1996 Nr kol. 1329

Janusz GUZIK Brunon SZADKOWSKI

## ANALIZA BŁĘDU POMIARU ADMITANCJI W UKŁADZIE AKTYWNEGO, RÓWNONAPIĘCIOWEGO KOMPARATORA PRZEZNACZONEGO DO SZEROKOPASMOWYCH BADAŃ DIELEKTRYKÓW

Streszczenie. Przeanalizowano wpływ poszczególnych parametrów układu na błąd pomiaru admitancji w układzie szerokopasmowego komparatora dielektryków, pracującego np. w zakresie od 10<sup>-3</sup> do 10<sup>6</sup> Hz o strukturze zaproponowanej w pracy [1]. Wskazano sposoby minimalizacji błędu pomiaru admitancji oraz zaproponowano procedurę wzorcowania układu komparatora.

## ANALYSIS OF THE ADMITTANCE MEASURING ERROR IN THE ACTIVE, EQUIVOLTAGE COMPARATOR CIRCUIT USED FOR WIDE-BAND INVESTIGATIONS OF DIELECTRICS

Summary. Influence of individual circuit parameters on the admittance measuring error of the wide-band (e.g. from  $10^{-3}$  Hz to  $10^{6}$  Hz) dielectric comparator circuit has been analysed in the paper. The comparator circuit structure is based on that one suggested and described in the paper [1]. Ways of the admittance measuring error minimalization have been given. Procedure of comparator circuit calibration has been presented as well.

#### 1. WPROWADZENIE

Szerokopasmowe badania dielektryków pozwalają z reguły na pełniejszą ocenę stanu badanego dielektryka niż występuje to w przypadku badań przeprowadzonych przy jednej częstotliwości (np. 50 lub 1000 Hz) [6].

Z przeprowadzonego przeglądu literatury dotyczącej klasy komparatorów (np. [1, 2]) wynika, że najodpowiedniejszą klasą układów do szerokopasmowych badań dielektryków w zakresie (10<sup>-3</sup> - 10<sup>6</sup>) Hz jest klasa aktywnych, równonapięciowych komparatorów admitancji [1]. Schemat

(2)

ideowy ogólnego układu takiego komparatora (z kompensacją napięć  $U_X$  i  $U_N$ ) zamieszczono na rys.1 [1].



- Rys.1. Schemat ideowy ogólnego układu komparatora admitancji z kompensacją napięć  $U_X$  i  $U_N$
- Fig.1. Schematic diagram of the general admittance comparator circuit with compensation of voltages  $U_X$  and  $U_N$

Równanie przetwarzania idealnego układu komparatora jest następujące [1]

$$\Delta U = E_e (Y_X H_X - Y_N H_N), \qquad (1)$$

a stąd w stanie komparacji ( $\Delta U = 0$ )

$$Y_{\chi} = \frac{H_N}{H_{\chi}} Y_N,$$

gdzie:

- ΔU sygnał wyjściowy komparatora,
- WZ wskaźnik zera,
- E. źródło napięcia zasilającego układ komparatora,
- U<sub>x</sub>, U<sub>N</sub> sygnały napięciowe podlegające kompensacji w obwodzie wskaźnika zera WZ,
- Y<sub>x</sub>, Y<sub>N</sub> admitancje badanego dielektryka i zastosowanego wzorca,
- $H_x$ ,  $H_N$  transmitancje zastosowanych przetworników I/U o równaniach przetwarzania:  $U_x = I_x H_x i U_N = I_N H_N$ .

W rzeczywistym układzie komparatora obowiązuje natomiast zależność

$$\Delta U' = E_{e} \left( Y_{x} H_{x} - Y_{y} H_{y} \right) \neq \delta_{U}, \qquad (3)$$

gdzie:  $\delta_{U}$  — wartość sygnału wyjściowego komparatora reprezentująca błąd komparacji (odniesiony do obwodu wskaźnika zera WZ).

