
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ
Seria: AUTOMATYKA z. 123

_______ 1998
Nr kol. 1389

Aleksander BACHMAN, Adam JANIAK
Politechnika Wrocławska

MINIMIZING THE MAXIMUM COMPLETION TIME FOR THE
DETERIORATING JOBS WITH READY TIMES’

Summary. In this paper we consider the single machine problem with the maximum
completion time criterion. Job processing time is described by a nondecreasing, linear
function dependent on the job processing start time. Job ready time is also given for each
job. We assume, that for each job, its processing time deterioration begins at its ready
time. Each job is available for the time not smaller than its ready time. The job processing
time consists o f two parts: one is constant and the other one: variable, start time
dependent. The variable part is characterised by the growth rate, which describes how
fast the job processing time deteriorate. If the job begins exactly at its ready time, its
processing time is equal only to its constant part. In this paper, for the problem
mentioned above, we present the NP-completeness proof. We also present two heuristic
algorithms. The first heuristic algorithm bases on the adjacent jobs interchanging and the
second one on the extended Jackson’s rule. In this paper we compare presented
algorithms basing on the computational results.

MINIMALIZACJA CZASU ZAKOŃCZENIA WYKONYWANIA ZADAŃ CZASOWO
ZALEŻNYCH PRZY ZADANYCH TERMINACH DOSTĘPNOŚCI

Streszczenie. W pracy rozpatrywany jest jednomaszynowy problem minimalizacji czasu
zakończenia wykonywania zadań czasowo zależnych przy zadanych terminach
dostępności. Założono, że wydłużenie czasu wykonywania zadania, opisanego funkcją
liniową, następuje od momentu jego dostępności. Zostało pokazane, że powyższy
problem jest NP-zupełny. Przedstawiono dwa algorytmy rozwiązujące rozpatrywany
problem w sposób przybliżony.

1. Introduction

There are many real scheduling environments, where the job processing time is start time

dependent. Some notable applications can be found in the firefighting, metallurgy or military.

Kunnathur and Gupta [4] mentioned the problem of scheduling resources when there are

several fires to be controlled, where the time and effort required to control a fire increases if

‘ The paper was partially supported by the KBN Grant No 8T U F 001 11

34 A. B a c h m a n . A. Ja n ia k

there is a delay in the start o f the fire fighting effort. They also discussed a specific case o f steel

rolling mill. The time needed to heat an ingot depends on its size and its current temperature.

The temperature o f an ingot, before it can start rolling, depends on the amount o f time the

ingot has been waiting in the queue to be executed after it has been taken out o f the furnace.

Ho, Leung and Wei [3] presented the military application, where the job consists o f destroying

an aerial threat and its execution time decreases with time as the threat gets closer. According

to the application, there are many different models describing the phenomenon o f processing

time deterioration. Most o f them are the combinations o f the linear functions.

We consider the problem, where the job processing time depends on the execution

starting time and the ready time as well. The job processing time is given as a nondecreasing

linear function containing constant and variable parts. The constant part represents the

minimum requirements to accomplish the job’s execution if its starting moment is equal to its

ready time. The variable part, characterised by the growth rate, describes how fast the job

processing time deteriorate. We consider the single machine scheduling problem with the
*

maximum completion time minimization.

In the second section we formulate the problem more precisely. The third section

contains NP-completeness results. In the fourth section we presented two heuristic algorithms,

which have been compared in the fifth section. The last section contains some final remarks.

2. Problem formulation

A set o f n independent, single operation and not preemptable jobs is given. Let J =

{ l,2 ,...,n} denotes a set o f job indices. The job processing time/?, is given as a nondecreasing,

linear function dependent on its start and ready times, which are denoted as Sj and r,

respectively, and is described as follows:

/>,(£,) = *,+¿>,(5,- r ,) ; a j > 0, bj> 0, S ^ r Jt (1)

where a, and by are the constant part and the growth rate o f the job processing time

respectively, We assume that for each job its deterioration begins, when its start time is greater

than its ready time. We introduce also a constant C0 = 0 , which denotes the completion time of

the zero job (time, when machine starts its duty). It is easy to proof using mathematical

induction that for such a formulated problem (for the jobs with ready times equal to 0 and

