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A PPR O X IM A TE C O N TRO LLAB ILITY  OF CERTAIN DISTRIBUTED SYSTEM

Sum m ary. In the paper the analysis o f mathematical models describing a class o f elastic 
mechanical system is presented. The mathematical models o f such systems have the form o f partial 
differential equations o f  higher orders. On the base o f  the theory of linear, unbounded, differential 
operators it was made transformation from partial differential equation describing the system to 
infinite dimensional, linear, abstract equation o f state in Hilbert space. On the ground o f the 
general conditions for approximate controllability it was formulated necessary and sufficient 
conditions for approximate controllability o f investigated system. Finally some general remarks 
concerning controllability o f distributed parameter systems are presented.

APROKSYMACYJNA STERÓWALNOŚĆ PEWNEGO UKŁADU O PARAMETRACH 
ROZŁOŻONYCH

Streszczenie. W ramach pracy dokonano analizy modeli opisujących pewną klasę 
elastycznych układów mechanicznych. Modele matematyczne takich układów mają postać 
równań różniczkowych cząstkowych wyższych rzędów. Na podstawie teorii liniowych, 
nieograniczonych operatorów różniczkowych dokonano przejścia do opisu układu w  postaci 
nieskończenie wymiarowego, liniowego, abstrakcyjnego równania stanu w  odpowiedniej 
przestrzeni Hilberta. N a podstawie ogólnych warunków aproksymacyjnej sterowalności 
sformułowano warunki konieczne i wystarczające aproksymacyjnej sterowalności dla badanego 
układu. W ostatniej części pracy przedstawiono kilka uwag ogólnych, dotyczących sterowalności 
układów o parametrach rozłożonych.

1. Introduction

W e consider in this paper certain type o f  control system described by linear, partial, differential 

equation. We treat the case when the control inputs appear in partial differential equation as 

distributed inputs. The paper is devoted to so called approximate controllability o f  certain 

distributed system. Approximate controllability generally means, that the system can be steered 

from an arbitrary initial state to an arbitrary small vicinity o f a final state.
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Using the spectral theory for linear, unbounded, differential, operators the mathematical model 

describing the dynamic behavior o f  the control system is transformed into first order abstract, 

evolution equation in an appropriate Hilbert space. To this equation are applied conditions for 

approximate controllability. Finally the necessary and sufficient conditions for approximate 

contollability o f  investigated system are presented.

2. System description

Let us consider dynamical control system described by the linear partial differential equation:

£ ! 2 M + ^ ^ + 2 j A M _ 2 b ^ ^ - g £ i i M = b (x )f( t) (2 .i)
&C ¿be chidx d x d X  ax

for x e (0 , / ) ,  t>0 

with initial conditions

u(0,x) = u0(x)
d u (  0,x) forxe(0 ,t)  (2.2)

 t f t / , 0 0

and boundary conditions

d t

¿ 2u(t, 0) „
u(t,0)= d x i =0

2 ^ for  t>0 (2.3)
,. d 2u(t,I) 

H ‘J )=  g x i  = 0.

where : ¿(x)=[ft,(x) b fx )  ... bp(x)] and -  fp(‘)Y- NO,  i= l P are Holder

continuous control functions, a>0 , P g [0,1/2) , yeR .

Equation (2.1) describes the transverse motion in the X-Y plane o f an elastic beam which 

occupies the interval [0,/] o f  the X  axis in the reference state. The function u(t,x) denotes the 

displacement from the reference state to the Y- direction at position xe(0 ,/) and time t>0. The 

third and the fourth term o f  (2.1) represent internal structural damping [3],[6],[8] and the fifth 

term represents the effect o f  axial force on the beam [1],[14). The boundary conditions 

correspond to hinged ends o f  the beam.
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3. Preliminary results

Let H=L2(0,/) be the complex Hibert space of all square integrable functions on the open 

interval (0,1) with the inner product and the norm :

i
= \ f i x ) g ( x ) d x  f o r /  geH ,  (3.1)

00

' M
fo r fe H .  (3.2)

W e define a linear, unbounded, differential operator A : D(A)c:H—>H by

Au(x) = ̂ j ~ = u " ( x )  , u e D ( A )  (3.3)

with domain

D(A)  = |« ( x )  e  H*(0,l).\u2(x)dx< +oo,

u(0) = « '(0) = 0, (3.4)

«(/) = u"(l) = 0}

where H^O,/) denotes fourth order Sobolev space on interval (0,1).

