
 
References 
 
Acha, E., Semlyen, A. and Rajakovic, N. (1990), “A harmonic domain computational package for nonlinear 

problems and its applications to electric arcs”, IEEE Trans. on Power Delivery, Vol. 5 No. 3, pp. 
1390-1397. 

Alves, M.F., Peixoto, Z.M.A., Garcia, C.P. and Gomes, D.G. (2010), “An integrated model for the study of 
flicker compensation in electrical networks”, Electr. Power Syst. Research, Vol. 80 No. 10, pp. 1299–
1305. 

Cochelina, B. and Vergez, C. (2009), “A high order purely frequency-based harmonic balance formulation 
for continuation of periodic solutions”,  Journal of Sound and Vibration, Vol. 324 No. 1-2, 
pp. 243-262. 

Golkar, M.A. and Meschi, S. (2008), “MATLAB modeling of arc furnace for flicker study”, Proc. of the 
IEEE Int. Conf. on Industrial Technology, Chengdu, China, pp. 1-6. 

Gomez, A.A., Durango, J.J.M. and Mejia, A. E. (2010), “Electric arc furnace modeling for power quality 
analysis”, Proc. of the IEEE ANDESCON Conf., Bogota, Colombia, pp. 1-6. 

Grabowski, D. and Walczak, J. (2011),  “Analysis of deterministic model of electric arc furnace”, Proc. of 
the 10th International Conference on Environment and Electrical Engineering EEEIC, Rome, Italy, 
pp. 1-4. 

Grabowski, D. and Walczak, J. (2013),  “Deterministic model of electric arc furnace - a closed form 
solution”, The International Journal for Computation and Mathematics in Electrical and Electronic 
Engineering COMPEL, Vol. 32 No. 4, pp. 1428-1436. 

Manchur, G. and Erven, C.C.  (1992), “Development of a model for predicting flicker from arc furnaces”, 
IEEE Trans. on Power Delivery, Vol. 7 No. 1, pp. 416-426. 

Ozgun, O. and Abur, A.  (1999), “Development of an arc furnace model for power quality studies”, Proc.of 
IEEE-PES Meeting, Vol. 1, pp. 507-511. 

Wang Yongning, Li Heming, Xu Boqiang, and Sun Lilhg (2004), “Simulation research of harmonics in 
electric system of arc furnace”, Proc. of the Int. Conf. on Power System Technology POWERCON, 
Singapore, pp. 902-906. 

Zwillinger, D. (1997), Handbook of Differential Equations, Academic Press Inc., Orlando. 