M in im iz in g th e m a x im u m 35

common growth rates) the completion time of the job placed on the ;th position in any

schedule is given as follows:

C,,, = £> ,,,(6 + 1)'-'+C0(6 + 1)'; b =bu]- r(11 = 0; ; = 1 , (2)

3. NP-com plcteness results

Now we show that the decision form of the TDPT problem is NP-complete in the strong

sense by reducing to it strongly NP-complete 3-Partition problem [3], The decision forms for

the 3-Partition problem and the TDPT problem are defined as follows:

TD PT: given a single machine problem with uninterrupted job processing times given as

(1) with the parameters a,, b,, rt, / = and number y, where n is a positive integer, a¡, bh y

are positive rational and r,- are nonnegative rational; does there exist such a schedule, where the

maximum completion time is not greater than y l

3-P artition : given a set X = (x x im) o f 3 m integers such that an^

B B— <x,< — for each / = 1 3m; can X be partitioned into X ^ ,X l , . . . , X n such that £ x (=B for
4 2 , itXi

each j = ?

Now we give a reduction from the 3-Partition problem to the TDPT problem. Given an

instance X =(x,,...,x3„) o f the 3-Partition problem, we construct an instance o f the TDPT

problem. TDPT problem consists o f n = 4 m - I jobs, where:

Am (B + 2)

= i = b< = < = >"..... 4m-L

[0, / = m,...,Am-1,

f8mJ(B + 2), 1 = 1......m-1,
 I ,

)2m5(B + 2)

The numbery is equal to niB+2m-l.

Above construction can be done in O(n) time. In our further consideration we will call the first

m-1 jobs the enforcer jobs and the last 3m jobs the partition jobs.

N ow we show that the TDPT problem has a solution if and only if the 3-Partition

problem has a solution.

36 A. B a c h m a n . A . Ja n ia k

Lem m a 1. If the instance of the 3-Partition problem has a solution, the constructed instance of

TDPT problem has also a solution.

Proof. Let X ,,X 2 Xm be a solution of the 3-Partition problem, hence X a = b f°r
*,*Xj

y = l m . The schedule, which solves the TDPT problem is characterised as follows. The each

one o f the enforcer jobs starts its execution at its ready time, hence the processing time o f each

o f the enforcer job is equal to one. The time interval [0....... mB+2m-J] is in this way

partitioned by the enforcer jobs into m intervals, l t, l 2 with the length o f each interval

exactly B+J. For each x, e XJ , schedule the jobs constructed on the base o f the elements from

the appropriate subset in the interval 7;. Jobs assigned to the same interval can be scheduled in

an arbitrary order. Now we show that the maximum completion time o f the jobs from two

intervals: // and /,„ are not greater than B + l —------ and mB+2m-l respectively. From (2)
b Am\B + 2) K J w

we have: Q , = + 1)^ + +

Since the maximum completion time of the partition jobs assigned to the first interval is smaller

than the ready time o f the first enforcer job, that job can start its execution exactly at its ready

time and complete it in B + 2 -----r-!-------.
r Am {B + 2)

It is easy to show that for each interval I/, y = i— ,» i-i the partition jobs assigned to Ij,

complete their execution before the ready time of the enforcer job j , hence each of the enforcer

jobs completes in C, = jB + 2j - - —- -. The completion time o f the last, m-J enforcer job is

given by: C„_, = (»j-l)B + 2 (m -l)- — , what gives the start time o f the jobs assigned to

the last interval. The maximum completion time is then, on the base of (2), given as follows:

C. = T'tff „(*!/! + +Cm_.i--- r—--------+ll + ll• \2m (B + 2) J \2m (B + 2))

- J . ---------------- +m(B + 2) - 2 r-i < m(B + 2) - 1 r-i <mB + 2 m -l
m m (B + 2) 4m \B + 2 f Am\B + 2) 4m3(B + 2)

The maximum completion time o f the schedule is not greater than m B+2m -I, hence it has been

shown that if the 3-Partition problem has a solution, the TDPT problem has also a solution. □

Now we have to show that if the TDPT problem has a solution the 3-Partition problem

has also a solution, but basing on the mathematical logic, it is equivalent if we show that if the

3-Partition problem has no solution the TDPT problem has also no solution.