W stanie komparacji ( $\Delta U = 0$ )

$$Y'_{x} = \frac{H_{N}}{H_{x}} Y_{N} \pm \frac{\delta_{U}}{E_{x}H_{x}}, \qquad (4)$$

przez co pomiar admitancji  $Y_X$  badanego dielektryka obarczony jest całkowitym błędem o wartości równej

$$\delta_{TX}^{0} = \pm \frac{Y'_{X} - Y_{X}}{Y_{X}} = \pm \frac{\delta_{II}}{E_{g} Y_{N} H_{N}}.$$
 (5)

Całkowity błąd pomiaru admitancji 840 można określić sumą następujących składników

$$\delta_{TX}^{0} = (\delta_{TX}^{0})_{IIU} + (\delta_{TX}^{0})_{W} + (\delta_{TX}^{0})_{WZ} + (\delta_{TX}^{0})_{B_{Z}}, \qquad (5a)$$

gdzie:

 $(\delta_{YX}^{\circ})_{UU}$  — błąd pomiaru admitancji  $Y_X$  uwzględniający wpływ parametrów zastosowanych przetworników I/U,

 $(\delta_{YX}^{0})_{YN}$  — błąd pomiaru admitancji  $Y_X$  uwzględniający wpływ parametrów zastosowanego wzorca admitancji  $Y_{N}$ 

- $(\delta_{YX}^{0})_{WZ}$  błąd pomiaru admitancji  $Y_X$  uwzględniający wpływ parametrów wskaźnika zera WZ,
- $(\delta_{YX}^{0})_{Eg}$  błąd pomiaru admitancji  $Y_X$  uwzględniający wpływ parametrów źródła napięcia  $E_g$  zasilającego komparator.

W dalszym ciągu przeprowadzono analizę poszczególnych błędów składowych  $(\delta_{YX}^0)_{IU}$ ,  $(\delta_{YX}^0)_{YN}$ ,  $(\delta_{YX}^0)_{WZ}$ ,  $(\delta_{YX}^0)_{Eg}$  dla komparatora o schemacie z rys. 1.

#### 2. WPŁYW BŁĘDU 81/10 PRZETWORNIKÓW I/U

Zastosowany do rozważań odpowiedni schemat ideowy układu komparatora przedstawiono na rys.2.

Przez  $\delta_{I/U}^{X}$  i  $\delta_{I/U}^{N}$  — oznaczono wypadkowe, sprowadzone do wyjścia przetwornika, bezwzględne błędy przetworników I/U o transmitancjach odpowiednio równych H<sub>x</sub> i H<sub>N</sub>. Dla stanu komparacji ( $\Delta U' = 0$ ) błąd pomiaru admitancji Y<sub>x</sub> badanego dielektryka jest określony za pomocą zależności (por. (5))

$$\delta_{DD}^{0}_{DD} = \pm \frac{|\delta_{IID}^{T}| + |\delta_{IID}^{N}|}{E_{g} Y_{N} H_{N}}.$$
(6)

W szczególności dla  $|\delta_{III}^{II}| = |\delta_{III}^{N}| = |\delta_{III}|$ 

$$(\delta_{22}^{o})_{IIU} = \pm \frac{2 |\delta_{IIU}|}{E_{g} H_{N} Y_{N}}.$$
 (6a)

W pracy [3] przeanalizowano w sposób szczegółowy wpływ poszczególnych parametrów przetwornika I/U na częstotliwościową charakterystykę błędu d<sub>I/U</sub> oraz podano kryteria doboru tych parametrów.

Dla właściwie zaprojektowanego przetwornika [3] wartość błędu  $(\delta_{YX}^{0})_{UU} = \pm (0,5 \div 1)\%$ tylko w zakresie infraniskich częstotliwości (10<sup>-3</sup> - 10) Hz, przy czym dla f > 10 Hz ( $\delta_{yx}^{0}$ )<sub>141</sub> - 0.



- Rys.2. Wpływ błędów  $\delta_{UU}^{x}$  i  $\delta_{UU}^{N}$  zastosowanych rzeczywistych przetworników I/U Fig.2. Influence of the parameters  $\delta_{UU}^{x}$  and  $\delta_{UU}^{N}$  of the real I/U converters applied in the comparator

# 3. WPŁYW BŁĘDU WZORCA 6 NI ADMITANCJI BOCZNIKUJĄCYCH Yx1, Yx2, YN1, YN2

Zgodnie ze schematem wg rys.3 dla układu obowiązuje równanie przetwarzania

$$\Delta U' = H_{\chi} I'_{\chi} - H_{N} I'_{N}, \tag{7}$$

gdzie

$$I'_{x} = E_{g} \frac{Y_{Ix} Y_{x}}{Y_{x} + Y_{Ix} + Y_{xI}},$$
(7a)

$$I'_{N} = E_{g} \frac{Y_{IN}(Y_{N} \pm \delta_{TN})}{Y_{N} \pm \delta_{TN} + Y_{IN} + Y_{NI}}.$$
(7b)