The linear operator A has the following properties [5],[9]:

a) A  is self-adjoint and positive definite operator with dense domain D(A) in H,

b) A has the spectral representation
♦«o

M*) = ZUf{"-<0 M*) > w e Z)(̂ )t
i=t "

where X, <J) are eigenvalues and eigenfiinctions of A, respectively, and

. ^ W  = ( y ) 3 s i n [ ^ )  for  x 6 (0 ,/)  (3.5)

c) The set o f  eigenfunctions o f  A {<j>¡; ie N  } forms the complete, orthonormal system in H

d) A  has only pure discrete point spectrum a(A ) consisting entirely with eigenvalues:

o(A)={Xj; ieN}

e) There exists compact inverse A '1 and the resolvent o f A is compact

f) For the operator A fractional power Aa , ae (0 ,l)  can be defined by
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Aau = f JX° J ,  , u e  D (Aa)
1 = 1  H

D(A°  ) = {«- e  [  <+«>} >

which is also self-adjoint and positive definite operator with dense domain in H. 

Particularly, A I/2 can be definite by

D(Al/2)={ueH2(0,l): u(0)=u(f)=Q),

where H2(0,/) denotes the second order Sobolev space on interval (0,1) and D (A )cD (A 1/J). It 

should be stressed, that fractional power o f A may have quite different nature. In spite o f  A is 

the differential operator its fractional power generally may be quite different, nondifferential 

operator.

Applying operator A to partial differential equation (2.1) with boundary conditions (2.3) we 

obtain the following abstract, ordinary second order differential equation with respect to t in 

Hilbert space H:

where: ü (t), ù (t), u ( t ) e H .

4. First order equation

The purpose o f  this section is to transform the second order abstract differential equation (3.6) 

to first order one by using procedure proposed by Sakawa [8] and developed by Kunimatsu, Ito 

[5], We make two additional assumptions on the coefficients o f  (2.1)

ü(t) + Au(t) + 2a Aü(t) + 2 ß  A*ù(t)+y A'u(() = b f ( t )  , / >  0, (3 .6)

aX, + ßxj <(1 - ß2) / 2a 

> ,* ( l - ß ) 2/ a 2 , / = 1,2,...

Let Hilbert space X be the product space HxH with inner product

and corresponding norm ¡j°|r .
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We can convert second order abstract equation (3.6) into the following first order one in 

Hilbert space X= HxH

c ( o = A < r ( o + s / ( o  , / > o . (4.1)

where:

C(0 =

A =

B =

LMO.
- A * - T - T

T - A -  + T

g(AT 'b

A: D(A) = D (A)x  D(A) < = X -> X  

B:D(B) = R P- > X
l - g { A Y 'b \

Components o f  state vector £  have the form:

4(<)=u(t)+v(t), f4<)= u(t)-v(t)

v(t) = g(A )~'[u(t) +  aA u(t) +  /Z4‘u(i)} , f > 0 , u ( t ) e  D{A).  

Components o f  state operator A are expressed by:

A ^ c c A  +  p A ' T  g(A) A1:D (A i ) =  D(A) c z H - * H

T = ^ g ( A y ' A i T:D(T) = D (A ')  a H  -*  H.

Components o f  control operator B are given by:

+ e° / \ I +« , I 2 1
g(A)u='Eg(A.,)(u,<t>l)ii fa £>(g(i4)) = j i / e  t f : Z |g ( A , )(« ,& )„ | <+oo | = £>(^) (4.2)

g(A ) = | ( a A + / 7 ^ ) 2 - A  J' , ¿ > 0

g(A)-' u = Z g ( X , y '  M fl Dig(A)-') = t/ 6 : £ |  g(A,)-' (u, f  <-h» = H. (4.3)

All o f  introduced operators (A, B, A \  T, g(A), g(A)'1) are o f course linear. Moreover, 

operators B, g(A)"1 are bounded.(for details see [5])

Equation (4.1) with initial condition

Co = i ( 0 )  = [i(o ).M O )]r = k „ ,^ o ] r

can be interpreted as the state equation o f dynamical system (2.1). In consideration o f  the fact, 

that investigated system (2.1) is described by partial differential equation it is infinite dimensional 

system. As a result o f that state equation (4.1) describing system (2.1) is also infinite dimensional. 

State matrix which occurs in state equations describing finite dimensional systems, in this case, is
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replaced with linear, unbounded, differential state operator A definite in an appropriate Hilbert 

space X.