4«-l

Z al/!+C-

M in im iz in g th e m a x im u m 3 2

Lemma 2. I f the given instance o f the 3-Partition problem has no solution, the constructed

instance o f the TDPT problem also has no solution.

Proof. I f the instance of the 3-Partition problem has no solution, there are at least two subsets,

where the sum o f elements is not equal, hence £ x , * H xi> j = k = l,...,m, j * k .
1 , 0 ! , i , e X ,

Because the processing time deterioration of the enforcer jobs grows very much with the start

time greater than its ready time, it is enough when we consider two following cases:

i) £ x (= 5 + l ,a n d]£x(= 5 - l a n d ii) £ x , = 6 - 1 , and £ x , = 5 + 1.
x tzXj jr.olf, jt, &X j

Let’s consider the first case. Without loosing the generality, we can assume that in the

following three subsets the sum o f elements is given by: jfjx, = 8;]Tx, = 5+1; Jjx , = B - 1. The
*,c\\ s.cXj x,cXt

minimal, positive job processing time deterioration is equal to —— .

Since the sum o f job processing time constant parts constructed on the base o f the elements

from the subset X) is equal to B, the completion time o f the interval /; is not greater than the

ready time o f the first enforcer job. Hence the partition jobs constructed on the base o f the

elements from the second subset can start their processing at C, = B + 2 - r---—— . The4m (5 + 2)

maximum completion time o f the second interval is then given as follows:

C , > y a,„ + c 1+ ----- !— >25 + 3 + — - ! >25 +-3------ --------- .The second enforcer job has
'* % 1/1 ' 2m (5 + 2) 4m (B + 2) 4m’(5 + 2)

then the late start and completes at least in C, = 25 + 8 + — ------ . The difference between they 1 4m (5 + 2)

ready time o f the third enforcer job and the completion time o f the second enforcer job is given

b v r, -C , = 36 + 5 2 6 - 8 ------r-̂ -------= 6 - 3 ------ --------- < 6 - 1 + and this
3 1 4m3(6 + 2) 4m (5 + 2) 2m3(5+ 2) 2m3(6 + 2)

means that the maximum completion time o f the partition jobs assigned to the third interval is

greater than the ready time o f the third enforcer job, hence the processing time o f the third

enforcer job will be greater than 1. If in the other subsets the sum o f job processing time

constant parts is equal to B, each o f the other enforcer jobs will start its execution after its

ready time, hence the schedule maximum completion time will be greater than mB+2m-J.
N ow w e consider the second case. If in any subset the sum o f job processing time

constant parts is smaller than B, there must exist a subset, where the sum o f job processing

38 A. B a c h m a n . A . Ja n ia k

3*i
time constant parts is greater than B, because £ x , =mB. Hence basing on the previous case

/■i

we can show that the schedule maximum completion time will be greater than mB+2m-l.

We showed that if the 3-Partition problem has no solution the TDPT problem has also no

solution. □

Lemmas 1 and 2 immediately lead to the following theorem.

Theorem 1. The TDPT problem is NP-complete in the strong sense for a set o f jobs with

arbitrary ready times.

Using the above strategy, we can show that the decision form o f the single machine

problem with time dependent processing times (TDPT) and with two distinct ready times is

NP-complete in the ordinary sense, by reducing to it NP-complete Partition Problem [7], The

Partition Problem is defined as follows:

P artition : given positive integers X = (x,,...,x„); does there exist a subset

Y c:X = (x xm) such that £ x , = £ x , = B l
itr i*x\r

The reduction from the Partition Problem to the TDPT problem is described in the

following way:

0, i = l..... m,
B + 1-------- , i = m + 1,

4m (B +1)

x., i = l,...,m,---------- —!------ , ; = 1..... hi,
/ . b,= 2m2(fl + D
*• ' ' [8mJ(B + l), i = m +1.

The num ber^ is equal to 2B+3.

Above construction can be done in O(n) time.