- Rys.3. Wpływ błędu wzorca byw i admitancji bocznikujących Y<sub>X1</sub>, Y<sub>X2</sub>, Y<sub>N1</sub>, Y<sub>N2</sub>; Y<sub>X</sub>, Y<sub>IN</sub>, admitancje wejściowe przetworników I/U o transmitancjach (odpowiednio) równych H<sub>X</sub> i H<sub>N</sub>
- Fig.3. Influence of the standard error  $\delta_{YN}$  and shunt admittances  $Y_{XI}$ ,  $Y_{X2}$ ,  $Y_{NI}$ ,  $Y_{N2}$ ;  $Y_{IX}$ ,  $Y_{IN}$  input admittances of I/U converters with transmittances equal to  $H_X$  and  $H_N$ , respectively

Wstawiając równania (7a) i (7b) do równania (7) otrzymujemy równanie przetwarzania (7) w następującej postaci

$$\Delta U' = E_{\varepsilon} \left[ \frac{Y_X H_X Y_{IX}}{Y_X + Y_{IX} + Y_{IX}} - \frac{(Y_N \pm \delta_{TN}) H_N Y_{IN}}{Y_N \pm \delta_{TN} + Y_{IN} + Y_{NN}} \right]. \tag{8}$$

a stąd dla  $\Delta U = 0$ 

$$Y'_{x} = \frac{H_{N}(Y_{N} \pm \delta_{DN})Y_{IN}(Y_{DX} + Y_{XI})}{H_{X}Y_{IX}(Y_{IN} + Y_{NI}) + (Y_{N} \pm \delta_{DN})(H_{X}Y_{IX} - H_{N}Y_{IN})}.$$
(9)

Przyjmijmy dla uproszczenia rozważań

$$\vec{Y}_{JX} = \vec{Y}_{JN} = \vec{Y}_{J}, \tag{10}$$

$$Y_{\chi_1} = Y_{\chi_1} = Y_1,$$
 (10a)

$$Y_{x2} = Y_{y2} = Y_2.$$
 (10b)

Wówczas równanie (9) po wstawieniu zależności (10) + (10b) można zapisać jako

$$Y'_{x} = \frac{H_{y}(Y_{y} \pm \delta_{yy})(Y_{t} + Y_{t})}{H_{x}(Y_{t} + Y_{t}) + (Y_{y} \pm \delta_{yy})(H_{x} - H_{y})}$$
(11)

lub

$$Y'_{x} = \frac{H_{x}(Y_{y} \pm \delta_{yy})}{H_{x} + \frac{(Y_{y} \pm \delta_{yy})}{Y_{y} + Y_{y}}} (H_{x} - H_{y})$$
(11a)

Na ogół Y<sub>1</sub> + Y<sub>1</sub> > Y<sub>N</sub> i wówczas równanie (11a) określa następująca zależność

$$Y'_{\chi} = \frac{H_N(Y_N \pm \delta_{DV})}{H_{\chi}}.$$
 (11b)

Ostatecznie wartość szukanego błędu (ôyx) yw wyznaczymy wprost z definicji

$$(\delta_{TX}^{0})_{TN} = \frac{\overline{Y}_{X}' - \overline{Y}_{X}}{\overline{Y}_{X}} = \pm \frac{\delta_{TN}}{\overline{Y}_{N}} = \pm \delta_{TN}^{0}.$$
 (12)

Wartość błędu  $(\delta_{YX}^{0})_{YN}$  jest zatem wprost wartością względnego błędu  $\delta_{YN}^{0}$  zastosowanego wzorca admitancji, a tym samym jest silnie zależna od częstotliwości f.

# 4. WPŁYW PARAMETRÓW WSKAŹNIKA ZERA WZ

Podstawowymi parametrami wskaźnika zera WZ mającymi wpływ na błąd  $(\delta_{YX}^{0})_{WZ}$ rzeczywistego układu komparatora są: admitancja wejściowa Y<sub>WZ</sub> i próg pobudliwości  $\Delta \alpha$  (rys.4). W pracy [4] przeanalizowano wpływ admitancji wejściowej Y<sub>wz</sub> zastosowanego wskaźnika zera WZ. Zapewniając by

$$|Y_{WZ}| \le Re(Y_{0V}), Re(Y_{0V}), \tag{13}$$

co nie jest trudne, zważywszy, że Re (Yar) = Re (Yar) = (0,01 + 0,02) S [5] - wpływ wskaźnika zera

WZ na przebieg błędu  $(\delta_{\gamma\chi}^{\circ})_{wz}$  jest określony za pomocą wzoru

$$(\delta_{TZ}^0)_{WZ} = \pm \frac{\Delta \alpha}{E_x H_M Y_N}.$$
 (14)

Z kolei błąd pobudliwości 8,0 komparatora określa zależność

$$\delta_{\mu}^{0} = \frac{\Delta \alpha}{S_{\mu}},$$
 (15)

gdzie:  $S_w = E_g Y_X H_X$  [4] jest względną czułością komparatora.