The state operator A has the following properties (Kunimatsu, Ito [5])

a) A has the spectral representation

A<T = r {art
L M J

+ b, vf , f e Z ) (  A),

where v f ,  {vi/i+=[<k Pi<t>i]7> ViM Pi'k <M7 i ieN} are eigenvalues and eigenfunctions o f  A, 

respectively, and

v t = - \ a \ + p $ ) ± h { \ )

(4.4)
Pi

2 g W [ g W + K \ ) ) - r $

Function h(Ai) has the form:

h {\ ) =

Coefficients a,, bi are given by:

a  = - , * ,= •

b) The set o f  eigenfunctions o f A {v|/i*=[<i>i, p ,^]7 ,v|/f=[pii}>i, (¡>i]r ; isN } forms the complete system 

in X.

c) A has only pure discrete point spectrum a(A ) consisting entirely with eigenvalues:

(A) = {vf, vf;/e

lim vf = - t— 
i-**« 2 a
lim vf = -co

I - > + c o

d) Operator A is the infinitesimal generator o f the analytic semigroup S(t): X-»X, t>0, 

represented by formula

<t>,•5(/)C = Z]a,exp(vf)
- P A -

r  PA,
+ 6 ,e x p (v f | ^ , ę  e X .

Kunimatsu and Ito [5] proofed the following theorem:
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Theorem 4.1

The Cauchy problem associated with (4.1) has for each ti>0 the unique global solution 

Ç(t):[0,ti]—>X, which satisfies the following conditions:

Ç(t)eC1([0,t,]1X),

Ç(t)eD(A) for any ts(0 ,ti].

5. Basic definitions

We may define many different notions o f controllability for distributed parameter systems. We 

shall concentrate on so called approximate controllability. Let us introduce the attainable set for 

dynamical system (4.1) defined at time t>0 from zero initial conditions by formula:

K, = j i  = \ s { t - r ) B f ( T ) d v .  f  e F , i =  l , . . . ,p j ,  (5.1)

where F denotes the set o f  admissible controls. Moreover the attainable set for dynamical system

(4.1) is defined as:

Km = \ } K t (5.2)
!>0

Definition 5.1

Dynamical system (4.1) is said to be approximately conrollable in the time interval [0,T] in 

the set o f  admissible controls F if

Kt = X  = H x H,  (5.3)

where K  denotes the closure o f K.

Definition 5.2

Dynamical system (4.1) is said to be approximately conrollable in the set o f  admissible 

controls F if

K„ = X  = H x H .  (5.4)

Generally approximate controllability in [0,T] is stronger notion than approximate

controllability.
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On the basis o f  definition 5.1 we can formulate more understandable corollary concerning 

approximate controllability in interval [0,T],

Corollary 5.1

The dynamical system (4.1) is said to be approximately controllable from any initial state QeX 

to any final state f^ s X  in interval [0,T] if for any e>0 there exists control feF , such that the 

solution o f  (4.1) satisfies

\C { T ) -C t \x < e  , £ > 0 .

The necessary condition for approximate controllability o f  (4.1) is

sup ni < as,
i

where m is the multiplicity o f  eigenvalue v f  o f A.

It must be point out that the case if nj<oo for all i=l,2,... does not ensure in general that

sup n, < 00 ,
/

6. Approximate controllability

First o f  all w e make an important remark. I f  state operator A is the infinitesimal generator o f 

analytic semigroup S(t) (property (d) o f A) then approximate controllability o f dynamical system

(4.1) is equivalent to approximate controllability in an arbitrary time interval [0,T].

The necessary and sufficient condition for approximate controllability o f investigated system is 

given by formula:
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Proof

The general necessary and sufficient conditions for approximate controllability have the form 

[7], [13]:

Theorem 6.1

The dynamical system described by state equation (4.1) is approximately controllable in an 

arbitrary time interval if and only if

rank W* = rank Wf  = nt , for  all i = 1 , 2 , . . ( 6 . 2 )

where:

(b,x )x ( « ) ,  

_ ( b . . x , ) x  M ; ) ,  

(a x ,)x <a .%)x

_(BX ,

(BX ,

( b , x ),

and B f are components o f  control operator B, Bi=[g{A)''bt; -g(A)'!bi]T, i=l,2,...,p and n, denotes 

the multiplicity o f eigenvalue vf. I f  all eigenvalues vf  o f  state operator A are single, as in our 

case, conditions (6.2) can be simplified to the following formulae:

-  +(b , , x ) \ * o

(B„X%+(B,X■)> •• •  +(B„X)'x *0
for  alli  = 1,2,... (6.3)

Applying conditions (6.3) to our dynamical system (4.1) we obtain
I I

i {g (Ay] b j  (x)dx -1 f e w ’*■) A A (x)dx

• ■■ + 1 1 0 h ( x) dx - \ [ g ( AY ' ( x ) dx I *  0 f or al[ '  = 1.2,• ■ •
l o  o J

Taking into account spectral representation o f g{A)'1 given by (4.3) we obtain

(6.4)

( i- Ply
IvQ

[ t g W % ( x ) ^ ( X) d x ^ ix )
\ j ’ \ o

<f,(x)dx

-KO ’

Z  g W jY ' l t y x W j to d x i f j i x ) i>t(x)dx

VO

(6.5)

* 0  for  alli  = 1,2,...
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Taking into consideration the form o f  functions <j>,{x), ¡=1,2,... (6.5) implies (6.1).

The first term o f  condition (6.1) has form (l-/? ,)V o . On the base o f (4.4) we can say that 

system (2.1) can be approximately controllable if its coefficients satisfies condition

- 2 . , - y A ) * 0  for  alii  = 1,2,...

As we see, approximate controllability depends significantly on the form o f  functions bi(x), 

i= l,2,...,p. For example if we take functions bj(x)=l for i=l,2,...,p, x e (0 ,/) it is easy to verify that 

the dynamical system (4.1) is not approximately controllable.

7. Conclusions

Remark 1

As it was mentioned we can define many different notions o f  controllability for distributed 

parameter systems. We discuss, in this paper, the approximate controllability o f distributed 

systems. It can be also analyzed so called exact controllability o f distributed systems when the 

system can be steered from the zero initial state to an arbitrary final state exactly. O f course, the 

exact controllability conditions are much more restrictive. It should be stressed that in most cases 

if distributed system is controllable it is only approximately controllable. This is the case o f  our 

dynamical system (2.1) which is only approximately controllable. It follows directly from the 

compactness o f  the operator B. There exist only very limited class o f  distributed systems which 

are exactly controllable.

Remark 2

We treated, in this paper, approximate controllability by distributed inputs. In this case control 

inputs appear in the partial differential equation. In some papers there is considered approximate 

controllability by boundary inputs. In this case control inputs appear in the boundary conditions. 

Boundary control is easier in physical realization but it is much more complicated in mathematical 

analysis than controllability by distributed inputs.

Remark 3

We analyzed approximate controllability o f  dynamical system with arbitrary unconstrained 

controls. It is possible to derive necessary and sufficient conditions for approximate controllability
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o f distributed systems with existence o f constraints on controls (for example with nonegative

controls). Controllability conditions in this case are much more complicated and desire more

refined technique.
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Abstract

In the paper the analysis o f  mathematical models describing a class o f  elastic mechanical 

systems is presented. In the case when elements o f mechanical constructions undergo elastic 

deformation we have to treat them as the distributed parameter elements. Therefore the dynamics 

o f  the elastic mechanical systems has to be described by partial differential equations. This fact 

complicates the mathematical model and makes it’s analysis difficult. Much more complicated and 

advanced mathematical methods have to be used to analyze the distributed parameter systems.

The paper is devoted to the analysis o f distributed parameter system described by partial 

differential equation (2.1) fourth order with respect to spatial coordinate and second order with 

respect to time. Equation (2.1) was completed by two initial conditions and four boundary 

conditions. Equation o f dynamics contains terms describing so called internal (structural) 

damping.

On the base o f spectral theory o f linear, unbounded, differential operators defined in 

appropriate Hilbert space the analysis o f  system is presented. The fourth order differential 

operator with respect to spatial coordinate with appropriate boundary conditions was introduced. 

It was solved eigenvalues and eigenfunctions problem for this operator. The main properties of 

the operator was presented. Using defined differential operator the partial differential equation of 

dynamics was transformed into linear equation o f  evolution (3.6) (an abstract ordinary differential 

equation) in infinite dimensional Hilbert space. The evolution equation was finally transformed 

into equation o f state (4.1).On the ground o f  the analysis o f state equation the necessary and 

sufficient conditions for approximate controllability of the investigated system were formulated.