Now using the same proof technique as before, we have immediately the following result.

Theorem 2. The TDPT problem is NP-complete in ordinary sense for a set o f jobs with two

distinct ready times.

4. Heuristic algorithms

In this section we present two heuristic algorithms, which base on the adjacent jobs

interchanging. First we show some properties of the problem and then, using them we

formulate the steps o f the algorithms.

Definition 1. There are given two permutations o f the jobs: n and k ‘. The permutation 7t’ is

achieved from the permutation n by interchanging the jobs from the £th and A+/st positions.

M in im iz in g th e m a x im u m 39

The relation between the completion time and the ready time o f two adjacent jobs placed in

any permutation gives two possibilities o f the way the machine is working:

a) with idle times; < /|t) b) without idle times; a

P[fc.|| PIk) Pik-H PMi i i i............................. i.............. r~........................1
r(k.i) C[k.i] I'M C(k) r|k.t| r (kj C (k.i| C m

To join this two possibilities we introduce a variable A, which describes the machine idle time

between proceeding the jobs. This variable is related to the position of the job placed in a

permutation and is defined as follows:

Definition 2. The machine idle time is always nonnegative and is given as:

A(4, = m ax |o ,r[,| - C|4.„ } . (3)

Basing on (3) and the following a|t j = 0|t+i| = 0i*]> 'Bl = 'B+i)-

'B+U = 'B l-we can the expressions o f the completion times for the jobs placed on the Ath

and the A +/st positions in the permutations 7t and n ’\

*-HI = ° | t] + (fyk) + t) (f - |k - l] +

q»*ii = an*>r +(iWii + 1)a[»i +(*ii.ij +1)Cu.|| +
+ + + t)A |k J ~ (¿ |i * l | + 0 ^[kjr [i] ~ ^[1 + (t’(k»|| + l) A |4*ij,

q»i =° i»*i] +(^k.u+ixq»-u
C,W | = p |i| +(¿[1] + l)" (4ti] +(*i*i +l)(*i*«i] + >)C[*-i| +

+(^t]+ DĈ k.u + i)Am -(¿Bi + 1)V*ii'i**i) - V w + (^»i+ i)A[*,i)-

If the difference between completion times o f the jobs placed on appropriated positions in

permutations tt and 7t‘, given as C|*+1|- c j* +1], is positive then permutation 7t‘ is better than

permutation 7t. It means that the interchanging jobs from the Ath and the k+ 1st positions in

permutation n is advantageous. We have:

+ + — Ĉi*l + i)A|i*i|.

To check the sign o f the expression C]i+1j -C [i:+1| we have to examine the cases, when variables

A and A‘ are described more clearly.

A . B a c h m a n . A . Ja n ia k

Table I

The existence o f m achine idle tim es before and after interchanging two adjacent jobs

A|k) A jk) A‘(k+i) A[k] A(k,i j A‘[k| A‘[ic+i|

A 0 0 0 0 D 1 0 0 0
0 0 0 1 case impossible E 1 0 0 1

B 0 0 1 0 F 1 0 1 0
0 0 1 1 case impossible G 1 0 1 1
0 1 0 0 case impossible 1 1 0 0 case im possible
0 1 0 1 case impossible 1 1 0 I case im possible

C 0 1 1 0 H 1 1 1 0
0 1 1 1 case impossible * 1 1 1 case im possible

In above table „1” means existence and „0” non existence o f positive value o f A. There are

sixteen cases, which describe the existence of machine idle times before and after the adjacent

jobs interchanging placed on the Æth and the k+1 st position in the permutation 7t. In the

impossible eight cases some conditions for ready times are contradictory.

Now we will find the final conditions for the expression (4) in each case. Since the size

o f the paper is limited we show only the final conditions in case A, consideration o f the

remaining cases can be done in the same way.