- Rys.4. Wpływ parametrów (Δα, Y<sub>wz</sub>) wskaźnika zera WZ na przebieg błędu (δ<sub>YX</sub><sup>0</sup>)<sub>wz</sub>; Y<sub>0X</sub>, Y<sub>0N</sub> — admitancje wyjściowe przetworników I/U o transmitancjach odpowiednio równych H<sub>X</sub> i H<sub>N</sub>
- Fig.4. Influence of  $(\Delta \alpha, Y_{wZ})$  null indicator WZ parameters on the error response  $(\delta_{YX}^{0})_{wZ}$ ;  $Y_{0X}$ ,  $Y_{0N}$  output admittances of I/U converters with transmittances equal to  $H_X$  and  $H_N$ , respectively

27

Wstawiając zależność (15) do wzoru (14) uzyskuje się po przekształceniach

$$(\delta_{TZ}^0)_{WZ} = \pm \frac{\Delta \alpha}{E_g H_X Y_X} \frac{H_X Y_X}{H_N Y_N} = \pm \delta_p^0 \frac{H_X Y_N}{H_N Y_N}.$$
 (16)

Dla stanu komparacji (por. równanie (1)) zachodzi H<sub>x</sub> Y<sub>x</sub> = H<sub>N</sub>Y<sub>N</sub>, a zatem

$$(\delta_{TX}^{0})_{WZ} = \pm \delta_{\mu}^{0}$$
. (17)

Z uwagi na kryterium

$$|\delta_{p}^{0}| \le 0,1 |\Delta_{pp}^{0}|,$$
 (18)

gdzie:  $|\Delta_{YX}^0|$  jest założoną niedokładnością wyznaczenia admitancji  $Y_X$  w analizowanym układzie komparatora

$$\left(\delta_{TX}^{0}\right)_{WX} \le 0, 1 \left|\Delta_{TX}^{0}\right|. \tag{19}$$

W praktyce błąd pobudliwości  $\delta_p^0$ , a tym samym  $(\delta_{YX}^0)_{WZ}$  jest dominujący dla zakresu infraniskich częstotliwości (f  $\le 10$  Hz), gdyż wówczas  $Y_X \rightarrow 0$ , a zatem zgodnie z równaniem (15),  $\delta_p^0$  wykazuje tendencję rosnącą. Dla f > 10 Hz do oceny błędu  $(\delta_{YX}^0)_{WZ}$  wystarczy posługiwać się równaniem (19).

## 5. WPŁYW PARAMETRÓW ŹRÓDŁA NAPIĘCIA E ZASILAJĄCEGO KOMPARATOR

Układ komparatora, przydatny do dalszych rozważań, zamieszczono na rys.5.

Przy badaniach dielektryków, z reguły o skrajnie małych admitancjach, na ogół zachodzi warunek Y<sub>2</sub>> Y<sub>2</sub>, Y<sub>N</sub> i wówczas obowiązuje następująca zależność

$$E'_{g} = E_{g0} + E_{g}(\omega') + E_{g}(\omega), \qquad (20)$$

gdzie:

 $\rm E_{g0}$  — wartość składowej stałej występującej w napięciu  $\rm E_{g0}^{+}$ 

 $E_{a}(\omega')$  — wartość napięcia zasilającego układ komparatora o pulsacjach  $\omega' > \omega$ ,

E<sub>s</sub>(ω) — wartość napięcia zasilającego komparator o pulsacji ω.