Case A

l i c (t+l| -Qjt+ii5 0-
I I PM Ptk-ll , , . ,
I I I I.............. I *H +tl°|t] “ *lit|a (/(+ll + b|t:l6[i+ l |V |t+|]

ftkj rlk,i] C|k.,| Clk| Clk.„

I , , , T ft*!- 7 ftt+ll-
p m pV > i *1*1

1 1 i J --T~l
r’|tn)r’|k] C,k.,j C’|k| C’|k*i|

Conclusions

Analysis o f eight possible cases leads us to the following corollaries:

- in four cases (C, E, G and H) better permutation can be achieved only if the jobs are

scheduled in nondecreasing order o f their ready times, hence r\k\ s k = l.n - 1,

- in three cases (A, B, F) the jobs are initially placed in nondecreasing order o f their ready

times but if the appropriate conditions are fulfilled this order can be changed,

M in im iz in g th e m ax im u m 41

- case D is opposite to the case B; what means, that interchanging jobs in the case B excludes

the possibility o f interchanging jobs the case D; in case D the jobs are initially placed in

nonincreasing order o f their ready times.

I f we assume, that jobs are initially scheduled in nondecreasing order o f their ready times,

we make sure, that for cases C, E, G and H jobs are in appropriate order. Only what we have

to check is, if between every pair o f adjacent jobs one o f the cases A, B or F is fulfilled.

4.1. Heuristic Algorithm Hi

As we stated before in four cases, scheduling jobs in nondecreasing order o f their ready

times gives a better permutation. In three other cases such a scheduling is initially required.

Basing on this corollaries we achieve the first step o f the algorithm: schedule the jobs in

nondecreasing order of their ready times. Then we showed, that the advantageous jobs

interchanging can be obtained only in three cases: A, B, F. To check out if the jobs

interchanging condition is fulfilled, first we have to find out if the jobs are in the appropriate

case. This statement leads us to the second step of the algorithm: for every pair of adjacent

jobs find out if the case A, B or F proceeds and then if the appropriate condition is

fulfilled interchange these adjacent jobs. In the following two tables we placed the

necessary conditions for proceeding cases and the sufficient conditions for the adjacent jobs

interchanging.

Tabic 2 Tabic 3

The necessary conditions for proceeding cases The sufficient conditions for the adjacent
jobs interchanging

case jobs in te rchang ing condition
A a l*l „ a l*+U „

L ^*1 L r |W |
1] b\k+\\

B (C|4 - l | — r| fe+i |j (6 lfc] + ¿^+ 1) + 1) +

+ 6If+l]°[(:| +

F

+ (*[*] + *[*:+!] + 1Xr(t) - r(i :+ lj)> 0

case case conditions
A rm s c i* -ii

'U +q 5 C |*-ii

B 'U i 5 c \k -\\

<'t* - i l < rl*+>l

r[k+1] s a [k\ + (* |t) + “ b\k\r\k]

F C[*r-ll < ;U l

'U i M /fc+ ii+ap t+ ii. alv>°y s fu lfilled

^<:+!| < ' p : |+ 0 | t |

42 A, B a c h m a n . A. Ja n ia k

We assume that interchanging jobs will be proceed in ascending order o f the places the jobs

take in the permutation. The jobs interchanging, which were in case B or F gives only two

possibilities for the jobs from the previous positions. In both achieved cases (C and H)

interchanging jobs is always disadvantageous.

Interchanging jobs, which were in case A can give three cases for the previous placed

jobs: B, F or A. To set the jobs, which are in the case B or F, in appropriate order we need

only one step, but if in the effect o f the jobs interchanging from the Ath and k+1 st positions we

achieve the case A again, we will have to, in the worst case, repeat k-1 times the second step

o f the algorithm. That statement gives us two following corollaries:

- complexity o f the second step o f the algorithm is 0 (n 2),

- the stop condition is bounded with the existence of the case A; if by the last whole

permutation checking there was no case A, we have to check the whole permutation only

once more.

4.2. Heuristic Algorithm H2

Our second heuristic algorithm bases on the extended Jackson’s rule [6], which can be

formulated as follows: from the set of the available jobs schedule first that one with the

smallest value of the ratio — -r, (see case A in the heuristic Hi). Above rule is the second
bi

step in our algorithm. In the first step we place the jobs in nondecreasing order of their

ready times. The complexity o f that heuristic is O(nlogn), if the queue o f the available jobs

has, for instance, the heap organisation.