Wartość wypadkowego, sprowadzonego do wyjścia przetworników I/U bezwzględnego błędu  $\delta_{Eg}$  od analizowanych wielkości wpływowych można zapisać w postaci

$$b_{g_{g}} = [E'_{g}(\omega) - E_{g}(\omega)] (H_{\chi}Y_{\chi} - H_{\chi}Y_{\chi}), \qquad (21)$$

a stad (por. równanie (5))

$$\left(\delta_{IX}^{0}\right)_{Bg} = \pm \frac{\delta_{Bg}}{E_{0}Y_{N}H_{N}}.$$
(22)

Dla stanu bliskiego stanowi komparacji  $H_X Y_X - H_N Y_N = 0$  i wtedy wartość błędu  $\delta_{Eg} = 0$ , a co za tym idzie,  $(\delta_{YX}^0)_{Eg} \approx 0$ . W praktyce wartość błędu  $(\delta_{YX}^0)_{Eg}$  zaczyna dominować w zakresie infraniskich częstotliwości (10<sup>-3</sup> - 10) Hz. Składowa stała  $E_{g0}$  powoduje nasycenie zastosowanych w przetwornikach I/U wzmacniaczy operacyjnych, będących w rzeczywistości układami typu całkującego [3, 5, 7], co powoduje konieczność zastosowania odpowiednich układów eliminujących. Z drugiej strony zasilanie układu komparatora napięciem  $E_g(\omega')$ ,  $\omega' > \omega$  powoduje powstanie na wyjściu zastosowanych przetworników I/U dodatkowych składowych  $U_X(\omega')$  i  $U_N(\omega')$ :

$$U'_{x} = U_{x0}t + U_{x}(\omega) + U_{y}(\omega'),$$
 (23)

$$U'_{N} = U_{N0} t + U_{N} (\omega) + U_{N} (\omega'), \qquad (24)$$

gdzie:

 $U_{xo}$ ,  $U_{No}$  — odpowiedź przetworników I/U na składową stałą  $E_{go}$  napięcia zasilającego komparator,

t --- czas.



- Rys.5. Wpływ parametrów (Y<sub>g</sub>, E<sub>g0</sub>, E<sub>g</sub>( $\omega$ ')), E<sub>g</sub>( $\omega$ ) źródła napięcia E<sub>g</sub>' zasilającego komparator;  $\omega' > \omega$
- Fig.5. Influence of the parameters  $(Y_g, E_{g0}, E_g(\omega))$ ,  $E_g(\omega)$  of the voltage source  $E_g$  supplying the comparator

Eliminacja składowych  $U_x(\omega)$  i  $U_N(\omega)$  sygnałów  $U_x'$  i  $U_N'$  prowadzi do konieczności zastosowania odpowiednio selektywnych wskaźników zera WZ, co nie jest trudne dla f > 10 Hz. W zakresie infraniskich częstotliwości można wykorzystać wskaźnik zera WZ z zastosowaniem przetwornika typu ilorazowego [8].

### 6. SPOSÓB WZORCOWANIA KOMPARATORA



- Rys.6. Schemat ideowy ogólnego układu komparatora z zastosowaniem dodatkowego wzorca admitancji Y<sub>o</sub>
- Fig.6. Schematic diagram of the general comparator circuit when applying the additional admittance standard Y<sub>0</sub>

Przy zastosowaniu dodatkowego wzorca admitancji  $Y_0$  (rys.6), podczas wzorcowania (klucz K w poz. "1") obowiązuje równanie komparacji (por. równanie (4))

$$Y_0 = \frac{H_N}{H_X} Y_N^1 \pm \frac{\delta_U}{E_g H_X},$$
(25)

natomiast podczas pomiaru (klucz K w poz. "2")

$$Y_{\chi} = \frac{H_{\chi}}{H_{\chi}} Y_{\chi}^{2} \pm \frac{b_{U}}{E_{\chi} H_{\chi}}, \qquad (26)$$

gdzie:

 $Y_0$  — admitancja dodatkowego wzorca umieszczanego w torze wejściowym przetwornika  $H_x$ ,  $Y_N^1$ ,  $Y_N^2$  — nastawy wzorca admitancji  $Y_N$  podczas wzorcowania  $(Y_N^1)$  i pomiaru  $(Y_N^2)$ ,  $\delta_U$  — wartość sygnału wyjściowego komparatora reprezentująca błąd komparatora.

Całkowity błąd pomiaru admitancji  $\delta_{YX}^0$  można wówczas wyznaczyć na podstawie równania (5)

$$\delta_{IX}^{0} = \pm \frac{\delta_{U}}{E_{g} Y_{N}^{2} H_{N}} = \pm \left( Y_{0} - \frac{H_{N}}{H_{X}} Y_{N}^{1} \right) \frac{H_{X}}{H_{N} Y_{N}^{2}}.$$
 (27)

### 7. WYNIKI BADAŃ I WNIOSKI KOŃCOWE

Dla zbudowanego modelu komparatora [9] uzyskano częstotliwościową charakterystykę unormowanego błędu  $\delta_{\gamma\chi}^0$  jak na rys.7.