5. Computational experiments

Three set o f problems were examined: no machine idle times, some machine idle times and

very much machine idle times. In each set, the parameters a, and b, were generated according

to the uniform distribution from the intervals (0.0, 1.0] and (0.0, 0.5] respectively. The

parameter r, were generated according to the uniform distribution from three different intervals

to achieve three different sets of problems: (0,], (0,] and (0, 4¿ a ,] . It was
,,i i-i .»1

assumed that n = 100. The above heuristic algorithms were coded in C++ and run on the

Pentium 75MHz with 16 MB RAM. In each set 100 randomly generated examples have been

M in im iz in g th e m a x im u m 43

tested. The arithmetic average o f the 100 maximum completion time values for each set o f

generated examples are given in the following table:

Table 4

Average values given by Iwo heuristic algorithms

r , interval H, h 2 h ,/h 2

(0. 2 ^ 0 , 1
/=! 1,86 E+08 2,18 E+08 8,27 E-01

(0, 3¿ flj]
/=*! 6,86 E+06 7,16 E+06 9,77 E-01

(0, 4 ¿ a , 1
fa| 1,99 E+02 1,99 E+02 9,99 E-01

The above table shows that the Heuristic Hi performs slightly better than Heuristic Hz.

The average relative difference between the heuristics is less than 18%. For the problems with

some and very much machine idle times both algorithms performed almost the same solutions.

For the problems with no idle times Heuristic Hi generated definitely better solutions than the

Heuristic H 2 .

6. Final conclusions

Since the size o f the paper was limited, we had to cut off some estimations used in the

proof o f the strong NP-completeness. We couldn’t also show all the cases considered in the

Heuristic Hi. The figures showing the situation after the adjacent jobs interchanging in Hi were

also removed. W e hope the simplifications don’t make the paper difficult to understand.

REFERENCES

1. Alidaee B., Landram F., Scheduling deteriorating jobs on a single machine to minimize the
maximum processing times, International Journal o f System Science, 21 IS (1996), 507-
510.

2. Browne S., Yechiali U., Scheduling deteriorating jobs on single processor, Operations
Research, 38/3 (1990), 495-498.

3. Garey M.R., Johnson D.S. Computers and Intractability: A Guide to the Iheory o f NP-
Completeness, Freeman, San Francisco, 1979.

4. Gupta J.N.D., Gupta S.K., Single facility scheduling with nonlinear processing times,
Computers and Industrial Engineering, 14/4 (1988), 387-393.

5. Ho K.I-J., Leung J.Y-T., Wei W-D., Complexity o f scheduling tasks with time-dependent
execution times, Information Processing Letters, 48 (1993), 315-320.

44 A . B a c h m a n . A. Ja n ia k

6. Jackson J.R., An extension o f Johnson’s results on job lot scheduling, Naval Research
Logistic Quart., 3, 1956, 201-203.

7. Kunnathur A.S., Gupta S.K., Minimizing the makespan with late start penalties added to
processing times in a single facility scheduling problem, European Journal o f Operational
Research, 47 (1990), 56-64.

8. Mosheiov G., V-shaped policies to schedule deteriorating jobs, Operations Research, 39/6
(1991), 979-991.

Recenzent: Prof.dr hab.inż. Jan Węglarz

Streszczenie

W pracy rozpatrywany jest jednomaszynowy problem szeregowania zadań przy

kryterium minimalizacji czasu zakończenia wykonywania wszystkich zadań. Czas

wykonywania zadania jest opisany niemalejącą funkcją liniową, zależną od momentu

rozpoczęcia wykonywania i zadanego terminu gotowości. Zależność opisująca zmianę czasu

wykonywania zadania składa się z dwóch części: stałej i zmiennej. Część stała odpowiada

minimalnym wymaganiom technologicznym na wykonanie zadania. Część zmienna,

charakteryzowana przez współczynnik wzrostu, opisuje sposób w jaki zadanie ulega

wydłużeniu. W pracy pokazano, że powyżej opisany problem szeregowania jest NP-zupełny.

Przedstawiono ponadto dwa algorytmy rozwiązujące ten problem w sposób przybliżony.