- Rys.7. Unormowana częstotliwościowa charakterystyka błędu pomiaru admitancji dielektryka dla zbudowanego modelu komparatora
- Fig.7. Normalized frequency characteristic of the admittance measuring error for the constructed comparator model

Linią przerywaną (rys.7) zaznaczono teoretyczną granicę obszaru możliwości wystąpienia błędu  $\delta_{YX}^0$  obliczoną dla konkretnych parametrów komparatora [9]. Stwierdzono zmniejszanie się wartości błędu  $\delta_{YX}^0$  pomiaru admitancji w miarę wzrostu częstotliwości f, co jest zgodne z wynikami przedstawionych wcześniej analiz poszczególnych składowych błędu  $\delta_{YX}^0$ . Zaproponowano procedurę wzorcowania komparatora pozwalającą na ocenę błędu pomiaru admitancji  $\delta_{YX}^0$  oraz wskazano sposoby minimalizacji poszczególnych składowych tego błędu. Prace nad udoskonaleniem zbudowanego modelu komparatora będą dalej kontynuowane.

#### LITERATURA

- Guzik J., Szadkowski B.: Analiza aktywnych, równonapięciowych komparatorów admitancji z punktu widzenia ich przydatności do szerokopasmowych badań dielektryków. ZN Pol. Śl., ser. Elektryka, z. 144, Gliwice 1995.
- Guzik J., Szadkowski B.: Układy pomiarowe do badania dielektryków prądem przemiennym o infraniskiej częstotliwości. ZN Pol. Śl., ser. Elektryka, z.144, Gliwice 1995.
- Guzik J., Szadkowski B.: Analiza błędów konwertera prąd-napięcie przy przetwarzaniu skrajnie małych prądów o infraniskiej częstotliwości (10<sup>-3</sup> - 10) Hz. ZN Pol. Śl., ser. Elektryka, z.108, Gliwice 1989.
- Guzik J., Szadkowski B.: Analiza czułości równonapięciowego komparatora admitancji z przeznaczeniem do badań dielektryków w zakresie infraniskich częstotliwości (10<sup>-3</sup> - 10) Hz. Zn Pol. Śl., ser. Elektryka (w przygotowaniu do druku).
- 5. Nadachowski M., Kulka Z.: Analogowe układy scalone. WKiŁ, Warszawa 1983.
- Pluciński M., Szadkowski B., Szadkowska T.: O pewnych praktycznych aspektach niskoczęstotliwościowych badań warstwowych materiałów elektroizolacyjnych. ZN Pol. Śl., ser. Elektryka, z. 27, Gliwice 1970.
- Zieleźnik L.: Analiza metod pomiaru dyspersyjnych zmian współczynnika stratności i pojemności dielektryków stałych w zakresie częstotliwości podakustycznych. Rozprawa doktorska, Pol. Śl., Gliwice 1977.
- 8. Guzik J., Szadkowski B.: Pomiar amplitudy sygnałów sinusoidalnych w układzie z przetwornikiem ilorazowym typu ICL 7106. ZN Pol. Śl., ser. Elektryka, z. 136, Gliwice 1994.
- Guzik J., Szadkowski B.: Komparator do badań dielektryków w zakresie infraniskich częstotliwości (10<sup>-3</sup> - 10) Hz. ZN Pol. Śl., ser. Elektryka, z. 136, Gliwice 1994.

Recenzent: Prof. dr hab. inż. Zygmunt Kuśmierek

Wpłynęło do Redakcji dnia 15 lutego 1996 r.

#### Abstract

In the paper the review of parameter influences on the admittance measuring error in the wideband  $(10^3 - 10^6)$  Hz comparator circuit has been presented. General classification of the influence parameters is as follows:

- parameters of the real I/U converters (errors  $\delta_{IIU}^{av}$  and  $\delta_{IIU}^{ov}$ ),
- standard admittance error  $\delta_{YN}$  and shunt admittances  $(Y_{X1}, Y_{X2}, Y_{N1}, Y_{N2})$ ,
- null indicator WZ parameters ( $\Delta \alpha$ ,  $Y_{wz}$ ),
- voltage source  $E_a^{\dagger}$  parameters  $E_{g0}$ ,  $E_g(\omega')$ ,  $E_a(\omega)$ .

The proposed error analysis has been made basing on the adequate real comparator circuits (see Fig.2  $\div$  Fig.6). The calibration procedure, chosen plots of the comparator circuit error characteristic, and error minimalization ways, have been also presented.

- International Contraction of the Contraction of t